电缆电压降计算方法
电缆电压降的计算
电缆电压降的计算1、导体工作温度: PVC 绝缘为70 ℃, XLPE 绝缘为90 ℃;2、环境温度为40 ℃;3、电缆排列(以单芯电缆单排为例);4、功率因素:cos θ = 0.8 ;5、末端允许压降百分数≤ 5% ;6、vd 表示电压降: Vd = KILVo(V) ;I 表示工作电流或计算电流( A );L 表示线路长度( m );Vo 表示电缆每米电压降( V/A.M );K :三相四线时 K=根号3单相时 K=1 ;单相时末端允许电压降:Vd=220v × 5%=11v三相时末端允许电压降:Vd=380v × 5%=19vVd=660v × 5%=33v7 、主电缆允许长度计算公式:各位好,我想请教关于电压损失计算公式的问题,我在有些书上看到电压损失的计算公式是,三相交流电路△U%=173IL(rcosΦ+xsinΦ)/U,单相交流电路△U%=200IL(rcosΦ+xsinΦ)/U,直流电路△U%=200ILR/U,其中U—线路工作电压,三相为线电压,单相为相电压,单位VI—工作电流AL—线路长度kmR—电阻Ω/kmX—电缆单位长度的电抗Ω/kmcosΦ—功率因数请问直流电路中为什么要乘以200啊??还有能告诉我这些公式是怎么推到出来的,就更好了,谢谢!提示一下,200=2X100,2是因为线路有来回,直流\单相交流如此.100与用%表示有关.173=1.73X100,其1.73是3的平方根.三相电路中是三根线即可组成三相的回路,电阻系数比单相,直流系统小,根3的来源比校复杂.其它的项的结果就是电流X电阻=电压降的问题了,慢慢理解吧!从厂区配电房送380v电到厂区新建的招待所。
招待所总负荷是372kw,距离电房有450米远,为了保证电压降不大于5%,需要用多大的yjv交联电缆。
急!谢谢!问题补充:用双拼的yjv交联电缆也行。
电缆截面估算方法一二先估算负荷电流1.用途这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。
电压降的最简单最实用计算公式
线路电压降最简单最实用计算方式
线路压降计算公式:△U=2*I*R
I:线路电流
L:线路长度
1、电阻率ρ铜为0.018欧*㎜2/米
铝为0.028欧*㎜3/米
2、I=P/1.732*U*COSØ
3、电阻R=ρ*l/s(电缆截面mm2)
4、电压降△U=IR<5%U就达到要求了。
例:在800米外有30KW负荷,用70㎜2电缆看是否符合要求?
I=P/1.732*U*COSØ=30/1.732*0.38*0.8=56.98A
R=Ρl/电缆截面=0.018*800/70=0.206欧
△U=2*IR=2*56.98*0.206=23.44>19V (5%U=0.05*380=19)
不符合要求。
2、单相电源为零、火线(2根线)才能构成电压差,三相电源是以线电压为标的,所以也为2根线。
电压降可以是单根电线导体的损耗,但以前端线电压380V(线与线电压为2根线)为例,末端的电压是以前端线与线电压减末端线与线(2根线)电压降,所以,不论单相或三相,电压降计算均为2根线的
就是欧姆定律:U=R*I
但必须要有负载电流数据、导线电阻值才能运算。
铜线电阻率:ρ=0.0172,铝线电阻率:ρ=0.0283
例:
单相供电线路长度为100米,采用铜芯10平方电线负载功率10KW,电流约46A,求末端电压降。
求单根线阻:
R=ρ×L/S=0.0172×100/10≈0.17(Ω)
求单根线末端电压降:
U=RI=0.17×46≈7.8(V)
单相供电为零、火2根导线,末端总电压降:
7.8×2=15.6(V)。
电压降的最简单最实用计算公式
线路电压降最简单最实用计算方式
线路压降计算公式:△U=2*I*R
I:线路电流
L:线路长度
1、电阻率ρ铜为0.018欧*㎜2/米
铝为0.028欧*㎜3/米
2、I=P/1.732*U*COSØ
3、电阻R=ρ*l/s(电缆截面mm2)
4、电压降△U=IR<5%U就达到要求了。
例:在800米外有30KW负荷,用70㎜2电缆看是否符合要求?
I=P/1.732*U*COSØ=30/1.732*0.38*0.8=56.98A
R=Ρl/电缆截面=0.018*800/70=0.206欧
△U=2*IR=2*56.98*0.206=23.44>19V (5%U=0.05*380=19)
不符合要求。
2、单相电源为零、火线(2根线)才能构成电压差,三相电源是以线电压为标的,所以也为2根线。
电压降可以是单根电线导体的损耗,但以前端线电压380V(线与线电压为2根线)为例,末端的电压是以前端线与线电压减末端线与线(2根线)电压降,所以,不论单相或三相,电压降计算均为2根线的
就是欧姆定律:U=R*I
但必须要有负载电流数据、导线电阻值才能运算。
铜线电阻率:ρ=0.0172,铝线电阻率:ρ=0.0283
例:
单相供电线路长度为100米,采用铜芯10平方电线负载功率10KW,电流约46A,求末端电压降。
求单根线阻:
R=ρ×L/S=0.0172×100/10≈0.17(Ω)
求单根线末端电压降:
U=RI=0.17×46≈7.8(V)
单相供电为零、火2根导线,末端总电压降:
7.8×2=15.6(V)。
线缆压降计算
线缆压降计算线缆电压压降降计算公式为△U=(P*L)/(A*S)其中:P为线路负荷;L为线路长度A为导体材质系数(铜大概为77,铝大概为46)S为电缆截面(一)电缆长度计算电缆长度计算公式:L=(l+5.5G+a)×1.02上式中,L-电缆计算长度(米);l-按直线距离统计的长度(横纵坐标的代数和);5.5-穿越一个股道按5.5米长度计算,(当大于5.5米时,按实际距离计算);G-穿越股道的股道数;a-其它附加长度,具体规定如下:1、信号楼内的电缆储备量按5米计算,楼内走行和电缆封头的长度,一般定为20米;2、设备每端出、入土及做头为2米;3、室外每端环状储备量为2米(20米以下为电缆为1米);4、引向高出地面较大距离的设备,按实际长度计算。
1.02-电缆敷设时的自然弯曲度,以2%计算。
(二)电缆芯线分配原则电缆芯线分配,采用双线直流回路,即一条去线ZQ,一条回线ZH。
双线式回路最经济的分配比利为去线与回线等量,且均为总芯数的一半,即:ZQ=ZH=Z/2。
如果电缆总芯数为奇数时,去线和回线芯数相差为一芯,这样可以使电路中芯线电阻最小。
(三)计算电缆最大控制长度电缆最大控制长度计算公式:Lmax=△U/Ir×ZQZH/(nZQ+ZH)式中:n-回线与去线内电流的倍数;△U-线路允许压降;I-回路中工作电流;r-每米芯线电阻。
上式表明,电缆芯线数可以通过电缆最大控制长度的计算来决定,其方法是根据线路允许压降、回路中工作电流,以及假定选用的回线和去线的电缆芯数,计算出Lmax.(四)电缆芯数计算公式设电缆总芯数为Z=ZQ+ZH,由电缆分配原则可知ZQ+ZH,能使芯线电阻最小。
所以电缆总芯线数的计算为:Z=4rL/R=4rLI/△U 上式表明:当线路允许压降△U,回路工作电流I及电缆计算长度确定之后,可以计算电缆总芯数。
线路电压降计算公式为△U=(P*L)/(A*S)其中:P为线路负荷;L为线路长度A为导体材质系数(铜大概为77,铝大概为46);S为电缆截面(五)电缆线路压降计算公式计算公式为:△U=rLI×(ZQ+ZH)/(ZQ×ZH)。
电压降计算的各种公式
电压降计算的各种公式?
