33几何图形(提高)巩固练习

合集下载

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。

封闭的旋转面围成的几何体叫做旋转体。

这条定直线叫做旋转体的轴。

3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。

棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。

一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。

4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。

棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。

5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。

在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。

6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。

人教版 七年级数学上册 第4章 几何图形初步 综合巩固训练(含答案)

人教版 七年级数学上册 第4章 几何图形初步 综合巩固训练(含答案)

人教版七年级数学第4章几何图形初步综合巩固训练一、选择题(本大题共10道小题)1. 下列说法中,正确的是()A.两条直线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形2. 下列图形中,可以作为一个正方体的展开图的是()3. 经过同一平面内A,B,C三点可连接直线的条数为()A.一条B.三条C.三条或一条D.不能确定4. 下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么M是线段AB的中点C.因为点A,M,B(互不重合)在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以M是线段AB的中点5. 下列图形中属于平面图形的是()A.长方体B.圆柱C.圆D.球6. 直角三角尺绕它的最长边(即斜边)旋转1周,所形成的几何体为()7. 已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°8. 已知线段AB=12 cm,C是直线AB上一点,BC=4 cm,若P是线段AB的中点,则线段PC的长度是()A.2 cmB.2 cm或10 cmC.10 cmD.2 cm或8 cm9. 已知∠α的补角的一半比∠α小30°,则∠α等于()A.50°B.60°C.70°D.80°10. 角α,β都是钝角,甲、乙、丙、丁四人计算(α+β)的结果依次为12°,44°,66°,88°,其中只有一人计算正确,那么算出正确答案的是()A.甲B.乙C.丙D.丁二、填空题(本大题共8道小题)11.如图是由若干个大小相同的小正方体堆砌而成的立体图形,那么从正面、左面及上面看所得到的平面图形中面积最小的是从________面看得到的平面图形.12. 苏轼的诗句“横看成岭侧成峰,远近高低各不同”说明的现象是.13. 如图所示的图形中,是棱柱的有______.(填序号)14. 如图,已知O是线段AB的中点,C是AB的三等分点,OC=2 cm,则AB=.15. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.16. 如果一个角是60°,用放大镜放大到原来的10倍再观察这个角,那么这个角的度数应是.17. 如图所示,AF=.(用含a,b,c的式子表示)18. 图中可用字母表示出的射线有条.三、解答题(本大题共4道小题)19. 如图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角,哪些角互为补角?(2)∠ADF与∠BDE有什么数量关系?∠ADC与∠BDC有什么数量关系?为什么?20. 下面给出的正方形纸板的边长都是60 cm,请分别按下列要求设计一种剪裁方法,折叠成一个礼品包装盒(纸板的厚度忽略不计).要求尽可能多地利用纸板,用虚线表示你的设计方案,并把剪裁线用实线标出.(1)礼品包装盒的六个面由六个长方形组成(如图①),请画出对应的设计图.(2)礼品包装盒的上盖由四个完全相同的等腰直角三角形组成(如图①),请画出对应的设计图.(3)礼品包装盒的上盖是双层的,由四个完全相同的长方形组成(如图①),请画出对应的设计图.21. 实践与应用:一个西瓜放在桌子上,从上往下切,一刀可以切成2块,两刀最多可以切成4块,3刀最多可以切成7块,4刀最多可以切成11块(如图).上述实际问题可转化为数学问题:n条直线最多可以把平面分成几部分.请先进行操作,然后回答下列问题.(1)填表:直线条数 1 2 3 4 5 6 …最多可以把平面分成的2 4 7 11 …部分数(2)直接写出n条直线最多可以把平面分成几部分(用含n的式子表示).22. 已知M是线段AB上一点,点C在线段AM上,点D在线段BM上,C,D 两点分别同时从点M,B出发,以1 cm/s,3 cm/s的速度沿直线BA向左运动. (1)若AB=10 cm,当点C,D运动了2 s时,点C,D的位置如图0①所示,求AC+MD的值;(2)若点C,D在没有运动到点A和点M前,总有MD=3AC,试说明此时有AM=AB;(3)如图②,若AM=AB,N是直线AB上一点,且AN-BN=MN,求的值.人教版七年级数学第4章几何图形初步综合巩固训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】D3. 【答案】C4. 【答案】D5. 【答案】C6. 【答案】C7. 【答案】C[解析] 如图,若OC在∠AOB内部,则∠BOC1=∠AOB-∠AOC1=70°-42°=28°;若OC在∠AOB外部,则∠BOC2=∠AOB+∠AOC2=70°+42°=112°.8. 【答案】B[解析] ∵线段AB=12 cm,P是线段AB的中点,∴BP=AB=6 cm.如图①,线段BC不在线段AB上时,PC=BP+BC=6+4=10(cm);如图②,线段BC在线段AB上时,PC=BP-BC=6-4=2(cm).综上所述,线段PC的长度是10 cm或2 cm.9. 【答案】D[解析] 依题意得∠α-(180°-∠α)=30°,解得∠α=80°.故选D.10. 【答案】B[解析] 因为角α,β都是钝角,所以角α,β都大于90°且小于180°,所以α+β的结果大于180°且小于360°,所以(α+β)的结果大于30°且小于60°.显然只有选项B符合题意.二、填空题(本大题共8道小题)11. 【答案】左[解析] 该几何体从正面看是由5个小正方形组成的平面图形;从左面看是由3个小正方形组成的平面图形;从上面看是由5个小正方形组成的平面图形,故面积最小的是从左面看得到的平面图形.12. 【答案】观察同一个物体,由于方向和角度不同,看到的图形往往不同13. 【答案】②⑥14. 【答案】12 cm[解析] 因为AO=AB,AC=AB,所以OC=AO-AC=AB=2 cm.所以AB=12 cm.15. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.16. 【答案】60°[解析] 用放大镜观察角不会改变角的大小,所以这个角的度数应是60°.17. 【答案】2a-2b-c18. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、解答题(本大题共4道小题)19. 【答案】解:(1)因为∠EDC=∠CDF=90°,∠1=∠2,所以∠1和∠ADC,∠1和∠BDC,∠2和∠ADC,∠2和∠BDC互为余角;∠1和∠ADF,∠2和∠ADF,∠EDC和∠CDF,∠2和∠BDE,∠1和∠BDE 互为补角.(2)∠ADF=∠BDE,∠ADC=∠BDC.理由:因为∠1=∠2,∠1+∠ADF=180°,∠2+∠BDE=180°,所以∠ADF=∠BDE.因为∠EDC=∠CDF=90°,所以∠1+∠ADC=90°,∠2+∠BDC=90°.又因为∠1=∠2,所以∠ADC=∠BDC.20. 【答案】解:答案不唯一,不必考虑取最大值.如:(1)如图①.(2)如图②.(3)如图③.21. 【答案】解:(1)设n条直线最多可以把平面分成的部分数是S n.当n=5时,S5=1+1+2+3+4+5=16,当n=6时,S6=1+1+2+3+4+5+6=22.故表内从左到右依次填16,22.(2)S n=1+1+2+3+…+n=1+=.故n条直线最多可以把平面分成部分.22. 【答案】解:(1)当点C,D运动了2 s时,CM=2 cm,BD=6 cm.因为AB=10 cm,所以AC+MD=AB-CM-BD=10-2-6=2(cm).(2)因为C,D两点的速度分别为1 cm/s,3 cm/s,所以当运动时间为t s时,BD=3t cm,CM=t cm.又因为MD=3AC,所以BD+MD=3t+3AC=3(CM+AC),即BM=3AM,所以AM=AB.(3)分以下两种情况讨论:①若点N在线段AB上,如图(a)所示:因为AN-BN=MN,且AN-AM=MN,所以BN=AM=AB.所以MN=AB,即=.②若点N在线段AB的延长线上,如图(b)所示:因为AN-BN=MN,AN-BN=AB,所以MN=AB,即=1.综上所述,的值为或1.。

几何图形(提高)巩固习题

几何图形(提高)巩固习题

【巩固练习】
一、选择题
1.小亮在观察如图所示的热水瓶时,从左面看得到的图形是().
2.如图所示:桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,从左面看到的图是图中的().
3.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体是如图中的().
4.(山西)如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()
A.5
B.6
C.7
D.8
5. 如右图是画有一条对角线的平行四边形纸片ABCD,
用此纸片可以围成一个无上下底面的三棱柱纸筒,则所
围成的三棱柱纸筒可能是()
6.(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()。

