脉冲宽度控制
pwm控制电机原理
pwm控制电机原理
PWM(Pulse Width Modulation)控制电机原理是通过改变信
号的脉冲宽度来控制电机的转速。
PWM信号是一种周期性变
化的方波信号,通过调整方波的高电平时间(即脉冲宽度)与周期之间的比例关系,可以达到控制电机转速的目的。
具体来说,当PWM信号的高电平时间占整个周期的比例较大时,电机会以较高的转速运行;而当高电平时间占比较小时,则电机转速较低。
这是因为在高电平期间,电机会根据高电平的持续时间来接收电能并转动,而在低电平期间则不接收电能。
PWM信号的频率也会影响电机的控制效果。
通常情况下,较
高的PWM频率能够使电机的转速变化更加平滑。
另外,
PWM控制电机的精细程度取决于方波的分辨率,即方波的脉
冲宽度级别。
分辨率越高,可以实现的转速调节级别就越多。
因此,在设计PWM控制电机时,需要考虑适当选择PWM信
号的频率和分辨率。
总结起来,PWM控制电机的原理是根据调整方波信号的脉冲
宽度来控制电机的转速。
通过改变方波的高电平时间与周期的比例关系,以及选择适当的PWM频率和分辨率,可以实现对
电机转速的精确控制。
脉冲宽度控制pwm的工作原理
脉冲宽度控制pwm的工作原理脉冲宽度调制(PWM)是一种常用的电子调制技术,它通过调节脉冲信号的宽度来控制输出信号的平均功率。
在本文中,我们将详细介绍PWM的工作原理及其应用。
一、PWM的工作原理PWM的工作原理基于一个简单的概念:通过改变脉冲信号的占空比,可以控制输出信号的平均电压或者功率。
脉冲信号是由一个周期性的方波信号和一个可变的占空比组成的。
占空比是指方波信号中高电平部份的时间与一个周期的比值。
PWM的工作原理可以通过以下步骤来解释:1. 生成一个基准信号:首先,需要生成一个固定频率的基准信号。
这可以通过使用计数器和比较器电路来实现。
计数器将以固定的频率计数,并在达到设定值时产生一个脉冲。
2. 设定占空比:根据所需的输出信号,设定一个占空比。
占空比可以通过改变计数器的比较器值来实现。
比如,如果要求50%的占空比,计数器将在达到一半的计数值时产生一个脉冲。
3. 生成PWM信号:根据设定的占空比,将基准信号与一个可变的调制信号进行比较。
调制信号可以是一个可变的电压或者一个由微控制器生成的数字信号。
比较器将根据调制信号的值决定是否产生一个脉冲。
如果调制信号的值大于基准信号,比较器将产生一个高电平脉冲;如果调制信号的值小于基准信号,比较器将产生一个低电平脉冲。
4. 输出PWM信号:最后,将产生的PWM信号通过一个低通滤波器进行滤波,以去除高频噪声。
滤波后的信号可以用来驱动各种电子设备,如机电、LED灯等。
二、PWM的应用PWM技术在现代电子系统中有广泛的应用。
以下是一些常见的应用领域:1. 机电控制:PWM可以用来控制直流机电或者交流机电的转速和转向。
通过改变PWM信号的占空比,可以调节机电的平均电压或者功率,从而实现对机电的精确控制。
2. 照明调光:PWM可以用来调节LED灯的亮度。
通过改变PWM信号的占空比,可以控制LED灯的亮度级别,实现照明的调光效果。
3. 电源管理:PWM可以用来控制开关电源的输出电压或者电流。
PWM的控制
第14章
PWM的控制
14.4 程序编写 案例:是一个LED 灯从亮到暗,再从 暗到亮。
流程图如 右图
THANK YOU VERY MUCH !
本章到此束, 谢谢您的临!
