压阻式传感器

合集下载

mems压阻式传感器工作原理

mems压阻式传感器工作原理

mems压阻式传感器工作原理
Mems压阻式传感器是一种基于微机电系统(Microelectromechanical Systems, MEMS)技术制造的压力传感器,通过测量薄膜电阻的变化来检测压力的变化。

工作原理如下:
1. 薄膜制备:在压阻式传感器的芯片上制备一层薄膜,通常使用硅材料制成。

2. 压力感应:当外部施加压力到传感器上时,薄膜会发生变形,变形程度与压力的大小成正比。

3. 电阻变化:薄膜上有一系列的电阻,这些电阻会随着薄膜的变形而发生改变。

通常,薄膜上的电阻布局为一系列细长电阻条,形成一个电桥电路。

4. 电桥电路:电桥电路是由两个电阻共享电流的分压电路。

薄膜上的电阻条为电桥电路提供输入电阻。

当薄膜发生变形时,电桥的电阻比例会发生变化,从而改变了电桥的电压输出。

5. 信号处理:电桥的电压输出信号经过相关的放大和滤波电路进行处理,并转换成数字信号。

6. 压力测量:通过测量电桥输出信号的变化,可以判断外部压力的大小和变化。

Mems压阻式传感器因其小型化、高精度和低功耗等特点,在压力、重力、加速度等方面的测量中得到广泛应用。

压阻式压力传感器原理

压阻式压力传感器原理

压阻式压力传感器原理压阻式压力传感器是一种常用的压力测量装置,它利用了压阻效应来实现对压力的测量。

在压阻式压力传感器中,压阻器是起到关键作用的元件,通过对压阻器的变化进行测量,可以得到被测压力的大小。

下面将详细介绍压阻式压力传感器的原理及其工作方式。

首先,我们来了解一下压阻效应。

压阻效应是指在材料受到外力作用时,电阻值发生变化的现象。

在压阻式压力传感器中,通常采用的是压阻薄膜或压阻薄片作为压阻器。

当外界施加压力在压阻器上时,压阻器的电阻值会发生相应的变化。

这种变化可以通过电路进行测量和转换,从而得到压力的大小。

其次,压阻式压力传感器的工作原理是利用了压阻效应的特性。

当压力作用在传感器的敏感元件上时,敏感元件的电阻值会随之改变。

这种电阻值的变化可以通过电路进行检测和测量,从而得到压力的大小。

在实际应用中,通常会将压阻式压力传感器与电桥电路相结合,通过测量电桥的平衡状态来获取压力的数值。

另外,压阻式压力传感器的工作方式可以分为直接式和间接式两种。

直接式压力传感器是指被测压力直接作用在敏感元件上,而间接式压力传感器则是通过液体或气体传递压力到敏感元件上。

不同的工作方式对应着不同的应用场景,用户可以根据实际需求选择合适的工作方式的传感器。

总的来说,压阻式压力传感器利用了压阻效应来实现对压力的测量,其工作原理是通过测量敏感元件电阻值的变化来获取压力数值。

在实际应用中,压阻式压力传感器广泛应用于工业自动化、汽车电子、医疗设备等领域,为各种设备和系统提供了重要的压力测量支持。

通过对压阻式压力传感器的原理及工作方式的深入了解,可以更好地应用和维护这种传感器,为各种应用场景提供准确可靠的压力测量数据。

压力传感器的分类与原理介绍

压力传感器的分类与原理介绍

压力传感器的分类与原理介绍压力传感器是一种测量物体受力并将其转化为电信号的设备。

它被广泛应用于工业、汽车、航空航天等领域中,用于测量压力变化并实时反馈给控制系统。

压力传感器根据其工作原理和结构特点可以分为多种类型,下面将对几种常见的压力传感器进行分类与原理介绍。

1. 压阻式传感器压阻式传感器是一种基于电阻变化原理的压力传感器。

它通常由两个平行的金属片组成,两片金属片之间有一层敏感膜,当外力作用于敏感膜时,金属片的电阻值会发生变化。

这种变化可以通过电路进行检测和测量。

压阻式传感器的优点是结构简单、价格低廉,但是其精度较低,易受温度和湿度的影响。

2. 容积式传感器容积式传感器是一种基于压力变化引起的容积变化原理的压力传感器。

它通常由一个弹性元件和一个容器组成。

当压力作用于容器时,容器内的气体容积会发生变化,从而引起弹性元件的形变。

这种形变可以通过传感器内的压力变化转化为电信号进行测量。

容积式传感器的优点是精度较高、抗干扰能力强,但是其结构复杂,成本较高。

3. 电容式传感器电容式传感器是一种基于电容变化原理的压力传感器。

它通常由两个电极和一个电介质组成,当压力作用于电介质时,电容的值会发生变化。

