五年级(上册)数学知识点总结

合集下载

五年级数学上册知识点归纳总结

五年级数学上册知识点归纳总结

五年级数学上册知识点归纳总结(一)负数的初步认识负数的初步认识(一)正负数及零的意义:像+20,+8848,+3260 这样的数都是正数(正数前面的“+”可以省略不写),像-20,-155,-422 这样的数都是负数.0 是正数和负数的分界线,0 既不是正数也不是负数.负数的初步认识(二)1.生活中具有相反意义的数量:像零℃以上与零℃以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示.2.初步认识数轴:(1)0右边的数都是正数,0左边的数都是负数.(2)-2和2到0的距离相等.(3)正数都大于0,负数都小于0.(二)多边形的面积平行四边形的面积1.公式推导:沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,可以将平行四边形转化成长方形.通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高.通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积为:S=a×h.2.平行四边形拉伸和平移问题:(1)把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大.(2)把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小.3.两平行四边形之间的关系:等底等高的两平行四边形面积一定相等,但面积相等的两个平行四边形形状不一定相同;三角形的面积:1.公式推导:用两个完全相同的三角形,可以拼成一个平行四边形.三角形的面积等于拼成的平行四边形的一半.观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同.通过平行四边形的面积公式,可以推导出三角形的面积公式.如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=a×h÷2.2.两三角形之间的关系:等底等高的两三角形面积一定相等,但面积相等的两个三角形形状不一定相同;3.三角形与平行四边形之间的关系:(1)一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形;(2)等底等高的三角形面积是平行四边形面积的一半;(3)等面积.等底(高)的三角形和平行四边形,三角形的高(底)是平行四边形的2倍;梯形的面积:1.推导公式:两个完全相同的梯形可以拼成一个平行四边形,梯形的面积等于拼成的平行四边形面积的一半.通过观察可以发现,拼成的平行四边形的底等于梯形的上底.下底之和,平行四边形的高等于梯形的高.根据平行四边形面积公式,可以推导出梯形的面积公式.用S 表示梯形的面积,a.b 和h 分别表示梯形的上底.下底和高,梯形的面积公式为:S=(a+b )×h÷2.2.梯形与平行四边形之间的关系:(1)一个平行四边形可以分成两个完全相同的梯形,注意两个不同的梯形也可以拼成一个平行四边形;(2)要从梯形中剪去一个最大的平行四边形,那么应把梯形的上底作为平行四边形的底,这样剪去才能最大.公顷和平方千米:1.公顷:1公顷就是边长100米的正方形的面积,1公顷=10000平方米.一个社区.校园的面积通常用“公顷”为单位;2.平方千米:1平方千米就是边长1000米的正方形的面积,1平方千米=100公顷=100万平方米=1000000平方米.表示一个国家.省市.地区.湖泊的面积是就要用“平方千米”作单位.3.面积单位换算进率:10010010010000100222222mm cm dm m hm km ÷÷÷÷÷−−−→−−−→−−−→−−−→−−−→【同步练习】单位换算8平方米=( )平方分米 3平方分米=( )平方厘米7平方分米=( )平方厘米 ( )平方分米=15平方米( )平方厘米=78平方分米 10平方千米=( )公顷120000平方米=( )公顷 7平方米=( )平方分米78公顷=( )平方米 55平方分米=( )平方厘米14平方米=( )平方分米 360000平方米=( )公顷3平方千米=( )平方米=( )公顷【同步练习】在括号里填上合适的单位名称.课桌的面积大约是44( ). 一枚邮票的面积大约是8( ). 教室的面积大约是48( ).我们校园的面积大约是2( ).江苏省的面积大约是10.26( ).简单组合图形的面积:1.求组合图形面积的常见方法:⑴分割法:可以把一个组合图形分成几个简单的图形,分别求出这几个简单图形的面积,再求和.⑵添补法:可以把一个组合图形看作是从一个简单图形中减去几个简单的图形,求出它们的面积差.2.计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积之和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差.【同步练习】求下面图形的面积(单位:m).你能想出几种方法.不规则图形的面积:1.要点:(1)把整格和半格分别涂上不同的颜色,避免重复和遗漏.(2)不满整格的可以全部看成半格计算;或者先数整格的个数,再把不满整格的也看成整格,数出一共有多少格.(3)有顺序地去数,做到不重复.不遗漏.2.方法:先数整格的,再数不满整格的,不满整格的除以2折算成整格,最后相加;若不规则图形为轴对称图形,可先算出一半图形的面积,再乘以2.【同步练习】图中每个小方格的面积为12m,请你估计这个池塘的面积.(三)小数的意义和性质小数的意义和读写方法:1.小数的意义:分母是10.100.1000……的分数都可以用小数表示.一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2.小数的读写:整数部分的0在每一级中间要读出来,在末尾不用读出来,而小数部分的0都要读出来(常考题)【同步练习】填空(1)506毫米=( )米; (2)23分=( )元;(3)148厘米=( )米; (4)8角5分=( )元;(5)0.023米=( )毫米 ; (6)3.09元=( )元( )分;(7)0.008= ()(); 0.621= ()(); 3.15=()(); 【同步练习】用0.0.2.6这四个数字和小数点组成小数.(1)组成最小的小数( ); (2)组成最大的小数( );(3)组成最小的两位小数( ); (4)组成最大的两位小数( );(5)组成只读一个0的两位小数( ); (6)组成一个0都不读的小数( ); 小数的计数单位和数位顺序表:【同步练习】在6.47这个数中,6在( )位上,表示( )个( );4在( )位上表示( )个( );7在( )位上,表示( )个( ).【同步练习】0.508是由( )个十分之一和( )个千分之一组成的,也可以看作是由( )个千分之一组成的.【同步练习】1里面有()个0.1,()个百分之一;50里面有()个0.01.【同步练习】1.45的计数单位是(),1.45含有()个这样的计数单位.1.450的计数单位是(),1.450含有()个这样的计数单位.【同步练习】一个小数的计数单位是0.001,它比0.01大,又比0.02小,这个小数可能是 .小数的性质:1.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变.2.易错点:①在小数点后面添上0或者去掉0,小数的大小不变.(×)②在一个数后面添上0或者去掉0,小数的大小不变.(×)【同步练习】把下面各数改写成小数部分是两位的小数.5元6角=()元 8分=()元1分米2厘米=()米 12厘米=()米【同步练习】在800,8.00,0.80,80.000这几个数中,不改变原数的大小,能去掉3个0的数是(),只能去掉2个0的数是(),只能去掉1个0的数是(),一个0也不能去掉的数是().小数的大小比较:先看整数部分,整数部分大的数就大;整数部分相同的,十分位上的数大的小数就大;十分位上的数相同的,再比较百分位上的数,以此类推.