铜芯电缆, 电阻率
计算方法一:
△u%=I*R
I=P/(1.732*U*COS )9 R=p *L/S
P:功率,U :电压,COS9 :功率因数,:p导体电阻率,铜芯电缆用
0.018 S:电缆的标称截面,L :线路长度
单相时允许电压降: Vd=220V x 5%=11V
三相时允许电压降: Vd=380V x 5%=19V
计算方法二:
△ u%=P*L(R+Xtc p )/10Un² (3 版手册)
P:功率L :供电距离R、X三相线路单位长度电阻、电抗Q(无功)=P*tg①计算方法二好像与天正电气里面的一样。
计算方法三:
△u%=P/(SQRT(3)/U/ COS9 )* 电压损失*L
查表(建筑电气常用数据15 页):电压损失( %/ (A?km) )
计算方法四:
3 版手册)
△ U% 迅PL/CS
P:有功负荷KW; S:线芯标称截面,mm2., L :线路长度,m; C:功率因数为1 的时候的计算系数,三相四线铜为75,单相为12.56
计算方法五:
△ U%=K*I*L*V0
K :三相四线制K=根号下3,单相K=1 ; I :工作电流或计算电流(A)
L :线路长度;V0 :表内电压(V/A?。
电缆电压降计算简单公式
电缆电压降计算简单公式
1.电缆电压降的概念
2.电缆电压降的主要影响因素
-电缆长度:电缆长度越长,电压降越大。
-电流负载:电流负载越大,电压降越大。
-电缆电阻:电缆电阻越大,电压降越大。
-电缆电导:电缆电导越高,电压降越小。
3.电缆电压降计算的简单公式
为了简化电缆电压降的计算过程,可以使用下述两个简单的公式。
-电缆电压降的百分比公式:
电压降百分比=(电流负载×电缆长度×电缆电阻)/(初始电压×100) -电缆电压降的伏特公式:
电压降伏特=电流负载×电缆长度×电缆电阻
其中,初始电压指的是输电线路的起始电压。
4.电缆电压降计算的实例
为了更好地理解电缆电压降的计算过程,下面举个简单的例子。
假设有一条长度为1000米的电缆,电阻为0.1欧姆,电流负载为10安培,初始电压为100伏特。
首先,使用电压降的百分比公式计算电压降的百分比:
电压降百分比=(10×1000×0.1)/(100×100)=1%
然后,使用电压降的伏特公式计算电压降的伏特:
电压降伏特=10×1000×0.1=100伏特
通过这个简单的例子,我们可以得到电缆电压降的百分比和伏特值,以便在实际应用中进行参考和分析。
总结:
电缆电压降计算是电力系统设计和运行中的重要部分,可以使用简单的公式进行估算。
计算公式中包括电缆长度、电流负载、电缆电阻和初始电压等因素。
熟练掌握电缆电压降的计算方法,对于确保电力系统的稳定性和安全性非常重要。
电缆电压降的计算
●电缆电压降的计算
主干电缆允许长度其末端电压降应≤5%,单相最大电压降Vd=220×5%=11V。
三相四线最大电压降Vd=380×5%=19V。
电压降计算公式Vd=K×I×V O见产品样本式中:Vd——电压降(V);K——系统,单相K=1,三相四线K= ;I——实际工作电流(或计算电流)(A);L——单根主干电缆长度(m);V O每米每A电压降(V/m.A)。
预制分支电缆电压计算:
电压降根据下列条件计算:
(1)导线温度90℃;
(2)环境温度40℃;
(3)电缆排列(水平排列)
S
D
S=2D,D为电缆外径
(4)功率因素COSθ=0.8;
(5)末端允许电压降百分数≤5%;
(6)计算公式Vd=K×I×V O (V)
式中:I—电流(A)L—主电缆总长(m)
K—系数三相四线K= 单相K=1
V O—电压降率(V/m.A)Vd—电压降(V)
(7)举例:主电缆70mm2,计算电流220A,电压降率为V O=0.36×10-3 V/m.A,若L=150m。
三相四线,试问末端电压降等于多少?
解:由公式:Vd=K×I×V O
= ×200×150×0.36×10-3
=18.7V
三相四线末端允许电压降5%,则380×5%=19V
所以18.7V<19V压降在允许范围内。
如何计算电缆压降
如何计算电缆压降电缆压降是指电力系统中电缆输电过程中电压的降低程度。
电缆压降的计算对于电力系统的设计和运行非常重要,因为过大的电缆压降可能导致电压过低,影响电力设备的正常运行。
下面将介绍电缆压降的计算方法。
1.电缆电阻计算电缆电阻是导体电阻造成的电能损耗,是电缆压降的主要因素之一、电缆电阻的计算公式为:R=ρ*(L/A)其中,R为电缆电阻,ρ为电缆材料的电阻率,L为电缆的长度,A为电缆的横截面积。
电缆的电阻率可以通过电缆材料的特性数据表得到。
电缆的长度和横截面积可以通过电缆的安装情况和规格确定。
2.电缆电抗计算电缆电抗是电缆输电过程中感性和容性电能的耗散。
电缆电抗的计算主要涉及感性电抗和容性电抗。
-感性电抗的计算:感性电抗是由电缆自身所产生的,它的大小取决于电缆的长度和频率。
感性电抗的计算公式为:XL=2πfL其中,XL为感性电抗,f为电力系统的频率,L为电缆的长度。
-容性电抗的计算:容性电抗是由电缆绝缘材料所产生的,它的大小取决于电缆的长度和电缆绝缘材料的介电常数。
容性电抗的计算公式为:XC=1/(2πfC)其中,XC为容性电抗,f为电力系统的频率,C为电缆绝缘材料的电容。
3.电缆电压降计算电缆电压降是由电缆的电阻和电抗引起的,它可以通过欧姆定律和压降公式来计算。
-欧姆定律:欧姆定律用于计算电力系统中电流、电压和电阻之间的关系。
欧姆定律的公式为:U=I*R其中,U为电压,I为电流,R为电阻。
-压降公式:压降公式用于计算电力系统中电缆的电压降。
压降公式的公式为:ΔV = I * (R * cosφ + X * sinφ)其中,ΔV为电缆的电压降,I为电流,R为电缆电阻,X为电缆电抗,φ为电缆的功角。
-功角计算:功角是电缆电压降的一个参数,它取决于电缆的电阻和电抗的相对大小。
功角的计算公式为:φ = arctan(X/R)其中,φ为功角,arctan为反正切函数。
通过以上三个步骤的计算,我们可以得到电缆的电压降。
电缆压降计算方法
电缆压降计算方法
电缆压降计算方法
计算方法一:
△u%=I*R
I=P/(1。
732*U*COSθ) R=ρ*L/S
P:功率, U:电压,COSθ:功率因数,ρ:导体电阻率,铜芯电缆用0。
018 S:电缆的标称截面, L:线路长度
单相时允许电压降:Vd=220V x 5%=11V
三相时允许电压降:Vd=380V x 5%=19V
计算方法二:
△u%=P*L(R+XtgΦ)/10Un² (3版手册)
P:功率 L:供电距离 R、X三相线路单位长度电阻、电抗 Q(无功)=P*tgΦ
计算方法三:
△u%=P/(SQRT(3)/U/ COSθ)*电压损失*L
查表(建筑电气常用数据15页):电压损失(%/(A•km))