PWM的控制
面积等效原理:
分别将如图1所示的电压窄脉冲加在一阶惯性 环节(R-L电路)上,如图2a所示。其输出电流 i(t)对不同窄脉冲时的响应波形如图2b所示。从 波形可以看出,在i(t)的上升段,i(t)的形状也略 有不同,但其下降段则几乎完全相同。脉冲越窄, 各i(t)响应波形的差异也越小。如果周期性地施 加上述脉冲,则响应i(t)也是周期性的。用傅里 叶级数分解后将可看出,各i(t)在低频段的特性 将非常接近,仅在高频段有所不同。
位
7
6
CR
5
-
4
-
3
-
2
-
1
0
符号 CF
CCF1 CCF0
第14章
PWM的控制
描述 PCA计数器阵列溢出标志 PCA计数器阵列运行控制位
CCON 寄存器的具体描述
位 7 6 1 0 符号 CF CR
5-2 -
保留为将来之用
CCF1 PCA模块1中断标志 CCF0 PCA模块0中断标志
第14章
PWM的控制
4
3 2 1 0
CAPNn 负捕获。下降沿有效
MATn T0Gn PWMn 匹配 翻转 脉宽调制模式。
ECCFn 使能CCFn中断
第14章
PWM的控制
(2)STC12C5410AD单片机实现PWM的原理 当CL SFR的值小于{EPCnL,CCAPnL}时,输出 为低。当PCA CL SFR的值大于或等于 {EPCnL,CCAPnL}时,输出为高。当CL的值由 FF变为00溢出时, {EPCnH,CCAPnH}的内容装 载到{EPCnL,CCAPnL}中。这样就可以实现无干 扰地更新PWM,要使用PWM模式,模块 CCAPMn寄存器PWMn和ECOMn位必须复位。
脉冲宽度控制pwm的工作原理
脉冲宽度控制pwm的工作原理脉冲宽度调制(PWM)是一种常用的信号调制技术,用于控制电子设备中的电流或者电压。
它通过改变信号的占空比(高电平时间与一个周期的比例)来控制输出信号的平均功率。
工作原理:PWM的工作原理基于周期性的方波信号。
在一个周期内,方波信号由高电平和低电平组成,其占空比表示高电平时间与一个周期的比例。
当占空比为50%时,方波信号的高电平时间和低电平时间相等,输出信号的平均功率为50%。
当占空比小于50%时,输出信号的平均功率小于50%;当占空比大于50%时,输出信号的平均功率大于50%。
PWM的工作原理可以通过以下步骤来详细说明:1. 设定周期:首先确定PWM信号的周期,即方波信号的一个完整周期的时间。
2. 设定占空比:根据需要控制的电流或者电压,设定所需的占空比。
占空比可以通过一个控制信号(例如微控制器的输出)来调节。
3. 产生PWM信号:使用计时器或者专用的PWM控制器来产生PWM信号。
计时器或者PWM控制器会根据设定的周期和占空比生成相应的方波信号。
4. 输出PWM信号:将PWM信号通过一个输出引脚连接到所需的电子设备。
输出信号的高电平时间和低电平时间将根据设定的占空比进行调节。
5. 控制输出功率:通过改变占空比,可以控制输出信号的平均功率。
当占空比增加时,输出信号的平均功率也会增加;当占空比减小时,输出信号的平均功率也会减小。
6. 应用领域:PWM技术广泛应用于电子设备中,例如机电控制、LED亮度调节、音频放大器等。
通过调节PWM信号的占空比,可以实现对这些设备的精确控制。
总结:脉冲宽度调制(PWM)是一种通过改变信号的占空比来控制输出信号功率的技术。
它的工作原理基于周期性的方波信号,通过调节方波信号的高电平时间和低电平时间来实现对输出信号的控制。
PWM技术在电子设备中具有广泛的应用,可以实现对电流或者电压的精确控制,提高系统的效率和稳定性。
几种PWM控制方法
几种PWM控制方法PWM(脉宽调制)是一种广泛应用于电子设备中的控制方法,通过控制信号的脉冲宽度来改变电路或设备的输出功率。
以下是几种常见的PWM 控制方法:1.定频PWM控制定频PWM控制是一种简单而常见的PWM控制方法,通过将固定频率的脉冲信号与一个可变的占空比相乘来实现控制。
脉冲的高电平时间代表设备处于工作状态的时间比例,而低电平时间代表设备处于停止状态的时间比例。
定频PWM控制可通过调整脉冲的占空比来改变输出功率,但频率固定不变。
2.双边PWM控制双边PWM控制是一种可调节频率和占空比的PWM控制方法。
与定频PWM不同的是,双边PWM控制可以根据需求调整脉冲的频率和占空比。
通过改变脉冲的频率和占空比,可以获得较高的精度和更灵活的控制效果。
3.单脉冲宽度调制(SPWM)单脉冲宽度调制是一种通过调整脉冲宽度的PWM控制方法。
与常规PWM不同的是,SPWM控制中只有一个脉冲被发送,其宽度和位置可以根据需求进行调整。
SPWM控制常用于逆变器和交流驱动器等高精度要求的应用,可以实现比其他PWM控制方法更精确的波形控制。
4.多级PWM控制多级PWM控制是一种在多个层次上进行PWM调制的控制方法。
通过将一系列的PWM信号级联起来,每个PWM信号的频率和占空比不同,可以实现更高精度和更复杂的波形控制。
多级PWM控制常用于高性能电机驱动器、中央处理器(CPU)和功率放大器等需要高精度信号处理的应用。
5.空间矢量调制(SVPWM)空间矢量调制是一种通过调整电压矢量的方向和大小来实现PWM控制的方法。
SVPWM通过控制电压矢量之间的切换来生成输出波形,可以实现较高的电压和电流控制精度。
空间矢量调制常用于三相逆变器、电子制动器和无刷直流电机等高功率应用中,可以实现高质量的输出波形。
6.滑模PWM控制滑模PWM控制是一种通过添加滑模调节器来实现PWM控制的方法。
滑模调节器可以通过反馈控制来实现系统的快速响应和鲁棒性,从而实现更好的控制效果。
几种PWM控制方法
脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。
它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。
一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。
脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。
通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。
PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。
电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。