这种变化可以通过电路进行检测和测量。

电容式传感器的优点是精度高、响应速度快,但是其受温度和湿度的影响较大,且易受外界电场干扰。

4. 压电式传感器压电式传感器是一种基于压电效应原理的压力传感器。

它通常由压电材料和电极组成,当外力作用于压电材料时,压电材料会产生电荷,从而生成电压信号。

这种电压信号可以通过电路进行检测和测量。

压电式传感器的优点是响应速度快、精度高、抗干扰能力强,但是其价格较高,使用时需要注意防止过载和过压。

5. 磁敏式传感器磁敏式传感器是一种基于磁阻效应原理的压力传感器。

它通常由一个磁敏材料和一个磁场组成,当压力作用于磁敏材料时,磁敏材料的磁阻值会发生变化。

这种变化可以通过电路进行检测和测量。

磁敏式传感器的优点是精度高、稳定性好,但是其价格较高,且易受外界磁场干扰。

压阻式压力传感器

压阻式压力传感器

压阻式压力传感器1. 引言压阻式压力传感器是一种用于测量压力的传感器。

该传感器的工作原理是通过应变电阻的变化来检测受力物体的压力。

它广泛应用于工业控制、汽车制造等许多领域。

本文将介绍压阻式压力传感器的工作原理、特点以及应用。

2. 工作原理压阻式压力传感器的工作原理基于应变电阻效应。

当传感器受到压力作用时,传感器内的金属薄片或薄膜会发生形变,导致金属材料的电阻值发生变化。

通过测量电阻值的变化,我们可以得知受力物体的压力大小。

通常,压阻式压力传感器由两个电极之间夹着一层薄膜或薄片构成。

当压力作用在传感器上时,薄膜或薄片会发生拉伸或压缩,从而改变电流的通道,使电阻值发生变化。

这种变化可以被测量电路检测到并转换为相应的电压或电流信号。

3. 特点压阻式压力传感器具有以下特点:•灵敏度高:由于应变电阻效应是线性的,压阻式压力传感器在测量范围内具有较高的灵敏度。

•稳定性好:传感器内部的金属材料通常经过特殊处理,以增加其稳定性和可靠性。

•宽测量范围:压阻式压力传感器可以适应广泛的测量范围,从几千帕到几百兆帕不等。

•耐用性强:传感器通常采用金属或陶瓷材料制成,具有较好的耐用性。

4. 应用压阻式压力传感器在许多领域有广泛的应用,包括但不限于以下几个方面:4.1 工业控制压阻式压力传感器可用于测量流体压力,如液体或气体。

在工业控制中,压力传感器常被用于监测管道或容器中的压力变化,以确保系统正常运行。

4.2 汽车制造压阻式压力传感器在汽车制造中起着重要作用。

它们可用于测量发动机燃油压力、轮胎气压等数据,以确保汽车的安全性和性能。

4.3 医疗设备压阻式压力传感器在医疗设备中也有应用。

例如,它们可用于测量患者的血压、呼吸气道压力等数据,以协助医生进行诊断和治疗。

4.4 环境监测压阻式压力传感器可用于环境监测,如大气压力、海洋水深等数据的测量。

这些数据对于气象研究、海洋科学等领域非常重要。

5. 总结压阻式压力传感器是一种用于测量压力的重要传感器。

第 十五 章 压阻式传感器

第 十五 章  压阻式传感器

3
<011> <001> <011>
<010>
<010>
2
<011>
<001>
<011>
三、影响压阻系数大小的因素
1、压阻系数与杂质浓度的关系 、
P型Si(π44) 型 (
π11

π44
N型Si(π11) 型 ( 表面杂质浓度N 表面杂质浓度 s(1/cm3)
•扩散杂质浓度增加,压阻系数都要减小 扩散杂质浓度增加, 扩散杂质浓度增加
分析
• • • • • • 正向压阻系数相等 横向压阻系数相等 剪切压阻系数相等 切应力不可能产生正向压阻效应 正向应力不可能产生剪切压阻效应 剪切应力只能在剪切应力平面内产生压 阻效应
压阻系数矩阵
0 0 π 11 π 12 π 12 0 π π 11 π 12 0 0 0 21 π 12 π 12 π 11 0 0 0 0 0 π 44 0 0 0 0 0 0 0 π 44 0 0 0 0 0 π 44 0
– π44 ≈0 , π12 ≈ -1/2π 11、 , 、
关于方向余弦
某晶向<x,y,z>的方向余弦为: 的方向余弦为: 某晶向 的方向余弦为
l= m= n= x x +y +z
2 2 2
= cos α = cos β = cos γ
y x +y +z
2 2 2
z x2 + y2 + z2
例1:计算(100)晶面内〈011〉 :计算( )晶面内〈 〉 晶向的纵向与横向压阻系数

