新人教版八年级数学下册二次根式同步练习解析
(必考题)初中八年级数学下册第十六章《二次根式》经典习题(含答案解析)

一、选择题1.是同类二次根式的是( )A B C D 2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 3.下列计算正确的是( )A =±B .=C =D 2=4. )A .1B .2C .3D .45.下列计算正确的是( )A 2=B 1=C .22=D =6.下列计算正确的是( )A . 3B .1122+=C .3=D 37. )A .3BC D8. ) A .1个 B .2个 C .3个D .4个 9.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 10.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .11.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或12.下列根式是最简二次根式的是( )A B C D 13.下列二次根式中,最简二次根式是( )AB C D14.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 15.已知a =,b =,则a 与b 的大小关系是( ).A .a b >B .a b <C .a b =D .无法确定二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.计算:2=___________.18.4y =,则y x =________.19.与-a 可以等于___________.(写出一个即可)20.23()a -=______(a≠0),2-=______,1-=______.21.已知1x =,求229x x ++=______.22.=______;23.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.24.比较大小:“>”、“<”或“=”).25.已知2160x x -=,则x 的值为________.26.20y =,则x y +=________.三、解答题27.先化简,再求值:2232()111x x x x x x +÷---,其中1x =-.28.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 29.计算(1) (2)22)-30.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.。
(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习

16.3 二次根式的加减(1)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.同类二次根式(1)同类二次根式的定义几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(2)同类二次根式的合并合并同类二次根式类似于合并同类项,就是将同类二次根式的“系数”合并 ,根指数与被开方数保持不变.2.二次根式的加减(1)二次根式的加减实质是合并同类二次根式,非同类二次根式不能合并.(2)二次根式加减法的一般步骤: ①先把各根式化成最简二次根式; ②找出其中的同类二次根式; ③合并同类二次根式.3. 比较二次根式大小时,可将根号外的非负数(或式子) 移到根号内.基础知识和能力拓展训练一、选择题1.下列各组二次根式中,是同类二次根式的是( )A. 6和32B. a和2aC. 12和13D. 3和92.下列二次根式中,不能与2合并的是()A. 12B. 8C. 12D. 183.已知二次根式24a 与2是同类二次根式,则a的值可以是()A. 5B. 3C. 7D. 84.下列运算正确的是()A. (﹣a2)3=a6B. (a+b)2=a2+b2C. 8﹣2=2D. 55﹣5=4 5.已知等腰三角形的两边长为23和52,则此等腰三角形的周长为()A. 43+52B. 23+102C. 43+102D. 43+52或23+102 6.计算|2﹣5|+|4﹣5|的值是()A. ﹣2B. 2C. 25﹣6D. 6﹣257.计算:32﹣8的结果是()A. 30B. 2C. 22D. 2.88.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间 D . 3和4之间9.设a=6-2,b=3-1,c=231,则a,b,c之间的大小关系是( )A. c>b>aB. a>c>bC. b>a>cD. a>b>c10.设的小数部分为,则的值是()A. B. 是一个无理数C. D. 无法确定二、填空题11.若最简二次根式与是同类二次根式,则a =______,b =___________.12.若最简二次根式1x +与22x -能合并为一个二次根式,则x =_______。
人教版八年级下册数学数学二次根式同步练习解析版