通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。
只要带宽足够,任何模拟值都可以使用PWM进行编码。
多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。
许多微控制器内部都包含有PWM控制器。
例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。
占空比是接通时间与周期之比;调制频率为周期的倒数。
执行PWM操作之前,这种微处理器要求在软件中完成以下工作:* 设置提供调制方波的片上定时器/计数器的周期* 在PWM控制寄存器中设置接通时间* 设置PWM输出的方向,这个输出是一个通用I/O管脚* 启动定时器* 使能PWM控制器PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。
让信号保持为数字形式可将噪声影响降到最小。
噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。
对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。
谈谈PFM(脉冲频率调制)与PWM(脉冲宽度调制)
谈谈PFM(脉冲频率调制)与PWM(脉冲宽度调制)谈谈PFM(脉冲频率调制)与PWM(脉冲宽度调制)做电源设计的应该都知道PWM 和PFM 这两个概念开关电源的控制技术主要有三种:(1)脉冲宽度调制(PWM);(2)脉冲频率调制(PFM);(3)脉冲宽度频率调制(PWM-PFM).PWM:(pulse width modulation)脉冲宽度调制脉宽调制PWM是开关型稳压电源中的术语。
这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。
脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。
PFM:(Pulse frequency modulation) 脉冲频率调制一种脉冲调制技术,调制信号的频率随输入信号幅值而变化,其占空比不变。
由于调制信号通常为频率变化的方波信号,因此,PFM也叫做方波FMPWM是频率的宽和窄的变化,PFM是频率的有和无的变化, PWM是利用波脉冲宽度控制输出,PFM是利用脉冲的有无控制输出.其中PWM是目前应用在开关电源中最为广泛的一种控制方式,它的特点是噪音低、满负载时效率高且能工作在连续导电模式,现在市场上有多款性能好、价格低的PWM集成芯片,如UCl842/2842/3842、TDAl6846、TL494、SGl525/2525/3525等;PFM具有静态功耗小的优点,但它没有限流的功能也不能工作于连续导电方式,具有PFM功能的集成芯片有MAX641、TL497等;PWM-PFM 兼有PWM和PFM的优点。
DC/DC变换器是通过与内部频率同步开关进行升压或降压,通过变化开关次数进行控制,从而得到与设定电压相同的输出电压。
PFM控制时,当输出电压达到在设定电压以上时即会停止开关,在下降到设定电压前,DC/DC变换器不会进行任何操作。
但如果输出电压下降到设定电压以下,DC/DC变换器会再次开始开关,使输出电压达到设定电压。
脉冲宽度控制pwm的工作原理
脉冲宽度控制pwm的工作原理脉冲宽度调制(PWM)是一种常见的信号调制技术,用于控制电子设备和系统中的电流、电压或者功率。
PWM的工作原理是通过调整信号的脉冲宽度来控制输出信号的平均值。
1. PWM的基本原理脉冲宽度调制的基本原理是在一个周期性的信号中,通过改变脉冲的宽度来控制信号的平均值。
这个周期性信号通常称为调制信号或者基准信号,而脉冲宽度则由调制信号的幅度决定。
2. PWM的工作周期和占空比PWM信号的周期是指一个完整的脉冲周期所需要的时间,通常以单位时间表示。
占空比是指脉冲信号中高电平的时间与一个完整周期时间的比值,通常以百分比表示。
3. PWM的工作原理脉冲宽度调制的工作原理是通过改变脉冲信号的占空比来控制输出信号的平均值。
当调制信号的幅度较大时,脉冲信号的宽度也会相应增加,从而使输出信号的平均值增加;当调制信号的幅度较小时,脉冲信号的宽度也会相应减小,从而使输出信号的平均值减小。
4. PWM的应用脉冲宽度调制在各种电子设备和系统中都有广泛的应用。
其中一些应用包括:- 直流机电控制:通过调整PWM信号的占空比,可以控制直流机电的转速和转向。
- 电源控制:PWM技术可以用于控制开关电源的输出电压和电流。
- LED调光:通过改变PWM信号的占空比,可以实现对LED灯的亮度调节。
- 音频处理:PWM技术可以用于音频信号的数字化和处理。
- 无线通信:PWM技术可以用于无线通信系统中的调制和解调。
5. PWM的优点和局限性脉冲宽度调制具有以下优点:- 精确控制:通过调整占空比,可以实现精确的信号控制。
- 高效能:PWM技术可以实现高效能的能量转换。
- 简单实现:PWM技术的实现相对简单,成本较低。
然而,PWM技术也存在一些局限性:- 噪音干扰:PWM信号的频率可能会干扰其他电子设备。
- 灵敏度:PWM技术对电源电压的稳定性要求较高。
- 分辨率限制:PWM信号的分辨率受限于调制信号的幅度。
总结:脉冲宽度调制是一种常见的信号调制技术,通过调整脉冲信号的占空比来控制输出信号的平均值。
脉冲宽度调制(PWM)技术原理
一、PWM技术原理由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。
PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。
采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。
由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。
又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。
此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。
把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。