总结压阻式压力传感器的一般检测方法

总结压阻式压力传感器的一般检测方法

总结压阻式压力传感器的一般检测方法压阻式压力传感器是一种常用的测量压力的传感器,其原理是基于材料的压阻效应。

为了确保传感器的准确性和稳定性,需要进行一般的检测方法。

以下是总结的一般检测方法:1. 外观检查:首先,对压力传感器进行外观检查,包括检查传感器外壳是否完整、有无损坏,是否有明显的划痕或变形等。

确保传感器外观正常可靠。

2. 线路连接检查:检查传感器的电气连接,包括检查传感器与接收器之间的线路连接是否正确牢固,检查所有电连接器是否无松动或断裂。

确保传感器与电路之间的连接良好。

3. 零点检测:通过此检测方法,测量压力传感器在无压力状态下的输出信号。

将传感器暴露在零压条件下,记录输出信号。

正常情况下,压力传感器在无力作用时应输出稳定的零信号。

4. 线性度检测:线性度是指压力传感器输出与输入压力之间的直线关系。

可通过在一定范围内施加等间隔的压力,记录传感器的输出信号。

然后,根据斜率和截距计算其线性关系。

理想情况下,传感器应该有良好的线性关系。

5. 灵敏度检测:灵敏度是指压力传感器输出信号与输入压力变化之间的关系。

可以通过在不同压力范围内改变输入压力,并记录传感器的输出信号,计算出输出信号相对于输入信号的变化量。

传感器的灵敏度应保持稳定并与规格相符。

6. 温度特性检测:压力传感器的温度特性直接影响其测量的准确性。

进行温度特性检测时,将传感器暴露在不同的温度环境下,并记录传感器的输出信号。

比较传感器在不同温度下的输出,确保传感器对温度的响应在规格范围内。

总之,以上是总结的压阻式压力传感器的一般检测方法,通过这些方法可以确保传感器的质量和性能符合要求,提供可靠准确的压力测量结果。

压阻压力传感器的主要特点

压阻压力传感器的主要特点

压阻压力传感器的主要特点
压阻式压力传感器是一种常见的传感器类型之一,其基本原理是通过检测压力
对薄膜或陶瓷材料的变形程度而测量所感知的压力大小。

压阻压力传感器具有以下几个主要特点:
高精度
压阻压力传感器通常具有高精度的特点,它们可以测量非常微小的压力变化,
例如,小于1kPa的压力变化。

范围广
压阻压力传感器可以应用于各种应用场景,例如,军事、医疗、工业、航空、
汽车等领域。

反应迅速
压阻压力传感器具有非常快速的响应速度,可以对瞬态压力进行准确和及时的
检测。

易于安装
压阻压力传感器的机械结构通常相对简单,安装和维护比其他类型的压力传感
器更加容易。

成本低廉
相对于其他类型的压力传感器,压阻压力传感器通常具有较低的成本,这使得
其在大规模应用中越发具有优势。

耐用性好
压阻压力传感器通常具有较好的耐用性,能够在恶劣的环境条件下长期稳定地
工作。

总之,压阻压力传感器是一种非常实用的压力传感器类型,具有高精度、范围广、反应迅速、易于安装、成本低廉、耐用性好等多种优点。

随着科技的不断进步,它们在工业、军事、医疗、航空、汽车等领域的应用将会越来越广泛,成为现代化工业的不可或缺的重要组成部分。

压阻式压力传感器的工作原理

压阻式压力传感器的工作原理

压阻式压力传感器的工作原理
压阻式压力传感器是一种常见的传感器,它能够将机械压力转换
成电信号,并输出到载波、微处理器等电子设备中。

压阻式压力传感器的工作原理是:通过机械受力,将受力区域内
的电阻片加以拉伸或压缩,使电阻片的电阻发生变化,电阻的变化大
小与机械压力的大小成正比。

这个原理又被称为压阻效应。

压阻式压力传感器可以分为:薄膜式压力传感器、箔片式压力传
感器和微应变片式压力传感器。

薄膜式压力传感器是将压力感受器下面的薄膜受力区域做成一个
电阻器,当薄膜受到压力时,在电极之间会产生电压信号,这个电压
信号随着压力变化而变化。

这样的传感器结构简单,易于制造。

箔片式压力传感器是将薄膜变成箔式,其受力特性更好,更灵敏,输出稳定。

微应变片式压力传感器也是一种常见的压力传感器,与薄膜式压
力传感器类似,同样将感受器下面的微应变片或桥式微应变传感器成
一个电阻器,当感受器下面的微应变片受到压力时,所产生的应变同样会造成其电阻值的变化,进而产生电压信号,从而实现输出压力信号的目的。

除了压阻式压力传感器以外,流式传感器,如流量传感器、液位传感器,温度传感器,光电传感器等等都是常见的传感器,而他们的工作原理都各有不同。

在生产和实际使用中,根据场合和需要选择适合的传感器,可以更好地胜任各类测量需求。

压阻式传感器

压阻式传感器
所以,压阻传感器使用时必须进行温度补偿。
(4)压阻式传感器的应用
压阻式传感器主要用于测量压力和加速度,应用最多的是压阻式压力 传感器,广泛应用于流体压力、差压、液位测量,特别是它可以微型化, 已有直径为0.8mm的压力传感器。
➢ 恒流工作测压电路
传感器为需恒流1.5mA驱 动的扩散硅绝对压力传感器。
当膜片两边存在压力差时,膜片发生变形,产生应变,从而使扩散电阻的 电阻值发生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片 所受压力差值。
(a)为扩散型硅压阻式传感器的结构 (b)硅膜片尺寸 (c)应变电阻条排列方式。
(3)压阻式传感器的温度漂移
由于半导体材料对温度的敏感性,压阻式传感器受到温度变化 影响后,将产生零点漂移和灵敏度漂移。
半导体压阻效应可解释为:由应变引起能带变形,从而使能带中的载 流子迁移率及浓度也相应地发生相对变化,因此导致电阻率变化。
❖ 半导体应变片的制作方法
1. 将半导体材料按所需晶向切割成片或条,
粘贴在弹性元件上,制成单根状敏感栅
使用,称作“体型半导体应变片”。
2. 将P型杂质扩散到N型硅片上,形成极薄 的导电P型层,焊上引线即成应变片称作 “扩散硅应变片”。
(1)半导体的压阻系数 (2)压阻式传感器的组成和工作原理 (3)压阻式传感器的温度漂移 (4)压阻式传感器的应用
(1)半导体材料的压阻系数
材料电阻的变化为
R 1 2
R
对半导体材料, 1 2 ,几何尺寸变化(机械变形)引起的电阻变化
可忽略,电阻阻值的变化主要是因电阻率变化引起的,即 R
❖ 半导体电阻应变片的测量电路
一般采用直流电桥电路,但须 采用温度补偿措施,如图所示。

压阻式压力传感器工作原理

压阻式压力传感器工作原理

压阻式压力传感器工作原理
压阻式压力传感器是一种常见的压力传感器,它可以将外界施
加在其上的压力转化为电信号输出,被广泛应用于工业自动化、汽
车电子、医疗器械等领域。

那么,压阻式压力传感器是如何工作的呢?接下来,我们将详细介绍其工作原理。

首先,压阻式压力传感器的核心部件是由敏感材料制成的压阻
薄膜。

当外界施加压力时,压阻薄膜会发生形变,从而改变其电阻值。

这种电阻值的变化与外界压力成正比,因此可以通过测量电阻
值的变化来间接测量外界压力的大小。

其次,压阻式压力传感器通常采用电桥电路来测量压阻薄膜的
电阻值变化。

电桥电路由四个电阻组成,当压阻薄膜的电阻值发生
变化时,会导致电桥电路中的电压变化。

通过测量这种电压变化,
就可以得到外界施加在压阻薄膜上的压力大小。

此外,为了提高测量精度,压阻式压力传感器通常还会配备温
度补偿电路。

由于压阻薄膜的电阻值受温度影响较大,为了消除温
度对测量结果的影响,温度补偿电路会实时监测传感器的工作温度,并根据温度变化来调整电路参数,以保证测量结果的准确性。