计算方法四:
△U%=∑PL/CS (3版手册)
P:有功负荷KW;S:线芯标称截面,mm⒉,L:线路长度,m;C:功率因数为1的时候的计算系数,三相四线铜为75,单相为12。
56
计算方法五:
△U%=K*I*L*V0
K:三相四线制K=根号下3,单相K=1;I:工作电流或计算电流(A)
L:线路长度;V0:表内电压(V/A•m)。
电缆压降计算方法
电缆压降计算方法
计算方法一:
△u%=I*R
I=P/(1.732*U*COSθ) R=ρ*L/S
P:功率, U:电压, COSθ:功率因数, ρ:导体电阻率, 铜芯电缆用0.018 S:电缆的标称截面, L:线路长度
单相时允许电压降:Vd=220V x 5%=11V
三相时允许电压降:Vd=380V x 5%=19V
计算方法二:
△u%=P*L(R+XtgΦ)/10Un²(3版手册)
P:功率L:供电距离R、X三相线路单位长度电阻、电抗Q(无功)=P*tgΦ
计算方法三:
△u%=P/(SQRT(3)/U/ COSθ)* 电压损失*L
查表(建筑电气常用数据15页):电压损失(%/(A•km))
计算方法四:
△U%=∑PL/CS (3版手册)
P:有功负荷KW;S:线芯标称截面,mm⒉,L:线路长度,m;C:功率因数为1的时候的计算系数,三相四线铜为75,单相为12.56
计算方法五:
△U%=K*I*L*V0
K:三相四线制K=根号下3,单相K=1;I:工作电流或计算电流(A)
L:线路长度;V0:表内电压(V/A•m)。
电缆电压降计算方法
电缆电压降计算方法电缆的电压降是指电缆输电过程中,电压由电源端降低到负载端的现象。
电压降的大小直接影响到电缆传输电能的效率和稳定性,因此需要准确计算电缆的电压降。
1.线性负载法:线性负载法是最简单的计算电缆电压降的方法。
假设电缆负载是均匀分布的,电流大小是常数。
可以根据电缆的电阻大小和电流大小直接计算电压降。
计算公式如下:ΔU=I×R其中,ΔU为电缆的电压降,I为电流大小,R为电缆的电阻。
2.调和分布法:调和分布法是一种较为精确的电缆电压降计算方法。
在实际情况中,电缆负载往往是非均匀分布的。
调和分布法通过将负载分成若干小段,每段负载和电压降近似呈调和分布的方式来计算电压降。
计算公式如下:ΔU=∑(I×r)/∑r其中,ΔU为电缆的电压降,I为电流大小,r为每段电缆的电阻。
3.满载电流法:满载电流法是一种近似计算电压降的方法,适用于电缆传输距离较远的情况。
该方法根据电缆的额定容量和负载功率计算满载电流,并利用满载电流和电缆的电阻计算电压降。
计算公式如下:ΔU=I×R其中,ΔU为电缆的电压降,I为满载电流大小,R为电缆的电阻。
4.皮尔逊方程法:皮尔逊方程法是一种较为精确的计算电缆电压降的方法,适用于电缆负载变化较大、负载功率较大的情况。
该方法通过根据电缆的电阻、电抗和负载的功率因数计算电压降。
计算公式如下:ΔU=√[(R×I)²+(X×I)²]其中,ΔU为电缆的电压降,I为电流大小,R为电缆的电阻,X为电缆的电抗。
需要注意的是,实际计算电缆电压降时,还需要考虑电缆的材料、长度、敷设方式等因素。
同时,电缆的电压降还会受到负载变化、功率因数变化等因素的影响,因此需要根据具体情况进行综合计算,以确保电缆的电压降在合理范围内。
电压降的最简单最实用计算公式
线路电压降最简单最实用计算方式
线路压降计算公式:△U=2*I*R
I:线路电流
L:线路长度
1、电阻率ρ铜为0.018欧*㎜2/米
铝为0.028欧*㎜3/米
2、I=P/1.732*U*COSØ
3、电阻R=ρ*l/s(电缆截面mm2)
4、电压降△U=IR<5%U就达到要求了。
例:在800米外有30KW负荷,用70㎜2电缆看是否符合要求?
I=P/1.732*U*COSØ=30/1.732*0.38*0.8=56.98A
R=Ρl/电缆截面=0.018*800/70=0.206欧
△U=2*IR=2*56.98*0.206=23.44>19V (5%U=0.05*380=19)
不符合要求。
2、单相电源为零、火线(2根线)才能构成电压差,三相电源是以线电压为标的,所以也为2根线。
电压降可以是单根电线导体的损耗,但以前端线电压380V(线与线电压为2根线)为例,末端的电压是以前端线与线电压减末端线与线(2根线)电压降,所以,不论单相或三相,电压降计算均为2根线的
就是欧姆定律:U=R*I
但必须要有负载电流数据、导线电阻值才能运算。
铜线电阻率:ρ=0.0172,铝线电阻率:ρ=0.0283
例:
单相供电线路长度为100米,采用铜芯10平方电线负载功率10KW,电流约46A,求末端电压降。
求单根线阻:
R=ρ×L/S=0.0172×100/10≈0.17(Ω)
求单根线末端电压降:
U=RI=0.17×46≈7.8(V)
单相供电为零、火2根导线,末端总电压降:
7.8×2=15.6(V)。
电缆电压降公式
电缆电压降公式电缆电压降公式是电力系统中常见的一种用于计算电缆线路电压降的公式。
在电力传输和分配过程中,电缆是一种常用的导电材料,用于将电能从发电厂输送到用户或不同的电力设备之间。
然而,由于电缆本身的电阻和电流通过时产生的电流损耗,电力在传输过程中会发生一定的电压降。
电缆电压降公式是通过对电缆线路的电阻和电流进行计算,来确定电压降的大小。
根据欧姆定律,电流通过导线时会产生一定的电压降。
电缆电压降公式可以用来计算电力系统中电缆线路的电压降,从而评估电力传输的效果和电缆的质量。
电缆电压降公式可以表示为:电压降 = 电流× 导线电阻其中,电流是电缆线路中实际通过的电流值,导线电阻是电缆线路本身的电阻值。
通过测量电流和导线电阻,可以使用这个公式来计算电缆线路的电压降。
在电力系统中,电缆电压降是一个重要的参数。
电压降过大会导致电力传输效率下降,甚至影响电力设备的正常运行。
因此,在设计和安装电力系统时,需要合理选择电缆的规格和长度,以保证电压降在合理范围内。
电缆电压降公式的应用范围广泛。
在电力系统的规划和设计中,可以通过计算电缆线路的电压降来评估系统的可靠性和电力传输效果。
在电力设备的运行和维护中,可以通过测量电流和导线电阻,来判断电缆线路的质量和运行状态。
此外,在电力故障排除和维修中,电缆电压降公式也是一个重要的参考工具。
然而,需要注意的是,电缆电压降公式是在理想条件下推导出来的,其中假设了电缆线路是均匀、理想导体,并且瞬态响应被忽略。
在实际应用中,电缆线路的电阻和电流分布并不均匀,且受到环境温度、湿度等因素的影响。
因此,在使用电缆电压降公式时,需要考虑这些因素的影响,进行修正和调整。
电缆电压降公式是电力系统中常用的计算工具,用于评估电力传输效果和电缆线路质量。
通过测量电流和导线电阻,并应用电缆电压降公式,可以准确计算电缆线路的电压降。