二、正弦波脉宽调制(sPwM)1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。
各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。
度正比于该曲线函数值的矩形脉冲。
若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。
在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。
pwm脉冲宽度调制原理
pwm脉冲宽度调制原理好,今天我们来聊聊PWM脉冲宽度调制原理,听起来很高大上的样子,但其实就是个有趣的小玩意儿。
想象一下,你在玩遥控车,按下按钮,它就开始飞快地跑起来。
这背后其实就有一个小小的秘密,那就是PWM。
其实PWM就像是一种调音器,能让我们的设备根据需要调节“声音”,也就是电流的强度。
简单说,就是通过控制电流开关的时间长短,来调整电机的转速或者LED灯的亮度。
就像你在开灯的时候,调节调光器,想亮点就多开点,想暗点就少开点,这样就能得到你想要的效果。
这玩意儿可是非常聪明的哦。
想象一下,PWM就像一个非常会做饭的大厨,拿着自己的菜谱,分分钟给你调制出各种美味。
比如说,厨师可以通过调节火候,来让你的菜又嫩又香,PWM也是如此。
通过调节脉冲的宽度,来让设备在不同的状态下工作。
这脉冲的时间长了,电流也就大,设备就转得快;脉冲的时间短了,电流就小,设备就慢了,真是个神奇的道理。
这个原理在我们生活中可谓是无处不在。
说到这里,你可能会问,PWM和我有什么关系呢?别着急,听我慢慢说。
想想你的智能手机,手机屏幕的亮度就是用PWM来调节的。
当你在阳光下看手机屏幕,亮度调高点,看得清楚;在晚上,调低点,眼睛舒服。
就像夜深人静时,调小音量,不打扰到别人,这样的道理。
再说说电动玩具,很多小朋友都爱。
玩具里的电机,转得飞快,没错,PWM在背后默默地支持着你的小乐趣。
电动火车,电动小车,都是通过PWM来控制速度的,让你的小玩具生动有趣,仿佛有了生命。
谁说大人的世界才能玩高科技,小朋友们也是能玩的开心,哈哈。
说到这里,PWM还有个妙用,那就是节能。
大家都知道,节能环保是我们现在提得最热的话题。
用PWM调节亮度或者转速,可以减少不必要的电能消耗。
就像你平时省电一样,没事的时候关掉灯,不光是为了省钱,更是为了保护环境。
用PWM来控制设备,既能让我们享受生活,又能为地球出一份力,简直是双赢嘛。
PWM在音频设备中的应用也是别具一格。
脉冲宽度控制pwm的工作原理
脉冲宽度控制pwm的工作原理脉冲宽度调制(PWM)是一种常用的电子控制技术,用于调节电子设备中的电压、电流或者功率。
它通过调整信号的脉冲宽度来控制输出信号的平均功率。
本文将详细介绍PWM的工作原理及其应用。
一、脉冲宽度调制的基本原理脉冲宽度调制是通过改变信号的占空比来控制输出信号的平均功率。
占空比是指脉冲信号中高电平持续时间与一个周期的比值。
通过改变高电平持续时间的长短,可以改变信号的平均功率。
脉冲宽度调制的基本原理可以用以下步骤来描述:1. 选择一个固定频率的周期性信号作为基准信号。
2. 选择一个参考信号,该信号的幅值或者频率需要被调节。
3. 将参考信号与基准信号进行比较,生成一个脉冲信号。
4. 脉冲信号的高电平持续时间与参考信号的幅值或者频率成正比。
5. 将脉冲信号送入输出电路,通过滤波等处理,得到所需的输出信号。
二、脉冲宽度调制的应用脉冲宽度调制在各种电子设备和系统中广泛应用,以下是几个常见的应用例子:1. 机电控制脉冲宽度调制可以用于控制直流机电、交流机电和步进机电等各种类型的机电。
通过调整脉冲宽度,可以改变机电的转速和转向。
2. 电源调节脉冲宽度调制可以用于调节开关电源的输出电压。
通过改变脉冲宽度,可以控制开关管的导通时间,从而调节输出电压的大小。
3. LED亮度控制脉冲宽度调制可以用于控制LED的亮度。
通过改变脉冲宽度,可以改变LED的亮度级别,实现灯光的调光功能。
4. 音频放大器脉冲宽度调制可以用于音频放大器的设计。
通过调整脉冲宽度,可以控制音频信号的放大倍数,实现音量的调节。
5. 无线通信脉冲宽度调制可以用于无线通信系统中的调制和解调。
通过改变脉冲宽度,可以调节通信信号的频率和幅度,实现数据传输。
三、脉冲宽度调制的实现方法脉冲宽度调制可以通过不同的电路和芯片来实现。
以下是几种常见的实现方法:1. 555定时器555定时器是一种常用的集成电路,可以用于生成脉冲宽度调制信号。
通过调整电容和电阻的值,可以改变脉冲的频率和占空比。
脉冲宽度调制(PWM)和正弦波脉宽调制(SPWM)变频技术简介
变频技术之PWM调制技术与SPWM调制技术详解变频技术通过改变电力信号的频率来调节电动机、压缩机和其他电气设备的运行速度。
在实际应用中,变频器是变频技术的核心装置,而脉冲宽度调制(PWM)技术和正弦波脉宽调制(SPWM)技术是实现变频器控制的重要手段。
什么是PWM调制技术PWM调制技术通过控制脉冲信号的宽度,实现对输出电压的调节。
在变频技术中,PWM被广泛应用于变频器中,以控制电动机的速度和转矩输出。
通过改变脉冲信号的占空比(脉冲宽度与周期之比),可以实现对电动机的精确控制。
当需要增大输出电压时,增加脉冲信号的宽度;当需要减小输出电压时,减小脉冲信号的宽度。
这种方式使得电动机可以在不同负载条件下保持稳定的转速和扭矩输出。
同时,PWM调制技术还具有响应快、控制精度高、效率高等优点,被广泛应用于各种电力控制系统中。
PWM调制波形如图1所示:图1PWM调制波形PWM技术具有以下优点:高效性:由于PWM技术可以通过调整脉冲宽度来控制电机的输出电压和频率,因此可以实现电机在不同负载条件下的高效运行。
通过减小电机额定电压,PWM技术可以降低电机的功耗,提高整体效率。
精确控制:PWM技术具有响应速度快、控制精度高的特点。
通过微调脉冲宽度和周期,可以实现对电机转速和扭矩的精确调节,满足不同应用的需求。
减少机械冲击:PWM技术可以实现电机的软启动和软停止,减少了机械系统的冲击和磨损,延长了设备的使用寿命。
尽管PWM技术具有许多优点,但也存在一些局限性:谐波问题:PWM技术在产生脉冲信号时会引入谐波成分,可能对电力网络和其他设备造成干扰。
为了减少谐波,需要采取滤波和抑制措施,增加了系统的复杂性和成本。
开关损耗:PWM技术使用高频开关装置,开关的频繁操作会产生开关损耗。
这些损耗会转化为热能,需要适当的散热系统来冷却电路。