最后,压阻式压力传感器的输出信号通常为模拟信号,需要经过模数转换电路转换为数字信号,然后再通过数据处理单元进行处理,最终得到压力的数字化结果。

这样的数字化结果可以直接用于控制系统的反馈控制、数据采集和显示等应用。

总结一下,压阻式压力传感器的工作原理主要包括压阻薄膜的电阻值变化、电桥电路的测量、温度补偿和信号处理等环节。

通过这些环节的协同作用,压阻式压力传感器可以准确、稳定地将外界压力转化为电信号输出,为各种应用提供了可靠的压力测量手段。

第8章 压阻式传感器

第8章 压阻式传感器

三、影响压阻系数大小的因素
1、压阻系数与表面杂质浓度的关系
P型Si(π44)
π11

π44
N型Si(π11)
表面杂质浓度Ns(1/cm3)
•扩散杂质浓度增加,压阻系数减小
17
18
解释:


1
ne
•ρ:电阻率 • n:载流子浓度 •e:载流子所带电荷 •μ:载流子迁移率
•Ns↑→杂质原子数多→载流子多→ n↑→ρ↓
•晶向、晶面、晶 面族分别为:
1,1,1
1,1,1 1,1,1
2, 2,1
2, 2,1 2, 2,1
11
例: (特殊情况)
z
0,0,1
1,0,0
0,1,0
y
x
对半导体材料而言,πl E >>(1+μ),故(1+μ)项可以忽略
R R
l
E
l
半导体材料的电阻值变化,主要是由电阻率变化引起的, 而电阻率ρ的变化是由应变引起的
由于微电子技术的进步,四个应变 电阻的一致性可做的很高,加之计 算机自动补偿技术的进步,目前硅 压阻传感器的零位与灵敏度温度系 数已可达10-5/℃数量级,即在压力传 感器领域已超过的应变式传感器的 水平。
压阻效应
R (1 2)
R

金属材料 半导体材料
半导体电阻率


第八章 压阻式传感器
• 1 半导体的压阻效应 • 2 压阻式压力传感器原理和电路
• (1) 体型半导体应变片 • (2) 扩散型压阻式压力传感器 • (3) 测量桥路及温度补偿 • 3 压阻式传感器的应用
返回
下一页
1 半导体的压阻效应

压阻式传感器

压阻式传感器

称为半导体的压阻效应。前面已有结论:
R 2 E (1 2) E
R 半导体材料则有:(1+2μ)<<πE,即:
R E
R
(2.71)
不同类型的半导体,具有不同的压阻系数;载荷施加的 方向不同,压阻效应大小也不相同。为描述不同方向的压 阻效应,需要了解半导体材料的晶向概念。
单晶硅是目前使用最多的。其晶向如图2.17所示。
1.2 扩散型压阻式传感器
将P型杂质扩散到N型硅底层上,形成一层极薄的导电 P型层,装上引线接点后,即形成扩散型半导体应变片。 以此为敏感元件制成的传感器称为扩散型压阻式传感器。
1. 工作原理 半导体材料一般是各向异性材料,压阻系数与晶向有
关。当受到任意方向的应力后,扩散型电阻相对变化为:
R R
l l
P型单晶硅,应力沿[111]晶
z [001]
轴,可得最大压阻效应;
N型单晶硅,应力沿[100]方
[111]
向时,可得最大压阻效应。制作
o
应变片时,沿所需的晶轴从硅锭
[010]
y
上切出一小条,作为应变片的电 x [100]
[100]阻材料(敏感来自)。图 2.17 半导体的晶向
2. 结构和主要特性 半导体应变式结构形式也是由敏感栅、基片、覆盖层和
传感器技术及应用
压阻式传感器是基于半导体材料的压阻效应来工作的传 感器。分半导体应变式压阻传感器和扩散型压阻传感器。
1.1 半导体应变式传感器
利用半导体材料的体电阻制成的粘贴式应变片(称半导 体应变片),用此制成的传感器称为半导体应变式传感器。
1. 工作原理
由于应力的作用而使半导体材料电阻率发生变化的现象
相等,即 : RABC RADC 2(R Rt )

压阻式传感器

压阻式传感器

压阻式传感器
一、 压阻式传感器的工作原理
由前述可知,压阻效应的数学描述可用公式表示如下:
R R
(1-25)
式中,π是压阻系数,是表征固态材料压阻效应的特性参数。不同
材料的压阻系数不同,而且各向异性的同一材料在不同方向其压阻系数
也各不相同,所以有
R R
r r
tt
(1-26)
式中,σr、σt分别为纵向应力和横向应力(切向应力);πr为纵向
压阻式传感器
图1-16所示为一种用于测量脑压的传感器的结构图。压阻式传 感器还有效地应用于爆炸压力和冲击波的测量、真空测量、监测和 控制汽车发动机的性能及诸如测量枪炮膛内压力、发射冲击波等兵 器方面的测量。
图1-16 脑压传感器结构图
压阻式传感器
1. 扩散型压阻式压力传感器
扩散型压阻式压力传感器属于半导体应变片传感器,它是直 接在硅弹性元件上扩散出敏感栅,而不是用黏结剂将敏感栅粘贴 在弹性元件上。
压阻式传感器
由于闭环压阻式加速度 传感器采用力平衡工作方式 弹性硅梁没有过大的挠度, 因而有利于提高动态频响特 性和改善线性。它还具有自 检功能。闭环压阻式加速度 传感器的特点是精度高,动 态范围大,结构复杂,质量 和尺寸都相对较大,成本也 较高。
图1-18 闭环压阻式加速度传感器结构原理图 1—硅梁组件; 2—力矩器线圈; 3—壳体; 4—下磁路组件; 5—插头座; 6—压阻电桥; 7—力矩器磁钢
图1-17(a)所示为扩散型压阻式压力传感器的结构简图, 其核心部分是一块圆形硅膜片,在膜片上,利用扩散工艺设置四 个阻值相等的电阻,用导线将其构成平衡电桥。膜片的四周用圆 环(硅环)固定,如图1-17(b)所示。膜片的两边有两个压力 腔,一个是与被测系统相连接的高压腔,另一个是低压腔,一般 与大气相通。

