压阻式压力传感器
压阻式传感器
4.兵器上的应用
由于固有频率高,动态响应快,体积小等特点,压阻式压力传感器适合测量 枪炮膛内的压力。测量时,传感器安装在枪炮的身管上或装在药筒底部。另 外,压阻式传感器也用来测试武器发射时产生的冲击波。
此外,在石油工业中,硅压阻式压力传感器用来测量油井压力,以便分析油 层情况。压阻式加速度计作为随钻测向测位系统的敏感元件,用于石油勘探 和开发。在机械工业中,可用来测量冷冻机、空调机、空气压缩机、燃气涡 轮发动机等气流流速,监测机器的工作状态。在邮电系统中,用作地面和地 下密封电缆故障点的检测和确定,比机械式传感器精确和节省费用。在航运 上,测量水的流速,以及测量输水管道,天然气管道内的流速等。
利用这种效应制成的电阻称为固态压敏电阻,也叫力 敏电阻。用压敏电阻制成的器件有两类:一种是利用半导 体材料制成黏贴式的应变片;另一种是在半导体的基片上 用集成电路的工艺制成扩散型压敏电阻,用它作传感器元 件制成的传感器,称为固态压阻式传感器,也叫扩散型压 阻式传感器。
2. 体型半导体电阻应变片
这种半导体应变片是将单晶硅锭切片、研磨、腐蚀压焊引线, 最后粘贴在锌酚醛树脂或聚酰亚胺的衬底上制成的。体型半导体 应变片可分为6种。
3. 扩散型压阻式压力传感器
在弹性变形限度内,硅的压阻效应是可逆的,即在应力作用下硅 的电阻发生变化,而当应力除去时,硅的电阻又恢复到原来的数值。 硅的压阻效应因晶体的取向不同而不同,即对不同的晶轴方向其压阻 系数不同。虽然半导体压敏电阻的灵敏系数比金属高很多,但是有时 还是不够。因此为了进一步增大灵敏度,压敏电阻常常扩散(安装) 薄的硅膜上,让硅膜起一个放大作用。
电桥输出电压与ΔR成正比,环境温度的变化对其没有影响。
2.3 半导体应变片的优缺点
半导体应变片最突出的优点是灵敏度高,这为它的应用提供 了有利条件。另外,由于机械滞后小、横向效应小以及它本身体 积小等特点,扩大了半导体应变片的使用范围。
压力传感器知识点总结
压力传感器知识点总结一、压力传感器的概念及分类压力传感器是一种能够将物体外部施加的压力转变成电信号输出的装置。
它可以将压力大小转化为电信号输出,通常用于测量液体、气体或固体的压力。
根据测量原理和测量对象的不同,压力传感器可以分为多种类型,常见的有压阻式压力传感器、压力变送器、电容式压力传感器和压电式压力传感器等。
1. 压阻式压力传感器压阻式压力传感器是利用压阻效应来测量被测压力的装置。
当被测压力作用在敏感元件上时,敏感元件发生形变,从而改变了电阻值。
通过检测电阻值的变化,就可以得到被测压力的大小。
压阻式压力传感器的优点是价格低廉,输出信号稳定,但灵敏度较低,精度一般较低。
2. 压力变送器压力变送器也是一种常见的压力传感器,它一般由感压元件和信号处理电路组成。
感压元件将被测压力转化为位移,再由信号处理电路将位移信号转化为电信号输出。
压力变送器具有输出信号稳定、精度高、灵敏度高等优点,广泛应用于工业自动化领域。
3. 电容式压力传感器电容式压力传感器是利用被测压力作用下的电容值变化来测量压力大小的装置。
当被测压力作用在感应体上时,感应体发生形变,从而改变了电容值。
通过检测电容值的变化,就可以得到被测压力的大小。
电容式压力传感器具有灵敏度高、精度高的特点,但价格较高。
4. 压电式压力传感器压电式压力传感器是利用压电效应来测量被测压力的装置。
当被测压力作用在压电晶体上时,压电晶体产生电荷,从而产生电压信号输出。
压电式压力传感器具有输出稳定、精度高、频率响应快的优点,但价格较高。
二、压力传感器的工作原理1. 压阻式压力传感器的工作原理压阻式压力传感器是利用压阻效应来测量被测压力的装置。
当被测压力作用在敏感元件上时,敏感元件发生形变,从而改变了电阻值。
通过检测电阻值的变化,就可以得到被测压力的大小。
2. 压力变送器的工作原理压力变送器一般由感压元件和信号处理电路组成。
感压元件将被测压力转化为位移,再由信号处理电路将位移信号转化为电信号输出。
压阻式压力传感器
掩膜版
步骤四:标准淡硼预扩散或离子注入,在经过标准再分布或退火 形成方块电阻率在80-250W可控的压阻,结深1-3微米。
• 恒定表面源扩散:在整个扩散过程中,硅片表面的杂质浓度 始终不变。
• 有限表面源扩散:扩散之前在硅片表面先淀积一层杂质,在 整个扩散过程中以这层杂质作为扩散的杂质源,不再有新源 补充。
1 硅片的清洗处理
2涂胶:涂胶的目的是在硅片表面形成厚度均匀、附着性强、并且没有缺陷的光刻胶薄膜。
3 前烘:经过甩胶之后的光刻胶虽然液态的光刻胶已经成为固态的薄膜,但含有10%~ 30%的溶剂,容易沾染灰尘。通过在较高温度下进行烘焙,使溶剂从光刻胶中挥发出来。 4 对准与曝光:曝光的光源为紫外光的汞灯,形成平行光束垂直照射到硅片上。受到光照 的光刻胶发生光化学反应,其内部分子结构发生变化。 5 显影:把曝光后的基片放在显影液里,将应除去的光刻胶膜溶除干净,以获得所需要 光刻胶的图形。
2)湿氧氧化:氧气通过盛有950C高纯去离子水的石英瓶后携带水汽到硅片 表面发生氧化反应: Si+O2SiO2 Si+2H2OSiO2+2H2 优点:生长速率较快;缺点:与光刻胶粘附性不好。