高考数学一轮总复习课时规范练33基本立体图形及空间几何体的表面积和体积北师大版

高考数学一轮总复习课时规范练33基本立体图形及空间几何体的表面积和体积北师大版

课时规范练33基本立体图形及空间几何体的表面积和体积基础巩固组1.能旋转形成如图所示的几何体的平面图形是()2.用斜二测画法得到一个水平放置的平面图形OABC的直观图为如图所示的直角梯形O'A'B'C',其中,若原平面图形OABC的面积为3√2,则O'A'的长为()梯形的上底长是下底长的13A.2B.√2C.√3D.323.如图所示的扇形是某个圆锥的侧面展开图,已知扇形所在圆的半径R=√5,扇形弧长l=4π,则该圆锥的表面积为()A.2πB.(4+2√5)πC.(3+√5)πD.8π+√54.(2021湖北十堰二模)已知某圆柱的轴截面是正方形,且该圆柱的侧面积是4π,则该圆柱的体积是()A.2πB.4πC.8πD.12π5.将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的体积为()A.√2π3B.√3π3C.4π3D.2π6.(2021北京,8)定义:24小时内降水在平地上积水厚度(单位:mm)来判断降雨程度.其中小雨(<10 mm),中雨(10 mm—25 mm),大雨(25 mm—50 mm),暴雨(50 mm—100 mm),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A.小雨B.中雨C.大雨D.暴雨7.下列四个论断不正确的是()A.过圆锥两母线的截面面积中,最大的不一定是轴截面面积B.经过一条已知直线有且只有一个平面与已知平面垂直C.等底面积等高的棱柱与圆柱的体积相等D.表面积相等的正方体和球体,体积较大的是球体8.(2021山东淄博一模)已知某圆锥底面圆的半径r=1,侧面展开图是一个半圆,则此圆锥的体积为.9.已知一个正四棱锥的侧棱与底面所成的角为45°,侧面积为4√3,则该棱锥的体积为.综合提升组10.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,则下列结论正确的是()A.圆柱的体积为4πR3B.圆锥的侧面积为2πR2C.圆柱的侧面积与圆锥的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶211.用长度分别是2,3,5,6,9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的对应长方体的最大表面积为()A.258 cm2B.414 cm2C.416 cm2D.418 cm212.(2021广东汕尾模拟)如图,一个圆锥形物体的母线长为6,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为6√2,则该圆锥形物体的底面半径为.13.如图,在长方体ABCD-A1B1C1D1中,AB=14,BC=5,AA1=4,点E,F分别在A1B1,D1C1上,A1E=D1F=2.(1)求直线CF与C1E所成角的余弦值;(2)过点E,F的平面α与此长方体的表面相交,交线围成一个正方形,求平面α把该长方体分成的较小部分与较大部分的体积的比值.创新应用组14.有一种外形为圆锥形的斗笠,称为“灯罩斗笠”,根据人的体型、高矮等制作成大小不一的型号供人选择使用,不同型号的斗笠大小经常用帽坡长(母线长)和帽底宽(底面圆直径长)两个指标进行衡量,现有一个“灯罩斗笠”,帽坡长20厘米,帽底宽20√3厘米,关于此斗笠,下面说法错误的是()A.分笠轴截面(过顶点和底面中心的截面图形)的顶角为120°B.过斗笠顶点和斗笠侧面上任意两母线的截面三角形的最大面积为100√3平方厘米C.若此斗笠顶点和底面圆上所有点都在同一个球上,则该球的表面积为1 600π平方厘米D.此斗笠放在平面上,可以盖住的球(保持斗笠不变形)的最大半径为(20√3-30)厘米15.(2021八省联考模拟卷)用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫作多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为2π-3×π3=π,故其总曲率为4π.(1)求四棱锥的总曲率;(2)若多面体满足:顶点数-棱数+面数=2,证明:这类多面体的总曲率是常数.课时规范练33 基本立体图形及空间几何体的表面积和体积1.A 解析:此几何体自上向下是由一个圆锥、两个圆台和一个圆柱构成,是由A 中的平面图形旋转形成的.故选A .2.D 解析:设O'A'=x ,则O'B'=√2x ,在原图形中OB=2O'B'=2√2x ,BC=B'C'=x3,OA=O'A'=x ,OB 为原图形中梯形的高,面积为S=12×x+13x ×2√2x=3√2,解得x=32,故选D .3.B 解析:设圆锥底面圆半径为r ,则2πr=4π,解得r=2.圆锥的表面积S 表=S 底面圆+S 侧=πr 2+12lR=π×22+12×4π×√5=(4+2√5)π. 故选B .4.A 解析:设该圆柱的底面圆半径为r ,则圆柱的高(母线)为h ,而圆柱的轴截面是正方形,则h=2r ,圆柱侧面积为2πrh=4π,即4πr 2=4π,解得r=1,h=2,故该圆柱的体积是πr 2h=2π. 故选A .5.A 解析:设圆锥的底面半径为r ,高为h ,则2πr=2π3×3,所以r=1,则h=√32-12=2√2. 设内切球的半径为R ,则R2√2-R=13,所以R=√22,所以V=4π3R 3=4π3×√223=√2π3.故选A .6.B 解析:由题可知,圆锥内积水的高度是圆锥高度的一半,则圆锥内积水部分的半径为r=12×12×200=50(mm),h=12×300=150(mm).所以由定义可得,积水厚度d=13π×502×150π×1002=12.5(mm),属于中雨.故选B .7.B 解析:由于圆锥母线长度都相等由于圆锥母线长度都相等,设两母线的夹角为θ,母线长为2,则过圆锥两母线的截面面积为12×2×2sin θ=2sin θ,当轴截面两母线的夹角θ=150°时,轴截面的面积为2sin150°=1,此时可以找到一个两母线的夹角θ=90°不是轴截面的截面,其面积为2sin90°=2,故A 正确;当已知直线垂直于已知平面时,过已知直线的所有平面都垂直于已知平面,故B 错误;由于棱柱和圆柱的体积都是底面积乘高,则等底面积等高的棱柱与圆柱的体积相等,故C 正确;设正方体的棱长为a ,球的半径为R ,则S=4πR 2=6a 2,球的体积为V 1=43×πR 3=S 3×√S4π,正方体的体积为V 2=a 3=S 6×√S6,所以V 1>V 2,故D 正确.故选B . 8.√3π3解析:∵圆锥的侧面展开图是一个半圆,圆锥的底面周长为2π,即侧面展开图半圆的弧长是2π,则半圆的半径,即圆锥的母线为2. 圆锥的高为√22-12=√3. ∴圆锥的体积V=13π×12×√3=√3π3. 9.4√23解析:设正四棱锥底面边长为2a ,且正四棱锥的侧棱与底面所成的角为45°,则四棱锥的高为√2a.又正四棱锥的侧面积为4√3,所以每个侧面的面积为√3. 则12×2a ×√3a=√3,解得a=1.即正四棱锥的高为√2,故该棱锥的体积为13×22×√2=4√23. 10.D 解析:依题意圆柱的底面半径为R ,则圆柱的高为2R ,故圆柱的体积为πR 2×2R=2πR 3,故A 错误;由题可得,圆锥的母线长为√5R ,圆锥的侧面积为πR ×√5R=√5πR 2,故B 错误; ∵圆柱的侧面积为4πR 2,圆锥表面积为√5πR 2+πR 2,故C 错误; ∴V 圆柱=πR 2·2R=2πR 3,V 圆锥=13πR 2·2R=23πR 3,V 球=43πR 3,∴V 圆柱∶V 圆锥∶V 球=2πR 3∶23πR 3∶43πR 3=3∶1∶2,故D 正确.故选D .11.C 解析:设长方体的三条棱的长度为a ,b ,c , 所以长方体表面积S=2(ab+bc+ac )≤(a+b)22+(b+c)22+(a+c)22,当且仅当a=b=c 时取等号又由题意可知a=b=c 不可能成立,所以当a ,b ,c 的长度最接近时,此时对应的表面积最大,此时三边长分别为8cm ,8cm ,9cm , 用2cm 和6cm 连接在一起形成8cm ,用3cm 和5cm 连接在一起形成8cm ,剩余一条棱长为9cm , 所以最大表面积为2×(8×8+8×9+8×9)=416(cm 2).故选C .12.32解析:圆锥侧面展开图为扇形POP',如图.由题知,OP=OP'=6,小虫爬行的最短路程为线段PP',即PP'=6√2.显然有OP2+OP'2=72=PP'2,即∠POP'=π2.设圆锥底面圆半径为r,则有2πr=6×π2=3π,解得r=32.即圆锥形物体的底面半径为32.13.解(1)连接EF,EB,BC1,长方体ABCD-A1B1C1D1中,A1E=D1F=2,且A1E∥D1F,所以四边形A1EFD1是平行四边形,所以A1D1与EF平行且相等,所以EF与BC平行且相等,所以四边形EFCB为平行四边形,所以FC∥BE,直线CF与C1E所成角就是∠C1EB或其补角,C1E=√EF2+FC12=13,EB=√EB12+BB12=4√10,C1B=√B1B2+B1C12=√41,在△C1EB中,由余弦定理,cos∠C1EB=C1E 2+EB2-C1B22C1E·EB =2×13×4√10=18√1065,所以直线CF与C1E所成角的余弦值为18√1065.(2)设过点E,F的平面α与此长方体的表面相交,交线围成一个正方形,即正方形EFNM,则EM=5,作EP⊥AB于点P,作FQ⊥DC于点Q,所以PM=3,所以点M在点P的右侧,平面α把该长方体分成的两部分为直棱柱AMEA1-DNFD1和直棱柱EMBB1-FNCC1,两个直棱柱的高相等,两部分体积之比为V AMEA 1-DNFD 1VEMBB 1-FNCC 1=AM+A 1E2·AA 1·AD MB+B 1E2·AA 1·BC=721=13.14.B 解析:对于A ,作出图形如图所示,PO=√202-(10√3)2=√400−300=10, 所以sin ∠APO=AO AP=10√320=√32, 因为0°<∠APO<90°,故∠APO=60°,所以∠APB=120°,故选项A 正确;对于B ,设∠APB=θ,截面三角形面积为S=12·PA 2·sin θ=200sin θ≤200,故选项B 不正确; 对于C ,设外接球球心为M ,半径为R ,所以MA=MP=R , 在△AOM 中,由勾股定理可得300+(R-10)2=R 2,解得R=20, 所以该球的表面积S=4π×202=1600π,故选项C 正确;对于D ,设球心为O',截面主视图如图所示,设内切圆半径为r ,△ABP 各边长分别为PA=PB=20,AB=20√3,所以12×(20+20+20√3)r=12×20√3×10, 解得r=20√3-30,故选项D 正确.故选B .15.(1)解由题可知,四棱锥的总曲率等于四棱锥各顶点的曲率之和.可以从整个多面体的角度考虑,所有顶点相关的面角就是多面体的所有多边形表面的内角的集合.由图可知,四棱锥共有5个顶点,5个面,其中4个为三角形,1个为四边形.所以四棱锥的表面内角和由4个为三角形,1个为四边形组成,则其总曲率为2π×5-(4π+2π)=4π.(2)证明设顶点数、棱数、面数分别为n,l,m,所以有n-l+m=2.设第i个面的棱数为x i,所以x1+x2+…+x m=2l,所以总曲率为2πn-π[(x1-2)+(x2-2)+…+(x m-2)]=2πn-π(2l-2m)=2π(n-l+m)=4π,所以这类多面体的总曲率是常数.11。