压阻式压力传感器

压阻式压力传感器

第二节压阻式传感器固体受到作用力后,电阻率就要发生变化,这种效应称为压阻效应。

半导体材料的这种效应特别强。

利用半导体材料做成的压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成的粘贴式应变片;另一类是在半导体材料的基片上用集成电路工艺制成扩散电阻,称扩散型压阻传感器。

压阻式传感器的灵敏系数大,分辨率高。

频率响应高,体积小。

它主要用丁测量压力、加速度和载荷参数。

因为半导体材料对温度很敏感,因此压阻式传感器的温度误差较大,必须要有温度补偿。

1.基本工作原理根据式(2— 3)芸Qf式中,项,对金届材料,其值很小,可以忽略不计,对半导体材料,项很大,半导体电阻率的变化为——砧=〃 f (2 - 22)式中巧为沿某晶向的压阻系数,。

为应力,耳为半导体材料的弹性模量。

如半导体硅材料,遗I。

%", "一6"105七则S八扁=5。

〜13,此例表明,半导体材料的灵敏系数比金届应变片灵敏系数(1 + 2卜)大很多。

可近似认为典=圈半导体电阻材料有结晶的硅和错,掺入杂质形成P型和N型半导体。

其压阻效应是因在外力作用下,原子点阵排列发生变化,导致载流子迁移率及浓度发生变化而形成的。

由丁半导体(如单晶硅)是各向异性材料,因此它的压阻系数不仅与掺杂浓度、温度和材料类型有关,还与晶向有关。

所谓晶向,就是晶面的法线方向。

晶向的表小方法有两种,一种是截距法,另一种是法线法。

1 .截距法设单晶硅的晶轴坐标系为X、y、z,(2 — 23)如图2 — 29所示,某一晶面在轴上的截距分别为r、s、t1/r、1/s、1/t为截距倒数,用r、s、t的最小公倍数分别相乘,获得三个没有公约数的整数a、b、c,这三个数称为密勒指数,用以表示晶向,记作〈a bc〉,某数(如a)为负数则记作〈五b c〉。