EMI干扰:由于高频开关操作,PWM技术可能会产生电磁干扰(EMI),对周围的电子设备和无线通信系统造成干扰。
pwm控制工作原理
pwm控制工作原理
PWM控制是一种通过调整脉冲宽度比例实现对电路设备的控
制方式。
PWM全称为脉冲宽度调制(Pulse Width Modulation),它的原理是通过周期固定的方波信号,通过调节方波信号的脉冲宽度来控制输出信号的平均电压。
在PWM控制中,方波信号的周期是固定的,通常为几十微秒
到几毫秒不等。
调节脉冲宽度的比例可以控制方波信号高电平的持续时间。
当脉冲宽度较窄时,高电平持续时间较短,输出信号的平均电压就会较低。
当脉冲宽度较宽时,高电平持续时间较长,输出信号的平均电压就会较高。
通过不断改变方波信号的脉冲宽度比例,可以实现对输出信号的精确控制。
例如,在直流电机控制中,可以通过PWM控制
调节电机的转速。
调节PWM占空比,即高电平持续时间与一
个周期的比值,可以使电机运行在不同速度。
PWM控制实现的关键是在周期内通过调节方波信号的脉冲宽
度来改变效果信号的平均电压。
这种控制方式的优点是具有高效率和精确度更高的特点,适用于许多电子设备和控制系统。
脉冲宽度控制pwm的工作原理
脉冲宽度控制pwm的工作原理脉冲宽度调制(PWM)是一种常用的电子调制技术,用于控制电子设备的输出功率、电流或电压。
它通过控制一个周期内脉冲的宽度来调整输出信号的平均功率。
在本文中,我们将详细介绍PWM的工作原理及其在电子设备中的应用。
1. PWM的工作原理PWM的工作原理基于脉冲信号的周期和占空比。
周期是指一个完整的脉冲信号的时间长度,而占空比是指脉冲信号中高电平部分的时间占整个周期的比例。
脉冲信号由一个周期性的方波和一个可变的占空比组成。
方波的周期决定了脉冲信号的频率,而占空比决定了脉冲信号的平均功率。
当占空比为0%时,脉冲信号为低电平;当占空比为100%时,脉冲信号为高电平;当占空比在0%和100%之间时,脉冲信号为高低电平的周期性切换。
2. PWM的应用PWM广泛应用于各种电子设备中,包括电机控制、LED亮度调节、音频放大器、电源调节等。
下面我们将分别介绍其中几个常见的应用场景。
2.1 电机控制在电机控制中,PWM被用于调整电机的转速和扭矩。
通过改变PWM信号的占空比,可以控制电机的平均功率输出。
当占空比较小的时候,电机的平均功率较低,转速较慢;当占空比较大的时候,电机的平均功率较高,转速较快。
因此,通过调整PWM信号的占空比,可以精确控制电机的转速和扭矩。
2.2 LED亮度调节PWM也被广泛应用于LED亮度调节。
通过改变PWM信号的占空比,可以控制LED的亮度。
当占空比较小的时候,LED的亮度较暗;当占空比较大的时候,LED的亮度较亮。
因此,通过调整PWM信号的占空比,可以实现LED的精确亮度调节。
2.3 音频放大器在音频放大器中,PWM被用于将模拟音频信号转换为数字脉冲信号。
通过改变PWM信号的占空比,可以调整音频信号的幅度。
然后,通过滤波器将数字脉冲信号转换为模拟音频信号。
因此,PWM在音频放大器中起到了重要的作用,可以实现音频信号的放大和调节。
2.4 电源调节PWM还被广泛应用于电源调节。
脉冲宽度调制
脉冲宽度调制————————————————————————————————作者:————————————————————————————————日期:ﻩ脉冲宽度调制脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
目录1简介2背景介绍3基本原理4谐波频谱5具体过程6优点7控制方法8应用领域9具体应用1简介脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。
这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。
2背景介绍随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。
9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。
与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。
模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
pwm控制的工作原理
pwm控制的工作原理
PWM(脉宽调制)是一种控制信号的技术,它通过控制信号
的脉冲宽度的长短来实现对输出信号的调节。
PWM常用于控
制电机的速度、改变LED的亮度等电子设备中。
PWM的工作原理是根据输出信号的周期和脉冲宽度比例来控
制电路的开关状态。
具体步骤如下:
1. 设定周期:首先确定输出信号的周期,即一个完整的脉冲周期的时间。
2. 设定脉冲宽度:根据需要调节输出信号的幅度,即控制电路的开关状态的时间。
3. 脉冲生成:利用计时器或特殊的PWM芯片,根据设定的周
期和脉冲宽度来生成PWM信号。
4. 输出控制:将PWM信号通过电流放大器等电路输出给目标
设备,实现对设备的控制。
在PWM信号中,脉冲宽度占整个周期的比例决定了输出信号
的强度或工作状态。
脉冲宽度比例越大,输出信号越强;脉冲宽度比例越小,输出信号越弱。
优点是PWM控制方式可以实现模拟信号的输出,而不需要使
用模数转换器。
另外,由于脉冲宽度的变化可以通过改变开关频率来实现,因此PWM可以很好地适应不同频率范围的应用。
总之,PWM控制的工作原理是根据周期和脉冲宽度比例来控制输出信号的强度或工作状态,通过改变脉冲宽度比例来实现对电子设备的精确控制。
脉冲宽度调制(PWM)技术原理
一、PWM技术原理由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。
PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。
采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。
由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。
又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。
此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。