(3)氢氧合成氧化:在常压下分别是将纯H2 和纯氧直接通入石英管内,使之在一定温度燃 烧生成水,水在高温下氧化后与硅反应生成 SiO2,生长速度比湿氧快,膜质量好、纯度高。
• 两步扩散:实际生产中的扩散温度一般为900~1200℃,在
这样的温度范围内,常用杂质,如硼、砷等在硅中的固溶度
随温度变化不大,因而采用恒定表面源扩散很难得到低表面
浓度的杂质分布形式。实际生产中将扩散过程分为两步完成。
其中第一步称为预扩散或者预淀积,第二步称为主扩散或再
压阻式压力传感器工作原理
压阻式压力传感器工作原理
压阻式压力传感器工作原理是基于电阻的变化原理。
传感器内部含有一个薄膜,该薄膜上涂有导电层,形成一个电阻。
当传感器受到外部压力作用时,薄膜会发生微小的弯曲,导致导电层上电阻的改变。
具体来说,当外部压力增加时,薄膜的弯曲程度会增大,导致电阻的值随之增加。
而当外部压力减小时,薄膜会恢复原状,导致电阻的值随之减小。
这种电阻和压力之间的关系可以通过压力传感器的电路进行测量和转换。
一般情况下,压阻式压力传感器会和一个电桥电路结合使用。
电桥电路由四个电阻组成,其中一个电阻为压阻传感器的电阻,另外三个为已知电阻。
当系统施加一个恒定的电压到电桥上时,电桥会输出一个电压信号,该信号的大小与压阻传感器的电阻值相关。
通过测量和分析电桥的输出信号,就可以得到与外部压力关联的电阻值。
进一步,可以经过校准和转换,将电阻值转换为实际的压力数值。
总的来说,压阻式压力传感器通过测量导电层电阻的变化,实现对外部压力的检测和测量。
这种传感器具有结构简单、成本低廉、响应速度快等优点,广泛应用于各种工业领域和仪器设备中。
压力传感器工作原理
压力传感器工作原理压力传感器是一种能够将压力信号转换为电信号输出的传感器,它在工业控制、汽车制造、医疗设备等领域都有着广泛的应用。
压力传感器的工作原理是通过感受外部压力的作用,产生相应的变化,并将这种变化转化为电信号输出。
下面将详细介绍压力传感器的工作原理。
1. 压力传感器的类型压力传感器根据其工作原理和测量范围的不同,可以分为多种类型,包括压阻式压力传感器、压电式压力传感器、电容式压力传感器、共振式压力传感器等。
每种类型的压力传感器都有其特定的工作原理,但其基本原理都是通过感受外部压力的作用,产生相应的变化,并将这种变化转化为电信号输出。
2. 压阻式压力传感器的工作原理压阻式压力传感器是一种通过测量电阻值变化来感知压力的传感器。
其工作原理是利用一些特殊材料的电阻随着受力的不同而发生变化。
当外部压力作用在传感器上时,传感器内部的电阻值会发生相应的变化,这种变化会被转化为电信号输出。
通常压阻式压力传感器的灵敏度较高,能够测量较小范围内的压力变化。
3. 压电式压力传感器的工作原理压电式压力传感器是一种利用压电效应来感知压力的传感器。
其工作原理是利用压电材料在受到外部压力作用时会产生电荷的变化。
当外部压力作用在传感器上时,压电材料会产生相应的电荷变化,这种变化会被转化为电信号输出。
压电式压力传感器具有较高的频率响应特性,能够测量动态压力变化。
4. 电容式压力传感器的工作原理电容式压力传感器是一种利用电容变化来感知压力的传感器。
其工作原理是利用外部压力作用在传感器上时,导致传感器内部电容值发生变化。
这种电容值的变化会被转化为电信号输出。
电容式压力传感器具有较高的精度和稳定性,能够测量较大范围内的压力变化。
5. 共振式压力传感器的工作原理共振式压力传感器是一种利用共振频率的变化来感知压力的传感器。
其工作原理是利用外部压力作用在传感器上时,导致传感器内部的共振频率发生变化。
这种共振频率的变化会被转化为电信号输出。
压阻式压力传感器
压阻式压力传感器1. 引言压阻式压力传感器是一种用于测量压力的传感器。
该传感器的工作原理是通过应变电阻的变化来检测受力物体的压力。
它广泛应用于工业控制、汽车制造等许多领域。
本文将介绍压阻式压力传感器的工作原理、特点以及应用。
2. 工作原理压阻式压力传感器的工作原理基于应变电阻效应。
当传感器受到压力作用时,传感器内的金属薄片或薄膜会发生形变,导致金属材料的电阻值发生变化。
通过测量电阻值的变化,我们可以得知受力物体的压力大小。
通常,压阻式压力传感器由两个电极之间夹着一层薄膜或薄片构成。
当压力作用在传感器上时,薄膜或薄片会发生拉伸或压缩,从而改变电流的通道,使电阻值发生变化。
这种变化可以被测量电路检测到并转换为相应的电压或电流信号。
3. 特点压阻式压力传感器具有以下特点:•灵敏度高:由于应变电阻效应是线性的,压阻式压力传感器在测量范围内具有较高的灵敏度。
•稳定性好:传感器内部的金属材料通常经过特殊处理,以增加其稳定性和可靠性。
•宽测量范围:压阻式压力传感器可以适应广泛的测量范围,从几千帕到几百兆帕不等。
•耐用性强:传感器通常采用金属或陶瓷材料制成,具有较好的耐用性。
4. 应用压阻式压力传感器在许多领域有广泛的应用,包括但不限于以下几个方面:4.1 工业控制压阻式压力传感器可用于测量流体压力,如液体或气体。