2023年春九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2023年春九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2023年春九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)1.如图,在△ABC中,∠BAC=90°,AB=AC,点D为线段AB上一点,线段CD绕点C 逆时针旋转90°能与线段CE重合,点F为AC与BE的交点.(1)若BC=5,CE=4,求线段BD的长;(2)猜想BD与AF的数量关系,并证明你猜想的结论;(3)设CA=3DA=6,点M在线段CD上运动,点N在线段CA上运动,运动过程中,DN+MN的值是否有最小值,如果有,请直接写出这个最小值;如果没有,请说明理由.2.阅读下列材料,并完成相应的学习任务:图形旋转的应用图形的旋转是全等变换(平移、轴对称、旋转)中重要的变换之一,利用图形旋转中的对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变等性质,可以将一般图形转化成特殊图形,从而达到解决问题的目的.如图1,在Rt△ABC中,∠ACB=90°,CE平分∠ACB,且AC=4,BC=3.过点E作互相垂直的两条直线,即EF⊥ED,EF交AC于点F,ED交BC于点D,求四边形EFCD 的面积.分析:将∠FED以点E为旋转中心顺时针旋转,使得旋转后EF的对应线段所在直线垂直于AC,并且交AC于点M,旋转后ED的对应线段所在直线交BC于点N.则容易证明四边形MENC为正方形.因为∠EMF=∠END=90°,ME=NE,∠MEF=∠NED,所以△MEF≌△NED,所以S四边形EFCD=S正方形MENC.学习任务:(1)四边形EFCD的面积等于;(2)如图2,在Rt△ABC中,∠ACB=90°,①作出△ABC的外接圆O;②作∠ACB的平分线,与⊙O交于点D.要求:尺规作图,不写作法,但保留作图痕迹.(3)在(2)的基础上,若BC+AC=14,则四边形ACBD的面积等于.3.△ABC为等边三角形,AB=4,AD⊥BC于点D,点E为AD的中点.(1)如图1,将AE绕点A顺时针旋转60°至AF,连接EF交AB于点G,求证:G为EF中点.(2)如图2,在(1)的条件下,将△AEF绕点A顺时针旋转,旋转角为α,连接BE,H为BE的中点,连接DH,GH.当30°<α<120°时,猜想∠DHG的大小是否为定值,并证明你的结论.(3)在△AEF绕点A顺时针旋转过程中,H为BE的中点,连接CH,问线段CH何时取得最大值,请说明理由,并直接写出此时△ADH的面积.4.如图,已知△ABC中,∠ABC=45°,CD是边AB上的高线,E是AC上一点,连接BE,交CD于点F.(1)如图1,若∠ABE=15°,BC=+1,求DF的长;(2)如图2,若BF=AC,过点D作DG⊥BE于点G,求证:BE=CE+2DG;(3)如图3,若R为射线BA上的一个动点,以BR为斜边向外作等腰直角△BRH,M 为RH的中点.在(2)的条件下,将△CEF绕点C旋转,得到△CE'F',E,F的对应点分别为E',F',直线MF'与直线AB交于点P,tan∠ACD=,直接写出当MF'取最小值时的值.5.如图1,已知△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点B逆时针旋转一定的角度α得到△A1BC1.(1)若α=90°,则AA1的长为.(2)如图2,若0°<α<90°,直线A1C1分别交AB,AC于点G,H,当△AGH为等腰三角形时,求CH的长.(3)如图3,若0°<α<360°,M为边A1C1的中点,N为AM的中点,请直接写出CN的最大值.6.问题发现:(1)如图1,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点D为AB上一点,且AD=2DB,过点D作DE∥BC,填空:=,=;类比探究:(2)如图2,在(1)的条件下将△ADE绕点A逆时针旋转得到△AMN,连接DM,BM,EN,CN,请求出,的值;拓展延伸:(3)如图3,△ABC和△DEF同为等边三角形,且AB=3EF=6,连接AD,BE,将△DEF绕AC(DF)的中点O逆时针自由旋转,请直接写出在旋转过程中BE﹣AD的最大值.7.【问题提出】如图1,在等边三角形ABC内部有一点P,P A=3,PB=4,PC=5.求∠APB的度数.【数学思考】当图形中有一组邻边相等时,通过旋转可以将分散的条件集中起来解决问题.【尝试解决】(1)将△APC绕点A逆时针旋转60°,得到△AP'B,连接PP',则△APP'为等边三角形.∵P'P=P A=3,PB=4,P'B=PC=5,∴P'P2+PB2=P'B2,△BPP'为三角形,∴∠APB的度数为.(2)如图2,在等边三角形ABC外部有一点P,若∠BP A=30°,求证:P A2+PB2【类比探究】=PC2.【联想拓展】(3)如图3,在△ABC中,∠BAC=90°,AB=AC.点P在直线BC上方且∠APB=45°,PC=BC=2,求P A的长.8.如图(1),已知△ABC中,∠BAC=90°,AB=AC;AE是过A的一条直线,且B,C 在AE的异侧,BD⊥AE于D,CE⊥AE于E.(1)求证:BD=DE+CE;(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE,CE的数量关系如何?请给予证明.(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE,CE的数量关系如何?请直接写出结果,不需证明;(4)根据以上的讨论,请用简洁的语言表达直线AE在不同位置时BD与DE,CE的数量关系.9.(1)如图1,等腰直角△ABC,∠B=90°,点D为AC的中点,点E为边AB上的一点,作DE垂直DF交BC于点F,求证:DE=DF.(2)如图2,等腰直角△ABC,∠B=90°,点D为AC的中点,点E为边AB上的一点,线段DE绕着点D逆时针旋转90°得到线段DF,求证:点F在线段BC上;(3)如图3,直角△ABC,点D为AC的中点,点E为边AB上的一点,线段DE绕着点D逆时针旋转90°得到线段DF,若AB=6,BC=8,①直接写出线段EF=时,BE的长;②直接写出△ACF是等腰三角形时,BE的长;③直接写出△BEF面积的最大值.10.在平面直角坐标系中,O为原点,点A(﹣4,0),点B(0,3),△ABO绕点B顺时针旋转,得△A'BO',点A、O旋转后的对应点为A'、O',记旋转角为α.(1)如图①,α=90°,边OA上的一点M旋转后的对应点为N,当OM=1时,点N 的坐标为;(2)在(1)的条件下,当O'M+BN取得最小值时,在图②中画出点M的位置,并求出点N的坐标.(3)如图③,P为AB上一点,且P A:PB=2:1,连接PO'、P A',在△ABO绕点B顺时针旋转一周的过程中,△PO'A'的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.11.如图①,△ABC为直角三角形,∠ACB=90°,∠BAC=30°,点D在AB边上,过点D作DE⊥AC于点E,取BC边的中点F,连接DF并延长到点G,使FG=DF,连接CG.(如需作图或作辅助线,请先将原题草图画在对应题目的答题区域后再作答.)问题发现:(1)填空:CE与CG的数量关系是,直线CE与CG所夹的锐角的度数为.探究证明:(2)将△ADE绕点A逆时针旋转,(1)中的结论是否仍然成立,若成立,请仅就图②所示情况给出证明,若不成立,请说明理由;问题解决:(3)若AB=4,AD=3,将△ADE由图①位置绕点A逆时针旋转α(0°<α<180°),当△ACE是直角三角形时,请直接写出CG的值.12.如图,两直角三角形ABC和DEF有一条边BC与EF在同一直线上,且∠DFE=∠ACB =60°,BC=1,EF=2.设EC=m(0≤m≤4),点M在线段AD上,且∠MEB=60°.(1)如图1,当点C和点F重合时,=;(2)如图2,将图1中的△ABC绕点C逆时针旋转,当点A落在DF边上时,求的值;(3)当点C在线段EF上时,△ABC绕点C逆时针旋转α度(0<α<90°),原题中其他条件不变,则=.13.在△ABC中,∠ABC=45°,AD⊥BC于点D,BE⊥AC于点E,连接DE,将△AED 沿直线AE翻折得到△AEF(点D与点F为对应点),连接DF,过点D作DG⊥DE交BE于点G.(1)如图1,求证:四边形DFEG为平行四边形;(2)如图2,连接CF,若tan∠ABE=,在不添加任何辅助线与字母的情况下,请直接写出图2中所有正切值等于2的角.14.在△ABC中,∠BAC=90°,点E为AC上一点,AB=AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH=2,BC=,求CE的长;(2)如图2,若AB=BM,连接MH,∠HMG=∠MAH,求证:AM=2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点N,连接AN、MN、EN,请直接写出∠AMH、∠NAE、∠MNE之间的角度关系.15.(1)如图1.在Rt△ACB中,∠ACB=90°,CA=8,BC=6,点D、E分别在边CA,CB上,且CD=3,CE=4,连接AE,BD,F为AE的中点,连接CF交BD于点G,则线段CG所在直线与线段BD所在直线的位置关系是.(提示:延长CF到点M,使FM=CF,连接AM)(2)将△DCE绕点C逆时针旋转至图2所示位置时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将△DCE绕点C逆时针在平面内旋转,在旋转过程中,当B,D,E三点在同一条直线上时,CF的长为.16.在△ABC和△AEF中,∠AFE=∠ABC=90°,∠AEF=∠ACB=30°,AE=AC,连接EC,点G是EC中点,将△AEF绕点A顺时针旋转.(1)如图1,若E恰好在线段AC上,AB=2,连接FG,求FG的长度;(2)如图2,若点F恰好落在射线CE上,连接BG,证明:GB=AB+GC;(3)如图3,若AB=3,在△AEF旋转过程中,当GB﹣GC最大时,直接写出直线AB,AC,BG所围成三角形的面积.17.如图,在等腰Rt△ABC中,∠ACB=90°,点D,E分别在AB,BC上运动,将线段DE绕点E按顺时针方向旋转90°得到线段EF.(1)如图1,若D为AB中点,点E与点C重合,AF与DC相交于点O,求证:OE=OD;(2)如图2,若点E不与C,B重合,点D为AB中点,点G为AF的中点,连接DG,连接BF,判断线段BF,CE,AD的数量关系并说明理由;(3)如图3,若AB=4,AD=3BD,点G为AF的中点,连接CG,∠GDE=90°,请直接写出CE的长.18.如图,在平面直角坐标系中,点O为坐标原点,点A(x,y)中的横坐标x与纵坐标y 满足+|y﹣8|=0,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足AD﹣OD=OE,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG 的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当S=26时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线AB→BC向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标19.如图:直线l1:y=﹣x+6与x轴交于点A,与y轴交于点B,将△AOB沿直线l1翻折后,设点O的对应点为点C,已知双曲线y=(x>0)经过点C.(1)求点A,B的坐标.(2)求k的值.(3)将直线l1绕着点A逆时针旋转得到直线l2.直线l2与y轴交于点B′,将△AOB′沿直线l2翻折得到△AB′C',当四边形OAC′B′为正方形时停止转动,求转动过程中点C运动到点C′的路径长.20.图形的旋转变换是研究数学相关问题的重要手段之一.小华和小芳对等腰直角三角形的旋转变换进行研究.如图(1),已知△ABC和△ADE均为等腰直角三角形,点D,E分别在线段AB,AC上,且∠C=∠AED=90°.(1)观察猜想小华将△ADE绕点A逆时针旋转,连接BD,CE,如图(2),当BD的延长线恰好经过点E时,①的值为;②∠BEC的度数为度;(2)类比探究如图(3),小芳在小华的基础上,继续旋转△ADE,连接BD,CE,设BD的延长线交CE于点F,请求出的值及∠BFC的度数,并说明理由.(3)拓展延伸若AE=DE=,AC=BC=,当CE所在的直线垂直于AD时,请你直接写出BD 的长.参考答案1.解:(1)在Rt△ABC中,AB=AC,BC=5,∴AB=AC=BC=5,由旋转知,CD=CE=4,在Rt△ADC中,AD===,∴BD=AB﹣AD=5﹣;(2)猜想:BD=2AF,理由:如图1,延长BA至G,使AG=AB,连接EG,则CG=CB,∴∠ABC=∠AGC,在Rt△ABC中,AB=AC,∴∠ABC=45°,∴∠AGC=45°,∴∠BCG=90°,由旋转知,CD=CE,∠DCE=90°=∠BCG,∴∠BCD=∠GCE,∴△BCD≌△GCE(SAS),∴BD=GE,∠CBD=∠CGE=45°,∴∠BGE=∠CGB+∠CGE=90°=∠BAC,∴AC∥GE,∴,∴=,∴EG=2AF,∴BD=2AF;(3)存在,如图2,延长DA至P,使AP=AD,∵∠BAC=90°,∴点P,点D关于AC对称,∴MN+DN=MH+PN,过点P作PH⊥CD于H,要使MN+DN最小,则点P,N,M在同一条线上,且PM⊥CD,即MN+DN的最小值为PH,∵CA=3DA=6,∴AD=2,∴DP=2AD=4,CD===2,连接CP,∴S△CDP=DP•AC=CD•PH,∴PH===,即DN+MN的最小值为.2.解:(1)如图1中,∵EC平分∠ACB,EM⊥AC,EN⊥BC,∴EM=EN,∵∠EMC=∠DNC=∠MCN=90°,∴四边形EMCN是矩形,∵EM=EN,∴四边形EMCN是正方形,设正方形的边长为m,则×AC×BC=×AC×m+×BC×m,解得m=,∵EF⊥ED∴∠MEN=∠FED=90°,∴∠MEF=∠NDF,∵∠EMF=∠END=90°,∴△EMF≌△END(AAS),∴S四边形EFCD=S正方形EMCN=,故答案为:;(2)①如图2中,⊙O即为所求作.②如图2中,射线CD即为所求作.(3)如图2中,过点D作DM⊥CB交CB的延长线于M,DN⊥AC于N.∵∠DMC=∠DNC=∠MCN=90°,∴四边形DMCN是矩形,∵DC平分∠ACB,DM⊥CB,DN⊥AC,∴DM=DN,∴四边形DMCN是正方形,∴CM=CN,∵∠ACD=∠BCD,∴=,∴DB=DA,∵DM=DN,∠DMB=∠DNA=90°,∴Rt△DMB≌Rt△DNA(HL),∴BM=AN,S四边形ACBD=S正方形DMCN,∴AC+BC=CM﹣BM+CN﹣AN=2CM=14,∴CM=7,∴S四边形ACBD=49.故答案为:49.3.(1)证明:∵△ABC是等边三角形,AD⊥BC,∴∠BAD=∠CAD=∠BAC=30°,∵∠EAF=60°,∴∠GAE=∠GAF=30°,∵AE=AF,∴FG=EG.(2)解:结论:∠EHD=120°,是定值.理由:如图2中,连接BF,CE.∵AB=AC,AD⊥BC,∴BD=CD,∵BH=EH,∴DH∥EC,∴∠HDB=∠ECB,∵FG=GE,EH=HB,∴GH∥BF,∴∠EHG=∠EBF,∵∠EAF=∠BAC=60°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE(SAS),∴∠ACE=∠ABF,∵∠EHD=∠HDB+∠HBD,∴∠DHG=∠EHG+∠EHD=∠EBF+∠HDB+∠HBD=∠ABF﹣∠ABE+∠ECB+∠ABD+∠ABE=∠ACE+∠ECB+∠ABD=∠ACB+∠ABC=120°.(3)解:如图3中,取AB的中点N,连接AH,HN,CH,CH交AD于M,过点H作HT⊥AD于T.∵EH=BH,AN=BN,∴NH为△ABE的中位线,∴HN=AE=,∴点H在以N为圆心,为半径的圆上,当C,N,H共线时,CH的值最大,∵△ABC是等边三角形,∴CN⊥AB,∴∠ACM=∠MCB=30°,∵AD=2,∴CN=AD=2,在Rt△CMD中,CD=2,∠MCD=30°,∴CM==,∴MN=CN﹣CM=,∴HM=HN+MN=+=,∴HT=HM•sin60°=,∴S△ADH=•AD•HT=.4.(1)解:如图1中,过点F作FH⊥BC于H.∵CD⊥AB,∴∠BDC=90°,∵∠DBC=45°,∴∠DCB=90°﹣45°=45°,∵FH⊥CH,∴∠FHC=90°,∴∠HFC=∠HCF=45°,∴CH=FH,设FH=CH=m,∵∠ABE=15°,∴∠FBC=45°﹣15°=30°,∴BH=HF=m,∴m+m=+1,∴m=1,∴CF=CH=,∵CD=BC=,∴DF=CD﹣CF=﹣=.(2)证明:如图2中,连接DE,过点D作DH⊥DE交BE于H.∵∠ADC=∠FDB=90°,DB=DC,BF=AC,∴Rt△BDF≌Rt△CDA(HL),∴∠DBF=∠ACD,∵∠BFD=∠CFE,∴△BFD∽△CFE,∴=,∴=,∵∠DFE=∠BFC,∴△DFE∽△BFC,∴∠DEF=∠BCF=45°,∵DH⊥DE,∴∠HDE=90°,∴∠DHE=∠DEH=45°,∴DH=DE,∵∠BDC=∠EDH=90°,∴∠BDH=∠CDE,∵DB=DC,DH=DE,∴△BDH≌△CDE(SAS),∴BH=EC,∵DH=DE,DG⊥EH,∴GH=EG,∴DG=EH,∴BE=BH+HE=EC+2DG.(3)解:如图3中,过点M作MJ⊥BC于J,过点P作PK⊥BC于K.∵△BHR,△DBC都是等腰直角三角形,∴∠DBC=∠HBR=45°,∴∠HBC=90°,∵∠H=∠HBJ=∠MJB=90°,∴四边形BHMJ是矩形,∴BH=MJ,HM=BJ,∵BH=HR,HM=MR,∴MJ=2BJ,∴tan∠MBJ==2,∴点M的在射线BM上运动,∴当C,F′,M共线,且CM⊥BM时,F′M的值最小.设AD=m,∵tan∠ACD==,∴CD=BD=3m,DF=AD=m,CF=CF′=2m,BC=3m,∵∠CMB=90°,tan∠CBM==2,∴BM=m,CM=m,∴BJ=HM=m,JM﹣BH=HR=m,∴MR=m,设BK=PK=n,CK=2n,∴n=m,∴BK=PK=m,CK=2m,PC=m,∴PF′=PC﹣CF′=m﹣2m,∴==.5.解:(1)∵∠C=90°,AC=4,CB=3,∴AB===5,∵α=90°,∴△ABA1是等腰直角三角形,AA1=AB=5.故答案为:5.