例如图2— 30(a),截距为一2、一£1 12、4,截距倒数为一^、一^、日,密勒指数为〈2 ^1〉。

压阻式压力传感器

压阻式压力传感器

压阻式压力传感器简介压阻式压力传感器是一种常见的传感器,用于测量各种物体的压力。

它采用了压阻效应,当外界施加压力时,传感器的阻值会发生变化,通过测量阻值的变化可以得知压力的大小。

压阻式压力传感器具有灵敏度高、价格低廉等优点,广泛应用于工业控制、汽车电子、医疗设备等领域。

压阻效应压阻效应是指在材料受到外界压力作用下,其电阻发生变化的现象。

这种变化可以通过的压阻式压力传感器来测量和利用。

压阻效应主要有以下两种:1.金属应变效应:当金属受到压力时,其晶格结构会发生变形,导致电阻值的变化。

这种效应是因为金属的电阻率与其晶格结构有关。

2.电子隧穿效应:当两个材料之间存在微小的空隙时,当外界压力作用于这两个材料时,空隙的宽度会发生变化,从而改变了电子的隧穿概率。

这种效应主要用于微小压力的测量,如气体压力传感器。

结构和工作原理一般来说,压阻式压力传感器由以下几个主要部分组成:1.压敏元件:压敏元件是压力传感器的核心部分,其阻值受外界压力的影响而变化。

常见的压敏元件有薄膜电阻、应变片等。

2.扩散层:扩散层用于保护压敏元件免受外界的损害,并使压力能够均匀地传递到压敏元件上。

3.绝缘层:绝缘层用于隔离压敏元件与其他部分,防止电流泄漏和干扰。

4.连接线:连接线用于将压敏元件的阻值变化转化为电信号,并输出给外部设备进行处理。

压阻式压力传感器的工作原理如下:1.当外界施加压力时,压力会通过扩散层传递到压敏元件上。

2.压敏元件的阻值随着压力的变化而变化。

3.连接线将变化的阻值转化为相应的电信号,并输出给外部设备进行处理和显示。

应用领域压阻式压力传感器具有广泛的应用领域,以下是几个常见的应用领域:1.工业控制:压阻式压力传感器被广泛用于工业自动化控制中,用于监测和控制各种工艺参数。

2.汽车电子:压阻式压力传感器在汽车电子中起着重要作用,用于发动机控制、制动系统、气囊系统等。

3.医疗设备:压阻式压力传感器被应用于医疗设备中,用于监测患者的生命体征,如血压测量、呼吸监测等。

压阻式传感器的检测原理及应用

压阻式传感器的检测原理及应用

压阻式传感器的检测原理及应用一、压阻式传感器的工作原理压阻式传感器是一种能够根据外力大小来改变其电阻值的传感器。

其工作原理基于材料的压阻效应,即当外力作用于传感器时,传感器内部的导电材料会发生形变,进而改变其电阻值。

压阻式传感器通常由导电薄膜、电极和基座等组成。

当外力施加在传感器的感应面上时,导电薄膜会发生微小的形变,导致电阻值发生变化。

通过测量电阻值的变化,可以推算出外力的大小。

二、压阻式传感器的特点1. 灵敏度高:压阻式传感器的灵敏度较高,能够检测到微小的压力变化。

2. 响应速度快:由于压阻式传感器的结构简单,响应速度较快。

3. 成本较低:相比其他类型的传感器,压阻式传感器的制造成本较低。

4. 可靠性高:压阻式传感器没有机械零件,因此具有较高的可靠性和耐久性。

三、压阻式传感器的应用1. 触摸屏:压阻式传感器被广泛应用于触摸屏技术中。

在传感器的感应面上布置导电薄膜,当用户用手指或触控笔对触摸屏施加压力时,传感器可以检测到压力的变化,并将其转化为电信号,从而实现触摸操作。

2. 工业自动化:压阻式传感器在工业自动化领域中也有广泛的应用。

例如,用于测量机械设备或生产线上的压力变化,实现对设备运行状态的监测和控制。

3. 医疗器械:压阻式传感器在医疗器械中的应用也很常见。

例如,用于测量血压、呼吸机上的气压变化以及人体接触的力度等。

4. 汽车领域:压阻式传感器在汽车领域中的应用广泛,例如用于测量车轮胎的压力,实现对胎压的监测和报警功能。

5. 体育器材:压阻式传感器也被应用于体育器材中,例如高尔夫球杆上的传感器可以测量球杆与球的接触力度,从而帮助球员改进击球技术。

总结:压阻式传感器是一种能够根据外力大小改变电阻值的传感器。

其工作原理基于材料的压阻效应,通过测量电阻值的变化可以推算出外力的大小。

压阻式传感器具有灵敏度高、响应速度快、成本低和可靠性高等特点。

在触摸屏、工业自动化、医疗器械、汽车领域和体育器材等领域都有广泛的应用。

压阻式压力传感器

压阻式压力传感器
当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率 发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。
这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计, 前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵 敏度比后者大50~100倍 。
实际上,交叉灵敏度反映了在不同应变时,温度灵敏度不是一个常数,而是随着应变的变化而变化,交叉灵 敏度的大小描述了温度灵敏度偏离常数的程度。实验中通过在不同应变下测量温度灵敏度,作出ST-ε曲线,该 曲线的斜率便反映了交叉灵敏度的大小。
以IC Sensors公司的S17-30A型传感器为例,结合A/D转换器AD7731把模拟量转换成数字量—6位16进制原码, 再把16进制的原码送入AT89c52单片机,由单片机送出原码值。实验中以标准压力作为输入,测取不同温度条件 下16进制的原码值,实验数据如表1所示。
压阻式压力传感器
压力式传感器
目录
01 应用
03
压阻式传感器的工作 原理
压阻式传感器的应变
02 与温度交叉灵敏度分 析
04 压阻式传感器的结构
压阻式压力传感器是利用单晶硅的压阻效应而构成。采用单晶硅片为弹性元件,在单晶硅膜片上利用集成电 路的工艺,在单晶硅的特定方向扩散一组等值电阻,并将电阻接成桥路,单晶硅片置于传感器腔内。当压力发生 变化时,单晶硅产生应变,使直接扩散在上面的应变电阻产生与被测压力成正比的变化,再由桥式电路获相应的 电压输出信号。
此外,也有采用方形硅膜片和硅柱形敏感元件的。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散 制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。

压阻式传感器ppt

压阻式传感器ppt

电桥输出电压与ΔR成正比,环境温度的变化对其没有影响。
2.3 半导体应变片的优缺点
半导体应变片最突出的优点是灵敏度高,这为它的应用提供 了有利条件。另外,由于机械滞后小、横向效应小以及它本身体 积小等特点,扩大了半导体应变片的使用范围。
其最大的缺点是温度稳定性差、灵敏度离散程度大(由于晶 向、杂质等因素的影响)以及在较大应变作用下非线性误差大等, 给使用带来一定困难。
成正比,表明电桥的输出与电源电压的大小与精度都有关。
如RT≠0时,则Usc与RT有关,也就是说与温度有关,而且与温度 的关系是非线性的,所以用恒压源供电时,不能消除温度的影响。
(2)恒流源供电
假设电桥两个支路的电阻相等,即
RABC RADC 2R RT
A R -R +RT
I R +R +RT
利用这种效应制成的电阻称为固态压敏电阻,也叫力 敏电阻。用压敏电阻制成的器件有两类:一种是利用半导 体材料制成黏贴式的应变片;另一种是在半导体的基片上 用集成电路的工艺制成扩散型压敏电阻,用它作传感器元 件制成的传感器,称为固态压阻式传感器,也叫扩散型压 阻式传感器。
2. 体型半导体电阻应变片
这种半导体应变片是将单晶硅锭切片、研磨、腐蚀压焊引线, 最后粘贴在锌酚醛树脂或聚酰亚胺的衬底上制成的。体型半导体 应变片可分为6种。
压阻式传感器的灵敏系数大,分辨率高。频率响应高,体积小。 它主要用于测量压力、加速度和载荷等参数。
因为半导体材料对温度很敏感,因此压阻式传感器的温度误差较 大,必须要有温度补偿。
1.1压阻效应
R (1 )
R
半导体电阻率
金属材料
材料