在工业控制中,压力传感器常被用于监测管道或容器中的压力变化,以确保系统正常运行。
4.2 汽车制造压阻式压力传感器在汽车制造中起着重要作用。
它们可用于测量发动机燃油压力、轮胎气压等数据,以确保汽车的安全性和性能。
4.3 医疗设备压阻式压力传感器在医疗设备中也有应用。
例如,它们可用于测量患者的血压、呼吸气道压力等数据,以协助医生进行诊断和治疗。
4.4 环境监测压阻式压力传感器可用于环境监测,如大气压力、海洋水深等数据的测量。
这些数据对于气象研究、海洋科学等领域非常重要。
5. 总结压阻式压力传感器是一种用于测量压力的重要传感器。
压力传感器的原理
压力传感器的原理压力传感器是一种能够将压力信号转换为电信号输出的传感器,广泛应用于工业自动化控制、汽车电子、医疗设备等领域。
它的原理是利用一定的物理效应,将受力的变化转换为电信号输出,从而实现对压力的测量和控制。
压力传感器的原理主要包括以下几个方面:1. 压阻式原理。
压阻式压力传感器是利用压阻效应来实现对压力的测量。
当外力作用于传感器的敏感元件上时,敏感元件会发生形变,从而改变其电阻值。
通过测量电阻值的变化,就可以得到压力的大小。
这种原理的传感器简单、成本低,但精度较低,易受温度影响。
2. 容性原理。
容性压力传感器利用压力作用于传感器时,会改变传感器内部电容值的特性。
通过测量电容值的变化,就可以得到压力的大小。
这种原理的传感器具有较高的灵敏度和稳定性,但制造工艺复杂,成本较高。
3. 压电原理。
压电压力传感器是利用压电效应来实现对压力的测量。
当外力作用于传感器的压电晶体上时,会产生电荷的分布变化,从而产生电压信号输出。
通过测量电压信号的变化,就可以得到压力的大小。
这种原理的传感器具有高灵敏度、高稳定性和高精度,但制造工艺复杂,成本较高。
4. 光纤原理。
光纤压力传感器是利用光纤的光学原理来实现对压力的测量。
当外力作用于传感器上时,会改变光纤的折射率,从而改变光信号的传输特性。
通过测量光信号的变化,就可以得到压力的大小。
这种原理的传感器具有抗干扰性强、可靠性高的优点,但制造工艺复杂,成本较高。
总结:压力传感器的原理多种多样,每种原理都有其适用的场景和特点。
在实际应用中,需要根据具体的测量要求和环境条件选择合适的压力传感器。
随着科技的不断发展,压力传感器的原理和性能也在不断提升,为各行各业的应用提供了更加可靠和精准的压力测量解决方案。
总结压阻式压力传感器的一般检测方法
总结压阻式压力传感器的一般检测方法压阻式压力传感器是一种常用的测量压力的传感器,其原理是基于材料的压阻效应。
为了确保传感器的准确性和稳定性,需要进行一般的检测方法。
以下是总结的一般检测方法:1. 外观检查:首先,对压力传感器进行外观检查,包括检查传感器外壳是否完整、有无损坏,是否有明显的划痕或变形等。
确保传感器外观正常可靠。
2. 线路连接检查:检查传感器的电气连接,包括检查传感器与接收器之间的线路连接是否正确牢固,检查所有电连接器是否无松动或断裂。
确保传感器与电路之间的连接良好。
3. 零点检测:通过此检测方法,测量压力传感器在无压力状态下的输出信号。
将传感器暴露在零压条件下,记录输出信号。
正常情况下,压力传感器在无力作用时应输出稳定的零信号。
4. 线性度检测:线性度是指压力传感器输出与输入压力之间的直线关系。
可通过在一定范围内施加等间隔的压力,记录传感器的输出信号。
然后,根据斜率和截距计算其线性关系。
理想情况下,传感器应该有良好的线性关系。
5. 灵敏度检测:灵敏度是指压力传感器输出信号与输入压力变化之间的关系。
可以通过在不同压力范围内改变输入压力,并记录传感器的输出信号,计算出输出信号相对于输入信号的变化量。
传感器的灵敏度应保持稳定并与规格相符。
6. 温度特性检测:压力传感器的温度特性直接影响其测量的准确性。
进行温度特性检测时,将传感器暴露在不同的温度环境下,并记录传感器的输出信号。
比较传感器在不同温度下的输出,确保传感器对温度的响应在规格范围内。
总之,以上是总结的压阻式压力传感器的一般检测方法,通过这些方法可以确保传感器的质量和性能符合要求,提供可靠准确的压力测量结果。
压阻式压力传感器工作原理
压阻式压力传感器工作原理压阻式压力传感器是一种常用的压力测量装置,其工作原理基于压阻效应。
在实际应用中,压阻式压力传感器可以用于汽车制动系统、工业自动化控制、医疗设备等领域。
下面我们将详细介绍压阻式压力传感器的工作原理。
1. 压阻效应。
压阻效应是指在材料受到外力作用时,其电阻发生变化的现象。
通常情况下,材料受到压力作用时,其电阻会随之变化。
这种变化可以通过测量电阻的大小来间接地反映受力情况,从而实现压力的测量。
2. 压阻式压力传感器的结构。
压阻式压力传感器通常由压阻薄膜和支撑结构组成。
当受到外力作用时,压阻薄膜会发生形变,从而导致其电阻发生变化。
通过测量电阻的变化,可以得知外力的大小,实现压力的测量。
3. 工作原理。
当压力作用在压阻式压力传感器上时,压阻薄膜会受到压力而发生形变。