把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。
二、正弦波脉宽调制(sPwM)1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。
各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。
度正比于该曲线函数值的矩形脉冲。
若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。
在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。
脉冲宽度调制
pwm脉宽调速原理
pwm脉宽调速原理
脉宽调制(PWM)是一种常用的电机调速技术,它通过改变脉冲信号的宽度来控制电机的速度。
其基本原理如下:
1. PWM 信号的产生:PWM 信号是一个矩形波,其宽度可以通过调整占空比来改变。
占空比是指脉冲信号的高电平时间与周期的比值。
例如,一个 PWM 信号的周期为 10 毫秒,高电平时间为 5 毫秒,则占空比为 0.5。
2. 电机的速度控制:PWM 信号可以用来控制电机的速度。
当 PWM 信号的占空比增大时,电机的平均电压也会增加,从而导致电机的转速增加。
反之,当占空比减小时,电机的平均电压降低,从而导致电机的转速降低。
3. PWM 调速的实现:为了实现 PWM 调速,需要使用一个 PWM 控制器。
PWM 控制器可以接收一个速度设定信号,并根据该信号产生相应的 PWM 信号。
PWM 信号经过驱动电路放大后,驱动电机转动。
4. 速度反馈控制:为了提高 PWM 调速的精度和稳定性,通常会使用速度反馈控制。
速度反馈控制可以通过测量电机的转速,并将其反馈给 PWM 控制器,从而实现对电机速度的精确控制。
总之,PWM 脉宽调速原理是通过改变 PWM 信号的占空比来控制电机的速度。
PWM 控制器接收速度设定信号,并根据该信号产生相应的 PWM 信号,驱动电机转动。
为了提高调速的精度和稳定性,通常会使用速度反馈控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲宽度调制编辑脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
目录1简介2背景介绍3基本原理4谐波频谱5具体过程6优点7控制方法8应用领域9具体应用1简介脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。
这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM 控制技术发展的主要方向之一。
2背景介绍随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。
9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。
与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。
模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。
在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。
拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。
与收音机一样,模拟电路的输出与输入成线性比例。
尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。
其中一点就是,模拟电路容易随时间漂移,因而难以调节。
能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。
模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。
模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。
通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。
此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。
3基本原理脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。
也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。
按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。
例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。
这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶如今几乎所有市售的单片机都有PWM模块功能,若没有(如早期的8051),也可以利用定时器及GPIO口来实现。
更为一般的PWM模块控制流程为(笔者使用过TI的2000系列,AVR的Mega系列,TI的LM系列):1、使能相关的模块(PWM模块以及对应管脚的GPIO模块)。
2、配置PWM模块的功能,具体有:①:设置PWM定时器周期,该参数决定PWM波形的频率。
②:设置PWM定时器比较值,该参数决定PWM波形的占空比。
③:设置死区(deadband),为避免桥臂的直通需要设置死区,一般较高档的单片机都有该功能。
④:设置故障处理情况,一般为故障是封锁输出,防止过流损坏功率管,故障一般有比较器或ADC或GPIO检测。
⑤:设定同步功能,该功能在多桥臂,即多PWM模块协调工作时尤为重要。
3、设置相应的中断,编写ISR,一般用于电压电流采样,计算下一个周期的占空比,更改占空比,这部分也会有PI控制的功能。
4、使能PWM波形发生。
6优点PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。
让信号保持为数字形式可将噪声影响降到最小。
噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。