l
lEe
l

压阻式压力传感器原理

压阻式压力传感器原理

压阻式压力传感器原理压阻式压力传感器是一种常用的压力测量装置,其原理是利用压阻效应来实现对压力的测量。

在实际应用中,压阻式压力传感器广泛用于工业控制、汽车电子、医疗器械等领域。

本文将介绍压阻式压力传感器的原理及其工作过程。

1. 压阻效应。

压阻效应是指在外加压力作用下,导体的电阻发生变化的现象。

当导体受到压力时,导体内部的电阻会随之发生变化,这种变化可以被用来测量外界的压力。

在压阻式压力传感器中,通常采用金属薄膜或半导体材料作为敏感元件,当受到压力时,材料的电阻会发生相应的变化。

2. 压阻式压力传感器原理。

压阻式压力传感器的原理是利用压阻效应来实现对压力的测量。

传感器的核心部件是敏感元件,当外界压力作用在敏感元件上时,敏感元件的电阻会随之发生变化。

通过测量电阻的变化,就可以得到外界压力的大小。

3. 工作过程。

当外界压力作用在压阻式压力传感器上时,敏感元件的电阻会发生变化。

这种电阻的变化可以通过电路进行测量和处理,最终得到与外界压力成比例的电信号输出。

这个电信号可以通过连接到显示器、控制器或数据采集系统,用来实时监测和控制压力的变化。

4. 应用领域。

压阻式压力传感器广泛应用于工业控制、汽车电子、医疗器械等领域。

在工业控制中,压阻式压力传感器可以用来监测管道、容器内部的压力变化,实现对工艺流程的实时控制。

在汽车电子中,压阻式压力传感器可以用来监测发动机、制动系统等部件的压力变化,保证汽车的安全和性能。

在医疗器械中,压阻式压力传感器可以用来监测血压、呼吸等生命体征,为医生提供诊断和治疗的依据。

5. 总结。

压阻式压力传感器利用压阻效应来实现对压力的测量,其原理简单、可靠。

在实际应用中,压阻式压力传感器具有广泛的应用前景,可以满足不同领域对压力测量的需求。

随着科技的不断发展,压阻式压力传感器将会得到更广泛的应用和发展。

压阻式压力传感器原理及其应用

压阻式压力传感器原理及其应用

压阻式压力传感器原理及其应用压阻式压力传感器是一种常用的力与位移测量装置,利用材料的压阻效应来实现压力的测量。

它的原理是通过将存在压力的物体和传感器的敏感元件之间产生机械接触,使得敏感元件受压弯曲,从而改变其电阻值。

压阻式压力传感器的核心技术就是敏感元件的压阻材料。

压阻材料通常是导电材料,如硅、硅胶、塑胶等。

当材料受到外力压缩时,其电阻值会随之改变。

这是因为在压力作用下,材料内部电荷的分布发生变化,导致材料的电阻值发生变化。

通过测量电阻值的变化,就可以得知压力的大小。

1.精度高:利用材料的压阻效应来进行压力测量,具有较高的测量精度。

2.反应快:由于无需机械部件的运动,响应时间较短。

3.可靠性高:采用固态结构,不易受到外界振动、冲击的影响。

4.安装简单:可以直接安装在被测压力物体之上,使用方便。

1.工业自动化:用于监测液体和气体的压力,广泛应用于工业自动化系统中。

如压力控制、压力调节、管道检测等。

2.汽车工业:用于汽车制动液和胎压的监测。

通过测量汽车轮胎的压力,可以保证行驶安全。

3.医疗设备:用于测量血压、气体浓度等医疗参数,为医疗设备提供准确的数据支持。

4.污水处理:用于监测和控制污水处理系统中的压力和流量,保证系统的正常运行。

5.空调系统:用于监测空调系统中的制冷介质的压力,以调节和控制空调的制冷效果。

6.水压调节:用于监测水源、供水管道和管网的压力,以保证供水的稳定性。

总结来说,压阻式压力传感器利用材料的压阻效应实现压力测量,具有精度高、反应快、可靠性高和安装简单等特点,广泛应用于工业自动化、汽车工业、医疗设备、污水处理、空调系统和水压调节等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3P σr = 2 [(1+ µ)r02 − (3 + µ)r2 ] 8h σ = 3P [(1+ µ)r2 − (1+ 3µ)r2 ] 0 t 8h2
优点:
扩散型压阻式压力传感器的主要优点就 是体积小、结构简单,动态相应好, 是体积小、结构简单,动态相应好,灵 敏度高,滞后、蠕变小,频率相应高, 敏度高,滞后、蠕变小,频率相应高, 性能稳定,成本低,便于批量生产。 性能稳定,成本低,便于批量生产。
设计时,适当安排电阻的位置,可以组成差动电桥。


上一页
下一页
扩散型压阻式压力传感器 特点
优点: 体积小,结构比较简单, 优点 体积小,结构比较简单,动态响应 也好,灵敏度高,能测出十几帕的微压, 也好,灵敏度高,能测出十几帕的微压, 长期稳定性好,滞后和蠕变小,频率响 长期稳定性好,滞后和蠕变小, 应高,便于生产,成本低。 应高,便于生产,成本低。 测量准确度受到非线性和温度的影响。 测量准确度受到非线性和温度的影响。 智能压阻式压力传感器利用微处理器对 非线性和温度进行补偿。 非线性和温度进行补偿。


上一页
下一页
1. 测量电桥
假设∆RT为温度引起的电阻变化
I ABC = I ADC = 1 I 2
电桥的输出为
U 0 = U BD = 1 1 I ( R + ∆R + ∆RT ) − I ( R − ∆R + ∆RT ) 2 2 = I∆R
恒流源供电的全桥差动电路
电桥的输出电压与电阻变化成正比,与恒流源电流成正比, 但与温度无关,因此测量不受温度的影响。
第二节 压阻式传感器
• 7.2.1 半导体的压阻效应 • 7.2.2 压阻式压力传感器原理和电路 • (1) 体型半导体应变片 • (2) 扩散型压阻式压力传感器 • (3) 测量桥路及温度补偿 • 7.2.3 压阻式传感器的应用
返 回 下一页
7.2.1 半导体的压阻效应
固体受到作用力后,电阻率就要发生变化, 固体受到作用力后,电阻率就要发生变化,这 种效应称为压阻效应 半导体材料的压阻效应特别强。 半导体材料的压阻效应特别强。 压阻式传感器的灵敏系数大,分辨率高。 压阻式传感器的灵敏系数大,分辨率高。频率 响应高,体积小。它主要用于测量压力、加速 响应高, 体积小。 它主要用于测量压力、 度和载荷等参数。 度和载荷等参数。 因为半导体材料对温度很敏感, 因为半导体材料对温度很敏感,因此压阻式传 感器的温度误差较大,必须要有温度补偿。 感器的温度误差较大,必须要有温度补偿。
返 回 上一页 下一页
工作原理: 工作原理:
膜片两边存在压力差时,膜片产生变形,膜片上各点产生应力。 四个电阻在应力作用下,阻值发生变化,电桥失去平衡, 输出相应的电压,电压与膜片两边的压力差成正比。
四个电阻的配置位置:
按膜片上径向应力σr和切向应力σt的分布情况确定。
σ r=
3p [(1 + µ )r02 − (3 + µ )r 2 ] 8h 2 3p σ t = 2 [(1 + µ ) r02 − (1 + 3µ )r 2 ] 8h
U0