16.1二次根式同步练习参考答案与试题解析一.选择题1.选C2.解:当x=﹣3时,=,故此数据不合题意;当x=﹣1时,=,故此数据不合题意;当x=0时,=,故此数据不合题意;当x=2时,=0,故此数据符合题意;故选:D.3.解:(a≥0)是非负数,故选:D.4.解:由题意得,a+2≥0,a≠0,解得,a≥﹣2且 a≠0,故选:D.二.填空题5.解:平方,得a﹣1=4.解得a=5,故答案为:5.6.解:=4,∵是正整数,∴3n是一个完全平方数.∴n的最小整数值为3.故答案为:3.7.解:因为2=,2==,所以此列数为:,,,,…,则第100个数是:=10.故答案是:10.8.解:∵中被开放数4>0且含有“”,∴是二次根式.∴小红的说法错误.故答案为:错.9.解:根据题意,得,解得x≥﹣1且x≠0.三.解答题10.解:由题意知:20≤x≤30,又因为x,y均为整数,所以x﹣20,30﹣x均需是一个整数的平方,所以x﹣20=1,30﹣x=1,故x只以取21或29,当x=21时,y=4,x+y的值为25;当x=29时,y=4,x+y的值为33.故x+y的值为25或33.11.解:∵是整数,∴18﹣n≥0,且18﹣n是完全平方数,∴①18﹣n=1,即n=17;②18﹣n=4,即n=14;③18﹣n=9,即n=9;④18﹣n=16,即n=2;⑤18﹣n=0,即n=18;综上所述,自然数n的值可以是17、14、9、2、18.12.解:∵为二次根式,∴x的取值范围是:x﹣3≠0.13.解:n个式子是,一定是二次根式,理由如下:的被开方数是非负数,是二次根式.14.解:∵y=﹣﹣2016,∴x﹣2017≥0且2017﹣x≥0,∴x≥2017且x≤2017,∴x=2017,y=﹣2016,∴x+y=2017﹣2016=1,∴x+y的平方根是±1.15.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
2020届人教版八年级数学下册 16.1二次根式(2)同步练习(含解析)

16.1 二次根式(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点 1.二次根式的性质及应用 (1))2=a( a≥0 ),反过来可得到a =)2(a≥0).(2)=|a|= ,2.用基本的运算符号将数或表示数的字母连接起来的式子,叫做代数式 基础知识和能力拓展训练 一、选择题 1()23-的结果是()A.9B.3C.-3D.±3 238() 2436322316( ) A.8B.﹣8C.﹣4D.44.下列运算正确的是( )163-8﹣2(-2)﹣19+4=3+125.下列式子正确的是()2(9)9-=-255=±2(1)1-= D.2(2)2-=-6.化简(1-x 11x - ) 1x --1x -1x -1x -7.在数轴上实数a ,b 的位置如上图所示,化简|a+b|+2a-b ()的结果是( )A.﹣2a ﹣bB.﹣2a+bC.﹣2bD.﹣2a8.若5n +是整数,则正整数n 的最小值是( ) A.2B.3C.4D.59.实数32-的绝对值是( ) A.32- B.23- C.32+ D.1 10.若()424A a =+,则A =()A.24a + B.22a + C.()222a + D.()224a + 二、填空题 11.若a <1,化简()211a --=_________.12.已知xy <0,化简二次根式x 2yx -的正确结果为 . 13.能够说明“2x =x 不成立”的x 的值是__(写出一个即可). 14.当__________x 时,()21x -是二次根式.15.化简:a= .16.()22130,a b c a b c ++-+-=++=则_______________。
三、解答题 17.计算:18.阅读下面的文字后,回答问题.小军和小红在解答题目“先化简,再求值:a +,其中a =9”时给出了不同的解答,你知道小军和小红的解答谁的是错误的吗?错在哪里?19.已知实数在数轴上如图,化简()22a ab ac b c -++-+-的值20.(1)当15a =,求211a a a ⎛⎫+- ⎪⎝⎭的值.(2)当0<x<3时,化简()()223211x x x --+++.21.计算:= ,= ,= ,= ,= ,(1)根据计算结果,回答:一定等于a 吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:.22.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索: 设a +b=(m +n)2(其中a 、b 、m 、n 均为整数),则有a +b=m 2+2n 2+2mn.∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把部分a +b 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: (1)当a 、b 、m 、n 均为正整数时,若a +b =(m +n)2,用含m 、n 的式子分别表示a 、b ,得a =________,b =________; (2)试着把7+4化成一个完全平方式.(3)请化简:.23.选取二次三项式()20ax bx c a ++≠中的两项,配成完全平方式的过程叫配方.例如:①选取二次项和一次项配方:()224925x x x -+=-+;②选取二次项和常数项配方:()224932x x x x -+=-+,或()2249310x x x x -+=+-③选取一次项和常数项配方:2222549339x x x x ⎛⎫-+=-+ ⎪⎝⎭根据上述材料,解决下面问题:(1)写出2616x x ++的两种不同形式的配方;(2)已知2245-4-840x y xy y ++=,求参考答案 1.B3==,故选B .2.C=故选:C.