这种形变会导致压阻薄膜电阻的变化,进而改变电路中的电流或电压。
通过测量电路中的电流或电压的变化,可以得知压阻薄膜受到的压力大小,从而实现对压力的测量。
4. 特点与应用。
压阻式压力传感器具有灵敏度高、响应速度快、结构简单等特点,因此在工业领域得到广泛应用。
例如,在汽车制动系统中,压阻式压力传感器可以实时监测制动液压力的变化,从而确保制动系统的安全可靠性。
在医疗设备中,压阻式压力传感器可以用于测量血压、呼吸等生理参数,为医生提供诊断依据。
总之,压阻式压力传感器利用压阻效应实现对压力的测量,具有灵敏度高、响应速度快等优点,适用于各种工业和医疗领域。
希望本文能够帮助读者更好地理解压阻式压力传感器的工作原理和应用。
压阻式压力传感器
第二节压阻式传感器固体受到作用力后,电阻率就要发生变化,这种效应称为压阻效应。
半导体材料的这种效应特别强。
利用半导体材料做成的压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成的粘贴式应变片;另一类是在半导体材料的基片上用集成电路工艺制成扩散电阻,称扩散型压阻传感器。
压阻式传感器的灵敏系数大,分辨率高。
频率响应高,体积小。
它主要用于测量压力、加速度和载荷参数。
因为半导体材料对温度很敏感,因此压阻式传感器的温度误差较大,必须要有温度补偿。
1.基本工作原理根据式(2-3)式中,项,对金属材料,其值很小,可以忽略不计,对半导体材料,项很大,半导体电阻率的变化为(2-22)式中为沿某晶向的压阻系数,σ为应力,为半导体材料的弹性模量。
如半导体硅材料,, ,则,此例表明,半导体材料的灵敏系数比金属应变片灵敏系数 (1+2μ)大很多。
可近似认为。
半导体电阻材料有结晶的硅和锗,掺入杂质形成P型和N型半导体。
其压阻效应是因在外力作用下,原子点阵排列发生变化,导致载流子迁移率及浓度发生变化而形成的。
由于半导体(如单晶硅)是各向异性材料,因此它的压阻系数不仅与掺杂浓度、温度和材料类型有关,还与晶向有关。
所谓晶向,就是晶面的法线方向。
晶向的表示方法有两种,一种是截距法,另一种是法线法。
1.截距法设单晶硅的晶轴坐标系为x、y、z,如图2-29所示,某一晶面在轴上的截距分别为r、s、t(2-23)1/r、1/s、1/t为截距倒数,用r、s、t的最小公倍数分别相乘,获得三个没有公约数的整数a、b、c,这三个数称为密勒指数,用以表示晶向,记作〈a b c〉,某数(如a)为负数则记作〈 b c〉。
例如图2-30(a),截距为-2、-2、4,截距倒数为-、-、,密勒指数为〈1〉。
图2-30(b)截距为1、1、1,截距倒数仍为1、1、1,密勒指数为〈1 11〉。
图2-30(c)中ABCD面,截距分别为1、∞、∞,截距倒数为1、0、0,所以密勒指数为〈1 0 0〉。
压阻应变片式压力传感器详解
2
3.1压力传感器
扩散型压阻式压力传感器特点:
3.1压力传感器
压阻式加速度传感器: 它的悬臂梁直接用单晶硅制成,四个扩散电阻扩散在器根部两面。
恒压源:
A
D
B
C
输出电压与 成正比,输出电压受环境温度的影响.
恒流源:
输出电压与 成正比,环境温度的变化对其没有影响.
测量电路:
四个电阻的配置位置:
按膜片上径向应力σr 和切向应力 σt 分布情况确定。
设计时适当安排电子的位置,可以组成差点电桥。
3
2
1
4
优点:体积小,结构比较简单,动态响应也好,灵敏度高,测出十几帕德微压,长期稳定性好,之后和蠕变小,频率响应高,便于生产,成本低。
1
测量准确度受到非线性和温度的影响,智能压阻式压力传感器利用微处理器对费线性和温度进行补偿。
上式表明压阻传感器的工作原理是基于压阻效应的。
扩散硅压阻式传感器的基片是半导体单晶硅,单晶硅是各向异性材料,取向不同其特性不一样,而取向是用晶向表示的,所谓晶向就是晶面的法线方向。
3.1压力传感器
优点:
灵敏系数高,k =30~ 175(而电阻丝其值约在 1.6~ 3.6 之间); 机械滞后小、横向效应小及本身体积小。
压力传感器的原理和应用
压力传感器的原理和应用压力传感器是一种用于检测和测量压力变化的装置,广泛应用于各个领域。
本文将介绍压力传感器的原理以及其在不同领域的应用。
一、压力传感器的原理压力传感器的基本原理是根据弹性元件的形变来测量外界压力的变化。
弹性元件可以是金属薄膜、金属绞线、气体或液体等,在外界压力的作用下发生形变,通过检测这种形变来测量压力的大小。
1. 金属薄膜压力传感器原理金属薄膜压力传感器是最常见的一种类型。
它由金属薄膜贴附在载体上构成。
当外界压力作用于金属薄膜时,金属薄膜发生形变,形变后的电阻值发生变化,利用电桥测量这种变化可以得出压力的数值。
2. 压阻式压力传感器原理压阻式压力传感器将电阻与弹性元件相结合。
当外界压力作用于弹性元件时,导致电阻值的变化,通过测量电阻值的变化来计算压力大小。
3. 容性式压力传感器原理容性式压力传感器利用弹性体的变形引起的电容量的变化来测量压力。
当外界压力作用于弹性体时,弹性体形变,使电容量发生变化,通过测量电容量的变化来判断压力的大小。