【同步练习】比较大小:0.76.0.067.0.706.0.076.0.67.0.607()<()<()<()<()<()【同步练习】7.□6>7.46 ,□里可填的数是().【同步练习】大于0.5而小于1的一位小数有()个.大于0.07而小于0.08的三位小数有()个;【同步练习】在□.□8的两个□里各填一个数字,使得到的小数分别符合下面的要求,(1)使这个小数尽可能大,这个小数是().(2)使这个小数尽可能小,这个小数是().(3)使这个小数尽可能接近5,这个小数是().大数值的改写1.用“万”作单位:a.从个位起,往左数四位,画“┆”,在“┆”下方点小数点;b.去掉小数末尾的“0”,添上“万”字;c.用“=”连接.2.用“亿”作单位:a.从个位起,往左数八位,画“┆”,在“┆”下方点小数点;b.去掉小数末尾的“0”,添上“亿”字;c.用“=”连接.【同步练习】把168000改写成用“万”作单位的数是();省略万位后面的尾数是();把995000000元改写成以“亿元”为单位的数是(),保留一位小数是(). 小数的近似数1.保留整数:就是精确到个位,要看十分位上的数来决定四舍五入.2.保留一位小数:就是精确到十分位,要看百分位上的数来决定四舍五入.3.保留两位小数:就是精确到百分位,要看千分位上的数来决定四舍五入. 【同步练习】求下面各数的近似数:1.5.064(精确到十分位)2.3.1449(精确到百分位)3.2.905(保留一位小数)4.2549880000(改写成用“亿”作单位的数,再保留两位小数)(四)小数加法和减法小数的加法和减法1.小数加法和减法的计算方法:要把小数点对齐,也就是相同数位对齐;从最低位算起,各位满十要进一;不够减时要向前一位借1当10再减.2.被减数是整数时,要添上小数点,并根据减数的小数部分补上“0”后再减.3.用竖式计算小数加.减法时,小数点末尾的“0”不能去掉,把结果写在横式中时,小数点末尾的“0”要去掉.【同步练习】数字7在十位上比在十分位上表示的数大(),小于1的最大的三位小数比最小的两位小数大().【同步练习】3.6的计数单位是(),它有()个这样的单位,再加上()个这样的计数单位就得到4.【同步练习】在一个减法算式中,差是6.25,如果被减数增加0.5,减数减少0.5,则现在的差是().小数加减法简便计算:1.加法运算律:加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)2.减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+ca+b-c=a-c+b a+b-c+d=a-c+b+d【类型一】8.43+2.87+0.57+0.13 【类型二】6.52–3.44–2.56【类型三】9.6+6.7–9.6+3.3 【类型四】17.84–(5.84+11.79)(五)小数乘法和除法小数乘整数:小数乘整数,先按整数乘法计算,再看乘数里有几位小数,就从积的右边起数出几位,点上小数点.【同步练习】根据504×25=12600,直接写出下面每题的积.5.04×25= 50.4×25= 0.504×25=504×0.25= 504×2.5= 504×0.025=一个数乘10.100.1000……的计算规律1.规律:一个小数乘10.100.1000……小数点就分别向右移动一位.两位.三位……反过来.把小数的小数点向右移动一位两位.三位……就等于把这个小数乘10.100.1000 ……这就是小数点移动引起的小数大小变化规律.注意:如果当移动小数点但末尾数位不够时,可以用添“0”的办法补足数位,过去一个整数乘10就在末尾添1个“0”,乘100就在末尾添2个“0”……2.单位换算:例如求0.86吨=?千克时,可以这样想:把吨数改写成千克数,是把高级单位的数改写成低级单位的数,要乘以进率,进率是1000,只要把0.86的小数点向右移动三位.【同步练习】在括号里填上合适的数.0.04×()=4 0.978×()=978 5.08×()=50.846.5×()=4650 0.09×()=9 1.04×()=104【同步练习】单位换算.2.3米=()分米3.004升=()豪升7.07千克=( )克 21平方分米9平方厘米=( )平方厘米0.6平方米=( )平方厘米 4.3小时=( )小时( )分一个数除以整数除数是整数的小数除法,按整数除法算,商的小数点和被除数对齐;末尾有余数添0继续除;整数部分不够商1在个位商0.一个数除以10.100.1000……的计算规律1.规律:一个小数除以10.100.1000……小数点就分别向左移动一位.两位.三位……反过来,把一个数的小数点向左移动一位.两位.三位……就等于把这个小数除以lO.100 .1000……注意:如果当移动小数点数位不够时,可以用添“0”补足数位.整数实际上就是小数部分都是0的数,同样可以用这个规律求商.过去一个整十.整百数除似10或100,就在末尾去掉1个“0”或2个“0”……2.单位换算:例如求4.6分米=?米时,可以这样想:这道题是把分米数改写成米数,是把低级单位的数改写成高级单位的数,要除以进率,进率是10,只要把4.6的小数点向右移动一位.【同步练习】在括号里填上合适的数.139.8÷()=1.398 47.8÷()=0.478 1153÷()=1.153 8÷1000=()()÷100=7.5 ()÷10=0.01【同步练习】单位换算17分米=()米 1200毫升=()升3050米=()千米 350平方分米=()平方米710克=()千克 5030千克=()吨150分=()小时 720平方厘米=()平方分米小数乘以小数1.法则:小数乘小数先按整数乘洪乘,再看乘数里一共有几位小数,就从积的右边起数出几位,点上小数点.当小数位数不够时,在前面用0补足;末尾有0的要先点小数点再化简.2.积不变的规律:(1)一个乘数扩大多少倍,另一个乘数缩小相应的倍数,积不变;(2)当一个乘数不为0时,另一个乘数大于1,积就大于第一个乘数;另一个乘数小于1,积就小于第一个乘数.【同步练习】根据44×21=924 ,直接写出下面几个算式的积.4.4×2.1=( ) 0.44×0.21=( )0.44×2.1=( ) 4.4×0.21=()【同步练习】在括号填入合适的数,使等式成立.5.46×24=2.4×() 4.24×0.25=()×0.4246.4×0.53=5.3×() 18×0.42=0.18×()【同步练习】比较大小0.8×1.5○0.8;0.8×1.5○1.5.积的近似值求积的近似值,先计算乘法的积,根据要保留的位数看后一位上的数,用四舍五人的方法得出积的近似数.结果是近似值的,要用约等号表示.【同步练习】6.9628保留整数是();保留到十分位是();保留两位小数是();保留三位小数是()【同步练习】求一个小数的近似数,如果保留三位小数,要看小数第()位. 一个数除以小数1.被除数数位够:先划去除数的小数点,将除数变成整数,然后除数的小数点向右移动了一位,被除数的小数点也向右移动一位,划去被除数原来的小数点,再按照除数是整数的除法来计算.2.被除数数位不够:(1)先把除数转化成整数;(2)把除数转化成整数后,被除数的小数点也要向右移动相同位数.如果位数不够,要用0补足;(3)再按除数是整数的计算方法进行计算.3.商不变的规律:(1)除数和被除数扩大相同倍数,商不变;(2)当被除数不为0时,除数大于1,商就小于被除数;除数小于1,商就大于被除数.【同步练习】把下面的式子变成除数是整数的除法算式0.75÷0.25=( )÷25 0.672÷4.2 =( )÷420.24÷4.8=( )÷48 14 ÷0.56 =( )÷( )76.8÷0.5=( )÷5 0.54÷0.18 =( )÷( )【同步练习】根据1664÷13=128写出下面各题的商.16.64÷0.13 =( ) 166.4÷0.13=( )1664 ÷0.013=( ) 1.664÷1.3 =( )166.4 ÷130 =( ) 16.64÷1.3 =( )【同步练习】巧比大小.12.01÷1.02○12.01 0.36÷0.36○0.367.8×0.98○0.98 10.8÷5.4○10.81.8×1.1○18×0.11 0.99÷1.1○0.99×1.1商的近似值1.