然而,在实际应用中,需要考虑各种因素的影响,以保证计算结果的准确性和可靠性。
如何快速计算电缆压降
如何快速计算电缆压降电缆压降是指电缆输送电流时由于电阻而导致的电压降低。
电缆压降的计算可以通过以下步骤来进行。
第一步:确定电缆的电阻电缆的电阻是压降计算的基础,可以通过以下公式进行计算:R=ρ*(L/A)其中,R为电缆的电阻,ρ为电缆的电阻率,L为电缆的长度,A为电缆的横截面积。
第二步:计算电流电缆压降与电流的大小有关,所以需要先确定电流的大小。
通常情况下,可以通过电流表来测量得到。
第三步:计算电缆的压降电缆的压降可以通过下面的公式进行计算:Vd=I*R其中,Vd为电缆的压降,I为电流,R为电缆的电阻。
第四步:进行计算结果的分析和评估计算出的电缆压降还需要进行分析和评估,以确定是否满足安全和性能的要求。
对于高压输电线路等重要场合,压降的限制往往比较严格,需要保证在一定范围内。
在实际工程应用中,可以根据不同的具体情况,采用不同的方法来计算电缆压降。
以下是一些常见的方法:1.直接法:直接法是最简单和直观的一种方法,根据电缆的电阻和电流直接计算得到压降。
适用于电缆长度较短、电流较小的情况。
2.分段法:当电缆长度过长,电阻不均匀时,可以通过将电缆划分为若干段来计算压降。
分段法的精度相对较高。
3.等效电阻法:对于复杂的电缆系统,可以通过将整个系统简化为一个等效电阻来计算压降。
等效电阻可以通过测量实际电缆系统的压降和电流来得到。
4.电缆压降计算软件:还可以使用专业的电缆压降计算软件来进行计算,这些软件通常考虑了电缆材料、结构、电流负载等多个因素,具有较高的精度和灵活性。
综上所述,计算电缆压降是一个相对复杂的问题,需要根据具体情况选择合适的计算方法,同时还需要进行相应的分析和评估。
通过合理的计算和选择,可以确保电缆系统的安全和性能。
电压降标准计算公式(一)
电压降标准计算公式(一)
电压降标准计算公式
1. 电压降定义及影响因素
•电压降指电流流过线路时,电线电缆长度增加所引起的电压下降。
•电压降的大小受到以下因素的影响:
–电线电缆的长度
–材料电阻率
–电源电压
–电流大小
2. 电压降计算公式
•电压降计算公式为:
–电压降 = 电流 * 电阻
•其中,电流单位为安培(A),电阻单位为欧姆(Ω),电压降单位为伏特(V)。
3. 电压降计算公式举例
•假设一根电线的电阻为5Ω,电流为10A,计算电压降:
–电压降= 10A * 5Ω = 50V
•结果显示,该电线上的电压降为50V。
4. 附加计算公式:电流计算公式和电阻计算公式
•电流计算公式为:
–电流 = 电压 / 电阻
•电阻计算公式为:
–电阻 = 电压 / 电流
5. 电压降标准
•电压降标准是指在特定条件下,允许电压降的最大值。
•不同的应用领域对电压降标准有不同的要求,比如低压电力系统、建筑物电气系统等。
•电压降标准的具体数值需参照相关标准和规范进行确定。
6. 结束语
•电压降是电线电缆在传输电流过程中不可避免的现象,合理计算电压降并控制在合理范围内,对保证电路的正常运行具有重要意
义。
•了解电压降的计算公式及相关影响因素,有助于工程师在设计和实施电气系统时进行合理的电压降控制。
如何快速计算电缆压降
如何快速计算电缆压降电缆压降是指电流在电缆中通过时,由于电阻造成的电压降低。
电缆压降的计算对于电力系统的设计和运行非常重要。
下面是一种快速计算电缆压降的方法。
首先,我们需要确定以下参数:1.电流(单位:安培)2.电缆长度(单位:米)3.电缆的电阻(单位:欧姆/米)然后,按照下面的步骤进行计算:步骤一:计算电缆的总电阻总电阻可以通过以下公式进行计算:总电阻=电缆长度×电缆的电阻步骤二:计算电缆的电压降低电压降低可以通过以下公式进行计算:电压降低=电流×总电阻根据以上的步骤,可以快速计算出电缆的压降。
以下是一个示例:假设有一根长度为100米的电缆,电阻为0.1欧姆/米,电流为10安培。
我们可以按照以下步骤进行计算:步骤一:计算电缆的总电阻总电阻=100米×0.1欧姆/米=10欧姆步骤二:计算电缆的电压降低电压降低=10安培×10欧姆=100伏特因此,这根电缆的压降为100伏特。
需要注意的是,这种计算方法是基于电缆的长度和电阻不变的情况下。
在实际应用中,电缆的长度和电阻可能会发生变化,这时需要根据实际情况进行相应的调整。
同时,还需要考虑电缆的温度因素对电阻的影响。
此外,除了以上的方法,还可以使用电缆压降计算软件来进行快速计算。
这类软件可以根据电缆的各种参数快速计算出电缆的压降,并提供辅助功能和结果的可视化展示,方便工程师进行设计和分析。
综上所述,通过确定电流、电缆长度和电缆阻抗,按照上述步骤进行计算,即可快速计算电缆的压降。
这对于电力系统的设计和运行非常重要。
电力电缆的电压降
电力电缆的电压降
电力电缆的电压降是指电力在电缆中传输过程中由于电线电阻而导致的电压损失。
在电力传输过程中,电压会随着电流通过电线时产生的电阻而下降。
电力电缆的电压降取决于电缆的长度、截面积和电阻率,以及通过电缆流经的电流大小。
电压降可以通过以下公式计算:
电压降 = 电流 ×电缆长度 ×电缆电阻
为了减小电力电缆的电压降,可以采取以下措施:
1. 选择适当的电缆截面积:增大电缆的截面积可以降低电缆的电阻,从而减小电压降。
2. 控制电流大小:减小通过电缆的电流大小可以减少电压降。
3. 缩短电缆的长度:减小电缆的长度可以减小电压降。
4. 提高电缆的导电性能:选择导电性能更好的材料可以减小电缆的电阻,从而降低电压降。
需要注意的是,电力电缆的电压降不可忽视,特别是在长距离传输和大功率传输的情况下,需要通过合理设计和选择合适的电缆来保证电力传输的质量和效率。
电缆电压降计算方法
一、先估算负荷电流1.用途这是根据用电设备的功率千瓦或千伏安算出电流安的口诀;电流的大小直接与功率有关,也与电压、相别、力率又称功率因数等有关;一般有公式可供计算;由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流;2.口诀低压380/220伏系统每千瓦的电流,安;千瓦、电流,如何计算电力加倍,电热加半; ①单相千瓦,安; ②单相380,电流两安半; ③3.说明口诀是以380/220伏三相四线系统中的三相设备为准,计算每千瓦的安数;对于某些单相或电压不同的单相设备,其每千瓦的安数,口诀另外作了说明;①这两句口诀中,电力专指电动机;在380伏三相时力率左右,电动机每千瓦的电流约为2安.