二、压力传感器的应用领域压力传感器在许多领域中都有广泛的应用,下面将介绍其中几个常见的应用领域。
1. 工业自动化领域在工业自动化领域,压力传感器用于监测和控制各种工艺中的气体或液体的压力变化。
例如,在制造业中,通过监测设备中的气压来确保生产过程的稳定性和安全性。
2. 汽车领域压力传感器在汽车领域中扮演着至关重要的角色。
它们用于监测发动机中的油压、冷却系统中的压力以及制动系统中的液压压力。
这些信息可以用来确保发动机的正常运行和提供安全的制动性能。
3. 医疗领域在医疗领域,压力传感器用于监测患者体内的生理参数,如血压、呼吸压力等。
它们还被应用于手术设备和人工呼吸机等医疗设备中,以监测和调节压力。
4. 环境监测领域压力传感器在环境监测领域中的应用越来越广泛。
它们被用于监测气候变化、水位高度、大气压力等参数。
这些数据对于环境保护和天气预测等方面具有重要意义。
压阻压力传感器的主要特点
压阻压力传感器的主要特点
压阻式压力传感器是一种常见的传感器类型之一,其基本原理是通过检测压力
对薄膜或陶瓷材料的变形程度而测量所感知的压力大小。
压阻压力传感器具有以下几个主要特点:
高精度
压阻压力传感器通常具有高精度的特点,它们可以测量非常微小的压力变化,
例如,小于1kPa的压力变化。
范围广
压阻压力传感器可以应用于各种应用场景,例如,军事、医疗、工业、航空、
汽车等领域。
反应迅速
压阻压力传感器具有非常快速的响应速度,可以对瞬态压力进行准确和及时的
检测。
易于安装
压阻压力传感器的机械结构通常相对简单,安装和维护比其他类型的压力传感
器更加容易。
成本低廉
相对于其他类型的压力传感器,压阻压力传感器通常具有较低的成本,这使得
其在大规模应用中越发具有优势。
耐用性好
压阻压力传感器通常具有较好的耐用性,能够在恶劣的环境条件下长期稳定地
工作。
总之,压阻压力传感器是一种非常实用的压力传感器类型,具有高精度、范围广、反应迅速、易于安装、成本低廉、耐用性好等多种优点。
随着科技的不断进步,它们在工业、军事、医疗、航空、汽车等领域的应用将会越来越广泛,成为现代化工业的不可或缺的重要组成部分。
压力传感器工作原理详解
压力传感器工作原理详解压力传感器是一种广泛应用于工业、医疗、汽车等领域的传感器,它可以测量物体受力后产生的压力变化,并将其转化为电信号输出。
本文将详细介绍压力传感器的工作原理及其应用。
一、压力传感器的基本原理压力传感器的工作原理基于压力对物体的变形产生的影响。
当一个物体受到外力作用时,它会发生形变,而形变的大小与受力的大小成正比。
压力传感器利用这个原理,通过测量物体的形变来间接测量压力的大小。
二、压力传感器的结构压力传感器通常由弹性元件、传感器芯片和信号处理电路组成。
其中,弹性元件是压力传感器的核心部件,它负责接受外界压力的作用,并产生相应的形变。
传感器芯片则用于将形变转化为电信号,而信号处理电路则负责对电信号进行放大、滤波等处理。
三、压力传感器的工作原理压力传感器的工作原理可以分为压阻式、电容式和电感式三种。
1. 压阻式压力传感器压阻式压力传感器利用压阻效应来测量压力。
它的核心部件是一个由压阻材料制成的弹性薄片,当受到外界压力作用时,薄片会发生形变,从而改变其电阻值。
传感器芯片通过测量电阻值的变化来间接测量压力的大小。
2. 电容式压力传感器电容式压力传感器利用电容的变化来测量压力。
它的核心部件是一个由两个金属电极和一个隔离层构成的电容器。
当受到外界压力作用时,隔离层会发生形变,从而改变电容器的电容值。
传感器芯片通过测量电容值的变化来间接测量压力的大小。
3. 电感式压力传感器电感式压力传感器利用电感的变化来测量压力。
它的核心部件是一个由线圈和铁芯构成的电感器。
当受到外界压力作用时,铁芯会发生形变,从而改变电感器的电感值。
传感器芯片通过测量电感值的变化来间接测量压力的大小。
四、压力传感器的应用压力传感器在工业、医疗、汽车等领域具有广泛的应用。
1. 工业领域在工业领域,压力传感器常被用于测量流体管道中的压力变化,以控制流量、监测设备状态等。
它还可以用于测量液体或气体的压力,以确保工业过程的安全性和稳定性。
压阻式压力传感器工作原理
压阻式压力传感器工作原理
压阻式压力传感器是一种常见的压力传感器,它可以将外界施
加在其上的压力转化为电信号输出,被广泛应用于工业自动化、汽
车电子、医疗器械等领域。
那么,压阻式压力传感器是如何工作的呢?接下来,我们将详细介绍其工作原理。
首先,压阻式压力传感器的核心部件是由敏感材料制成的压阻
薄膜。
当外界施加压力时,压阻薄膜会发生形变,从而改变其电阻值。
这种电阻值的变化与外界压力成正比,因此可以通过测量电阻
值的变化来间接测量外界压力的大小。
其次,压阻式压力传感器通常采用电桥电路来测量压阻薄膜的
电阻值变化。
电桥电路由四个电阻组成,当压阻薄膜的电阻值发生
变化时,会导致电桥电路中的电压变化。
通过测量这种电压变化,
就可以得到外界施加在压阻薄膜上的压力大小。
此外,为了提高测量精度,压阻式压力传感器通常还会配备温
度补偿电路。
由于压阻薄膜的电阻值受温度影响较大,为了消除温