求商的近似值:保留整数要除到( )位,保留一位小数要除到( ),保留两位小数要除到( ),也就是比保留的位数多除( )位,再按( )法取近似值.2.循环小数:⎧⎨⎩有限小数(小数部分位数是有限的)小数无限小数(小数部分位数是无限的) 循环小数: 0.378378…… 1.13636……(用循环节表示) 0.378g g 1.136g g3.进一法:有时候不管余下的数是多少,都还需要分1份,就要用进一法把结果添上1,比如只要油有余下的,不管余下多少都要有1个油壶才能装完,这就要在商里添上1个.4.去尾法:有时候不管余下的数是多少,都不能再得到1个或1份时,就要用去尾法舍去余数,比如余下的钱不够再买1个足球.余下的米数不够做1件衣服,这余数就舍去.【同步练习】一间教室长8.8米,宽6.5米,如果用0.38平方米的瓷砖铺地,至少需要多少块瓷砖?(得数保留整数)【同步练习】植物油厂的每个油桶最多装油4.5千克,要装600千克的油,需要多少个油桶?【同步练习】金星服装厂有一批布料,如果做儿童服装,每套用布2.2米,正好可以做100套;如果用来做成人服装,每套用布2.5米,那么可以做多少套成人服装呢?小数四则混合运算1.运算顺序:(1)同一级符号从左往右依次计算;(2)既有加减,又有乘除,先算乘除,再算加减;(3)有小括号的,先算小括号里面的.2.简便计算类型:(1)乘法结合律a b c a c b()()⨯⨯=⨯⨯基本方法:先交换因数的位置,再计算.【同步练习】4.36×12.5×8【例2】0.95×0.25×4 (2)乘法分配律乘法分配律()±⨯=⨯±⨯a b c a c b c【同步练习】(1.25-0.125)×8【例2】(20-4)×0.25 (3)乘法分配律逆应用乘法分配律逆向定律()⨯±⨯=±a b a c a b c【同步练习】3.72×3.5+6.28×3.5【例2】 15.6×2.1-15.6×1.1(4)乘法分配律拓展应用【例1】4.8×10.1【例2】0.39×199(5)拆分因数【同步练习】1.25×2.5×32【例2】3.2×0.25×12.5(6)添加因数“1”【例1】56.5×99+56.5【例2】4.2×99+4.2(7)更改因数的小数点位置【同步练习】6.66×3.3+66.6×67【例2】4.8×7.8+78×0.52(8)除法的性质字母表示:)÷=÷÷(ca⨯bbac【同步练习】420÷2.5÷4【例2】17.8÷(1.78×4)(六)统计表和条形统计图(二)复式统计表复式统计表其实就是由几张单式统计表合成的,所以从复式统计表中,不仅可以横向比较.纵向比较,还可以从“合并”和“总计”中看出总体的比较情况.复式条形统计图复式条形统计图的结构比单式条形统计图更复杂,表达的信息也比单式条形统计图更丰富,不仅便于对同一类数据进行比较,而且便于对两类相关数据进行比较. 与复式统计表相比,复式条形统计图表示的数据则更加直观.形象.(七)解决问题的策略例举法1.例表法:例举的特点:有顺序.不重复.不遗漏【同步练习】用18根1米长的栅栏围一个长方形的羊圈,怎样围成的面积最大?在周长不变的前提下,当长方形的长和宽的数值相差越大,面积就越小,反之,长方形的长和宽的数值相差越小,面积就越大.2.例举法:【同步练习】最少订1本,最多订3本,有多少种情况?订一本:A.B.C 订二本:AB.AC.BC 订三本:ABC 得出结论:要按一定顺序列举,才能做到既不重复,又不遗漏.当情况比较复杂时要先分类,再列举.列举时可以列表,也可以用文字或符号.字母等来表示.总之要把每种可能一一列举出来,并且要用尽可能简单的方法表示,让人一看就明白.3.画图法:【同步练习】小强.小华和小丽是好朋友,如果她们每两人之间通一次电话,一共要通多少电话?如果他们互相寄一张节日贺卡,一共要寄多少张?提问:“每两人之间通一次电话”和“两人互寄一张贺卡”有什么不同?【同步练习】一个平行四边形的面积是36平方米,它的底和高分别是多少(底.高取整米数)?请你列表看一看有几种情况.【同步练习】用36个1平方厘米的小正方形拼成长方形,有多少种不同的拼法?它们的周长各是多少?拼一拼,算出结果.【同步练习】面包房的面包有4个装和6个装两种不同的包装.妈妈要购买50个面包,一共有几种不同的选择方法?【同步练习】动物园售票规定,一人券2元一张,团体券15元一张(可供10人参观),六年级一班有58人.买门票最少要花多少元?(八)用字母表示数用字母表示数1.用含有字母的式子表示数量关系和计算公式:小结:用含有字母的式子表示数量关系和计算公式简洁.明了,让人一目了然. 字母在不同的情况下,表示数的范围不一样,有的时候可以表示任意的数,但在表示生活中的数的时候,有时会有一定的范围.【同步练习】如果用大写的C表示周长,a表示长方形的长吧,b表示长方形的宽,你能用字母表示长方形的周长公式吗?那么面积呢?解析:长方形的周长=(长+宽)×2,用字母分别代进去,为C=(a+b)×2,省略乘号为C=2(a+b)长方形的面积=长×宽,用S表示面积,则S=a×b.【同步练习】若a表示单价,b表示数量,c表示总价.(1)已知单价.数量,求总价:()(2)已知总价.单价,求数量:()(3)已知总价.数量,求单价:()【同步练习】若用m表示工作效率,t表示工作时间,n表示工作总量.(1)已知工作效率.工作时间,求工作总量:()(2)已知工作总量.工作效率,求工作时间:()(3)已知工作总量.工作时间,求工作效率:()【同步练习】你能用字母表示以前学过的运算律吗?加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:a×b=b×a乘法结合律:a×b×c=a×(b×c)乘法分配律:a×(b+c)=a×b+a×c【同步练习】用含有字母的式子表示下面的数量:(1)水果店运来苹果X筐,每筐30千克.卖去50筐,还剩()千克.(2)水果店运来苹果X筐,每筐30千克.卖去50千克,还剩()千克.(3)一本书X元,买10本同样的书应付()元.(4)搭一个正方形要4根小棒,一行搭n个正方形要()根小棒.(5)一件衣服用布2米,X米布可做的件数为().(6)一个正方形花坛长5米,四周有一条a米宽的小路.小路的面积()平方米.小路外边一周长()米.2.含有字母的式子的书写(1)当字母与数字相乘时,去掉乘号,把数字写在字母的前面,也可以用点表示乘号,如:a×2通常可以写成2a或2• a.(2)当字母与字母相乘时,省略乘号,用点表示或直接去掉乘号,如:a×b写作a•b或ab;相同字母的话就写一个字母,再在字母的右上角写上2,如:ɑ×ɑ通常写成ɑ•ɑ或ɑ2,读作:ɑ的平方,表示2个ɑ相乘;(3)字母与1相乘省略1不写,只写字母本身,如:1×ɑ写做ɑ.要特别注意的是:加号.减号和除号不能用小圆点代替,也不能省略不写.【同步练习】省略乘号,写出下面各式:a×x= x×x= 5×x= x×3=y×8= x×2= y×b= 4×b×5=5x×2= 1×a= 4×m×n=3.把数代入含有字母的式子求值当给出式子中每个字母表示的数量是多少时,就可以把数字带进去算出这个式子表示的数值.注意要对应相应字母的的数值.【同步练习】煤气公司铺设一段管道,3米长的钢管用了x根,5米长的钢管用了y根.(1)用式子表示这段管道的长度.(2)当x=40根,y=30根时,这段管道长多少米?【同步练习】甲.乙两船分别从两个码头同时向下游出发,甲船每小时行a千米,乙船每小时行b千米,经10小时甲追上了乙.(1)用式子表示10小时甲.乙两船共行过的路程.(2)若a=58,b=41,求两个码头的距离.4.化简含有字母的式子化简形如“ax±bx”的式子,形如“ax±bx”的含有字母的式子,可以运用乘法分配律进行化简.【同步练习】计算下面各题:3x+5x=10y-9y=15a+10a=8b+2b=1×a=y+4y=15b-14b=15x-x=6a-a=y×y=.。