即将”千瓦数加一倍”乘2就是电流,安;这电流也称电动机的额定电流;例1 千瓦电动机按“电力加倍”算得电流为11安;例2 40千瓦水泵电动机按“电力加倍”算得电流为80安;电热是指用电阻加热的电阻炉等;三相380伏的电热设备,每千瓦的电流为安;即将“千瓦数加一半”乘就是电流,安;例1 3千瓦电加热器按“电热加半”算得电流为安;例2 15千瓦电阻炉按“电热加半”算得电流为23安;这句口诀不专指电热,对于照明也适用;虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线干线仍属三相;只要三相大体平衡也可这样计算;此外,以千伏安为单位的电器如变压器或整流器和以千乏为单位的移相电容器提高力率用也都适用;即时说,这后半句虽然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位的电热和照明设备;例1 12千瓦的三相平衡时照明干线按“电热加半”算得电流为18安;例2 30千伏安的整流器按“电热加半”算得电流为45安指380伏三相交流侧;例3 320千伏安的配电变压器按“电热加半”算得电流为480安指380/220伏低压侧;例4 100千乏的移相电容器380伏三相按“电热加半”算得电流为150安;②在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的如照明设备为单相220伏用电设备;这种设备的力率大多为1,因此,口诀便直接说明“单相每千瓦安”;计算时,只要“将千瓦数乘”就是电流,安;同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220伏的直流;例1 500伏安千伏安的行灯变压器220伏电源侧按“单相千瓦、安”算得电流为安;例2 1000瓦投光灯按“单相千瓦、安”算得电流为安;对于电压更低的单相,口诀中没有提到;可以取220伏为标准,看电压降低多少,电流就反过来增大多少;比如36伏电压,以220伏为标准来说,它降低到1/6,电流就应增大到6倍,即每千瓦的电流为6=27安;比如36伏、60瓦的行灯每只电流为27=安,5只便共有8安;③在380/220伏三相四线系统中,单相设备的两条线都是接到相线上的,习惯上称为单相380伏用电设备实际是接在两相上;这种设备当以千瓦为单位时,力率大多为1,口诀也直接说明:“单相380,电流两安半”;它也包括以千伏安为单位的380伏单相设备;计算时,只要“将千瓦或千伏安数乘”就是电流,安;例1 32千瓦钼丝电阻炉接单相380伏,按“电流两安半”算得电流为80安;例2 2千伏安的行灯变压器,初级接单相380伏,按“电流两安半”算得电流为5安;例3 21千伏安的交流电焊变压器,初级接单相380伏,按“电流两安半”算得电流为53安;估算出负荷的电流后在根据电流选出相应导线的截面,选导线截面时有几个方面要考虑到一是导线的机械强度二是导线的电流密度安全截流量,三是允许电压降二、电压降的估算1.用途根据线路上的负荷矩,估算供电线路上的电压损失,检查线路的供电质量;2.口诀提出一个估算电压损失的基准数据,通过一些简单的计算,可估出供电线路上的电压损失;压损根据“千瓦.米”,铝线20—1;截面增大荷矩大,电压降低平方低;①三相四线6倍计,铜线乘上;②感抗负荷压损高,10下截面影响小,若以力率计,10上增加至1;③3.说明电压损失计算与较多的因素有关,计算较复杂;估算时,线路已经根据负荷情况选定了导线及截面,即有关条件已基本具备;电压损失是按“对额定电压损失百分之几”来衡量的;口诀主要列出估算电压损失的最基本的数据,多少“负荷矩”电压损失将为1%;当负荷矩较大时,电压损失也就相应增大;因些,首先应算出这线路的负荷矩;所谓负荷矩就是负荷千瓦乘上线路长度线路长度是指导线敷设长度“米”,即导线走过的路径,不论线路的导线根数;,单位就是“千瓦.米”;对于放射式线路,负荷矩的计算很简单;如下图1,负荷矩便是2030=600千瓦.米;但如图2的树干式线路,便麻烦些;对于其中5千瓦设备安装位置的负荷矩应这样算:从线路供电点开始,根据线路分支的情况把它分成三段;在线路的每一段,三个负荷10、8、5千瓦都通过,因此负荷矩为:第一段:1010+8+5=230千瓦.米第二段:58+5=65千瓦.米第三段:105=50千瓦.米至5千瓦设备处的总负荷矩为:230+65+50=345千瓦.米下面对口诀进行说明:①首先说明计算电压损失的最基本的根据是负荷矩:千瓦.米接着提出一个基准数据:2 .5平方毫米的铝线,单相220伏,负荷为电阻性力率为1,每20“千瓦.米”负荷矩电压损失为1%;这就是口诀中的“2 .5铝线20—1”;在电压损失1%的基准下,截面大的,负荷矩也可大些,按正比关系变化;比如10平方毫米的铝线,截面为2 .5平方毫米的4倍,则204=80千瓦.米,即这种导线负荷矩为80千瓦.米,电压损失才1%;其余截面照些类推;当电压不是220伏而是其它数值时,例如36伏,则先找出36伏相当于220伏的1/6;此时,这种线路电压损失为1%的负荷矩不是20千瓦.米,而应按1/6的平方即1/36来降低,这就是201/36=0 .55千瓦.米;即是说,36伏时,每0 .55千瓦.米即每550瓦.米,电压损失降低1%;“电压降低平方低”不单适用于额定电压更低的情况,也可适用于额定电压更高的情况;这时却要按平方升高了;例如单相380伏,由于电压380伏为220伏的1 .7倍,因此电压损失1%的负荷矩应为201 .7的平方=58千瓦.米;从以上可以看出:口诀“截面增大荷矩大,电压降低平方低”;都是对照基准数据“2 .5铝线20—1”而言的;例1 一条220伏照明支路,用2 .5平方毫米铝线,负荷矩为76千瓦.米;由于76是20的3 .8倍76/20=3 .8,因此电压损失为3 .8%;例2 一条4平方毫米铝线敷设的40米长的线路,供给220伏1千瓦的单相电炉2只,估算电压损失是:先算负荷矩240=80千瓦.米;再算4平方毫米铝线电压损失1%的负荷矩,根据“截面增大负荷矩大”的原则,4和2 .5比较,截面增大为1 .6倍4/2 .5=1 .6,因此负荷矩增为201 .6=32千瓦.米这是电压损失1%的数据;最后计算80/32=2 .5,即这条线路电压损失为2 .5%;②当线路不是单相而是三相四线时,这三相四线一般要求三相负荷是较平衡的;它的电压是和单相相对应的;如果单相为220伏,对应的三相便是380伏,即380/220伏;同样是2 .5平方毫米的铝线,电压损失1%的负荷矩是①中基准数据的6倍,即206=120千瓦.米;至于截面或电压变化,这负荷矩的数值,也要相应变化;当导线不是铝线而是铜线时,则应将铝线的负荷矩数据乘上1 .7,如“2 .5铝线20—1”改为同截面的铜线时,负荷矩则改为201 .7=34千瓦.米,电压损失才1%;例3 前面举例的照明支路,若是铜线,则76/34=2 .2,即电压损失为2 .2%;对电炉供电的那条线路,若是铜线,则80/321 .7=1 .5,电压损失为1 .5%;例4 一条50平方毫米铝线敷设的380伏三相线路,长30米,供给一台60千瓦的三相电炉;电压损失估算是:先算负荷矩:6030=1800千瓦.