(2)如图2﹣1中,当AG=AH时,∵AG=AH,∴∠AHG=∠AGH,∵∠A=∠A1,∠AGH=∠A1GB,∴∠AHG=∠A1BG,∴∠A1GB=∠A1BG,∴AB=AG=5,∴GC1=A1G﹣C1G=1,∵∠BC1G=90°,∴BG===,∴AH=AG=AB﹣BG=5﹣,∴CH=AC﹣AH=4﹣(5﹣)=﹣1.如图2﹣2中,当GA=GH时,过点G作GM⊥AH于M.同法可证,GB=GA1,设GB=GA1=x,则有x2=32+(4﹣x)2,解得x=,∴BG=,AG=5﹣=,∵GM∥BC,∴=,∴=,∴AM=,∵GA=GH,GM⊥AH,∴AM=HM,∴AH=3,∴CH=AC﹣AM=1.综上所述,满足条件的CH的值为﹣1或1.(3)如图3中,取AB的中点J,连接BM,CJ,JN.∵AJ=BJ,∠ACB=90°,∴CJ=AB=,∵BC1=BC=3,MC1=MA1=2,∠BC1M=90°,∴BM===,∵AJ=BJ,AN=NM,∴JN=BM=,∵CN≤CJ+JN,∴CN≤,∴CN的最大值为.6.解:(1)如图1中,在Rt△ABC中,,∵AD=2DB,∴AB=AD+DB=3DB,∵DE∥BC,∴,∵,∴,即,∴,故答案为:,.(2)由旋转性质可知:AD=AM,AE=AN,∠BAM=∠CAN,∵,∠BAM=∠CAN,∴△ABM∽△ACN,∴,∠ABM=∠ACN,∵,∠ABM=∠ACN,∴△DBM∽△ECN,∴.(3)如图3中,连接OB,OE,由三线合一性质可知∠BOC=∠DOE=90°,∴∠BOD=∠COE,∴∠AOB+∠BOD=∠BOC+∠COE,即∠AOD=∠BOE,∵,∠AOD=∠BOE,∴△AOD∽△BOE,∴,∵AB=3EF=6,∴,,在△BOE中,由三边关系可得,BE<BO+OE,当B、O、E三点共线时,BE存在最大值为,∵,∴当BE存在最大值时,BE﹣AD的最大值=.7.(1)解:如图1,将△APC绕点A逆时针旋转60°,得到△AP′B,连接PP′,则△APP′为等边三角形.∵PP′=P A=3,PB=4,P′B=PC=5,∴P′P2+PB2=P′B2.∴△BPP′为直角三角形.∴∠APB的度数为90°+60°=150°.故答案为:直角;150°.(2)证明:如图2中,将△P AB绕点B逆时针旋转60°得到△TCB,连接PT.∵BP=BT,∠PBT=60°,∴△PBT是等边三角形,∴PT=PB,∠PTB=60°,由旋转的性质可知:△P AB≌△TCB,∴∠APB=∠CTB=30°,P A=CT,∴∠PTC=∠PTB+∠CTB=60°+30°=90°,∴PC2=PT2+CT2,∵PB=PT,P A=CT,∴P A2+PB2=PC2.(3)解:过点C作CT⊥PB于T,连接AT,设CT交AB于O.∵PC=BC=2,CT⊥PB,∴PT=BT,∵∠CAO=∠BTO=90°,∠AOC=∠BOT,∴∠ACT=∠ABP,∠ATC=∠ABC=45°,∵∠CTB=90°,∴∠ATP=∠CTA=∠APT=45°∵AC=AB,∴△CAT≌△BAP(AAS),∴CT=PB=2PT,∵PC2=PT2+CT2,∴(2)2=m2+(2m)2,解得m=2或﹣2(舍弃),∴PT=2,∴P A=PT=.8.解:(1)∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°,又∵∠BAC=90°,∴∠EAC+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=AE,AD=EC,∴BD=DE+CE.(2)∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°,又∵∠BAC=90°,∴∠EAC+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS),∴BD=DE﹣CE.(3)同(2)的方法得出,BD=DE﹣CE.(4)归纳:由(1)(2)(3)可知:当B,C在AE的同侧时,BD=DE﹣CE.当B,C在AE的异侧时,BD=DE+CE.9.(1)证明:如图1中,连接BD.∵△ABC是等腰直角三角形,AD=DC,∴BD⊥AC,BD=DA=DC,∴BD⊥AC,∵ED⊥DF,∴∠EDF=∠BDC=90°,∴∠EDB=∠FDC,∵∠DBE=∠C=45°,∴△EDB≌△FDC(ASA),∴DE=DF.(2)证明:如图2中,连接DB,CF.∵∠BDC=∠EDF=90°,∴∠BDE=∠CDF,∵DB=DC,DE=DF,∴△EDB≌△FDC(SAS),∴∠DBE=∠DCF=45°,∴点F在线段BC上.(3)①如图3﹣1中,过点D作DT⊥AB于T.∵∠ATD=∠ABC=90°,∴DT∥CB,∵AD=DC,∴AT=TB=3,∴DT=BC=4,∵△DEF是等腰直角三角形,EF=,∴DE=DF=,∴ET===1,∴BE=TB+ET=3+1=4,当点E在点T的下方时,BE=3﹣1=2,综上所述,满足条件的BE的值为4或2.②如图3﹣2中,∵△ACF是等腰三角形,又∵AD=DC=DF,∴∠AFC=90°,∴△AFC是等腰直角三角形,∴点E与A重合,∴BE=6.③如图3﹣3中,过点D作DT⊥AB于T,过点F作FR⊥DT于R.∵∠DTE=∠FRD=90°,∠EDT=∠DFR,DE=DF,∴△DTE≌△FRD(AAS),∴ET=DR,DT=FR=4,设ET=DR=m,则RT=4﹣m,∴S△EFB=(3+m)(4﹣m)=(﹣m2+m+12)=﹣(m﹣)2+,∵﹣<0,∴△BEF的面积有最大值,最大值为.10.解:(1)∵点A(﹣4,0),点B(0,3),∴OA=4,OB=3,由旋转的性质可知,BO=BO′=3,OM=O′N=1,∠OBO′=90°,∴N(﹣3,4).故答案为:(﹣3,4).(2)如图②中,∵BM=BN,∴O′M+BN=O′M+BM,作点B关于OA的对称点B′,连接O′B′交OA于M,连接BM,O′M+BM的值最小.∵O′(﹣3,3),B′(0,﹣3),∴直线O′B′的解析式为y=﹣2x﹣3,∴M(﹣,0),∴O′N=OM=,∴N(﹣3,).(3)存在.理由:如图③﹣1中,当点O′落在AB的延长线上时,△PO′A′的面积最大.由题意,OA=4,OB=3,∴AB===5,∴P A:PB=2:1,∴PB=,∴PO′=PB+PO′=,∴△PO′A′的面积的最大值=×4×=.如图③﹣2中,当点O′落在AB上时,△PO′A′的面积最小,最小值为×4×(3﹣)=.11.解:(1)如图①中,过点D作DT⊥BC于T.∵DE⊥AC,∴∠DEC=∠ECT=∠DTC=90°,∴四边形ECTD是矩形,∴DT=EC,DT∥AC,∴∠TDB=∠A=30°,∴DT=BD,∵FC=FB,∠CFG=∠BFD,FG=FD,∴△CFG≌△BFD(SAS),∴CG=BD,∠FCG=∠B=60°,∴EC=CG,∴∠ACG=90°+60°=150°,∴直线CE与CG所夹的锐角的度数为30°,故答案为:EC=CG,30°.(2)成立.理由如下:连接CD,BG,延长BD交CE的延长线于H,设BH交AC于点O.在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=30°,∴cos∠BAC==,cos∠EAD==,∠EAC=∠DAB,∴==,∴△ACE∽△ABD,∴==,∠ACE=∠ABD,∵∠HOC=∠AOB,∴∠H=∠OAB=30°,∵CF=FB,DF=FG,∴四边形DCGB是平行四边形,∴CG=BD,CG∥BH,∴∠1=∠H=30°,∴EC=CG,直线CE与CG所夹的锐角的度数为30°.(3)如图③﹣1中,当∠AEC=90°时,由题意AC=AB=2,AE=AD=,∴EC===,∴CG=EC=,如图③﹣2中,当∠EAC=90°时,可得EC==,∴CG=EC=5.综上所述,CG的值为或5.12.解:(1)由题意得,在Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=1,∴AC=2,BC=,在Rt△DEC中,∠DEC=90°,∠DCE=60°,EF=2,∴DC=4,DE=2,∴∠DCA=180°﹣∠DCE﹣∠ACB=60°,∴AC=EF,∠DCE=∠DCA,DC=DC,∴△DEF≌△DAC(SAS),∴AD=DE=2,∠EDC=∠CDA=30°,∵∠MEC=60°,∴∠DEM=30°,∴∠DME=180°﹣∠DEM﹣∠EDM=180°﹣∠DEM﹣2∠EDC=90°,∴DM=DE=,∴AM=AD﹣DM=,∴=1,故答案为:1;(2)如图2,连接AE,∵AC=EF=2,∠ACE=60°,∴△AEC是等边三角形,∴AE=2,∠EAC=∠AEC=60°,∴∠AEB+∠BEC=∠AEC=60°,∵∠MEB=60°,∴∠AEB+∠MEA=60°,∴∠BEC=∠MEA,∵∠DAE=∠ECB=120°,AE=EC,∴△AME≌△CBE(ASA),∴AM=BC=1,∵AD=DC﹣AC=2,∴DM=AD﹣AM=1,∴=1;(3)如图3,过点B作BG⊥BE交EM延长线于点G,连接AG,BG,∵∠CBA=∠EBG=90°,∴∠EBC=∠GBA,∵∠MEB=∠ACB=60°,∴,∴△ECB∽△GAB,∴,∠AGB=∠CEB,∴AG=m,∵∠CEB+∠DEG=30°,∠AGB+∠EGA=30°,∴∠AGM=∠DEM,∴AG∥DE,∴△AGM∽△DEM,∴,∵DE=EF=2,∴==.故答案为:.13.(1)证明:如图1中,∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴∠GDE=∠DEF=90°,DG=DE=EF,∴DG∥EF,∴四边形DFEG是平行四边形.(2)解:如图2中,设AD交BE于P,过点P作PT⊥AB于T.∵tan∠ABE==,∴可以假设PT=a,BT=3a,∵△ABD是等腰直角三角形,∴∠P AT=45°,∵PT⊥AB,∴∠ATP=90°,∴∠P AT=∠APT=45°,∴AT=PT=a,∴P A=a,AB=4a,AD=BD=2a,∴P A=PD=a,∴tan∠BPD==2,∵BE⊥AC,∴∠ADC=∠PEC=90°,∴∠EPD+∠ACD=180°,∵∠EPD+∠BPD=180°,∴∠BPD=∠ACD,根据对称性可知,∠ACD=∠ACF,∠ADF=∠AFD,AC⊥DF,∴∠ACD=∠ACF=∠BPD,∵∠ADF+∠CDF=90°,∠CDF+∠ACD=90°,∴∠ADF=∠ACD,∴∠ACD=∠ACF=∠ADF=∠AFD=∠BPD,∴正切值等于2的角有:∠ACD,∠ACF,∠ADF,∠AFD.14.解:(1)∵∠BAC=90°,AB=AE,∴△BAE为等腰直角三角形,∵AG⊥BE,∴AH是△BAE的中线,∴BE=2AH=4,∵∠BEA=45°,∴∠BEC=135°,在△BCE中,过点C作CD⊥BE交BE的延长线于点D,如图1,∵∠DEC=45°,∴△DEC是等腰直角三角形,设ED=x,则DC=x,CE=x,在Rt△BCD中,BC2=BD2+DC2,即,∴x1=1或x2=﹣5(舍去),∴CE=;(2)如图2,过H作HD⊥HM交AM于点D,连接BD,∵AB=AE,∠BAC=90°,∴△ABE是等腰直角三角形,∵AG⊥BE,∴△ABH为等腰直角三角形,∴BH=AH,∠BAN=45°,∠BHA=90°,∵AB=BM,∴∠BAM=∠BMA,∵∠HMG=∠MAH,∴∠BAM﹣∠MAH=∠BMA﹣∠HMG,即∠BAH=∠AMH=45°,∵HD⊥HM,∴△DHM为等腰直角三角形,∴DH=HM,∠DHM=90°,∵∠BHD=∠BHA+∠AHD,∠AHM=∠DHM+∠AHD,∴∠BHD=∠AHM,在△BHD与△AHM中,,∴△BHD≌△AHM(SAS),∴∠DBH=∠MAH,BD=AM,∴∠BHA=∠BDA=90°,∵BA=BM,∴D是AM的中点,∴AM=2DM=2HM,即AM=2HM;(3)∵H是BE的中点,M是BC的中点,∴MH是△BCE的中位线,∴MH∥CE,∴∠AMH=∠MAC,∵∠BAC=90°,∴AM=BM,∴∠MAB=∠ABM,∵点B与点N关于线段AM对称,∴∠ABM=∠ANM,AB=AN,∴AE=AN,∴∠AEN=∠ANE,在△AEN中,∠NAE+2∠ANE=180°①,∵∠ANE=∠ANM+∠MNE,∠ABM=∠ANM=∠MAB=90°﹣∠MAC,∴∠ANE=90°﹣∠MAC+∠MNE,∴∠ANE=90°﹣∠AMH+∠MNE②,将②代入①,得:∠NAE+2×(90°﹣∠AMH+∠MNE)=180°,∴∠NAE+180°﹣2∠AMH+2∠MNE=180°,∴∠NAE+2∠MNE=2∠AMH.15.解:(1)结论:CG⊥BD.理由:延长CF到点M,使得FM=CF,连接AM.∵F A=FE,∠AFM=∠EFC,FM=FC,∴△AMF≌△ECF(SAS),∴AM=CE=4,∠AMF=∠ECF,∴AM∥CE,∴∠MAC=∠DCB=90°,∵==,∴△MAC∽△DCB,∴∠DBC=∠ACM,∵∠ACM+∠GCB=90°,∴∠DBC+∠GCB=90°,∴∠CGB=90°,∴CG⊥BD.故答案为:CG⊥BD.(2)结论仍然成立.理由:延长CF到点M,使得FM=CF,连接AM.∵F A=FE,∠AFM=∠EFC,FM=FC,∴△AMF≌△ECF(SAS),∴AM=CE=4,∠AMF=∠ECF,∴AM∥CE,∴∠MAC+∠ACE=180°,∴∠MAC=180°﹣∠ACE,∵∠DCB=∠DCE+∠ACB﹣∠ACE=90°+90°﹣∠ACE=180°﹣∠ACE,∴∠MAC=∠DCB,∵==,∴△MAC∽△DCB,∴∠DBC=∠ACM,∵∠ACM+∠GCB=90°,∴∠DBC+∠GCB=90°,∴∠CGB=90°,∴CG⊥BD.(3)如图3中,当点E在线段BD上时,∵△AMC∽△CDB,∴==,在Rt△DCE中,CD=3,CE=4,∴DE===5,∵CG⊥DE,∴CG==,在Rt△CGB中,CB=6,CG=中,∴BG===,在Rt△DCG中,DG===,∴BD=BG+DG=,∴CM=BD=,∴CF=CM=如图4中,当点E在线段BD的延长线上时,同法可得CF=CM=.综上所述,满足条件的CF的值为或.16.(1)解:如图1中,过点F作FH⊥AE于H.在Rt△ABC中,∠ACB=90°,AB=2,∠C=30°,∴AC=2AB=4,BC=AB=2,∵AE=EC=AC=2,EG=GC,∴EG=CG=1,∵∠AFE=90°,∠AEF=30°,∴EF=AE•cos30°=,∴FH=EF=,HE=FH=,∴GH=HE+EG=,∴FG===.(2)证明:如图2中,取AC的中点M,连接BM,GM,BF.∵AM=MC,∠ABC=90°,∴BM=AM=CM,∵AC=2AB,∴AB=AM=BM,∴∠BAM=∠AMB=∠ABM=60°,∴∠BMC=120°,∵AE=2AF,∠EAF=60°,∴∠BAF=120°+∠EAC,∵AM=MC,EG=GC,∴GM=AE=AF,GM∥AE,∴∠CMG=∠EAC,∴∠BMG=120°+∠CMG=120°+∠EAC=∠BAF,∴△BAF≌△BMG(SAS),∴∠ABF=∠MBG,BF=BG,∴∠FBG=∠ABM=60°,∴△BFG是等边三角形,∴BG=FG,∴BG=EF+EG=AE+CG=AB+CG.(3)解:如图3中,取AC的中点M,连接BM,GM,BF.在MC上取一点D,使得MD=MG,连接DG,BD.同法可证:△BAF≌△BMG(SAS),∴∠ABF=∠MBG,BF=BG,∴∠FBG=∠ABM=60°,∴△BFG是等边三角形,∴BG=FG,∵AM=CM,EG=CG,∴MG=AE,∵AB=3,∠ABC=90°,∠ACB=30°,∴AC=2AB=6,AM=CM=3,∵AE=AC=3,MG=,∴MD=MG=,∵==,∠DMG=∠GMC,∴△MDG∽△MGC,∴==,∴DG=CG,∴GB﹣CG=GB﹣DG≤BD,∴当B,D,G共线时,BG﹣CG的值最大,最大值为BD的长,∴直线AB,AC,BG围成的三角形为△ABD,∵AD=AM+DM=3+=,∴S△ABD=××=,∴当GB﹣GC最大时,直线AB,AC,BG所围成三角形的面积为.17.(1)证明:如图1中,∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∵∠DEF=∠ADC=90°,DE=EF,∴AD=EF,∵∠AOD=∠EOF,∴△AOD≌△FOE(AAS),∴OE=OD.(2)解:结论:AD﹣BF=CE.理由:如图2中,过点E作ET⊥BC交AB于T,过点T作TR⊥AC于R.则四边形ECRT 是矩形,△ART,△EBT都是等腰直角三角形,可得EC=RT,AT=RT=EC.∵∠TEB=∠DEF=90°,∴∠TED=∠BEF,∵ET=EB,ED=EF,∴△TED≌△BEF(SAS),∴DT=BF,∵AD﹣DT=AT,∴AD﹣BF=CE.(3)解:如图3中,取AB的中点R,连接GR,BF,过点E作EM⊥AB于M.设GR =x,EM=BM=y.由(2)可知,△TED≌△BEF(SAS),∴∠ETD=∠EBF=45°,∴∠ABC=45°,∴∠FBA=90°,∵AG=GF,AR=RB=2,∴GR∥BF,BF=2GR=2x,∴∠GRA=∠FBA=90°,∵GR⊥AB,∵AB=4,AD=3BD,∴AD=3,BD=,∴DR=AD﹣AR=3﹣2=,∵∠GRD=∠EMD=∠EDG=90°,∴∠GDR+∠DGR=90°,∠GDR+∠EDM=90°,∴∠DGR=∠EDM,∴△DRG∽△EMD,∴=,∴=①又∵AD﹣BF=CE,∴3﹣2x=(4﹣y)②,由①②可得y=(不合题意的解已经舍弃).∴EC=4﹣()=.18.解:(1)∵+|y﹣8|=0,又∵≥0,|y﹣8|≥0,∴x=2,y=8,∴A(2,8),∵AD⊥x轴,∴OD=2,AD=8,∵AD﹣OD=OE,∴OE=6,∴E(﹣6,0).(2)如图1中,连接OG.由题意G(10,m).∵AD=DE=8,∠ADE=90°,∴∠AED=45°,∴∠OEF=∠OFE=45°,∴OE=OF=6,∴F(0,6),∴S=S△ODG+S△OFG﹣S△OFD=×2×m+×6×10﹣×2×6=m+24(0≤m≤8).(3)如图2中,设FG交AD于J,P(2,t),当点P在DJ上,点Q在AB上时,当S=26时,m=2,∴G(10,2),∵F(0,6),∴直线FG的解析式为y=﹣x+6,∴J(2,),由题意,•(﹣t)×10=2××2t×6,解得t=,∴P(2,),当点P在AJ上,点Q在BG上时,同法可得,•(t﹣)×10=2××(14﹣2t)×8,解得t=,∴P(2,).综上所述,满足条件的点P的坐标为(2,)或(2,).19.解:(1)当x=0时,y=6,∴B(0,6),当y=0时,﹣x+6=0,∴x=6,∴A(6,0);(2)如图1,过点C作CM⊥x轴于M,Rt△ABO中,OA=6,OB=6,∴AB==12,∴∠ABO=30°,由翻折得:∠ABC=∠ABO=30°,∠AOB=∠ACB=90°,AC=OA=6,∴∠CAM=60°,∴∠ACM=90°﹣60°=30°,∴AM=AC=3,CM=3,∴C(9,3),∴k=9×3=27;(3)分两种情况:①如图2,当点B'在y轴的负半轴上时,。