点睛:此题主要考查了二次根式的化简,解题关键是明确最简二次根式的条件,被开方数中不含有开方开不尽的数,分母中不含有二次根号,根号中不含有分母. 3.D4=,故选D. 4.B【解析】试题解析:=4,故原选项错误;﹣2,故该选项正确;,故原选项错误;,故原选项错误. 故选B. 5.C【解析】9=,故A 选项错误;5=,故B 选项错误;1=,正确;D.2(2=,故D 选项错误,故选C. 6.B【解析】解:(1﹣x B . 点睛:此题主要考查了二次根式的性质与化简,正确得出二次根式整体的符号是解题关键.7.D【解析】如图所示:可得,a+b<0,a −b<0, 故原式=−(a+b)−(a −b)=−2a. 故选:D.点睛:此题考查了二次根式的性质与化简以及实数与数轴,正确得出各项符号是解题的关键. 8.Cn 为正整数,∴n ≥0,∴n+5≥5,5+n 为9,16等等,即n 的值为4,11等等,∴正整数n 的最小值是4,故选C .点睛:本题考查了二次根式的定义和性质,注意:n 是正整数可以得出n ≥0,n +5是一个完全平方数. 9.B【解析】2|2=选B. 10.A【解析】()224A a ==+24a ==+.故选A .11.-a【解析】∵a <1, ∴a -1<0,1=-(a -1)-1=-a +1-1=-a12.【解析】∵xy <0, ∴y <0,x >0,∴原式.. 13.-1x =,∴x x =不成立,则x ≤0.故答案不唯一,只要x ≤0即可,如:-1.故答案为:答案不唯一,只要x ≤0即可,如:-1. 14.为任意实数【解析】解:﹙1-x ﹚2是恒大于等于0的,不论x 的取值,都恒大于等于0,所以x 为任意实数.故答案为:为任意实数. 15.-a -【解析】试题解析:由题意可得:0.a <211.a a a a a ⎛⎫∴-=-⨯-=-- ⎪⎝⎭故答案为:.a -- 16.2【解析】试题分析:几个非负数的和为零,则每一个非负数都为零.根据题意可得:a+2=0,b-1=0,3-c=0,解得:a=-2,b=1,c=3,则a+b+c=-2+1+3=2.点睛:本题主要考查的就是非负数的性质的应用,几个非负数的和为零,则每一个非负数都是零.在初中阶段我们所学的运算结果为非负数有以下几种:①、平方;②、绝对值;③、算术平方根.非负数性质的应用我们也经常会运用在判定三角形形状的题目中,我们都会采用完全平方公式进行配方转化为非负数的和的形式,然后进行解答.17.(1)解:原式=4-3+3×-6=-4(2)解:原式=×5-×-4=118. 解:小军的解答错误. ∵a =9,1-a <0, ∴=a -119.2c-a.【解析】试题分析:由图可知:0b a c <<<,从而可得:000a b a c b c +<-<-<,,,然后根据“绝对值的意义”化简即可. 试题解析:∵从数轴可知:0b a c <<<,∴000a b a c b c +<-<-<,,, ∴()22a ab ac b c -++-+-=()()()a a b a c b c ⎡⎤⎡⎤⎡⎤---++--+--⎣⎦⎣⎦⎣⎦ =a a b c a c b -+++-+- =2c a -.点睛:解这类时,首先要从数轴上获取所涉及的数的大小和正、负信息;若绝对值符号里(或被开方数中)涉及到异号两数和的还要从数轴上获取两数绝对值的大小关系;然后根据所获取的信息确定好绝对值符号里各个式子的符号,再根据绝对值的代数意义去掉绝对值符号化简. 20.(1)495; (2)-2x+3.【解析】试题分析:(1)先根据二次根式的性质进行化简,然后再代入求值即可; (2)根据二次根式的性质得出|x-3|-|2x+1|+|x+1|,去掉绝对值符号,合并即可. 试题解析:(1)当15a =时,11454055a a -=-=>. 所以21111112a a a a a a a a a a a ⎛⎫+-=+-=+-=- ⎪⎝⎭.当15a =时,原式=1449109555-==. (2)当0<x<3时,x-3<0,2x+1>0,x+1>0,()()223211x x x --+++=|x-3|-|2x+1|+|x+1| =-(x-3)-(2x+1)+(x+1) =-2x+3.21.3;0.7;0;6;,(1)|a|(2)-3.14 【解析】原式各项计算得到结果;(1)不一定等于a ,=|a|;(2)原式利用得出规律计算即可得到结果.解:=3,=0.7,=0,=6,=,(1)=|a|;(2)原式=|3.14-π|=π-3.14.故答案为:3;0.7;0;6;.“点睛”此题考查了算术平方根,熟练掌握二次根式的性质是解本题的关键. 22.(1)m 2+3n 2;2mn ;(2)(2+)2;(3)3+【解析】试题分析:(1)利用已知直接去括号进而得出a ,b 的值; (2)直接利用完全平方公式,变形得出答案; (3)直接利用完全平方公式,变形化简即可. 试题解析: (1)∵a+b =(m+n)2,∴a+b=(m+n)2=m 2+3n 2+2mn ,∴a=m 2+3n 2,b=2mn ; 故答案为:m 2+3n 2;2mn ; (2)7+4=(2+)2;故答案为:(2+)2; (3)∵12+6=(3+)2,∴==3+.【点睛】此题主要考查了二次根式的性质与化简,正确利用完全平方公式化简是解题关键.23.