米;再算50平方毫米铝线在380伏三相的情况下电压损失1%的负荷矩:根据“截面增大荷矩大”,由于50是2 .5的20倍,因此应乘20,再根据“三相四线6倍计”,又要乘6,因此,负荷矩增大为20206=2400千瓦.米;最后1800/2400=0 .75,即电压损失为0 .75%;③以上都是针对电阻性负荷而言;对于感抗性负荷如电动机,计算方法比上面的更复杂;但口诀首先指出:同样的负荷矩——千瓦.米,感抗性负荷电压损失比电阻性的要高一些;它与截面大小及导线敷设之间的距离有关;对于10平方毫米及以下的导线则影响较小,可以不增高;对于截面10平方毫米以上的线路可以这样估算:先按①或②算出电压损失,再“增加0 .2至1”,这是指增加0 .2至1倍,即再乘1 .2至2;这可根据截面大小来定,截面大的乘大些;例如70平方毫米的可乘1 .6,150平方毫米可乘2;以上是指线路架空或支架明敷的情况;对于电缆或穿管线路,由于线路距离很小面影响不大,可仍按①、②的规定估算,不必增大或仅对大截面的导线略为增大在0 .2以内;例5 图1中若20千瓦是380伏三相电动机,线路为316铝线支架明敷,则电压损失估算为:已知负荷矩为600千瓦.米;计算截面16平方毫米铝线380伏三相时,电压损失1%的负荷矩:由于16是2 .5的6 .4倍,三相负荷矩又是单相的6倍,因此负荷矩增为:206 .46=768千瓦.米 600/768=0 .8即估算的电压损失为0 .8%;但现在是电动机负荷,而且导线截面在10以上,因此应增加一些;根据截面情况,考虑1 .2,估算为0 .81 .2=0 .96,可以认为电压损失约1%;三、补充说明四点说明以上就是电压损失的估算方法;最后再就有关这方面的问题谈几点:1、线路上电压损失大到多少质量就不好一般以7~8%为原则;较严格的说法是:电压损失以用电设备的额定电压为准如380/220伏,允许低于这额定电压的5%照明为2 .5%;但是配电变压器低压母线端的电压规定又比额定电压高5%400/230伏,因此从变压器开始至用电设备的整个线路中,理论上共可损失5%+5%=10%,但通常却只允许7~8%;这是因为还要扣除变压器内部的电压损失以及变压器力率低的影响的缘故;不过这7~8%是指从配电变压器低压侧开始至计算的那个用电设备为止的全部线路;它通常包括有户外架空线、户内干线、支线等线段;应当是各段结果相加,全部约7~8%;2、估算电压损失是设计的工作,主要是防止将来使用时出现电压质量不佳的现象;由于影响计算的因素较多主要的如计算干线负荷的准确性,变压器电源侧电压的稳定性等,因此,对计算要求很精确意义不大,只要大体上胸中有数就可以了;比如截面相比的关系也可简化为4比2 .5为1 .5倍,6比2 .5为2 .5倍,16比2 .5倍为6倍;这样计算会更方便些;3、在估算电动机线路电压损失中,还有一种情况是估算电动机起动时的电压损失;这是若损失太大,电动机便不能直接起动;由于起动时的电流大,力率低,一般规定起动时的电压损失可达15%;这种起动时的电压损失计算更为复杂,但可用上述口诀介绍的计算结果判断,一般截面25平方毫米以内的铝线若符合5%的要求,也可符合直接起动的要求:35、50平方毫米的铝线若电压损失在3 .5%以内,也可满足;70、95平方毫米的铝线若电压损失在2 .5%以内,也可满足;而120平方毫米的铝线若电压损失在1 .5以内;才可满足;这3 .5%,2 .5%,1 .5 .%刚好是5%的七、五、三折,因此可以简单记为:“35以上,七、五、三折”;4、假如在使用中确实发现电压损失太大,影响用电质量,可以减少负荷将一部分负荷转移到别的较轻的线路,或另外增加一回路,或者将部分线段的截面增大最好增大前面的干线来解决;对于电动机线路,也可以改用电缆来减少电压损失;当电动机无法直接启动时,除了上述解决办法外,还可以采用降压起动设备如星-三角起动器或自耦减压起动器等来解决;四、计算导线压降必须清楚的事情根据电流选截面1.用途各种导线的截流量安全用电通常可以从手册中查找;但利用口诀再配合一些简单的心算,便可直接算出,不必查表;导线的截流量与导线的截面有关,也与导线的材料铝或铜、型号绝缘线或裸线等、敷设方法明敷或穿管等以及环境温度25℃左右或更大等有关,影响的因素较多,计算也较复杂;2.口诀铝心绝缘线截流量与截面的倍数关系: S截面=D直径的平方10下5,100上二,25、35,四三界,70、95,两倍半; ①穿管、温度,八九折; ②裸线加一半; ③铜线升级算; ④3.说明口诀是以铝芯绝缘线、明敷在环境温度25℃的条件为准;若条件不同,口诀另有说明;绝缘线包括各种型号的橡皮绝缘线或塑料绝缘线;口诀对各种截面的截流量电流,安不是直接指出,而是用“截面乘上一定倍数”来表示;为此,应当先熟悉导线截面平方毫米的排列:1 4 6 10 16 25 35 50 70 95 120 150 185 ....生产厂制造铝芯绝缘线的截面通常从开始,铜芯绝缘线则从1开始;裸铝线从16开始,裸铜线则从10开始;①这口诀指出:铝芯绝缘线截流量,安,可以按“截面数的多少倍”来计算;口诀中阿拉伯数字表示导线截面平方毫米,汉字数字表示倍数;把口诀的“截面与倍数关系”排列起来便如下:...105 16、254 35 、453 70 、95 1202......现在再和口诀对照就更清楚了,原来“10下五”是指截面从10以下,截流量都是截面数的五倍;“100上二”是指截面100以上,截流量都是截面数的二倍;截面25与35是四倍和三倍的分界处;这就是口诀“25、35四三界”;而截面70、95则为二点五倍;从上面的排列可以看出:除10以下及100以上之处,中间的导线截面是每每两种规格属同一种倍数;下面以明敷铝芯绝缘线,环境温度为25℃,举例说明:例16平方毫米的,按“10下五”算得截流量为30安;例2150平方毫米的,按“100上二”算得截流量为300安;例370平方毫米的,按“70、95两倍半”算得截流量为175安;从上面的排列还可以看出:倍数随截面的增大而减小;在倍数转变的交界处,误差稍大些;比如截面25与35是四倍与三倍的分界处,25属四倍的范围,但靠近向三倍变化的一侧,它按口诀是四倍,即100安,但实际不到四倍按手册为97安,而35则相反,按口诀是三倍,即105安,实际则是117安,不过这对使用的影响并不大;当然,若能“胸中有数”,在选择导线截面时,25的不让它满到100安,35的则可以略为超过105安便更准确了;同样,平方毫米的导线位置在五倍的最始左端,实际便不止五倍最大可达20安以上,不过为了减少导线内的电能损耗,通常都不用到这么大,手册中一般也只标12安;②从这以下,口诀便是对条件改变的处理;本名“穿管、温度,八、九折”是指:若是穿管敷设包括槽板等敷设,即导线加有保护套层,不明露的,按①计算后,再打八折乘;若环境温度超过25℃,应按①计算后再打九折乘;关于环境温度,按规定是指夏天最热月的平均最高温度;实际上,温度是变动的,一般情况下,它影响导体截流并不很大;因此,只对某些高温车间或较热地区超过25℃较多时,才考虑打折扣;还有一种情况是两种条件都改变穿管又温度较高,则按①计算后打八折,再打九折;或者简单地一次打七折计算即=,约为;这也可以说是“穿管、温度,八、九折”的意思;例如:铝芯绝缘线10平方毫米的,穿管八折,40安105=40高温九折45安105=45穿管又高温七折35安105=35安95平方毫米的,穿管八折190安95=190高温九折214安95=穿管又高温七折166安95=③对于裸铝线的截流量,口诀指出“裸线加一半”,即按①计算后再一半乘;这是指同样截面的铝芯绝缘芯与裸铝线比较,截流量可加一半;例1 