几何图形练习题(含答案)

几何图形练习题(含答案)

1.小杰从上面观察如图所示的热水瓶时,得到的图形是A.B.C .D.2.下列现象能说明“面动成体”的是A.天空划过一道流星B.旋转一扇门,门在空中运动的痕迹C.扔出一块小石子,石子在空中飞行的路线D.汽车雨刷在挡风玻璃上划出的痕迹3.下列图形中,含有曲面的立体图形是A.B.C.D.4.下列四个几何体中,从左边看到的图形与其他三个不同的是A.B.C.D.5.如图是将一个底面为正方形的长方体切掉一个角后得到的几何体,则从上面看到的几何体的形状图是A.B.C.D.6.下列四个立体图形中,各自从三个方向看,得到的形状图中有两个相同,另一个不同的是A.①②B.②③C.②④D.③④7.如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A.美B.丽C.和D.县8.下列图形中,能够折叠成一个正方体的是A.B.C.D.9.在市委、市府的领导下,全市人民齐心协力,将我市成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面相对的字应是A.文B.明C.城D.市10.如图所示的棱柱有A.4个面B.6个面C.12条棱D.15条棱11.如图是一个棱锥,它是由__________个三角形和__________个底所组成的.12.如图所示的立体图形,是由__________个面组成,面与面相交成__________条线.13.正方体有__________个面,__________个顶点,经过每个顶点都有__________条棱,这些棱的长度__________,棱长为a的正方体的表面积为__________.14.“齐天大圣”孙悟空有一个宝贝——金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明____________.15.在朱自清的《春》中有描写春雨的语句“像牛毛,像细丝,密密地斜织着”这里把雨滴看成了点,请用数学知识解释这一现象____________.16.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“体”字相对的字是“____________”.17.如图是哪种几何体的表面展开图形____________.(写出几何体的名称)18.观察图中的物体,____________是从正面看到的,____________是从左面看到的,____________是从上面看到的.19.一个正方体的表面展开图如下图所示,则原正方体中的“★”所在面的对面所标的字是____________.20.如图是哪种几何体的表面展开的图形_____________.(写出几何体的名称)21.已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为____________cm3.22.流星坠落会在空中留下一条____________;转动的自行车辐条会形成一个____________;一个长方形绕自身的一条边旋转会形成一个____________.23.从上往下看下列四个物体可得到第二行的四个图形,将四个图形与其相应的物体连接起来.24.观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数 6 10 12棱数9 12面数 5 8 观察上表中的结果,你能发现、、之间有什么关系吗?请写出关系式.25.如图所示的立体图形是由七块积木搭成的,这几块积木是大小相同的正方体,请画出这个立体图形分别从正面、左面、上面看到的图形.26.一个正方体6个面分别写着1,2,3,4,5,6.根据下列摆放的三种情况,那么每个数对面上的数是几?27.如图是正方体的平面展开图,在顶点处标有自然数1~11,折叠围绕成正方体后,与数字6重合的数字是A.7,8 B.7,9 C.7,2 D.7,428.把下图中的三棱柱展开,所得到的展开图是A.B.C.D.29.从正面观察如图的两个立体图形,得到的平面图形是A.B.C.D.30.下列说法中,正确的是A.长方体中任何一个面都与两个面平行B.长方体中任何一个面都与两个面垂直C.长方体中与一条棱平行的面只有一个D.长方体中与一条棱垂直的平面有两个31.下面几何体的截面不可能是长方形的是A.长方体B.正方体C.圆锥D.圆柱32.由6个大小相同的小正方体搭成的几何体被小颖拿掉2个后,得到如图1所示的几何体,图2是从不同方向看原几何体得到的三种形状图,请你判断小颖拿掉的两个正方体原来放置在A.1号的前后B.2号的前后C.3号的前后D.4号的前后33.某几何体从三个方向看的形状如图,则组成该几何体的小正方体的个数是__________.34.将图中所示的纸片沿虚线折叠起来的几何体是__________,且1的对面是__________,2的对面是__________,3的对面是__________.35.如图所示,是三棱柱的表面展开示意图,则AB=__________,BC=__________,CD=__________,BD=__________,AE=__________.36.如图是一个正方体的展开图,每个面内都标注了字母,请根据要求回答下列问题:(1)如果面F在正方体的底部,那么哪一面会在上面?(2)如果面B在前面,从左面看是面C,那么哪一面会在上面?(3)如果从右面看到面D,面E在后面,那么哪一面会在上面?37.如图是由一些相同的小正方块搭成的几何体.(1)图中有__________个小正方体;(2)请在方格纸中分别画出这个几何体从三个方向看得到的图形.38.一个圆柱的底面半径是10cm,高是18cm,把这个圆柱放在水平桌面上,如图所示.(1)如果用一个平面沿水平方向去截这个圆柱,所得的截面是什么形状?(2)如果用一个平面沿竖直方向去截这个圆柱,所得的截面是什么形状?(3)怎样截时所得的截面是长方形且长方形的面积最大,请你画出这个截面并求其面积.39.(2018·巴中)毕业前夕,同学们准备了一份礼物送给自己的母校,现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是A.B.C.D.40.(2018·河南)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是A.厉B.害C.了D.我41.(2018·大庆)将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是A.庆B.力C.大D.魅42.(2018·徐州)下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是A.B.C.D.43.(2018·烟台)由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙.如果要将露出来的部分涂色,则涂色部分的面积为A.9 B.11 C.14 D.1844.(2018·北京)下列几何体中,是圆柱的为A.B.C.D.3.【答案】D【解析】根据立体图形的特征,解答即可.A.角是平面图形,故A不符合题意;B.半圆环是平面图形,故B不符合题意;C.棱台不含曲面,故C不符合题意;D.侧面是曲面的立体图形,故D符合题意;故选:D.4.【答案】D【解析】A选项中的几何体从左面看到的图形是:,B选项中的几何体从左面看到的图形是:,C选项中的几何体从左面看到的图形是:,D选项中的几何体从左面看到的图形是:.所以与其他三个不同的是D选项.故选D.7.【答案】D【解析】由同一排两个面相隔一个面,则这两个面相对可知,“美”与“和”相对,“建”与“县”相对,“设”与“丽”相对.故选D.8.【答案】B【解析】选项A、C、D经过折叠均不能围成正方体;只有B能折成正方体.故选B.9.【答案】B【解析】由正方体的展开图特点可得:与“全”字所在的面相对的面上标的字应是“明”.故选B. 10.【答案】D【解析】如图所示的棱柱是正五棱柱,正五棱柱有7个面,15条棱.故选D.11.【答案】41【解析】观察所给的几何体可知,该几何体为四棱锥,∴该几何体由4个侧面(侧面为三角形)和1个底面(底面为四边形)所组成的.故答案为:4;1.故答案为6,8,3,相等,6a2.14.【答案】线动成面【解析】“齐天大圣”孙悟空有一个宝贝——金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明线动成面.故答案为:线动成面.15.【答案】点动成线【解析】“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明点动成线.故答案为:点动成线.16.【答案】喜【解析】这是一个正方体的平面展开图,共有六个面,其中面“我”与面“欢”相对,面“立”与面“图”相对,面“喜”与面“体”相对.故答案为:喜.17.【答案】三棱锥【解析】因为展开图是四个三角形,故该展开图是由三棱锥展开得到的.故答案为:三棱锥. 18.【答案】c;b;a【解析】观察图中的物体,c是从正面看到的,b是从左面看到的,a是从上面看到的.故答案为:c;b;a.24.【解析】填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a 6 8 10 12棱数b9 12 15 18面数c 5 6 7 8 根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c–b=2.25.【解析】如图所示.29.【答案】A【解析】从正面看左边是一个矩形,右边是一个正方形,故选A.30.【答案】D【解析】A、长方体中任何一个面都与1个面平行,故此选项错误;B、长方体中任何一个面都与4个面垂直,故此选项错误;C、长方体中与一条棱平行的面有2个,故此选项错误;D、长方体中与一条棱垂直的平面有两个,正确.故选D.31.【答案】C【解析】长方体,正方体,圆柱的截面都可能出现长方形,只有圆锥的截面只与圆、三角形有关.故选C.32.【答案】B【解析】观察图形,由上面看到的图可得拿掉的两个正方体原来放在2号的前后.故选B.33.【答案】6【解析】由三视图可得几何体中小正方形个数:1+4+1=6,故答案为:6.34.【答案】正方体,4,5,6.【解析】这是一个正方体的平面展开图,共有六个面,其中面“4”与面“1”相对,面“6”与面“3”相对,“2”与面“5”相对.故答案为:正方体,4,5,6.(2)如图所示:38.【解析】(1)所得的截面是圆;(2)所得的截面是长方形;(3)当平面沿竖直方向且经过两个底面的圆心时,截得的长方形面积最大.这时,长方形的一边等于圆柱的高,另一边等于圆柱的底面直径.如图所示:则这个长方形的面积为:10×2×18=360(cm2).39.【答案】C【解析】选项C不能围成正方体,不符合题意.不考虑文字方向,选项D围成的正方体如图所示,符合题意,故选C.。