上一页
3 . 灵敏度温度补偿
补偿灵敏度漂移原理: 补偿灵敏度漂移原理: 温度升高时,灵敏度降低, 温度升高时,灵敏度降低,这时如果提 高电源电压,使电桥输出适当增大, 高电源电压,使电桥输出适当增大,便 可达到补偿目的。 可达到补偿目的。 温度升高时,二极管压降降低, 温度升高时,二极管压降降低,可使电 桥电源电压提高, 桥电源电压提高,关键是适当选择串联 二极管的个数。 二极管的个数。


上一页
下一页
(3) 测量桥路及温度补偿
由于制造、温度影响等原因,电桥存在失调、 由于制造、温度影响等原因,电桥存在失调、零位温 灵敏度温度系数和非线性等问题, 漂、灵敏度温度系数和非线性等问题,影响传感器的 准确性。 准确性。 减少与补偿误差措施
1. 测量电桥 2. 零点温度补偿 3. 灵敏度温度补偿
3 压阻式加速度传感器
它的悬臂梁直接用单晶硅制成, 它的悬臂梁直接用单晶硅制成,四个扩散电阻 扩散在其根部两面 。
扩散电阻 基座
a
质量块 应变梁


上一页
下一页
7.2.3 压阻式传感器的应用
1. 扩散型压阻式压力传感器 2. 差频压阻式压力传感器 3. 压阻式加速度传感器
1. 扩散型压阻式压力传感器
1-低压腔 2-高压腔 3-硅杯 4-引线 5-硅膜片 在膜片位移量远小于膜片的厚度时,受均匀压力的圆形硅膜 片上各点的径向应力σ r 和切向应力σ t ,可分别用下式计算:


上一页
下一页
7.2.2 压阻式压力传感器原理和电路 • (1) 体型半导体应变片 • (2) 扩散型压阻式压力传感器 • (3) 测量桥路及温度补偿
(1)体型半导体电阻应变片
1. 结构型式及特点
2. 测量电路


上一页
下一页
1. 结构型式及特点
主要优点是灵敏系数比金属电阻应变片的灵敏系数大数十倍 横向效应和机械滞后极小 温度稳定性和线性度比金属电阻应变片差得多
温度变化受环境温度引起阻值的变化
恒流源
U 0 = I ⋅ ∆R
电桥输出电压与∆R成正比,环境温度的变化对其没有影响。


上一页
下一页
(2) 扩散型压阻式压力传感器
压阻式压力传感器结构简图 1—低压腔 2—高压腔 3—硅杯 4—引线 5—硅膜片 采用N型单晶硅为传感器的弹性元件, 在它上面直接蒸镀半导体电阻应变薄膜
返 回 上一页 下一页
2.温度漂移及其补偿 2.温度漂移及其补偿 温度漂移
温度变化而变化,将引起零漂 灵敏度漂移 零漂和灵敏度漂移 零漂
VD

Rp R1 Rs R2 R4

扩散电阻值随温度变化 压阻系数随温度变化 串、并联电阻 串联二极管
灵敏度漂移 零位温漂 灵敏度温漂
U
R3
串联电阻Rs起调零作用 并联电阻RP起补偿作用
2.差频压阻式压力传感器 2.差频压阻式压力传感器
A
R-C (P型) R-C f
(a)
(b)
<110> 硅晶片 R-C 网络 宽带放大
P
宽带放大 <110> <001>
f’ 频 率 综 合 f 器
(c)
(a)分布阻容网络; (b)相移振荡器; (c)差频振荡压阻 荡器振荡频率为:
6 f = 2π RC
压力的变化 :
∆f = f1 − f0 = f ( p)
在实际应用中, 在实际应用中,为了提高传感器的灵敏 度和克服零点漂移, 度和克服零点漂移,一般都采用差频输 出的形式。 出的形式。也就是在选择适当的晶向和 扩散电阻的位置, 扩散电阻的位置,做成两套相移振荡器 并连接宽带放大器和频率综合器, 并连接宽带放大器和频率综合器,将其 组合在一起构成差频压阻式压力传感器, 组合在一起构成差频压阻式压力传感器,


上一页
下一页
压阻效应
∆R ∆ρ = (1 + 2 µ ) ε + ρ R
金属材料 半导体材料 ∆ρ ∆l =πlσ = πl E ρ l
半导体电阻率
πl为半导体材料的压阻系数,它与半导体材料种类及应力方向 与晶轴方向之间的夹角有关; E为半导体材料的弹性模量,与晶向有关。
∆R = (1 + 2 µ + π l E )ε R
返 回 上一页 下一页
对半导体材料而言,πl E >>(1+µ),故(1+µ)项可以忽略
∆R = π l Eε = π l σ R
半导体材料的电阻值变化,主要是由电阻率变化引起的, 而电阻率ρ的变化是由应变引起的 半导体单晶的应变灵敏系数可表示
K=
∆R / R
ε
= π lE
半导体的应变灵敏系数还与掺杂浓度有关,它随杂质的增加而减小


上一页
下一页
体型半导体应变片的结构形式
1-P型单晶硅条 2-内引线 3-焊接电极 4-外引线
对于恒压源电桥电路,考虑到环境温度变化的 影响,其关系式为:
U∆R Uo = R +∆RT
2. 测量电路
恒压源
U 0 = U∆R /( R + ∆Rt )
电桥输出电压与∆R / R成正比,输出电压受环境温度的影 响。R为应变片阻值, ∆R为应变片阻值变化, ∆Rt为环境
相关文档
最新文档