16平方毫米裸铝线, 96安164=96高温, 86安164=例2 35平方毫米裸铝线, 158安353=例3 120平方毫米裸铝线, 360安1202=360④对于铜导线的截流量,口诀指出“铜线升级算”,即将铜导线的截面按截面排列顺序提升一级,再按相应的铝线条件计算;例1 35平方毫米裸铜线25℃;升级为50平方毫米,再按50平方毫米裸铝线,25℃计算为225安503;例2 16平方毫米铜绝缘线25℃;按25平方毫米铝绝缘线的相同条件,计算为100安254;例3 95平方毫米铜绝缘线25℃ ,穿管;按120平方毫米铝绝缘线的相同条件,计算为192安1202;附带说一下:对于电缆,口诀中没有介绍;一般直接埋地的高压电缆,大体上可采用①中的有关倍数直接计算,比如35平方毫米高压铠装铝芯电缆埋地敷设的截流量约为105安353;95平方毫米的约为238安95;下面这个估算口诀和上面的有异曲同工之处:二点五下乘以九,往上减一顺号走;三十五乘三点五,双双成组减点五;条件有变加折算,高温九折铜升级;穿管根数二三四,八七六折满载流;平方9、4平方8、6平方7、10平方6、16平方5、25平方4、35平方、50和70平方3、95和120平方 .....................五、重点电压降公式汇最后说明一下用电流估算截面的适用于近电源负荷离电源不远,电压降适用于长距离1.单相相电压电压损失=2×÷10÷额定相电压2×单位电阻+单位电抗×tgarccos功率因数×功率×距离÷10002.单相线电压电压损失=2÷10÷额定相电压2×单位电阻+单位电抗×tgarccos功率因数×功率×距离÷10003.三相电压损失=1÷10÷额定线电压2×单位电阻+单位电抗×tgarccos功率因数×功率×距离÷10004、等距等负荷线路末端电压损失简易算法:L=起点至第一个设备的距离+第一个设备至最后一个设备的距离的一半Pj=全部设备容量总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、先估算负荷电流1.用途这是根据用电设备的功率(千瓦或千伏安)算出电流(安)的口诀。
电流的大小直接与功率有关,也与电压、相别、力率(又称功率因数)等有关。
一般有公式可供计算。
由于工厂常用的都是380/220伏三相四线系统,因此,可以根据功率的大小直接算出电流。
2.口诀低压380/220伏系统每千瓦的电流,安。
千瓦、电流,如何计算?电力加倍,电热加半。
①单相千瓦,4.5安。
②单相380,电流两安半。
③3.说明口诀是以380/220伏三相四线系统中的三相设备为准,计算每千瓦的安数。
对于某些单相或电压不同的单相设备,其每千瓦的安数,口诀另外作了说明。
①这两句口诀中,电力专指电动机。
在380伏三相时(力率0.8左右),电动机每千瓦的电流约为2安.即将”千瓦数加一倍”(乘2)就是电流,安。
这电流也称电动机的额定电流。
【例1】 5.5千瓦电动机按“电力加倍”算得电流为11安。
【例2】 40千瓦水泵电动机按“电力加倍”算得电流为80安。
电热是指用电阻加热的电阻炉等。
三相380伏的电热设备,每千瓦的电流为1.5安。
即将“千瓦数加一半”(乘1.5)就是电流,安。
【例1】 3千瓦电加热器按“电热加半”算得电流为4.5安。
【例2】 15千瓦电阻炉按“电热加半”算得电流为23安。
这句口诀不专指电热,对于照明也适用。
虽然照明的灯泡是单相而不是三相,但对照明供电的三相四线干线仍属三相。
只要三相大体平衡也可这样计算。
此外,以千伏安为单位的电器(如变压器或整流器)和以千乏为单位的移相电容器(提高力率用)也都适用。
即时说,这后半句虽然说的是电热,但包括所有以千伏安、千乏为单位的用电设备,以及以千瓦为单位的电热和照明设备。
【例1】 12千瓦的三相(平衡时)照明干线按“电热加半”算得电流为18安。
【例2】 30千伏安的整流器按“电热加半”算得电流为45安(指380伏三相交流侧)。
【例3】 320千伏安的配电变压器按“电热加半”算得电流为480安(指380/220伏低压侧)。
【例4】 100千乏的移相电容器(380伏三相)按“电热加半”算得电流为150安。
②在380/220伏三相四线系统中,单相设备的两条线,一条接相线而另一条接零线的(如照明设备)为单相220伏用电设备。
这种设备的力率大多为1,因此,口诀便直接说明“单相(每)千瓦4.5安”。
计算时,只要“将千瓦数乘4.5”就是电流,安。
同上面一样,它适用于所有以千伏安为单位的单相220伏用电设备,以及以千瓦为单位的电热及照明设备,而且也适用于220伏的直流。
【例1】 500伏安(0.5千伏安)的行灯变压器(220伏电源侧)按“单相千瓦、4.5安”算得电流为2.3安。
【例2】 1000瓦投光灯按“单相千瓦、4.5安”算得电流为4.5安。
对于电压更低的单相,口诀中没有提到。
可以取220伏为标准,看电压降低多少,电流就反过来增大多少。
比如36伏电压,以220伏为标准来说,它降低到1/6,电流就应增大到6倍,即每千瓦的电流为6*4.5=27安。
比如36伏、60瓦的行灯每只电流为0.06*27=1.6安,5只便共有8安。
③在380/220伏三相四线系统中,单相设备的两条线都是接到相线上的,习惯上称为单相380伏用电设备(实际是接在两相上)。
这种设备当以千瓦为单位时,力率大多为1,口诀也直接说明:“单相380,电流两安半”。
它也包括以千伏安为单位的380伏单相设备。
计算时,只要“将千瓦或千伏安数乘2.5”就是电流,安。
【例1】 32千瓦钼丝电阻炉接单相380伏,按“电流两安半”算得电流为80安。
【例2】 2千伏安的行灯变压器,初级接单相380伏,按“电流两安半”算得电流为5安。
【例3】 21千伏安的交流电焊变压器,初级接单相380伏,按“电流两安半”算得电流为53安。