五年级上册数学全册重点知识总结

五年级上册数学全册重点知识总结

五年级上册全册重点知识总结第一单元本单元知识盘点:1.小数乘整数的计算方法。

乘:先按整数乘法的法则去乘;数:数一数两个因数中一共有几位小数;点:因数中共有几位小数,就从积的右边起数出几位小数,点上小数点。

提示:计算出小数乘整数的乘积后,积的小数部分末尾若出现0,要根据小数的性质去掉小数末尾的0,使小数成为最简形式。

2.小数乘小数的计算方法。

计算时先转化成整数乘整数,再算出积,最后看两个因数的小数位数一共是几位,就从积的右边起,数出几位点上小数点。

提示:积的小数位数不够时,要在前面用0补位,小数部分末尾有0的要把0去掉。

3.求一个数的几倍是多少的问题的解法。

无论倍数(大于1)是整数还是小数,都用乘法计算。

4.小数乘法的验算方法。

方法一:根据因数与积的大小关系检验。

方法二:因数位置交换再乘一遍。

方法三:用计算器来验算。

5.求积的近似数的方法。

先明确要保留的小数位数,再看要保留的数位的下一位上的数字是几,最后按照“四舍五入”法取积的近似值。

提示:若近似数末尾是0,这个0必须保留。

6.整数乘法的运算定律推广到小数。

整数乘法的交换律、结合律和分配律对小数乘法同样适用,运用运算定律可以使计算简便。

提示:运用乘法运算定律可以改变运算顺序,但不改变计算结果。

7.判断购物钱数够不够的方法。

可以采用“上舍入”和“下舍入”的方法进行估算。

“上舍入”就是取比该值大的最接近的整数,如:30.7“上舍入”为31。

“下舍入”就是取比该值小的最接近的整数,如:30.7“下舍入”为30。

8.乘加、乘减的计算方法。

没有括号的小数乘加、乘减运算,要先算乘法,后算加、减法。

本单元知识点易错汇总:1.计算小数乘法时,不能忘记点积中的小数点。

2.小数乘整数的积的末尾有0时,一定要先点积中的小数点,再去掉积中小数部分末尾的0。

3.在计算小数乘法时,积的小数位数不够时,需要在前面添0补位,再点上小数点。

4.判断积中小数点的位置是否正确时,先看两个因数乘积的末尾是否有0,有0时,根据小数的基本性质可以去掉0,去掉后积的小数位数少于因数中的小数位数和;没有0时,积的小数位数与因数中的小数位数和一定相同,反之计算结果就是错误的。

人教版五年级数学上册各单元知识点归纳总结

人教版五年级数学上册各单元知识点归纳总结

五年级数学上册各单元知识点归纳总结【第一单元小数乘法】1.小数乘整数①意义——求几个相同加数的和的简便运算。

注意:小数乘整数的意义与整数乘法的意义相同。

如:1.5×3表示求3个1.5的和的简便运算(或 1.5的3倍是多少)。

请你举例:②计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

请你举例:2.小数乘小数①意义——就是求这个数的几分之几是多少。

如:1.5×0.8表示求1.5的十分之八是多少(或求 1.5的0.8倍是多少)。

请你举例:②计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

③注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;小数的位数不够时,要用0占位。

所以在小数乘法中,因数一共有几位小数积不一定就有几位小数。

请你举例:3.小数乘法中的计算规律:①一个数(0除外)乘大于1的数,积比原来的数大;②一个数(0除外)乘小于1的数,积比原来的数小。

4.小数乘法中积与因数的变化规律①如果一个因数不变,另一个因数扩大或缩小,积也跟着因数扩大或缩小相同倍数。

②注意:如果两个因数都变化了,这种情况比较复杂,需要自己在练习本上举例。

请你举例:5. 求积近似数方法:四舍五入法(进一法和去尾法在解决问题时根据实际情况选择使用。

)注意:精确到个位是保留整数,精确到十分位是保留一位小数,精确到百分位是保留两位小数,精确到千分位是保留三位小数,,,计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角,保留整数是计算到个位。