对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。
从模拟信号转向PWM可以极大地延长通信距离。
在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。
总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。
7控制方法采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率. PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法.等脉宽PWM法VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压.等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变其周期,达到调频的效果。
改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化. 相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量.随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注.为求得改善,随机PWM方法应运而生.其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱.正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路.SPWM法SPWM(Sinusoidal PWM)法是一种比较成熟的,如今使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同的. SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.该方法的实现有以下几种方案.等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形.通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形.其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波.但是,这种模拟电路结构复杂,难以实现精确的控制. 软件生成法由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生.软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法.自然采样法以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法.其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制.规则采样法规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波.其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法.当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样.当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样.规则采样法是对自然采样法的改进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦.其缺点是直流电压利用率较低,线性控制范围较小.以上两种方法均只适用于同步调制方式中.低次谐波消去法低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法.其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波.该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点.该方法同样只适用于同步调制方式中.梯形波与三角波比较法前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%.因此,为了提高直流电压利用率,提出了一种新的方法--梯形波与三角波比较法.该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制.由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率.但由于梯形波本身含有低次谐波,所以输出波形中含有5次,7次等低次谐波.线电压控制PWM前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦.因此,提出了线电压控制PWM,主要有以下两种方法.马鞍形波与三角波比较法马鞍形波与三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率.在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不含三次谐波[4].除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线电压.这是因为,经过PWM调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波.单元脉宽调制法因为,三相对称线电压有Uuv+Uvw+Uwu=0的关系,所以,某一线电压任何时刻都等于另外两个线电压负值之和.如今把一个周期等分为6个区间,每区间60°,对于某一线电压例如Uuv,半个周期两边60°区间用Uuv本身表示,中间60°区间用-(Uvw+Uwu)表示,当将Uvw和Uwu作同样处理时,就可以得到三相线电压波形只有半周内两边60°区间的两种波形形状,并且有正有负.把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60°区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定了.