(1)23)7x ++((22【解析】试题分析:(1)根据配方法的步骤根据二次项系数为1,常数项是一次项系数的一半的平方进行配方和二次项和常数项在一起进行配方即可.(2)根据配方法的步骤把2245-4-840x y xy y ++=变形为()222)410x y y -+-=(,再根据2x-y=0,y-1=0,求出x ,y 化简后代入求值即可. (1)答案不唯一.如23)7x ++(,24)2x x +-(,()2414x x -+,22374416x x ⎛⎫++ ⎪⎝⎭. (2)∵2245-4-840x y xy y ++=,∴()222)410x y y -+-=(.∴1,12x y ==.∴. 点睛:本题考查了配方法的应用,根据配方法的步骤和完全平方公式:a 2±2ab+b 2=(a±b)2进行配方是解题的关键,是一道基础题.。
二次根式的加减 分层作业(解析版)

人教版初中数学八年级下册16.3.1二次根式的加减同步练习夯实基础篇一、单选题:1)A BC D2.墨迹覆盖了等式-=)A.+B.-C.×D.÷3.下列二次根式合并过程正确的是()A=B .a =+C .=D .2-=4)A .1和2B .2和3C .3和4D .4和55.若两个最简二次根式)A .B .C .D .【答案】D【分析】先根据同类二次根式的定义求出m 的值,然后代入合并即可.6.已知3a =+3b =-,则22a b ab -的值为()A .1B .17C .D .-7x 的取值范围是()A .6x ≥B .6x ≤C .8x ≥D .8x ≤二、填空题:11.数轴上A、B两点所表示的数是-C是线段AB的中点,则点C所表示的数是_________.12.如图,要在长7.5dm、宽5dm的矩形木板上截两个面积为218dm的正方形,是否可行?8dm和2___________.(填“行”或“不行”)13.若最简二次根式3x-__.14.已知2a =2b =22a b -=________.【点睛】此题主要考查了平方差以及二次根式的计算,正确进行二次根式混合运算是解题关键.三、解答题:15.计算:16.计算:;(2-17.己知x =y =,求222x xy y -+-的值.【答案】8-【分析】先把所求代数式变形为()2x y --,再代值计算即可.【详解】解:222x xy y -+-()222x xy y =--+能力提升篇一、单选题:1.一个等腰三角形的两边长分别为3和)A.5+B.3+C.6+或3+D.3+10+2=n为整数),则m的值可以是()A.6B.12C.18D.24是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.如图,在长方形ABCD中无重叠放入面积分别为8和16的两张正方形纸片,则图中空白部分的面积为()A.8-B.12C.4-D.2二、填空题:4.三角形周长为()cm,cmcm,则第三边的长是__________cm.6.观察下列各式:11111122⎛⎫=+=+-⎪⨯⎝⎭111112323⎛⎫+=+-⎪⨯⎝⎭111113434⎛⎫+=+-⎪⨯⎝⎭…三、解答题:733b b ++=+,x 的整数部分,y 的小数部分.求23x y -的值.8.我们知道,2=3,(2233=3=4-,…如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式.如33互为有理化因式.利用这种方法,可以将分母中含有二次根式的代数式化为分母是有理数的代数式,这个过程称为分母有理化,_________________;_________________;_________________;(4)。
新版新课标人教版八年级数学下册16.3二次根式的加减教材习题解析

新版新课标人教版八年级数学下册《16.3二次根式的加减》教材习题解析XX版资料《16.3二次根式的加减》教材习题解析湖北省咸宁市温泉中学廖文涛P13练习 1.解析:本题考查二次根式的合并.答案:(1)不正确,;(2)不正确,(3)正确。
2.解析:本题考查二次根式的加减运算,注意运算前先把各因式化为最简二次根式.答案:(1)原式;(2)原式;(3)原式;(4)原式. 3.解析:本题考查二次根式在实际中的运用.答案:设大圆的半径为R,小圆的半径为r,则,得,,则. P14练习 1.解析:本题考查二次根式的加减乘除混合运算,注意运算顺序.答案:(1)原式;(2)原式;(3)原式;(4)原式. 2.解析:本题考查运用乘法公式在二次根式运算中的运用.答案:(1)原式;(2)原式;(3)原式;(4)原式. P15习题6.3 复习巩固 1.解析:本题考查二次根式的合并.答案:(1)不正确,已是最简结果.(2)不正确,不符合二次根式的加减法运算法则;(3)不正确,;(4)不正确,.. 2.解析:本题考查二次根式的加法运算,注意运算顺序是先将各因式化为最简二次根式再合并二次根式.答案:(1)原式;(2)原式;(3)原式;(4)原式. 3.解析:本题考查二次根式加减混合运算,注意运算顺序.答案:(1)原式;(2)原式;(3)原式;(4)原式. 4.解析:本题考查二次根式的加减乘除混合运算,注意运算顺序及乘法公式在二次根式运算中的运用.答案:(1)原式;(2))原式;(3)原式;(4)原式.综合运用 5.解析:本题考查求近似值的问题.答案:; 6.解析:本题考查求代数式的值,其中要利用整式的乘法公式,先将多项式进行因式分解,然后代入求值.答案:(1),.当时,原式.