《几何图形初步》全章复习与巩固(提高)巩固练习

《几何图形初步》全章复习与巩固(提高)巩固练习

【巩固练习】一、选择题1.分析下列说法,正确的有()①长方体、正方体都是棱柱;②三棱柱的侧面是三角形;③圆锥的三视图中:主视图、左视图是三角形,俯视图是圆;④球体的三种视图均为同样大小的图形;⑤直六棱柱有六个侧面、侧面为长方形.A.2种B.3种C.4种D.5种2.在4个图形中,只有一个是由如图所示的纸板折叠而成,请你选出正确的一个().3.如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示4.从点O出发有五条射线,可以组成的角的个数是()A.4个B.5个C.7个D.10个5.用一副三角板画角,下面的角不能画出的是()A.15°的角B.135°的角C.145°的角D.150°的角6.如图所示,已知射线OC平分∠AOB,射线OD,OE三等分∠AOB,又OF平分∠AOD,则图中等于∠BOE的角共有().A.1个B.2个C.3个D.4个7.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm8.平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.12B.16C.20D.以上都不对二、填空题9.把一个周角7等分,每一份是________的角(精确到秒).10.时钟在6时30分时,时针与分针的夹角等于.11.如图是用一样的小立方体摆放的一组几何体,观察该组几何体并探索:照这样摆下去,第五个几何体中共有_______个小立方体,第n个几何体中共有_______个小立方体.12.如图所示的是由几个相同的小正方体搭成的几何体从不同的方向看所得到的图形,则搭成这个几何体的小正方体的个数是_______.13.如图,点B、O、C在同一条直线上,∠AOB=90°,∠AOE=∠BOD,下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠BOD;④∠COE+∠BOD=90°.其中正确的是.14.如图,∠AOB是钝角,OC、OD、OE是三条射线,若OC⊥OA,OD平分∠AOB,OE平分∠BOC,那么∠DOE的度数是.15.已知:A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC=_______。

专题33 尺规作图练习(基础)-【考前抓大题】冲刺2021年中考数学(解析版)

专题33 尺规作图练习(基础)-【考前抓大题】冲刺2021年中考数学(解析版)

专题33 尺规作图练习(基础)1.已知四点A,B,C,D.根据下列语句,画出图形.(1)画直线AB;(2)连接AC,BD,相交于点O;(3)画射线AD,射线BC相交于点P.【分析】(1)画直线AB即可;(2)连接AC,BD,相交于点O即可;(3)画射线AD,射线BC相交于点P即可.【解答】解:(1)如图所示,直线AB即为所求;(2)如图所示,AC,BD即为所求;(3)如图所示,射线AD,射线BC即为所求.【点评】本题主要考查了复杂作图,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.2.如图,已知A,B两点.(1)画线段AB;(2)延长线段AB到点C,使BC=AB;(3)反向延长线段AB到点D,使DA=AB;(4)点A,B分别是哪条线段的中点?若AB=3cm,请求出线段CD的长.【分析】(1)、(2)、(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义可判断点A是线段BD的中点;点B是线段AC的中点;然后利用CD=3AB 求解.【解答】解:(1)如图,线段AB为所作;(2)如图,点C为所作;(3)如图,点D为所作;(4)点A是线段BD的中点;点B是线段AC的中点;由题意可知:DA=AB=BC=3,所以CD=DA+AB+BC=3×3=9(cm).【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.3.如图,平面内有四个点A,B,C,D.根据下列语句画图:①画直线BC;②画射线AD交直线BC于点E;③连接BD,用圆规在线段BD的延长线上截取DF=BD;④在图中确定点O,使点O到点A,B,C,D的距离之和最小.【友情提醒:截取用圆规,并保留痕迹;画完图要下结论】【分析】根据题中的几何语言画出对应的几何图形.【解答】解:①如图,直线BC为所作;②如图,射线AD和点E为所作;③如图,BD和DF为所作;④如图,点O为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.4.下面是小明某次作图的过程.已知:如图,线段a,b.作法:①画射线AP;②用圆规在射线AP上截取一点B,使线段AB=a;③用圆规在射线AP上截取一点C,使线段BC=b.根据小明的作图过程.(1)补全所有符合小明作图过程的图形:(保留作图痕迹)(2)线段AC=a+b或a﹣b.(用含a,b的式子表示)【分析】(1)根据已知作法画图即可;(2)根据(1)所画图形即可得结论.【解答】解:(1)如图所示:线段AB和BC即为所求作的图形.(2)线段AC=a+b或a﹣b.故答案为:a+b或a﹣b.【点评】本题考查了作图﹣复杂作图,解决本题的关键是准确画图.5.已知:如图,A为⊙O上一点;求作:⊙O的内接正方形ABCD.【分析】先作直径AC,再过O点作AC的垂线交⊙O于D、B,然后连接AB、AD、CD、CB即可.【解答】解:如图,四边形ABCD为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.6.如图,在△ABC中.(1)画出BC边上的高AD和中线AE;(2)若∠B=30°,∠BAC=20°,求∠CAD的度数.【分析】(1)根据三角形的高和中线的定义画图;(2)先根据高的定义得到∠ADB=90°,再根据三角形外角性质计算出∠ACD=50°,然后利用互余计算∠CAD的度数.【解答】解:(1)如图,AD、AE为所作;(2)∵AD为高,∴∠ADB=90°,∵∠ACD=∠B+∠BAC=30°+20°=50°,∴∠CAD=90°﹣∠ACD=90°﹣50°=40°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.7.如图,∠AOB内有一点P.(1)过点P画PC∥OB交OA于点C,画PD∥OA交OB于点D;(2)图中不添加其它的字母,写出所有与∠O相等的角.【分析】(1)利用题中几何语言画出对应的几何图形;(2)利用平行线的性质求解.【解答】解:(1)如图,PC、PD为所作;(2)∵PC∥OB,∴∠O=∠PCA,∵PD∥OA,∴∠O=∠PDB,∠PCA=∠P,∴与∠O相等的角有∠P,∠PCA,∠PDB.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质.8.如图,在△ABC中,AB=AC,BC=10.(1)尺规作图:(要求:保留作图痕迹,不写作法)①作∠BAC的平分线交BC于点D;②作边AC的中点E,连接DE;(2)在(1)所作的图中,若AD=12,则DE的长为 6.5.【分析】(1)①利用基本作图作∠BAC的平分线;②作AC的垂直平分线得到AC的中点E;(2)根据等腰三角形的性质得AD⊥BC,BD=CD=12BC=5,再利用勾股定理计算出AC=13,然后根据直角三角形斜边上的中线性质求解.【解答】解:(1)①如图,AD为所作;②如图,DE为所作;(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD=12BC=5,在Rt△ACD中,AC=√CD2+AD2=√52+122=13,∵E点为AC的中点,∴DE=12AC=6.5.故答案为6.5.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质.9.在△ABC中,AD是△ABC的高,∠B=30°,∠C=52°.(1)尺规作图:作△ABC的角平分线AE;(2)求∠DAE的大小.【分析】(1)利用基本作图作AE平分∠BAC;(2)先利用三角形内角和定理计算出∠BAC=98°,再利用角平分线的定义得到∠EAC=49°,接着计算出∠DAC,然后计算∠EAC﹣∠DAC即可.【解答】解:(1)如图,AE为所作;(2)∵∠B=30°,∠C=52°,∴∠BAC=180°﹣∠B﹣∠C=98°,∵AE平分∠BAC,∴∠EAC=12∠BAC=49°,∵AD为高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=38°,∴∠DAE=∠EAC﹣∠DAC=49°﹣38°=11°.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了三角形内角和定理.10.如图,在7×5的网格中,横、纵坐标均为整数的点叫做格点,如A(2,3)、B(2,﹣1)、C(5,3)都是格点,且BC=5,请用无刻度直尺在给定网格中画出下列图形,并保留作图痕迹.(画图过程用虚线表示,画图结果用实线表示)(1)①画△ABC的角平分线AE;②画△ABC的中线AD;(2)画△ABC的角平分线CF;(3)画到直线AB,BC,AC的距离相等的格点P,并写出点P坐标(3,2)和(﹣1,0).【分析】(1)①利用网格特点作∠BAC的平分线得到AE;②利用网格特点确定BC的中点D,从而得到中线AD;(2)以C为顶点作腰为5的等腰三角形,通过作出底边上的中线得到角平分线CF;(3)CF和AE的交点为P点或射线CF与∠BAC的邻补角的平分线的交点为P点.【解答】解:(1)①如图,AE为所求;②如图,AD为所求;(2)如图,CF为所求;(3)如图,到直线AB,BC,AC的距离相等的格点P有两个,是P1 和P2,其坐标分别是P1 (3,2)和P2 (﹣1,0).故答案为(3,2)和(﹣1,0).【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质.11.如图,已知四边形ABCD.(1)在边BC上找一点P,使得AP+PD的值最小,在图①中画出点P;(2)请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):①在线段AC上找一点M,使得BM=CM,请在图②中作出点M;②若AB与CD不平行,且AB=CD,请在线段AC上找一点N,使得△ABN和△CDN的面积相等,请在图③中作出点N.【分析】(1)作A点关于BC的对称点A′,连接DA′交BC于P点,利用P A=P A′,则P A+PD=DA′,根据两点之间线段最短可判断P点满足条件;(2)①作BC的垂直平分线交AC于M;②BA和CD的延长线相交于O点,作∠BOC的平分线交AC于N.【解答】解:(1)如图①,点P为所作;(2)①如图①,点M为所作;②如图②,点N为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了最短路径问题.12.尺规作图:已知∠AOB和C,D两点,请在图中用尺规作图找出一点E,使得点E到OA,OB的距离相等,而且E点到C,D的距离也相等.(不写作法,保留作图痕迹)【分析】根据点E到OA,OB的距离相等,而且E点到C,D的距离也相等,所以作CD的垂直平分线,∠AOB的角平分线,两条线相交于点E即可.【解答】解:如图,点E即为所求.因为点E到OA,OB的距离相等,而且E点到C,D的距离也相等,所以作CD的垂直平分线,∠AOB的角平分线,两条线相交于点E.【点评】本题考查了作图﹣复杂作图,角平分线的性质,线段垂直平分线的性质,解决本题的关键是掌握基本作图方法.13.在△ABC中,AB=AC.(1)如图①,点A在以BC为直径的半圆外,AB、AC分别与半圆交于点D、E.求证BD=EC;(2)如图②,点A在以BC为直径的半圆内,请用无刻度的直尺在半圆上画出一点D,使得△DBC是等腰直角三角形(保留画图痕迹,不写画法).【分析】(1)连接BE、CD,如图①,利用等腰三角形的性质得到∠ABC=∠ACB,根据圆周角定理得到∠BDC=∠CEB=90°,则利用等角的余角相等得到∠BCD=∠CBE,从而得到结论;(2)如图②,分别延长BA、CA交圆于E、C,延长BF和CE,它们相交于P点,连接P A交圆于D点,则D点满足条件.【解答】(1)证明:连接BE、CD,如图①,∵AB=AC,∴∠ABC=∠ACB,∵BC为直径,∴∠BDC=∠CEB=90°,∴∠BCD=∠CBE,̂=CÊ,∴BD∴BD=CE;(2)解:如图②,点D为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰直角三角形的性质和圆周角定理.14.已知:如图,某区政府为了方便居民的生活,在S区域计划修建一个购物中心P,要求到住宅小区A、B的距离必须相等,到两条公路m和n的距离也必须相等.请标出购物中心P的位置.(尺规作图,保留作图痕迹,不写作法)【分析】直接利用角平分线的性质与作法和线段垂直平分线的性质与作法进而得出答案.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了应用与设计作图,正确掌握线段垂直平分线的性质是解题关键.15.如图,已知:射线AM是△ABC的外角∠NAC的平分线.(1)作BC的垂直平分线PF,交射线AM于点P,交边BC于点F;(要求:尺规作图,保留作图痕迹,不必写作法和证明)(2)过点P作PD⊥BA,PE⊥AC,垂足分别为点D,E,请补全图形并证明BD=CE.【分析】(1)利用基本作图作BC的垂直平分线即可;(2)先根据几何语言画出对应几何图形,再连接PB、PC,根据线段垂直平分线的性质得到PB=PC,根据角平分线的性质得PD=PE,则可判断Rt△BDP≌Rt△CEP,从而得到BD=CE.【解答】(1)解:如图,PF为所作;(2)证明:如图,连接PB、PC,如图,∵PF垂直平分BC,∴PB=PC,∵AM是△ABC的外角∠NAC的平分线,PD⊥BA,PE⊥AC,∴PD=PE,在Rt△BDP和Rt△CEP中,{PB=PCPD=PE,∴Rt△BDP≌Rt△CEP(HL),∴BD=CE.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线和角平分线的性质.。