举例计算:知道近似数,怎样计算最大的原数和最小的原数?请你举例:6.小数四则混合运算的顺序跟整数是一样的。

7.整数的运算定律对于小数也适用。

运算定律和性质:①加法运算定律有2个:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)②乘法运算定律有3个:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 【注意:(a-b)×c=a×c-b×c】③减法运算性质:a-b-c=a-(b+c) a-(b+c)=a-b-c④除法运算性质:a÷b÷c=a÷(b×c) a÷(b×c) =a÷b÷c请你举例:8.用分段计费的方法解决实际问题。

五年级人教版数学上次知识点总结(全)

五年级人教版数学上次知识点总结(全)

人教版五年级上次数学知识点总结(全)第一单元小数乘法1.小数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

2.小数乘整数的计算方法:先将小数转化成整数,再按照整数乘法的计算方法算出积,最后看因数中共有几位小数,就从积的右边起数出几位,点上小数点。

积的小数部分末尾的0可以去掉。

注意:计算小数乘法时,小数末尾有0的,应先点积中的小数点,再去掉小数部分末尾的0.3.小数乘小数的计算方法:将小数转化成整数;按照整数乘法的计算方法算出积,再看两个因数中一共有几位小数,就从积的右边起数出几位点上小数点;当积的位数不够时要在前面添0补足,再点小数点;积的小数部分末尾有0的要把0去掉。

4.积的大小与因数的关系:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小;一个数(0除外)乘等于1的数,积就等于原来的数。

5.求一个数的小数倍数是多少,用乘法计算,即用这个数乘小数倍数。

6.小数乘法常用的演算方法:(1)交换因数的位置重新计算;(2)根据因数与积的大小关系检验;(3)根据因数与积的小数位数的关系检验;(4)用计算器来验算。

第二周知识点总结求积的近似数先按照小数乘整数的笔算方法求出积,然后看需要保留数位的下一位上的数字,再按照“四舍五入”法求出积的近似数。

注意结果要用“≈”。

得数只有取近似值时才能用“≈”,准确值不能用“≈”在求积的近似数时,小数末尾的0不能去掉。

相等的两个小数的精确度不一定相同。

比如8.9和8.90的大小相等,它们的精确度不同。

知识巧记:四舍五入方法好,保留哪位看下位。

是5大5前进1,小于5的全舍掉。

等号改成约等号,使人一看就明了。

整数乘法运算定律推广到小数小数四则混合运算和整数四则混合运算的顺序相同。

在没有括号的算式中,只有加减或者只有乘除,从左往右依次计算;如果既有加减又有乘除,先算乘除后算加减。

在含有括号的算式中,要先算括号里面的,再算括号外面的。

五年级上册数学重点知识

五年级上册数学重点知识

小学五年级数学上册复习知识点归纳总结第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:(1)计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

(2)计算小数加减法先把小数点对齐,再把相同数位上的数相加。

(3)计算小数乘法末尾对齐,按整数乘法法则进行计算。

(4)计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数因数末尾对齐。

2、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

比如:3、求积的近似数:先求出积,在根据需要求近似数。

求近似数的方法一般有三种:⑴四舍五入法 (常用) ;⑵进一法;⑶去尾法。

后两种多用于解决实际问题求近似数中。

4、计算钱数,保留两位小数,表示精确到分。

保留一位小数,表示精确到角。

5、小数四则运算顺序跟整数四则运算顺序是一样的。

(只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。

)6、运算定律和性质:方法1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。

)整数乘法的交换律、结合律和分配律,同样适用于小数乘法。

常见乘法计算(敏感数字):25×4=100 125×8=1000(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)(3)乘法:乘法交换律:a×b=b×a(4)乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变.(a×b)×c=a×(b×c)(5)乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。

(a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c(6)减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。

人教版五年级数学上册各单元知识点期末复习总结

人教版五年级数学上册各单元知识点期末复习总结

第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c (b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

小学五年级上册数学概念大全完整版.doc

小学五年级上册数学概念大全完整版.doc

一、小数乘法1、先按照整数乘法算出积,在点小数点;2、点小数点时,看因数中一共有几位小数,就从积的末位起数出几位,点上小数点。

3、一个数(0除外)乘大于1的数,积比原来的数大。

一个数(0除外)乘小于1的数,积比原来的数小。

4、乘法分配律(a+b)×c=a×c+b×c乘法结合律(a×b)×c=a×(b×c)乘法交换律a×b=b×a5、在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。

二、小数除法1、先按整数除法的方法计算;商的小数点要与被除数的小数点对齐;整数不够除,商0,点上小数点,如果有余数,要添0再除;当被除数的整数部分比除数小的时候,商比1小。

2、先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按除数是整数的小数除法进行计算。

3、求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

4、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

小数部分有一个或几个数字依次不断重复出现,不一定从十分位起就出现重复。

5、一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节。

6、写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。

7、小数部分的位数有限的小数是有限小数。

例如:0.9375是一个有限小数。

小数部分的位数无限的小数是无限小数。

8、除数不变,被除数扩大多少倍,商就扩大多少倍。

9、计算小数除法时,商的小数点要和被除数的小数点对齐。

三、简易方程1、乘法算式“nХ6”中,乘号可以省略,除法算式中“x÷4”,除号不可以省略。

2、在含有字母的式子里,字母中间的乘号可以记作“•"也可以省略不写。

2022人教版数学五年级上册知识点总结、梳理

2022人教版数学五年级上册知识点总结、梳理

人教版数学五年级上册知识点总结、梳理知识点总结第一单元《小数乘法》1、小数乘整数:@意义:求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义:就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@除法:a÷b÷c=a÷(b×c)a÷(b×c)=a÷b÷c第二单元《位置》1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

人教版小学五年级数学上册复习教学知识点归纳总结

人教版小学五年级数学上册复习教学知识点归纳总结

小学五年级数学上册复习知识点归纳总结第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

五年级数学上册知识点总结

五年级数学上册知识点总结

五年级数学上册知识点总结五年级数学上册知识点总结1第一单元小数除法1、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

2、除数是小数的小数除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。

3、连除的算式可以写成被除数除以几个数的积,但除以几个数的积时,必须给这个相乘的式子加上小括号。

4、在小数除法中的发现:①当除数不为0时,除数大于1时,商小于被除数。

如:3.5÷5=0.7②当除数不为0时,除数小于1时,商大于被除数。

如:3.5÷0.5=7当除数不为0时,除数等于1时,商等于被除数。

如:3.5÷1=3.55、小数除法的验算方法:①商×除数=被除数(通用) ②被除数÷商=除数6、商的近似数:根据要求要保留的小数位数,决定商要除出几位小数,再根据“四舍五入”法保留一定的小数位数,求出商的近似数。