(2),当时,原式. 7.解析:本题考查二次根式在实际中的运用,本题要用“算两次”的方法,利用面积相等求边长.答案:过点C作CD⊥AB于点D,∵CB=CA,∴AD=DB,∠A=∠B.又∵∠C=900,∴∠A=450,∴∠ACD=∠A=450,∴CD=AD.∴CD=AB.∵S△ABC=CB·CA=CD·AB,,∴AB=(舍负值),∴AB=. 8.解析:本题考查运用乘法公式求代数式的值.答案:∴,∴,∴∴. 9.解析:本题是关于一元二次方程的解的问题,其中方程的解是用二次根式的形式表示的无理数,为后面学习一元二次方程作了一定的铺垫.答案:(1)是原方程的解;(2)是原方程的解.XX版资料《16.3二次根式的加减》教材习题解析湖北省咸宁市温泉中学廖文涛P13练习 1.解析:本题考查二次根式的合并.答案:(1)不正确,;(2)不正确,(3)正确。
初中数学同步训练必刷题(人教版八年级下册16

初中数学同步训练必刷题(人教版八年级下册16.1 二次根式)一、单选题(每题3分,共30分)1.(2022八下·顺平期末)下列各式是二次根式的是()3D.√x A.√−2B.−√2C.√2【答案】B【知识点】二次根式的定义【解析】【解答】A.√−2无意义,故A不符合题意;B.−√2是二次根式,故B符合题意;3不是二次根式,故C不符合题意;C.√2D.√x(x≥0)才是二次根式,故D不符合题意.故答案为:B.【分析】形如√a(a≥0)的式子叫做二次根式,据此判断即可.2.(2022八下·灌云期末)代数式√x+1在实数范围内有意义,则实数x的取值范围是()A.x>−1B.x<−1C.x≤−1D.x≥−1【答案】D【知识点】二次根式有意义的条件【解析】【解答】解:代数式√x+1在实数范围内有意义,则x+1≥0,解得:x≥-1.故答案为:D.【分析】根据二次根式有意义的条件列出不等式求解即可。
3.(2022八下·威县期末)若√1−n是二次根式,则n的值可以是()A.−1B.2C.3D.5【答案】A【知识点】二次根式有意义的条件【解析】【解答】解:∵√1−n是二次根式,∴1-n≥0,解得n≤1,符合条件的n 值只有-1, 故答案为:A .【分析】利用二次根式有意义的条件求出1-n≥0,再求解即可。
4.(2022八下·顺平期末)若√2取1.414,则与√50最接近的整数是( )A .6B .7C .8D .10【答案】B【知识点】估算无理数的大小;二次根式的性质与化简 【解析】【解答】因为√50=5√2≈5×1.414≈7.07,所以接近的整数是7, 故答案为:B .【分析】由于√50=5√2,将 √2≈1.414代入求值即可判断.5.(2022八下·铁东期末)已知n 是正整数,√3n 是整数,则n 的最小值是( )A .0B .1C .3D .-3【答案】C【知识点】非负数的性质:算术平方根【解析】【解答】解: ∵n 是正整数,√3n 是整数,∴符合n 的最小值是3. 故答案为:C .【分析】根据二次根式的性质满足开平方即可解得.6.(2022八下·范县期末)√5−m√m+1=√5−m m+1成立的条件是( )A .m≥﹣1B .m≤﹣5C .﹣1<m≤5D .﹣1≤m≤5【答案】C【知识点】二次根式有意义的条件【解析】【解答】解:根据题意,得:5﹣m≥0,m+1>0,∴﹣1<m≤5, 故答案为:C .【分析】先求出5﹣m≥0,m+1>0,再求解即可。
人教版八年级数学下册 第16章 二次根式 单元测试试题解析版

单元测试题章二次根式人教版八年级数学下册第16小题)一.选择题(共10) 1.矩形的面积为18,一边长为,则另一边长为(24.. CAD. B.) 2、.在根式、中,可以与、进行合并的有(、个.43个 D个 B.2个 C.A.1).计算﹣的结果是(35DC..A.25 B. 2).二次根式的值等于( 44D.C.2BA.﹣2 .±2x)的取值范围是(5 .若二次根式在实数范围内有意义,则xxxx2D..≥ A.C≥≤ B.≤2a)的值为(.若<0 ,则6aa32﹣﹣2 D.A.3 B.﹣3 C.3) 7,.下列各式中,,,,,中,最简二次根式有(个.5 3个C.4个 D.A2个B.baab﹣,则、8.若),=两数的关系是(=1.互为负倒数.互为倒数 C.相等 D.互为相反数A Bn,则最后输出的结果是(值为)9.按如图所示的程序计算,若开始输入的.8+5 D16 C..14+.A14 Bxxx)=( 10.已知(﹣1()= +1),则D .5+. 5B5A.﹣.﹣2C5+2 小题)8二.填空题(共x.有意义,则.如果二次根式11.ba,则这个矩形的面积是12.已知矩形的长,宽==.=.计算:13×.﹣4×14.分母有理化:=.=15.化简:.xy=.是同类二次根式,则 +16.已知最简二次根式和n的最小值为.17.若是正整数,则整数22mnmnnm=.已知18,则代数式1+ + .+3 的值为,﹣=1三.解答题(共7小题)19.计算:(1)2)(yyxy的值.+3,都是实数,且+1=,求20.若acbabC在数轴上的位置如图所示,化简:、|﹣、21﹣|.实数+﹣|+﹣1|.aab.+为整数,求是同类二次根式,与根式22.求最简根式.阅读材料:23Scpba==,记如果一个三角形的三边长分别为,,那么这个三角形的面积,.这个公式叫“海伦公式”,它是利用三角形三条边的边长直接求三角形面积的公式.