数学巩固练习题几何图形

数学巩固练习题几何图形

数学巩固练习题几何图形几何图形是数学中的重要概念之一,通过学习几何图形可以培养我们的观察力、逻辑思维和问题解决能力。

为了巩固数学知识,下面将为大家提供一些几何图形的练习题。

希望通过这些题目的练习,能够加深对几何图形的理解。

一、选择题1. 下列图形中,哪个不是四边形?A. 正方形B. 长方形C. 三角形D. 平行四边形2. 以下哪组图形中,全是等边形?A. 正方形、长方形、菱形B. 正方形、等边三角形、圆C. 正方形、等边三角形、正五边形D. 圆、长方形、等边三角形3. 在下列图形中,直线段AC与直线段BD的夹角为多少度?A. 90°B. 120°C. 150°D. 180°二、填空题1. 一个正方形的周长是16cm,边长为______cm。

2. 三角形的三边分别为5cm、8cm和10cm,这个三角形是______三角形。

3. 一个正方形的对角线长为10cm,则其边长为______cm。

三、解答题1. 图中ABCD是一个正方形,两个蓝色圆的直径分别为AB和AC,请计算红色圆的直径和面积。

(插入图片)2. 有两个平行线AB和CD,直线EF平分了这两个平行线段(即EF同时与AB和CD相交且垂直于AB和CD),如图所示。

若AB的长度为8cm,CD的长度为16cm,求EF的长度。

(插入图片)四、应用题1. 一块长方形的花坛,长12m,宽8m,在花坛四周围上一道宽为1m的青砖。

求此花坛需铺多少块青砖?2. 甲乙两地相距120km,小明从甲地骑自行车以每小时20km 的速度去往乙地,而小红从乙地以每小时15km的速度骑自行车去往甲地。

问他们相遇时,谁骑的时间较长?通过以上的练习题,我们可以对几何图形的性质和应用有更深入的了解。

希望大家能认真思考每一个问题,并且在解答过程中培养良好的逻辑推理和问题解决能力。

努力巩固数学知识,提升自己在几何图形方面的能力。

七年级数学上册基本的几何图形巩固练习(含答案)

七年级数学上册基本的几何图形巩固练习(含答案)

七年级数学上册基本的几何图形巩固练习一、单选题1.图中不是正方体的展开图的是( )A. B. C. D.2.下列错误的判断是( )A. 任何一条线段都能度量长度B. 因为线段有长度,所以它们之间能比较大小C. 利用圆规配合尺子,也能比较线段的大小D. 两条直线也能进行度量和比较大小3.如图,C、B是线段AD上的两点,若AB=CD,BC=2AC,那么AC与CD的关系是为()A.CD=2ACB.CD=3ACC.CD=4ACD.不能确定4.如图,是一个正方体的平面展开图,原正方体中“祝”的对面是()A. 考B. 试C. 顺D. 利5.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格.第2格.第3格.第4格,这时小正方体朝上一面的字是( )A. 梦B. 水C. 城D. 美6.用一个平面去截一个圆柱体,不可能的截面是()A. B.C. D.7.埃及金字塔类似于几何体( )A. 圆锥B. 圆柱C. 棱锥D. 棱柱8.如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是( ).A. M点在线段AB上.B. M点在直线AB上.C. M点在直线AB外.D. M点可能在直线AB上,也可能在直线AB外.二、填空题9.要把木条固定在墙上至少要钉________个钉子,这是因为________ .10.乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A、B两站之间需要安排不同的车票________种.(友情提示:A到B与B到A车票不同.)11.如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为________cm3.(结果保留π)12.平面内有三条直线,如果这三条直线两两相交,那么其交点最少有________个,最多有________个。

13.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上这样做的依据是:________.14.若点A(,5)与B(2,5)的距离为5,则=________.15.如图,棱长为1的正方体形盒中,一只蚂蚁从盒底的点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是________.16.下图中的截面分别是(1)________(2)________三、解答题17.如图已知点C为AB上一点,AC=12cm,CB= AC,D、E分别为AC、AB的中点,求DE的长.18.先阅读下列一段文字,在回答后面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?说明理由.四、综合题19.已知一个直五棱柱的底面是4cm的五边形,侧棱长是6cm,请回答下列问题:(1)这个直五棱柱一共有几个顶点?几个面?(2)这个直五棱柱的侧面积是多少?20.如图所示,点在线段的延长线上,且,是的中点.看图说话:(1)图形中共有________条线段.(2)若,求的长.21.有一种牛奶软包装盒如图1所示.为了生产这种包装盒,需要先画出展开图纸样.(1)如图2给出三种纸样甲.乙.丙,在甲.乙.丙中,正确的有________.(2)从已知正确的纸样中选出一种,在原图上标注上尺寸.(3)利用你所选的一种纸样,求出包装盒的侧面积和表面积(侧面积与两个底面积的和)答案一、单选题1.【答案】B【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项中出现了“田”字格,故不是正方体的展开图.故选B.【分析】由平面图形的折叠及正方体的展开图解题.2.【答案】D【解析】【解答】AB、任何一条线段都可以度量长度,并比较大小,AB符合题意;C、利用圆规配合尺子,也能比较线段的大小,C不符合题意;D、直线是不可以度量的,也无法比较长度,D符合题意。

人教版初中七年级数学上册第四章《几何图形初步》模拟测试(答案解析)(33)

人教版初中七年级数学上册第四章《几何图形初步》模拟测试(答案解析)(33)