例如:要求保留一位小数的,商除到第二位小数可停下来;要求保留两位小数的,商除到第三位小数停下来如此类推。

7、循环小数:A、小数部分的位数是有限的小数,叫做有限小数。

如,0.37、1.4135等。

B、小数部分的位数是无限的小数,叫做无限小数。

如5.3 7.145145等。

C、一个数的小数部分,从某位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

(如5.3 3.12323 5.7171)D、一个循环小数的小数部分,依次不断重复的数字,叫做小数的循环节。

(如5.333的循环节是3,4.6767的循环节是67,6.9258258的循环节是258)E、用简便方法写循环小数的方法:①只写一个循环节,并在这个循环节的首位和末位上面记一个小圆点②例如:只有一个数字循环节的,就在这个数字上面记一个小圆点,5.333写作5.3;有两位小数循环的,就在这两位数字上面,记上小圆点,7.4343写作7.4 3;有三位或以上小数循环的,在首位和末位记上小数点,10.732732写作10.7328、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。

小学五年级上学期数学知识点总结

小学五年级上学期数学知识点总结

一、数的认识
二、数的运算
1.100以内数的加减法:口算、竖式运算、列竖式加减法。

三、几何图形
1.图形的分类:点、线段、射线、直线、水平线、竖直线、直角、平
行线、相交线、三角形、四边形、多边形、圆等。

2.图形的辨认:正方形、长方形、平行四边形、菱形、梯形等。

3.图形的性质:边长、角度、对称性、平行关系等。

四、长度量和时间
1.长度量:米、分米、厘米、毫米的换算,测量长度,比较长度大小。

2.时间:小时、分钟的认识,时、分之间的换算,计算时间的长短。

五、数据统计
1.数据的调查与收集:设计问卷和表格进行统计,对数据进行整理。

2.数据的分析与展示:对数据进行分类、构造条形图、折线图、饼状
图等进行展示和分析。

最新人教版,五年级数学上册复习知识点归纳总结及重难点整理,精品资料

最新人教版,五年级数学上册复习知识点归纳总结及重难点整理,精品资料

最新人教版,五年级数学上册复习知识点归纳总结及重难点整理,精品资料小学最新人教版五年级数学上册复习知识点归纳总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

小学数学五年级上册知识点总结(可编辑可打印思维导图)

小学数学五年级上册知识点总结(可编辑可打印思维导图)

6、小数四则运算顺序和运算定律跟整数是一样的。
@ 加法:
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
@ 减法:
a-b-c=a-(b+c) a-(b+c)=a-b-c
7、运算定律和性质:
乘法交换律:a×b=b×a
@ 乘法:
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
@ 除法:
a÷b÷c=a÷(b×c) a÷(b×c) =a÷b÷c
第二单元 位置
1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别 为列数和行数,即“先列后行”。
2、作用:一组数对确定唯一 一个点的位置。 经度和纬度就是这个原理。
例:在方格图(平面直角坐标系)中用数对 (3,5)表示(第三列,第五行)。
5、梯形的面积=(上底+下底)×高÷2
高=面积×2÷(上底+下底)
6、平行四边形面积公式推导:剪拼、平移、割 补法
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形 ,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高;
先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积 的右边起数出几位点上小数点。
@意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。
2、小数乘小数:

小学五年级上学期数学知识点总结

小学五年级上学期数学知识点总结

小学五年级上学期数学知识点总结名师总结优秀的五年级上册数学知识点。

一、小数的乘法1)小数乘法计算法则:先按整数乘法算出积,再给积点上小数点。

然后,从积的右边起(或个位)数出因数中一共有几位小数,点上小数点。

当乘得的积的小数位数不够时,要在前面用零补足,再点小数点。

2)一个数(除外)乘大于1的数时,积比原来的数大。

一个数(除外)乘小于1的数时,积比原来的数小。

一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。

一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。

3)四舍五入后的数字末尾的不能去掉。

例如,小数4.7“四舍五入”前的最大两位小数是4.74,最小是4.65.4)简便运算:乘法交换律:a×b=b×a,乘法结合律:(a×b)×c=a×(b×c),乘法分配律:a×(b+c)=a×b+a×c。

例如,25×4=100,125×8=1000.5)小数的四则运算顺序跟整数是一样的。

先乘除,后加减,有括号,先算括号里面的;连乘,连加按从左到右的顺序计算。

二、小数的除法1)小数除以整数的计算方法:按整数除法的方法去除。

商的小数点要和被除数的小数点对齐;如果整数部分不够除,商,点上小数点。

如果有余数,要添再除。

2)一个数除以小数的算理:一看---看除数中一共有几位小数。

二移---把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数,当被除数的位数不足时,用零补足。

三算---按照除数是整数的小数除法的方法计算。

3)被除数和除数同时扩大(缩小)相同的倍数,商不变。

被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。

被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。

4)商的近似数:小数除法所得的商可以根据需要用“四舍五入”法保留一定的小数位数,求商的近似数。

5)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

小学五年级数学上册半期知识点总结

小学五年级数学上册半期知识点总结

小学五年级数学上册半期知识点总结
本文档总结了小学五年级数学上册的半期知识点,旨在帮助学生复习和巩固所学内容。

1.数的认识
自然数的概念和表示方法
整数的概念和表示方法
分数的概念和表示方法
2.四则运算
加法和减法的运算规则及口算技巧
乘法的运算规则及口算技巧
除法的运算规则及口算技巧
3.三角形和四边形
三角形的分类和性质
四边形的分类和性质
对称图形的认识和绘制
4.分数
相等分数的认识和比较
分数的加法和减法运算
分数的乘法和除法运算
5.长度和容量
长度的认识和测量
容量的认识和测量
长度和容量之间的换算
6.时钟和日历
时钟的概念和读写时间的方法日历的概念和日期的计算
7.数据统计
数据的概念和收集方法
数据的整理和呈现方式
数据的分析和推断
8.数字之间的关系
数字之间的大小比较
数字之间的相等和不等关系
数字之间的位置关系
以上是小学五年级数学上册的半期知识点总结,希望对学生们复习和掌握这些内容有所帮助。