中国的秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦秦﹣﹣﹣九韶公式”完成下列问题:ABCabc=6.5=,如图,在△中,7=,ABC的面积; 1()求△ABhAChhh +,2()设边上的高为边上的高为,求的值.2121.年后,一种植物苔藓就开始在1224.全球气候变暖导致一些冰川融化并消失,在冰川消失岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的年限,近似地满ddt代表苔藓的直径,单位为厘米,它代表=),其中7(12≥足如下的关系式:冰川消失的时间,单位为年. 16年后苔藓的直径;(1)计算冰川消失 14厘米,问冰川约在多少年前消失的?(2)如果测得一些苔藓的直径是.先阅读下列解答过程,然后再解答:25nbabamab,使得形如的化,,,使=简,只要我们找到两个正数+=m那么便有:,=,ba>()例如:化简nm,即:×3=12化为474+3127,这里=,=,由于=,解:首先把,=7,所以.问题:①填空:==,;(请写出计算过程)②化简:参考答案与试题解析一.选择题(共10小题)根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可. 1.【分析】,一边长为【解答】解:∵矩形的面积为 18,3,∴另一边长为=C.故选:【点评】本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键..【分析】对各个二次根式化简,找出与是同类二次根式的项即可. 2,,【解答】解:,个.2共、进行合并的有中,可以与、、、、∴在根式B.故选:【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式..【分析】首先化简二次根式,然后再合并同类二次根式即可.3,=2﹣【解答】解:3=﹣C.故选:【点评】此题主要考查了二次根式的加减,关键是正确把二次根式进行化简. 4.【分析】直接利用二次根式的性质化简求出答案..=﹣【解答】解:原式=|2|2C故选:.正确掌握二次根式的性质是解题关键.【点评】此题主要考查了二次根式的性质与化简,.【分析】直接利用二次根式有意义的条件分析得出答案.5【解答】解:∵二次根式在实数范围内有意义,x,04﹣2∴≥x解得:≤.A故选:.正确把握二次根式的定义是解题关键.此题主要考查了二次根式有意义的条件,【点评】.aa|,然后去绝对)﹣【分析】利用二次根式的性质和绝对值的意义得到原式=﹣(|﹣3.6值后合并即可.a<0,【解答】解:∵aa| )﹣∴原式=﹣(|﹣3aa +3+=﹣=3.A.故选:【点评】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质进行二次根式的化简与计算.7.【分析】最简二次根式是指被开方数不含分母、不含还能再开方的数的二次根式,据此逐个式子分析即可.a的次数大于2中【解答】解:,不是最简二次根式;没法化简了,属于最简二次根式;是最简二次根式;根号下含义分母,不是最简二次根式;2×3,还能化简,不是最简二次根式;其中的12=2中含有分母,不是最简二次根式.综上,是最简二次根式的有2个.A.故选:【点评】本题考查了最简二次根式的识别,明确最简二次根式的定义,是解题的关键.本题属于基础知识的考查,比较简单.a分母有理化化简后,判断即可..【分析】把 8ba,﹣1=,【解答】解:化简得:1﹣===ba则互为相反数,与A.故选:【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键. 9.【分析】根据给出的运算程序计算即可.nnn,15<2+)=+1(时,=【解答】解:当.nnn8+5>15,+1当)==时,2+ (C故选:.【点评】本题考查的是二次根式的混合运算,掌握二次根式的混合运算法则是解题的关键.10.【分析】根据一元一次方程的解法即可求出答案.xx+1),1 )=【解答】解:∵((﹣xx+,∴=﹣xx=+,∴﹣x5+2==∴,C.故选:【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.二.填空题(共8小题)11.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:∵二次根式有意义,x,﹣2≥∴0x,≥2解得, 2故答案为:≥.【点评】本题考查的是二次根式应用的条件,掌握二次根式被开方数是非负数是解题的关键. 12.【分析】根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.ab【解答】解:矩形的面积==×3×××=44,=故答案为:4.【点评】本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.然后把二次根式化为最简二次根式后合并即.13先利用二次根式的乘法法则运算,【分析】可.×4 【解答】解:原式=﹣=﹣2=.故答案为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.【分析】根据分母有理化法则计算.=﹣1,【解答】解:=.﹣1故答案为:【点评】本题考查的是分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.15.