度对测量结果的影响,温度补偿电路会实时监测传感器的工作温度,并根据温度变化来调整电路参数,以保证测量结果的准确性。
最后,压阻式压力传感器的输出信号通常为模拟信号,需要经过模数转换电路转换为数字信号,然后再通过数据处理单元进行处理,最终得到压力的数字化结果。
这样的数字化结果可以直接用于控制系统的反馈控制、数据采集和显示等应用。
总结一下,压阻式压力传感器的工作原理主要包括压阻薄膜的电阻值变化、电桥电路的测量、温度补偿和信号处理等环节。
通过这些环节的协同作用,压阻式压力传感器可以准确、稳定地将外界压力转化为电信号输出,为各种应用提供了可靠的压力测量手段。
压阻式压力传感器
这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计, 前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵 敏度比后者大50~100倍 。
实际上,交叉灵敏度反映了在不同应变时,温度灵敏度不是一个常数,而是随着应变的变化而变化,交叉灵 敏度的大小描述了温度灵敏度偏离常数的程度。实验中通过在不同应变下测量温度灵敏度,作出ST-ε曲线,该 曲线的斜率便反映了交叉灵敏度的大小。
以IC Sensors公司的S17-30A型传感器为例,结合A/D转换器AD7731把模拟量转换成数字量—6位16进制原码, 再把16进制的原码送入AT89c52单片机,由单片机送出原码值。实验中以标准压力作为输入,测取不同温度条件 下16进制的原码值,实验数据如表1所示。
压阻式压力传感器
压力式传感器
目录
01 应用
03
压阻式传感器的工作 原理
压阻式传感器的应变
02 与温度交叉灵敏度分 析
04 压阻式传感器的结构
压阻式压力传感器是利用单晶硅的压阻效应而构成。采用单晶硅片为弹性元件,在单晶硅膜片上利用集成电 路的工艺,在单晶硅的特定方向扩散一组等值电阻,并将电阻接成桥路,单晶硅片置于传感器腔内。当压力发生 变化时,单晶硅产生应变,使直接扩散在上面的应变电阻产生与被测压力成正比的变化,再由桥式电路获相应的 电压输出信号。
此外,也有采用方形硅膜片和硅柱形敏感元件的。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散 制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。
压阻式压力传感器原理及其应用
压阻式压力传感器原理及其应用压阻式压力传感器是一种常用的力与位移测量装置,利用材料的压阻效应来实现压力的测量。
它的原理是通过将存在压力的物体和传感器的敏感元件之间产生机械接触,使得敏感元件受压弯曲,从而改变其电阻值。
压阻式压力传感器的核心技术就是敏感元件的压阻材料。
压阻材料通常是导电材料,如硅、硅胶、塑胶等。
当材料受到外力压缩时,其电阻值会随之改变。
这是因为在压力作用下,材料内部电荷的分布发生变化,导致材料的电阻值发生变化。
通过测量电阻值的变化,就可以得知压力的大小。
1.精度高:利用材料的压阻效应来进行压力测量,具有较高的测量精度。
2.反应快:由于无需机械部件的运动,响应时间较短。
3.可靠性高:采用固态结构,不易受到外界振动、冲击的影响。
4.安装简单:可以直接安装在被测压力物体之上,使用方便。
1.工业自动化:用于监测液体和气体的压力,广泛应用于工业自动化系统中。
如压力控制、压力调节、管道检测等。
2.汽车工业:用于汽车制动液和胎压的监测。
通过测量汽车轮胎的压力,可以保证行驶安全。
3.医疗设备:用于测量血压、气体浓度等医疗参数,为医疗设备提供准确的数据支持。
4.污水处理:用于监测和控制污水处理系统中的压力和流量,保证系统的正常运行。
5.空调系统:用于监测空调系统中的制冷介质的压力,以调节和控制空调的制冷效果。
6.水压调节:用于监测水源、供水管道和管网的压力,以保证供水的稳定性。
总结来说,压阻式压力传感器利用材料的压阻效应实现压力测量,具有精度高、反应快、可靠性高和安装简单等特点,广泛应用于工业自动化、汽车工业、医疗设备、污水处理、空调系统和水压调节等领域。
压阻式压力传感器原理
压阻式压力传感器原理
压阻式压力传感器是一种常用的压力测量设备,主要基于材料的压阻效应工作原理。
它由一块特殊的薄膜材料制成,薄膜上有一个小细窗口,当外部施加压力时,压力作用在细窗口上,导致薄膜的形状发生微小变化。
薄膜上附着有细小的电阻器,当薄膜发生变形时,电阻器受到拉伸或压缩,其电阻值也相应发生变化。
薄膜上的电阻器构成了一个电阻网络,通过测量这个网络的电阻值变化,就可以间接测量出外部施加在薄膜上的压力。
具体来说,压阻式压力传感器通常采用桥式电路来测量压力对电阻值的影响。
传感器的电阻网络中有一个电桥,包括两个平衡电阻和两个压阻电阻(即变化的电阻)。
当压力传感器没有受到外部压力时,电桥处于平衡状态,输出电压为零。
当外部施加压力时,压阻电阻会发生变化,导致电桥不再平衡。
此时测量电路就会输出一个与压力大小成正比的电压信号。
通过测量输出电压值,就可以获得外部施加在压力传感器上的压力值。