祝大家学习进步!。

数学五年级上册知识点整理

数学五年级上册知识点整理

数学五年级上册知识点整理
一、数与代数
1. 认识亿以内的数,并能根据需要选择数。

2. 认识分数,掌握分数的加减运算。

3. 认识负数,会用负数表示一些日常生活中的问题。

4. 掌握四则运算的意义、性质和法则,会进行简单的运算。

二、空间与图形
1. 认识分数,掌握分数的加减运算。

2. 认识长方体、正方体、圆柱和球等几何图形,并能够测量或估计它们的大小。

3. 会画直线、线段,并能够画垂线、平行线。

4. 了解比例尺,会进行简单的图上计算。

三、统计与可能性
1. 认识复式条形统计图和复式折线统计图,并能够根据统计图进行简单的数据分析。

2. 会设计简单的调查表。

3. 了解可能性和可能性大小的含义,会求一些事件的可能性大小。

四、实践与综合应用
1. 探索事物的奥秘,发现事物的规律。

2. 开展有趣的数学
活动,体会数学学习的乐趣。

3. 综合运用数学知识解决实际问题,体会数学在日常生活中的应用价值。

以上是五年级上册数学知识点整理的主要内容,希望能够帮助学生们更好地理解和掌握数学知识,提高数学素养。

人教版小学数学五年级(上册)各单元知识点归纳

人教版小学数学五年级(上册)各单元知识点归纳

人教版小学数学五年级(上册)各单元【知识点】第一单元《小数乘法》一、小数乘整数的计算方法:1、先将小数转化成整数2、再按照整数乘法的计算方法算出积3、最后确定积的小数点的位置。

4、如果积的小数部分末尾若出现0,要去掉小数末尾的0,使小数成为最简形式。

二、小数乘小数的算理及计算方法:(1)按照整数乘法算出积,再点小数点;(2)点小数点时,看因数中一共有几位小数,有几位小数就从积的右边起数出几位,点上小数点;(3)积的小数位数如果不够,在前面用0补足,再点小数点;(4)积的小数部分末尾有0的要把0去掉。

三、积与因数的关系一个因数(0除外)乘大于1的数,积比原来的因数大;一个因数(0除外)乘小于1的数,积比原来的因数小。

四、求一个数的小数倍数是多少的问题的解题方法:用乘法计算,即用这个数乘小数倍数。

五、小数乘法的常用验算方法:(1)根据因数与积的大小关系检验;(2)交换两个因数的位置,重新计算;(3)用计算器验算。

六、用“四舍五入”法求积的近似数:1、先算出积,然后看要保留数位的下一位,再按“四舍五入法”求出结果,用“≈”表示;2、用四舍五入法保留一定的小数位数。

四舍五入法:小于5,把它和右边的数全舍去,改写成0大于5,向前进1,再把它和右面的数全舍去,改写成0由于小数的末尾去掉0和加上0,小数的大小不变,所以取小数的近似数时不用把数改写成0,直接去掉。

2.205≈2 (保留整数)2.205≈2.2 (保留一位小数)2.205≈2.21 (保留两位小数)3、如果求得的近似数要保留数位的数字是9而后一位数字又大于5需要进1,这时就要依次进一用0占位。

如6.597 保留两位小数为6.60。

特别注意:在保留整数、(一位、两位、三位)小数、省略(亿···万···十分位、百分位···)后面的尾数、精确到(亿···万···十分位、百分位···)这类题目,都可以用划圆圈的方法来完成。

小学生最新五年级数学上册知识点总结(8篇)

小学生最新五年级数学上册知识点总结(8篇)

小学生最新五年级数学上册知识点总结篇1第一单元《小数乘法》知识点一、小数乘整数(利用因数的变化引起积的变化规律来计算小数乘法)知识点一:1、计算小数加法先把小数点对齐,再把相同数位上的数相加2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:积中小数末尾有0的乘法。

先计算出小数乘整数的乘积后,积的小数末尾出现0,要再根据小数的性质去掉小数末尾的0。

如:3.60“0”应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。

如0.02×2=0.04知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:小数乘整数与整数乘整数有什么不同?1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

二、小数乘小数知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。

知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。

)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算三、积的近似数知识点一:先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。

知识点二:如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。

如6.597保留两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。

先乘法,后加法整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

五、简便运算整数乘法的交换律、结合律和分配律,对于小数乘法也适用计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。

五年级数学上册知识点归纳总结3篇

五年级数学上册知识点归纳总结3篇

五年级数学上册知识点归纳总结第一篇:整数与小数:1. 整数的概念:包括正整数、负整数、0.2. 整数的大小比较:同号比大小看数值大小,异号比大小看绝对值大小.3. 整数的运算:加、减、乘、除.4. 小数的概念:小数点后面有数字的有限小数和无限循环小数.5. 小数的读法:小数点前面的数的读法+小数点+小数点后面数的读法.6. 小数的大小比较:先比较整数部分大小,整数部分相同再比较小数部分.7. 小数的运算:加减法和乘除法.8. 小数的转化:分数、百分数、比.9. 数据的整理与表达:用表格、图形等形式进行数据的整理和表达.第二篇:分数和计算:1. 分数的概念:分数包括真分数、假分数、带分数.2. 分数的读法:分母表示了等分的份数,分子表示了实际数的数量.3. 分数的大小比较:通分后比较分子大小.4. 分数的运算:加减法和乘除法.5. 分数的化简和约分:将分数约分到最简.6. 分数的转化:小数、百分数、比.7. 计算的积极性:数学计算需要认真积极,遇到困难要勇于思考和解决.8. 定义分数:分子、分母、等分.9. 分数的加减法:异分数通分后加减法.第三篇:长度、面积和周长:1. 长度的概念:长度是直线段的大小,用米、分米、厘米等来表示.2. 面积的概念:面积是平面内一个图形所覆盖的区域的大小,用平方米、平方分米、平方厘米等来表示.3. 周长的概念:周长是图形边界的长度,用米、分米、厘米等来表示.4. 不同单位的换算:用不同的方法将一种单位转化为另一种单位.5. 长度、面积和周长的计算:各种图形的长度、面积和周长的计算方法.6. 长度、面积和周长的比较:比较不同的图形的长度、面积和周长的大小.7. 多边形的面积和周长:正多边形和不规则图形的面积和周长的计算方法.8. 尺子读数的误差:尺子的读数存在误差,需要注意取整.9. 采取正确的测量方法:采用正确的方法和工具进行测量,保证测量结果的准确性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级上册数学知识点
一、小数的乘法
(1)小数乘法计算法则:
①先按整数乘法算出积,再给积点上小数点。

②看因数中一共有几位小数,就从积的右边起(或个位)数出几位,点上小数点。

③当乘得的积的小数位数不够时,要在前面用0补足,再点小数点。

(2)一个数(0除外)乘大于1的数时,积比原来的数大。

一个数(0除外)乘小于1的数时,积比原来的数小。

一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。

一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。

(3)四舍五入后的数字末尾的0不能去掉。

小数4.7 “四舍五入”前的最大两位小数是4.74,最小是4.65
(4)简便运算:运算定律乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b+c)=a×b+a×c
25×4=100,125×8=1000
(5)小数的四则运算顺序跟整数是一样的。