估算出负荷的电流后在根据电流选出相应导线的截面,选导线截面时有几个方面要考虑到一是导线的机械强度二是导线的电流密度(安全截流量),三是允许电压降二、电压降的估算1.用途根据线路上的负荷矩,估算供电线路上的电压损失,检查线路的供电质量。
2.口诀提出一个估算电压损失的基准数据,通过一些简单的计算,可估出供电线路上的电压损失。
压损根据“千瓦.米”,2.5铝线20—1。
截面增大荷矩大,电压降低平方低。
①三相四线6倍计,铜线乘上1.7。
②感抗负荷压损高,10下截面影响小,若以力率0.8计,10上增加0.2至1。
③3.说明电压损失计算与较多的因素有关,计算较复杂。
估算时,线路已经根据负荷情况选定了导线及截面,即有关条件已基本具备。
电压损失是按“对额定电压损失百分之几”来衡量的。
口诀主要列出估算电压损失的最基本的数据,多少“负荷矩”电压损失将为1%。
当负荷矩较大时,电压损失也就相应增大。
因些,首先应算出这线路的负荷矩。
所谓负荷矩就是负荷(千瓦)乘上线路长度(线路长度是指导线敷设长度“米”,即导线走过的路径,不论线路的导线根数。
),单位就是“千瓦.米”。
对于放射式线路,负荷矩的计算很简单。
如下图1,负荷矩便是20*30=600千瓦.米。
但如图2的树干式线路,便麻烦些。
对于其中5千瓦设备安装位置的负荷矩应这样算:从线路供电点开始,根据线路分支的情况把它分成三段。
在线路的每一段,三个负荷(10、8、5千瓦)都通过,因此负荷矩为:第一段:10*(10+8+5)=230千瓦.米第二段:5*(8+5)=65千瓦.米第三段:10*5=50千瓦.米至5千瓦设备处的总负荷矩为:230+65+50=345千瓦.米下面对口诀进行说明:①首先说明计算电压损失的最基本的根据是负荷矩:千瓦.米接着提出一个基准数据:2 .5平方毫米的铝线,单相220伏,负荷为电阻性(力率为1),每20“千瓦.米”负荷矩电压损失为1%。
这就是口诀中的“2 .5铝线20—1”。
在电压损失1%的基准下,截面大的,负荷矩也可大些,按正比关系变化。
比如10平方毫米的铝线,截面为2 .5平方毫米的4倍,则20*4=80千瓦.米,即这种导线负荷矩为80千瓦.米,电压损失才1%。
其余截面照些类推。
当电压不是220伏而是其它数值时,例如36伏,则先找出36伏相当于220伏的1/6。
此时,这种线路电压损失为1%的负荷矩不是20千瓦.米,而应按1/6的平方即1/36来降低,这就是20*(1/36)=0 .55千瓦.米。
即是说,36伏时,每0 .55千瓦.米(即每550瓦.米),电压损失降低1%。
“电压降低平方低”不单适用于额定电压更低的情况,也可适用于额定电压更高的情况。
这时却要按平方升高了。
例如单相380伏,由于电压380伏为220伏的1 .7倍,因此电压损失1%的负荷矩应为20*1 .7的平方=58千瓦.米。
从以上可以看出:口诀“截面增大荷矩大,电压降低平方低”。
都是对照基准数据“2 .5铝线20—1”而言的。
【例1】一条220伏照明支路,用2 .5平方毫米铝线,负荷矩为76千瓦.米。
由于76是20的3 .8倍(76/20=3 .8),因此电压损失为3 .8%。
【例2】一条4平方毫米铝线敷设的40米长的线路,供给220伏1千瓦的单相电炉2只,估算电压损失是:先算负荷矩2*40=80千瓦.米。
再算4平方毫米铝线电压损失1%的负荷矩,根据“截面增大负荷矩大”的原则,4和2 .5比较,截面增大为1 .6倍(4/2 .5=1 .6),因此负荷矩增为20*1 .6=32千瓦.米(这是电压损失1%的数据)。
最后计算80/32=2 .5,即这条线路电压损失为2 .5%。
②当线路不是单相而是三相四线时,(这三相四线一般要求三相负荷是较平衡的。
它的电压是和单相相对应的。
如果单相为220伏,对应的三相便是380伏,即380/220伏。
)同样是2 .5平方毫米的铝线,电压损失1%的负荷矩是①中基准数据的6倍,即20*6=120千瓦.米。
至于截面或电压变化,这负荷矩的数值,也要相应变化。
当导线不是铝线而是铜线时,则应将铝线的负荷矩数据乘上1 .7,如“2 .5铝线20—1”改为同截面的铜线时,负荷矩则改为20*1 .7=34千瓦.米,电压损失才1%。
【例3】前面举例的照明支路,若是铜线,则76/34=2 .2,即电压损失为2 .2%。
对电炉供电的那条线路,若是铜线,则80/(32*1 .7)=1 .5,电压损失为1 .5%。
【例4】一条50平方毫米铝线敷设的380伏三相线路,长30米,供给一台60千瓦的三相电炉。
电压损失估算是:先算负荷矩:60*30=1800千瓦.米。
再算50平方毫米铝线在380伏三相的情况下电压损失1%的负荷矩:根据“截面增大荷矩大”,由于50是2 .5的20倍,因此应乘20,再根据“三相四线6倍计”,又要乘6,因此,负荷矩增大为20*20*6=2400千瓦.米。
最后1800/2400=0 .75,即电压损失为0 .75%。
③以上都是针对电阻性负荷而言。
对于感抗性负荷(如电动机),计算方法比上面的更复杂。
但口诀首先指出:同样的负荷矩——千瓦.米,感抗性负荷电压损失比电阻性的要高一些。
它与截面大小及导线敷设之间的距离有关。
对于10平方毫米及以下的导线则影响较小,可以不增高。
对于截面10平方毫米以上的线路可以这样估算:先按①或②算出电压损失,再“增加0 .2至1”,这是指增加0 .2至1倍,即再乘1 .2至2。
这可根据截面大小来定,截面大的乘大些。
例如70平方毫米的可乘1 .6,150平方毫米可乘2。
以上是指线路架空或支架明敷的情况。
对于电缆或穿管线路,由于线路距离很小面影响不大,可仍按①、②的规定估算,不必增大或仅对大截面的导线略为增大(在0 .2以内)。
【例5】图1中若20千瓦是380伏三相电动机,线路为3*16铝线支架明敷,则电压损失估算为:已知负荷矩为600千瓦.米。
计算截面16平方毫米铝线380伏三相时,电压损失1%的负荷矩:由于16是2 .5的6 .4倍,三相负荷矩又是单相的6倍,因此负荷矩增为:20*6 .4*6=768千瓦.米 600/768=0 .8即估算的电压损失为0 .8%。
但现在是电动机负荷,而且导线截面在10以上,因此应增加一些。
根据截面情况,考虑1 .2,估算为0 .8*1 .2=0 .96,可以认为电压损失约1%。
三、补充说明四点说明以上就是电压损失的估算方法。
最后再就有关这方面的问题谈几点:1、线路上电压损失大到多少质量就不好?一般以7~8%为原则。
(较严格的说法是:电压损失以用电设备的额定电压为准(如380/220伏),允许低于这额定电压的5%(照明为2 .5%)。
但是配电变压器低压母线端的电压规定又比额定电压高5%(400/230伏),因此从变压器开始至用电设备的整个线路中,理论上共可损失5%+5%=10%,但通常却只允许7~8%。