压阻式压力传感器具有结构简单、制作成本低廉的优点,但同时也有一些局限性,例如灵敏度较低,易受到温度影响等。
为了提高其性能,常常需要对其进行温度和线性校准,以确保测量结果的准确性和稳定性。
压阻式压力传感器
压阻式压力传感器简介压阻式压力传感器是一种常见的传感器,用于测量各种物体的压力。
它采用了压阻效应,当外界施加压力时,传感器的阻值会发生变化,通过测量阻值的变化可以得知压力的大小。
压阻式压力传感器具有灵敏度高、价格低廉等优点,广泛应用于工业控制、汽车电子、医疗设备等领域。
压阻效应压阻效应是指在材料受到外界压力作用下,其电阻发生变化的现象。
这种变化可以通过的压阻式压力传感器来测量和利用。
压阻效应主要有以下两种:1.金属应变效应:当金属受到压力时,其晶格结构会发生变形,导致电阻值的变化。
这种效应是因为金属的电阻率与其晶格结构有关。
2.电子隧穿效应:当两个材料之间存在微小的空隙时,当外界压力作用于这两个材料时,空隙的宽度会发生变化,从而改变了电子的隧穿概率。
这种效应主要用于微小压力的测量,如气体压力传感器。
结构和工作原理一般来说,压阻式压力传感器由以下几个主要部分组成:1.压敏元件:压敏元件是压力传感器的核心部分,其阻值受外界压力的影响而变化。
常见的压敏元件有薄膜电阻、应变片等。
2.扩散层:扩散层用于保护压敏元件免受外界的损害,并使压力能够均匀地传递到压敏元件上。
3.绝缘层:绝缘层用于隔离压敏元件与其他部分,防止电流泄漏和干扰。
4.连接线:连接线用于将压敏元件的阻值变化转化为电信号,并输出给外部设备进行处理。
压阻式压力传感器的工作原理如下:1.当外界施加压力时,压力会通过扩散层传递到压敏元件上。
2.压敏元件的阻值随着压力的变化而变化。
3.连接线将变化的阻值转化为相应的电信号,并输出给外部设备进行处理和显示。
应用领域压阻式压力传感器具有广泛的应用领域,以下是几个常见的应用领域:1.工业控制:压阻式压力传感器被广泛用于工业自动化控制中,用于监测和控制各种工艺参数。
2.汽车电子:压阻式压力传感器在汽车电子中起着重要作用,用于发动机控制、制动系统、气囊系统等。
3.医疗设备:压阻式压力传感器被应用于医疗设备中,用于监测患者的生命体征,如血压测量、呼吸监测等。
压阻式压力传感器加工工艺流程
压阻式压力传感器加工工艺流程
压阻式压力传感器是一种利用电阻值随着受力而发生变化的传感器。
下面是压阻式压力传感器的加工工艺流程的一般步骤:材料准备:
选择适用于制造压阻式压力传感器的材料,通常包括导电材料如硅或聚合物基底。
确保所选材料具有良好的弹性和耐腐蚀性。
基底制备:
切割、成型或加工基底材料,以形成传感器的主体结构。
这可能包括采用厚度均匀的薄片、膜片或其他形式。
导电层制备:
在基底表面或嵌入基底中添加导电层,通常使用导电材料如铜、银或聚合物导电体。
这一层将在受到压力时发生形变,导致电阻变化。
敏感区域设计:
确定传感器上的敏感区域,即在受力时会发生形变的区域。
通常,这是导电层覆盖的区域,形成电阻变化的关键部分。
连接线加工:
添加电极或导线以连接传感器的导电层。
这些连接线将允许电阻变化的信号传递到电子设备中进行测量和分析。
封装和保护:
对传感器进行封装,以保护其免受环境条件的影响,如湿度、腐蚀或物理损伤。
封装通常使用防水、防尘的材料。
校准和测试:
在生产之前,对传感器进行校准,确保其输出与受力的准确关系。
进行必要的功能测试,以验证传感器在各种条件下的性能。
成品检验:
进行整体的成品检验,确保每个传感器都符合规格要求。
测试样品,验证它们在实际使用中的性能。
包装和交付:
将传感器进行包装,以便在运输和存储期间保持其完整性。
将成品交付给客户或下游制造商。
这个流程是一般的压阻式压力传感器制造过程,实际的步骤可能会因制造商和应用而有所不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.1压力的基本概念
这几种表示法的关系如图4-1所示。
工程上按压力随时间的变化关系还有静态压力和动态压力之分。
4.1.1压力的基本概念
3. 压力的计量单位
压力是力和面积的导出量。在国际单位制中,取力的单位为 牛顿,面积单位为米2,则压力单位为牛顿/米2,用符号N/m2 表示;压力单位又称为帕斯卡或简称帕,符号为Pa。1Pa= 1N/m2。因帕单位太小,工程上常用kPa(103Pa)和MPa (106 Pa) 表示。我国已规定帕斯卡为压力的法定单位。
4.1.2 常用压力检测仪表
2. 弹性压力计
弹性压力计基本组成环节如图4-3所示。
弹性元件是核心部分, 用于感受压力并产生弹 性变形;指示机构用于 给出压力示值;调整机 构用于调整压力计的零 点和量程。 (1) 弹性元件 工业上常用的弹性元件如表4-2所示。
4.1.2 常用压力检测仪表
类名 别称
4.1.2 常用压力检测仪表
由于D>>d,故d2/D2可以忽略不计,则式(4-4)可写成
p hg h1g
(4-5)
(3)斜管压力计
将单管压力计的玻璃管制成斜管,如图4-2(c)所示。则p1与