【分析】根据二次根式的性质即可求出答案.3a≥0,【解答】解:∵﹣a≤0,∴aa, |=﹣∴原式=|a故答案为:﹣【点评】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.【分析】根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行解答即可.和是同类二次根式,【解答】解:∵最简二次根式∴,xy=4,,解得:4=xy=4+4=+8,∴故答案为:8.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.n的值. 17.【分析】先化简二次根式,然后依据化简结果为整数可确定出n是整数,【解答】解:∵是正整数,n的最小值是3.∴故答案是:3.【点评】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键. 18.【分析】直接将原式变形进而把已知代入求出答案.nm【解答】解:∵==1+1,﹣,22mnnm +∴+32mnnm)=(++2))(1﹣)﹣+(1+=(1++1=4+1﹣3=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,正确将原式变形是解题关键.三.解答题(共7小题)19.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.)原式= 1【解答】解:(=;)原式=2(18+6+1+3﹣2 =.20+6=【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.x=4,然20,解不等式组可得.【分析】首先根据二次根式有意义的条件可得:yyy的值.+3的值,进而可得可得+1=后再代入.【解答】解:由题意得:,x 4解得:,=y 1则,=y 5.=2+3=+3【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.cabcba|||,再根据二次根式的性质和绝对值0<<|,|>21.【分析】根据数轴得出|<>的意义进行计算,最后合并同类项即可.cabcba|, |>,|||【解答】解:从数轴可知:><|<0<bac﹣﹣1|所以﹣||++﹣|baaccbb+1)()﹣(+)﹣(=﹣﹣+baaccbb﹣+++1 =﹣﹣﹣b﹣1=.【点评】本题考查了数轴,二次根式的性质和绝对值,能正确根据二次根式的性质和绝对值进行计算是解此题的关键.abbab﹣232|知|,由3,﹣==22=.【分析】化简二次根式aaa为整数知8是最简二次根式,且根据≤求得,结合≤aaaa=7,进一步检验可得答案.5或3或4=或 1=或==b|,=| 【解答】解:化简得:ba,=2∵3﹣ab﹣2∴=3,,即∵,a 8≤解得≤,a∵为整数,是最简二次根式,且aaaaa=7, 4或=5或∴=1或=3或=abab=2+;当时,=1,此时=1ba,不是同类二次根式,舍个根式为2,第个根式为1,此时第7=时,3=当.去;ba个根式为,第2个根式化简后是12,舍去;=4时,=10,此时第当ba个根式是个根式为,舍去;2,此时第1当=5时,,第=13ba,第当=7时,2=19,此时第1个根式化简后是个根式为1,舍去;ba.综上的值为+2 【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.cbppa,,的值代入题中所列面积公式计算即可;123.【分析】()根据题意先求,,再将hh和)按照三角形的面积等于×底×高分别计算出的值,再求和即可.(221p9)根据题意知==【解答】解.(1S==6=所以ABC∴△;的面积为6bhchS6==)∵(2=21hh6==×5∴×6 21hh 2,∴==21hh=+∴.21【点评】本题考查了二次根式在三角形面积计算中的应用,读懂题中所列的海伦公式并正确运用,是解题的关键.td的值,直接把对应数值代入关系时,=1624.【分析】(1)根据题意可知分别是求当式即可求解;dt的值,直接把对应数值代入关系式即可求解. 14(2)根据题意可知是求当时,=cmdt; 2=1416时,==77××【解答】解:(1)当=ttd=1416时,年.412=,解得=2,即﹣)当(2=cm,冰川约是在1614年前消失的. 16答:冰川消失年后苔藓的直径为【点评】本题主要考查了平方根、算术平方根概念的运用.会根据题意把数值准确的代入对应的关系式中是解题的关键.25.【分析】①②仿照例题、根据完全平方公式、二次根式的性质解答即可.,+1===【解答】解:①.=+2=,=+2故答案为: +1;;=﹣2②=.=【点评】本题考查的是二次根式的化简,掌握完全平方公式、二次根式的性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学二次根式
一,选择
1、如果a是非零实数,则下列各式中一定有意义的是()
A、a
B、a-
2C、2a-D、21
a 2. 下面的计算中,正确的是()
A
=0.1; B.=-0.03; C±
13; D
π-4
3. 等式)6
x
x成立的条件是()
•x
x
(
-
6-
=
A.x≥0 B.x≥6 C.0≤x≤6 D.x 为一切实数
二填空
4、若x3+3x2 =-x x+3 ,则x的取值范围是。
5. 当
__________
6. 若1
有意义,则m的取值范围
1
是。
7 ()2
240
-+-=,则=
a c
a
b
+
-c
8 .