这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了.该方法不仅能抑制较多的低次谐波,还可减小开关损耗和加宽线性控制区,同时还能带来用微机控制的方便,但该方法只适用于异步电动机,应用范围较小.电流控制PWM电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变.其实现方案主要有以下3种.滞环比较法这是一种带反馈的PWM控制方式,即每相电流反馈回来与电流给定值经滞环比较器,得出相应桥臂开关器件的开关状态,使得实际电流跟踪给定电流的变化.该方法的优点是电路简单,动态性能好,输出电压不含特定频率的谐波分量.其缺点是开关频率不固定造成较为严重的噪音,和其他方法相比,在同一开关频率下输出电流中所含的谐波较多.三角波比较法该方法与SPWM法中的三角波比较方式不同,这里是把指令电流与实际输出电流进行比较,求出偏差电流,通过放大器放大后再和三角波进行比较,产生PWM 波.此时开关频率一定,因而克服了滞环比较法频率不固定的缺点.但是,这种方式电流响应不如滞环比较法快.预测电流控制法预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此,下一个调节周期由PWM产生的电压矢量必将减小所预测的误差.该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速,准确的响应.如今,这类调节器的局限性是响应速度及过程模型系数参数的准确性.空间电压矢量控制PWM空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法.它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形.此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通).具体方法又分为磁通开环式和磁通闭环式.磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量.此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小.磁通闭环式引入磁通反馈,控制磁通的大小和变化的速度.在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形.这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音.但由于未引入转矩的调节,系统性能没有得到根本性的改善.矢量控制PWM矢量控制也称磁场定向控制,其原理是将异步电动机在三相坐标系下的定子电流Ia,Ib及Ic,通过三相/二相变换,等效成两相静止坐标系下的交流电流Ia1及Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1及It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制.其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制.通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制.但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足.此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配置转子位置或速度传感器,这显然给许多应用场合带来不便.直接转矩控制PWM1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(Direct Torque Control简称DTC).直接转矩控制与矢量控制不同,它不是通过控制电流,磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制,它也不需要解耦电机模型,而是在静止的坐标系中计算电机磁通和转矩的实际值,然后,经磁链和转矩的Band-Band控制产生PWM信号对逆变器的开关状态进行最佳控制,从而在很大程度上解决了上述矢量控制的不足,能方便地实现无速度传感器化,有很快的转矩响应速度和很高的速度及转矩控制精度,并以新颖的控制思想,简洁明了的系统结构,优良的动静态性能得到了迅速发展.但直接转矩控制也存在缺点,如逆变器开关频率的提高有限制.非线性控制PWM单周控制法[7]又称积分复位控制(Integration Reset Control,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值与控制参考电压相等或成一定比例.该技术同时具有调制和控制的双重性,通过复位开关,积分器,触发电路,比较器达到跟踪指令信号的目的.单周控制器由控制器,比较器,积分器及时钟组成,其中控制器可以是RS触发器,其控制原理如图1所示.图中K可以是任何物理开关,也可是其它可转化为开关变量形式的抽象信号.单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态,瞬态误差,使前一周期的误差不会带到下一周期.虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快,开关频率恒定,鲁棒性强等优点,此外,单周控制还能优化系统响应,减小畸变和抑制电源干扰,是一种很有前途的控制方法.谐振软开关PWM传统的PWM逆变电路中,电力电子开关器件硬开关的工作方式,大的开关电压电流应力以及高的du/dt和di/dt限制了开关器件工作频率的提高,而高频化是电力电子主要发展趋势之一,它能使变换器体积减小,重量减轻,成本下降,性能提高,特别当开关频率在18kHz以上时,噪声将已超过人类听觉范围,使无噪声传动系统成为可能.谐振软开关PWM的基本思想是在常规PWM变换器拓扑的基础上,附加一个谐振网络,谐振网络一般由谐振电感,谐振电容和功率开关组成.开关转换时,谐振网络工作使电力电子器件在开关点上实现软开关过程,谐振过程极短,基本不影响PWM技术的实现.从而既保持了PWM技术的特点,又实现了软开关技术.但由于谐振网络在电路中的存在必然会产生谐振损耗,并使电路受固有问题的影响,从而限制了该方法的应用。