液柱之间的关系仍然与式(4-5)相同(目的:提高灵敏度,减
小误差)
p hg Lg sin (4-6)
下(例如压力p2),求出另一压力值:
p p1 p2 gh p1 p2 gh
(4-3)
4.1.2 常用压力检测仪表
(2)单管压力计
单管压力计如图4-2(b)所示。当大容器一侧通入被测压力p1,
管一侧通入大气压p2时,满足下列关系
p
p1
p2
hg
(h1
h2 )
(1
d2 D2
)h1g
(4-4)
1. 压力的定义
压力是垂直而均匀地作用在单位面积上的力,即物理学中常 称的压强。工程上,习惯把压强称为压力。由此定义,压力 可表示为:
pF S
(4-1)
4.1.1压力的基本概念
2. 压力的表示方法
绝对压力——以完全真空(绝对压力零位)作参考点的压力称 为绝对压力 大气压力——由地球表面大气层空气柱重力所形成的压力称 为大气压力 表压力—— 以大气压力为参考点,大于或小于大气压力的 压力称为表压力 差压(压差)——任意两个压力之差称为差压
4.1.2 常用压力检测仪表
(1) U形管压力计
图4-2(a)所示的U形管是用来测量压力和压差的仪表。在U 形管两端接入不同压力p1和p2时,根据流体静力平衡原理可 知,U形管两边管内液柱差h与被测压力p1和p2的关系为
p1A p2 A ghA
(4-2)
由式(4-2)可求得两压力的差值∆p或在己知一个压力的情况
4.1.2 常用压力检测仪表
波 纹 管 式
波 纹 管
单 圈 弹 簧 弹管 簧 管 式多 圈 弹 簧 管
0~10-3
0~103
0~10-1
0~106
0~10-2
0~105
10-2~ 10-1
10~ 102
-
102~ 103
-
10~ 102
4.1.2 常用压力检测仪表
(2) 弹簧管压力计 弹簧管式压力计是工业生产上应用很广泛的一种直读式测压仪 表,以单圈弹簧管结构应用最多。其一般结构如图4-4所示。
4.1 压力的测量
4.1.1压力的基本概念 4.1.2常用压力检测技术 4.1.3压力检测仪表的校准 4.1.4动态压力检测管道 4.1.5压力检测仪表的选择与安装
4.1.2 常用压力检测仪表
1. 液柱式压力计
应用液柱测量压力的方法是以流体静力学原理为基础的。一 般是采用充有水或水银等液体的玻璃U形管、单管或斜管进行 压力测量的,其结构形式如图4-2所示。
力学量检测技术
1 电压的测量 2 力的测量 3 转矩测量
4.1 压力的测量
4.1.1压力的基本概念 4.1.2常用压力检测技术 4.1.3压力检测仪表的校准 4.1.4动态压力检测管道 4.1.5压力检测仪表的选择与安装
4.1.1压力的基本概念
压力是工业生产过程中重要的工艺参数之一,正确地测量和 控制压力是保证工业生产过程良好地运行,达到高产优质低 耗及安全生产的重要环节。
(2) 弹性力平衡方法 ——利用弹性元件受压力作用发生 弹性变形而产生的弹性力与被测压力相平衡的原理来检测 压力。
4.1.1压力的基本概念
(3) 机械力平衡方法——将被测压力经变换元件转换成一 个集中力,用外力与之平衡,通过测量平衡时的外力测知被 测压力。
(4) 物性测量方法——利用敏感元件在压力的作用下,其某 些物理特性发生与压力成确定关系变化的原理,将被测压力 直接转换为各种电量来测量。
1-弹簧管;2-扇形齿 轮;3-拉杆;4-底座; 5-中心齿轮;6-游丝; 7-表盘; 8-指针; 9接头;10-弹簧管横 截面;11-调节开口槽
4.1.2 常用压力检测仪表
工作过程:被测压力由接口引入,使弹簧管自由端产生位移, 通过拉杆使扇形齿轮逆时针偏转,并带动啮合的中心齿轮转 动,与中心齿轮同轴的指针将同时顺时针偏转,并在面板的 刻度标尺上指示出被测压力值。
目前工程技术部门仍在使用的压力单位有工程大气压、物理 大气压、巴、毫米水柱、毫米汞柱等。
4.1.1压力的基本概念
4. 压力检测的基本方法
根据不同工作原理,压力检测方法可分为如下几种:
(1) 重力平衡方法——利用一定高度的工作液体产生的 重力或砝码的重量与被测压力相平衡的原理,将被测压力 转换为液柱高度或平衡砝码的重量来测量。
特点:结构简单,使用方便,价格低廉,测压范围宽,精度 最高。
(3)波纹管压力计
波纹管压力计以波纹管作为压力-位移转换元件,由于金属波 纹管在压力作用下容易变形,所以测压灵敏度很高。
4.1.2 常用压力检测仪表
图4-5是一种采用双波纹管测量差压的双波纹管差压计的结构 示意图。
1-连接轴;2-保护阀; 3-阻尼环;4-推板;5扭力管;6-心轴;7-量 程弹簧;8-平衡阀;9低压波纹管;10-摆杆; 11-阻尼阀;12-中心基 座;13-高压波纹管; 14-填充液
平 薄 膜
薄波 膜纹 式膜
挠 性 膜
表4-2 弹性元件的结构和特性
示意图
压力测量范围 kPa
最小
最大
输出特性
0~10
0~105
动态性质
时间常 数/s
自振 频率 /Hz
10-5~ 10-2
10~ 104
0~10-3
0~103
10-2~ 10-1
10~ 102
0~10-5
0~102
10-2~1 1~102