2440
-+=,xy的值是
y y
9、化简2)2
1(-的结果是
10、已知
a等于
11、当-1<a<1时,化简2
2)1
+a
a得
+
)1
(
(-
12、
(1)
,则x 的取值范围是 。
(2)
, 则x 的取值范围
是 。
(3)
设a,b,c 为△ABC 的三边
,化简
=
(4)
则a 的取值范围是 13.数a 在数轴上的位置如图所示,化简:
-│1-a │
=_______.
14.比较大小6.(填“>”,“=”,“<”号)
三.计算 (1; (2)
)521
(154-
⨯-
(3)a a 82⋅ (4)
23241
62xy xy ⋅
(x ≥0,y ≥0)
(5)
)
2
四.在实数范围内因式分解.
(1) (2)(3)
2x =-1=-2=22
x -2
3x -+59x x -
二、二次根式的乘法 1.等式
)6(6-=-•x x x x 成立的条件是( )
A .x ≥0
B .x ≥6
C .0≤x ≤6
D .x 为一切实数 2. 计算:
__________
3.计算:=⋅b a 10253
______.
4. 当
0a ≤,b <0__________=。
5、若x 3
+3x 2
=-x x+3 ,则x 的取值范围是 。
6.计算(1)821
⨯
(2)
)521
(154-
⨯-
(3)
12
(4)
2000
(5)2
22853- (6)
44176⨯;
(7)2
3
483
4
15⨯
;
(8)16
2436a a ⨯
(9)a a 82⋅
(10)
2324
1
62xy xy ⋅
(x ≥0,y ≥0)
7.计算:(1)
+(-3)2
(2)
+1)
(3)
(4)(-
1
2
+
2
)
2
三、二次根式的除法
1.下列二次根式中,最简二次根式是( ) A. 12
B. 8
C. y 3
D. a 21+
2、下列二次根式中,属于最简二次根式的是( )
A. 4a
B. a 4
C.
a 4
D. a 4
3、下列根式中,最简二次根式是( )
A.
23
a
B.
a a
3
C. a b
b a
D.
a a
b 423+
4.计算: (1)
(2)
(3)
÷(8)1575÷;
(9)4
12214
÷
5.计算:(1)
14
112 (2)
19
95 (3)
81
25 (4)
16
13 (5)4
3
(6)
)都大于、、(02
5
c b a c
ab (7)5
1 (8)6
18 (9)
x
1
(10)
a
b 23 (11)
72
7 (12)
a
1 (13)
)0,0(313
>>b a ab
(9)(
4
3
5
-
12
)÷
3
(10)
-
6.计算:
01)
7.已知5
2152+=
-=b a , 求:代数式ab a -2的值。
四、二次根式的加减法 1、当a>0,b<0时,化简b
b a a 2422+++= 2
、估计
)
A .1到2之间
B .2到3之间
C .3到4之间
D .4到5之间 3、计算
=
(3)
32583-
4、下列运算错误的是( )
A. =
B.
=
C.=
D.2(2=
5、计算: (1)3
1
5.01812+
-- (2
)0(π2009)|2|-+
(3
)
(4))(5
4
45452021515---
6、计算: (1
)⎛
÷ ⎝
(2
)
(2+
(3)
)()(33243•+ (4
)22(4(4+--
(5)
2
323⎪
⎪⎭⎫
⎝
⎛- (6)
3
3
2(+
-
+
-
2
6
2
6
3
3
)(
2
)
7、观察下列运算,完成下列各题的解答:
(1)判断下列各式是否正确
=()=()
=()=
()
(2)根据上述判定结果你能发现什么规律?请你用含有自然数n的式子将你发现的规律写出来,并注明n的取值
范围。