先乘除,后加减,有括号,先算括号里面的;连乘,连加按从左到右的顺序计算。

二、小数的除法
(1)小数除以整数的计算方法:
①按整数除法的方法去除。

②商的小数点要和被除数的小数点对齐;如果整数部分不够除,商0,点上小数点。

③如果有余数,要添0再除。

(2)一个数除以小数的算理
一看---看除数中一共有几位小数。

二移---把除数和被除数的小数点同时向右移动相同的位数,使除数变成整数,当被除数的位数不足时,用“0”补足。

三算---按照除数是整数的小数除法的方法计算。


(3)被除数和除数同时扩大(缩小)相同的倍数,商不变。

被除数扩大(缩小)多少倍,除数不变,商扩大(缩小)多少倍。

被除数不变,除数扩大(缩小)多少倍,商缩小(扩大)多少倍。

(4)商的近似数
小数除法所得的商可以根据需要用“四舍五入”法保留一定的小数位数,求商的近似数。

计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

(5)循环小数
一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

像5.3333…和7.14545…都是循环小数。

一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。

例如:5.3333…的循环节是3。

简便记法5.3333…可以记做--- 7.14545…可以记做
---
小数部分的位数是有限的小数,叫做有限小数。

例如:0.9375是一个有限小数。

小数部分的位数是无限的小数,叫做无限小数。

例如,0.57…就是一个无限小数.
循环小数一定是无限小数,无限小数不一定是循环小数。

(6)解决问题
在解决实际问题中,根据实际需要取商的近似数,用(去尾法,进一法)
例如:装水或装油等用进一法,做衣服,包装礼盒用去尾法。

7、求近似数的方法一般有三种:
⑴四舍五入法:求一个数的近似数,主要是看它省略的最高位上的数,是小于5,大于5还是等于5。

如果省略的尾数最高位上的数是4或比4小,把尾数都舍去。

如果省略的尾数最高位上的数是5或比5大,把尾数省略后向前一位进一。

⑵进一法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都要向它的前一位进1。

如:把400千克粮食装进麻袋,如果每条麻袋只能装75千克,至少需要几条麻袋?因为400÷75=5.33……就是说,400千克粮食装5条麻袋还余25千克,这25千克还需要用一条麻袋来装,所以一共需要6条麻袋。

即:400÷75=5.33……≈6(条)这种求近似数的方法,叫做进一法。

⑶去尾法:在实际问题中,有时把一个数的尾数省略后,不管位数最高位商的数是几,都不需要向它的前一位进1。

如:把200纸订成每本12的本子,可以订成多少本?因为200÷16=16.66……,就是说,22纸订成16本还余8章,根据题里的要求,12纸才能订成一本,余下的8纸不能订成有12纸有本子,所以一共只能订成16本。

即:200÷16=16.66……≈16(本)这种求近似数的方法,叫做去尾法。

三、简易方程
(1)用字母表示数,用字母表示运算定律,用字母表示公式
用字母表示运算定律,简明易记,便于应用。

在含有字母的是式子里,字母中间的乘号可以记作“·”,也可以省略不写。

省略乘号时一般把数字写在前面例如:4×a=4a
公式: 长方形的面积s=ab 长方形的周长c=2(a+b)
正方形的面积s=a²(读作a的平方,a²=a×a) 正方形的周长c=4a
(2)用字母表示单位
长度单位千米km 米m 分米dm 厘米cm 毫米mm
面积单位平方千米km²平方米m²平方分米dm²平方厘米 cm²平方毫米mm²
质量单位吨t 千克kg 克g
(3)解简易方程
含有未知数的等式叫做方程。

使方程左右两边相等的未知数的值叫做方程的解。

求方程解的过程叫做解方程。

例:x=6是方程4+x=10的解。

方程的基本性质:①方程两边同时加上或减去同一个数,左右两边仍然相等。

②方程两边同时乘或除以同一个数(0除外),方程左右两边仍然相等。

等式的性质:加数+加数=和;加数=和-另一个加数;
被减数-减数=差;被减数=差+减数;减数=被减数差;
因数×因数=积;一个因数=积÷另一个因数;
被除数÷除数=商;被除数=除数×商;除数=被除数÷商;
解方程 4x=3×9 3x-6=18 2(2.8+x)=10.4
19x-3x=32.16
解决问题:步骤:①分析,列数量关系;②设未知数;③列方程;④解方程;⑤答。

常用数量关系:华氏温度=摄氏温度×1.8+32 成年男子的标准体重=身高-105
路程=时间×速度总价=单价×数量工作总量=工作时间×工作效率
四、多边形的面积
①平行四边形的面积=底×高字母公式: S=ah a=S÷h h=S÷a
②三角形的面积=底×高÷2 字母公式: S=ah÷2 a=2S÷h h=2S÷a
③梯形的面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
h=2S÷(a+b) a=2S÷h-b b=2S÷h-a
④组合图形的面积
同底同高的三角形面积相等,但周长和形状不一定相同。

直角三角形的面积等于两条直角边长度乘积的一半. 同底同高的三角形面积是平行四边形面积的一半。

两条平行线间距离相等。

在两条平行线间可以画出无数个面积相等的三角形。

面积单位换算 1m²=100dm²=10000cm² 1公顷=10000m²
1km²=100公顷=1000000m² 1dm²=100cm²=10000mm² 1cm²
=100mm²
把一个长方形框拉成平行四边形,周长不变,高变短了,面积变小了。

五、统计与可能性
中位数的求法:把一组数据按大小顺序(从大到小或者从小到大)排列,当数据个数是单数是最中间的数就是中位数;当数据个数是双数时最中间两个数的平均数(两数相加÷2)就是中位数;
中位数的优点是不受偏大或偏小数据的影响,有时(当一组数据中有偏大或者偏小的数时)用它代表全体数据的一般水平更合适。

密铺:圆形,正五边形不可以密铺;长方形,正方形,三角形,平行四边形,等腰梯形,正六边形可以密铺。

拼接点处各角度数和为360°
六、数学广角
1.数不仅可以用来表示数量和顺序,还可以用来编码。

用数字编码有着重大的意义:有序、好统计、不重复
2.拨打长途都要先拨区号:市010 市020 省市0931
3.车牌:甘A 53439 是省市的车(甘表示车辆所在的省,自治区,直辖市字母A表示车辆所在的城市)
4.邮政编码的含义:
前两位代表省(自治区、直辖市)
第三位代表邮区,
第四位代表所在邮区的县(市)
最后两位数代表投递区。

如:73 0 2 07。

相关文档
最新文档