一、选择题1.(0分)[ID :68655]如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB .A .①②B .②③C .③④D .①④2.(0分)[ID :68654]如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对3.(0分)[ID :68647]下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形4.(0分)[ID :68641]如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒-D .90α︒-5.(0分)[ID :68624]如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°6.(0分)[ID :68613]如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n 7.(0分)[ID :68610]已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( ) A .30°B .60°C .30°或60°D .30°或150°8.(0分)[ID :68608]如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒9.(0分)[ID :68605]已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π10.(0分)[ID :68602]如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论:①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③11.(0分)[ID :68596]如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 12.(0分)[ID :68589]已知∠AOB=40°,∠BOC=20°,则∠AOC 的度数为( )A .60°B .20°C .40°D .20°或60°13.(0分)[ID :68584]一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有( )A .7种B .6种C .5种D .4种14.(0分)[ID :68561]小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A .B .C .D .15.(0分)[ID :68560]把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°二、填空题16.(0分)[ID :68702]如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则COD ∠=________.17.(0分)[ID:68700]如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式abc-的值是_________.18.(0分)[ID:68726]从起始站A市坐火车到终点站G市中途共停靠5次,各站点到A市距离如下:站点B C D E F G到A市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.19.(0分)[ID:68720]植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.20.(0分)[ID:68684]如图是一个多面体的表面展开图,则折叠后与棱AB重合的棱是________.21.(0分)[ID:68677]按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B为顶点的角共有______个,分别表示为_______________________.22.(0分)[ID:68660]已知点B在直线AC上,AB=6cm,AC=10cm,P、Q分别是AB、AC的中点,则PQ=_____23.(0分)[ID:68751]如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.3AC cm=,1CP cm=,线段PN=__cm.24.(0分)[ID :68750]如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =__cm .25.(0分)[ID :68737]若∠B 的余角为57.12°,则∠B=_____°_____’_____”26.(0分)[ID :68736]已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm .27.(0分)[ID :68734]如图,::2:3:4AB BC CD =,AB 的中点M 与CD 的中点N 的距离是3cm ,则BC =______.三、解答题28.(0分)[ID :68812]如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB 的度数.29.(0分)[ID :68779]说出下列图形的名称.30.(0分)[ID :68768]如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE=9cm ,求AB 的长. (2)若CE=5cm ,求DB 的长.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.A3.B4.C5.B6.C7.D8.B9.C10.D11.C12.D13.B14.A15.B二、填空题16.40°【解析】【分析】由题意可知∠1+∠2=100°从而得到∠BOD=80°由角平分线的定义可得到结论【详解】∵∠1=28°∠2=72°∴∠1+∠2=100°∴∠BOD=80°∵OC平分∠BOD∴∠17.【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a与4相对应b与2相对应c与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的18.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种19.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性20.BC【分析】把展开图折叠成一个长方体找到与AB重合的线段即可【详解】解:根据题意得:折叠后与棱AB重合的棱是BC故答案为BC【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可21.3【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示也可以用三个大写字母表示其中顶点字母要写在中间唯有在顶点处只有一个角的情况才可用顶点处的一个字母来记这个角否则分不清这个字母究竟表示哪个22.2或8【分析】本题没有给出图形在画图时应考虑到ABC三点之间的位置关系的多种可能再根据正确画出的图形解题【详解】解:如图:当点BC在点A的不同侧时∴AP=AB=3cmAQ=AC=5cm∴PQ=AQ+23.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN 的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用24.14【分析】线段AB被点CD分成2:4:7三部分于是设AC=2xCD=4xBD=7x由于MN分别是ACDB的中点于是得到CM=AC=xDN=BD=x根据MN=17cm列方程即可得到结论【详解】解:线25.5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键26.16【分析】分两种情况:①点P在线段MN上;②点P在线段MN外;然后利用两点之间距离性质结合图形得出即可【详解】①点P在线段MN上MP+NP=MN=16cm②点P 在线段MN外当点P在线段MN的上部时27.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据∠AOB=12∠BOD,OC平分∠AOD,得到∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而得到∠BOC=12∠AOB,∠DOC=3∠BOC从而判断出①②错误,③④正确.【详解】解:因为∠AOB=12∠BOD,所以∠AOB=13∠AOD,因为OC平分∠AOD,所以∠AOC=∠DOC=12∠AOD,所以∠BOC=∠AOC-∠AOB=12∠AOD-13∠AOD=16∠AOD=12∠AOB,故①错误,③正确;因为∠DOC=12∠AOD,∠BOC=16∠AOD,所以∠DOC=3∠BOC 故②错误,④正确.【点睛】本题考查了角的和差倍数关系,根据题意表示∠AOB=13∠AOD,∠AOC=∠DOC=12∠AOD,进而根据角的关系即可作出判断.2.A解析:A【分析】由OM是∠AOD的平分线,求得∠AOM=21°,利用∠BOC=34°,根据平角的定义求出答案.【详解】∵OM是∠AOD的平分线,∴∠AOM=21°.又∵∠BOC=34°,∴∠MOC=180°-21°-34°=125°.故选:A.【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.3.B解析:B【解析】A、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B、n棱柱有n+2个面,n个顶点,故原题说法错误;C、长方体,正方体都是四棱柱,说法正确;D、三棱柱的底面是三角形,说法正确;故选B.4.C解析:C【分析】先利用角的和差关系求出∠AOB的度数,根据角平分线的定义求出∠BOD的度数,再利用角的和差关系求出∠COD的度数.【详解】解:∵∠AOC=90°,∠COB=α,∴∠AOB=∠AOC+∠COB=90°+α.∵OD平分∠AOB,∴∠BOD=12(90°+α)=45°+12α,∴∠COD=∠BOD-∠COB=45°-12α,故选:C.【点睛】本题综合考查了角平分线的定义及角的和差关系,熟练掌握是解题的关键. 5.B解析:B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.6.C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.D解析:D【分析】根据两角的比和两角的和即可求得两个角的度数.【详解】由∠AOC=90°,∠AOB:∠AOC=2:3,可得当B在∠AOC内侧时,可以知道∠AOB23=⨯90°=60°,∠BOC=30°;当B在∠AOC外侧时,∠BOC=150°.故选:D.【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论.8.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG,∴∠BEF=180°-50°=130°,又∵EG平分∠BEF,∴∠BEG=12∠BEF=65°, ∴∠2=65°.故选:B .【点睛】 此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.9.C解析:C【分析】根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.10.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.11.C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面, 因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C .【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.12.D解析:D【分析】考虑两种情形①当OC 在∠AOB 内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB 外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC 在∠AOB 内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB 外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°, 故答案为20°或60°, 故选D .【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 13.B解析:B【分析】根据棒上标的数字,找出这根木棒被2、7两点分成的线段的条数即可.【详解】如图,∵线段AD被B、C两点分成AB、AC、AD、BC、BD、CD六条的线段∴能量的长度有:2、3、5、7、8、10,共6个,故选B.【点睛】本题考查的实质是找出已知图形上线段的条数.14.A解析:A【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.15.B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题16.40°【解析】【分析】由题意可知∠1+∠2=100°从而得到∠BOD=80°由角平分线的定义可得到结论【详解】∵∠1=28°∠2=72°∴∠1+∠2=100°∴∠BOD=80°∵OC平分∠BOD∴∠解析:40°【解析】【分析】由题意可知∠1+∠2=100°,从而得到∠BOD =80°,由角平分线的定义可得到结论.【详解】∵∠1=28°,∠2=72°,∴∠1+∠2=100°,∴∠BOD =80°.∵OC 平分∠BOD ,∴∠COD =∠BOC 12BOD ∠==40°. 故答案为40°.【点睛】本题考查了角平分线的定义,掌握图形间角的和差关系是解题的关键. 17.【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.18.14【分析】画出图形后分别求出BCCDDEEFFG 的大小可得AB =FGBC =DECD =EF 然后根据票价是由路程决定再分别求出从ABCDEF 出发的情况相加即可【详解】解:①从A 分别到BCDEFG 共6种解析:14【分析】画出图形后分别求出BC 、CD 、DE 、EF 、FG 的大小,可得AB =FG ,BC =DE ,CD =EF ,然后根据票价是由路程决定,再分别求出从A 、B 、C 、D 、E 、F 出发的情况,相加即可.【详解】解:①从A 分别到B 、C 、D 、E 、F 、G 共6种票价,如图:BC=805﹣445=360,CD=1135﹣805=330,DE=1495﹣1135=360,EF=1825﹣1495=330,FG=2270﹣1825=445,即AB=FG,BC=DE,CD=EF,②∵BC=360,BD=690,BE=1050,BF=1380,BG=1825=AF,∴从B出发的有4种票价,有BC、BD、BE、BF,4种;③∵CD=330,CE=690=BD,CF=1020,CG=1465,∴从C出发的(除去路程相同的)有3种票价,有CD,CF,CG,3种;④∵DE=360=BC,DF=690=BD,DG=1135=AD,∴从D出发的(除去路程相同的)有0种票价;⑤∵EF=330=CD,EG=775,∴从E出发的(除去路程相同的)有1种票价,有EG,1种;⑥∵FG=445=AB,∴从F出发的(除去路程相同的)有0种票价;∴6+4+3+0+1+0=14.故答案为:14.【点睛】本题考查了线段知识的实际应用,正确理解题意、不重不漏的求出所有情况是解此题的关键,这是一道比较容易出错的题目,求解时注意分类全面.19.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.20.BC【分析】把展开图折叠成一个长方体找到与AB重合的线段即可【详解】解:根据题意得:折叠后与棱AB重合的棱是BC故答案为BC【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可解析:BC【分析】把展开图折叠成一个长方体,找到与AB 重合的线段即可.【详解】解:根据题意得:折叠后与棱AB 重合的棱是BC .故答案为BC .【点睛】本题考查了展开图折叠成几何体,解决这类问题时,不妨动手实际操作一下,即可解决问题.21.3【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示也可以用三个大写字母表示其中顶点字母要写在中间唯有在顶点处只有一个角的情况才可用顶点处的一个字母来记这个角否则分不清这个字母究竟表示哪个 解析:A ∠,C ∠ ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ 3 ABD ∠,ABC ∠,DBC ∠【解析】【分析】根据角的表示方法:即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】(1)∵以A 、 C 为顶点的角有两个,∴能用一个大写字母表示的角有A ∠,C ∠ ;(2)∵只要角的顶点及两边均有大写字母,则此角可用三个大写字母表示,∴可用三个大写字母表示的角是ABD ∠,ABC ∠,DBC ∠,ADB ∠,BDC ∠ ; (3)由图可知以B 为顶点的角共有3个,分别是ABD ∠,ABC ∠,DBC ∠.【点睛】此题考查角的概念,解题关键在于掌握其概念.22.2或8【分析】本题没有给出图形在画图时应考虑到ABC 三点之间的位置关系的多种可能再根据正确画出的图形解题【详解】解:如图:当点BC 在点A 的不同侧时∴AP=AB=3cmAQ=AC=5cm ∴PQ=AQ+解析:2或8【分析】本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系的多种可能,再根据正确画出的图形解题.【详解】解:如图:当点B 、C 在点A 的不同侧时,∴AP=12AB=3cm ,AQ=12AC=5cm , ∴PQ=AQ+AP=5+3=8cm .当点B 、C 在点A 的同一侧时, ∴AP=12AB=3cm , ∴AQ=12AC=5cm , PQ=AQ-AP=5-3=2cm .故答案为8cm 或2cm .【点睛】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.23.【分析】根据线段中点的性质计算即可CB 的长结合图形根据线段中点的性质可得CN 的长进而得出PN 的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用 解析:32【分析】根据线段中点的性质计算即可CB 的长,结合图形、根据线段中点的性质可得CN 的长,进而得出PN 的长.【详解】解:AP AC CP =+,1CP cm =,314AP cm ∴=+=, P 为AB 的中点,28AB AP cm ∴==,CB AB AC =-,3AC cm =,5CB cm ∴=, N 为CB 的中点,1522CN BC cm ∴==, 32PN CN CP cm ∴=-=.故答案为:32.【点睛】本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.24.14【分析】线段AB 被点CD 分成2:4:7三部分于是设AC=2xCD=4xBD=7x 由于MN 分别是ACDB 的中点于是得到CM=AC=xDN=BD=x 根据MN=17cm 列方程即可得到结论【详解】解:线解析:14【分析】线段AB 被点C ,D 分成2:4:7三部分,于是设AC=2x ,CD=4x ,BD=7x ,由于M ,N 分别是AC ,DB 的中点,于是得到CM=12AC=x ,DN=12BD=72x ,根据MN=17cm 列方程,即可得到结论.【详解】解:线段AB 被点C ,D 分成2:4:7三部分, ∴设2AC x =,4CD x =,7BD x =,M ,N 分别是AC ,DB 的中点,12CM AC x ∴==,1722DN BD x ==, 17MN cm =,74172x x x ∴++=, 2x ∴=,14BD ∴=.故答案为:14.【点睛】本题考查了两点间的距离,利用了线段的和差,利用中点性质转化线段之间的倍分关系是解题的关键.25.5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.26.16【分析】分两种情况:①点P 在线段MN 上;②点P 在线段MN 外;然后利用两点之间距离性质结合图形得出即可【详解】①点P 在线段MN 上MP+NP=MN=16cm②点P 在线段MN 外当点P 在线段MN 的上部时解析:16【分析】分两种情况:①点P 在线段MN 上;②点P 在线段MN 外;然后利用两点之间距离性质,结合图形得出即可.【详解】①点P 在线段MN 上,MP+NP=MN=16cm ,②点P 在线段MN 外,当点P 在线段MN 的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P 在线段MN 的延长线上时,MP+NP > MN =16.综上所述:线段MP 和NP 的长度的和的最小值是16,此时点P 的位置在线段MN 上, 故答案为16.【点睛】本题考查的知识点是比较线段的长短,解题的关键是熟练的掌握比较线段的长短. 27.5cm 【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm 求出MB=xcmCN=2xcm 得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm ∵M 是解析:5cm【分析】运用方程的思想,设AB=2xcm ,BC=3xcm ,CD=4xcm ,求出MB=xcm ,CN=2xcm ,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm ,BC=3xcm ,CD=4xcm ,∵M 是AB 的中点,N 是CD 的中点,∴MB=xcm ,CN=2xcm ,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm .故答案为:1.5cm .【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x 的方程.三、解答题28.120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.29.依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【分析】根据平面图形:一个图形的各部分都在同一个平面内可得答案.【详解】根据平面图形的定义可知:它们依次是圆、三角形、正方形、长方形、平行四边形、梯形、五边形、六边形.【点睛】此题考查认识平面图形,解题关键在于掌握其定义对图形的识别.30.(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC ,CE=12BC ,根据线段的和差关系可得DE=12AB ,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。

人教版初中七年级数学上册第四章《几何图形初步》模拟测试(包含答案解析)(33)

人教版初中七年级数学上册第四章《几何图形初步》模拟测试(包含答案解析)(33)

一、选择题1.(0分)[ID :68656]给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④ 2.(0分)[ID :68654]如图所示,已知直线AB 上有一点O ,射线OD 和射线OC 在AB 同侧,∠AOD =42°,∠BOC =34°,OM 是∠AOD 的平分线,则∠MOC 的度数是( )A .125°B .90°C .38°D .以上都不对 3.(0分)[ID :68649]将一张圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开的平面图形是( )A .AB .BC .CD .D 4.(0分)[ID :68630]如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处5.(0分)[ID :68619]如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=°6.(0分)[ID :68611]如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 7.(0分)[ID :68603]已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个 8.(0分)[ID :68599]如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30° B .60° C .120° D .150° 9.(0分)[ID :68597]已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 10.(0分)[ID :68593]如图,点A 、B 、C 是直线l 上的三个定点,点B 是线段AC 的三等分点,AB =BC +4m ,其中m 为大于0的常数,若点D 是直线l 上的一动点,M 、N 分别是AD 、CD 的中点,则MN 与BC 的数量关系是( )A .MN =2BCB .MN =BC C .2MN =3BCD .不确定 11.(0分)[ID :68583]已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( )A .6cmB .10cmC .4cm 或10cmD .6cm 或10cm 12.(0分)[ID :68573]下图是一个三面带有标记的正方体,它的表面展开图是( )A .B .C .D .13.(0分)[ID :68569]线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( )A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm 14.(0分)[ID :68564]用一个平面去截一个圆锥,截面的形状不可能是( )A .B .C .D . 15.(0分)[ID :68559]如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个二、填空题16.(0分)[ID :68702]如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则COD ∠=________.17.(0分)[ID :68689]如图所示,填空:(1)AOB AOC ∠=∠+_________;(2)COB COD ∠=∠-_________=_________-_________;(3)AOB COD AOD ∠+∠-∠=_________.18.(0分)[ID :68680]科学知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面的这两个情景,请你做出判断.情景一:如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所.学数学知识来说明这个问题:_______________________________________________.情景二:农民兴修水利,开挖水渠,先在两端立桩拉线,然后沿线开挖,请你说出其中的道理:________________________________________________________________________________.你赞同以上哪种做法,你认为应用科学知识为人类服务时应注意什么?19.(0分)[ID :68679]36.275︒=_____度______分______秒.20.(0分)[ID :68658]把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)21.(0分)[ID :68756]如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A 对应___,B 对应___,C 对应___,D 对应__,E 对应__.22.(0分)[ID :68748]一个圆的周长是62.8m ,半径增加了2m 后,面积增加了____2m .(π取3.14)23.(0分)[ID :68744]如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.24.(0分)[ID :68740]在同一平面内,如果15AOB ∠=︒,75AOC ∠=︒,那么BOC ∠=_______.25.(0分)[ID :68737]若∠B 的余角为57.12°,则∠B=_____°_____’_____”26.(0分)[ID :68732]一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.27.(0分)[ID :68728]如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题28.(0分)[ID :68781]如图,一个点从数轴上的原点开始,先向左移动2cm 到达A 点,再向左移动3cm 到达B 点,然后向右移动9cm 到达C 点.(1)用1个单位长度表示1cm ,请你在数轴上表示出A ,B , C 三点的位置;(2)把点C 到点A 的距离记为CA ,则CA=______cm.(3)若点B 以每秒2cm 的速度向左移动,同时A .C 点分别以每秒1cm 、4cm 的速度向右移动.设移动时间为t 秒,试探索:CA−AB 的值是否会随着t 的变化而改变?请说明理由. 29.(0分)[ID :68795]如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B 、面C 相对的面分别是 和 ;(2)若A =a 3+15a 2b +3,B =﹣12a 2b +a 3,C =a 3﹣1,D =﹣15(a 2b +15),且相对两个面所表示的代数式的和都相等,求E 、F 代表的代数式.30.(0分)[ID :68758]如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.A3.C4.A5.C6.B7.B8.C9.C10.C11.D12.D13.C14.D15.B二、填空题16.40°【解析】【分析】由题意可知∠1+∠2=100°从而得到∠BOD=80°由角平分线的定义可得到结论【详解】∵∠1=28°∠2=72°∴∠1+∠2=100°∴∠BOD=80°∵OC平分∠BOD∴∠17.∠BOC【分析】根据图中各角的和与差的关系进行运算即可完成解答;【详解】(1);(2)=∠AOB-∠AOC(3)====∠BOC【点睛】此题主要考查角的和差关系解答的关键在于在图形中寻找角的和差关系18.情景一:两点之间线段最短;情景二:两点确定一条直线;赞同第二种应用科学知识为人类服务时应注意保护周边的环境等(合理即可)【解析】【分析】学校和图书馆两根立桩之间的路线可看做是一条线段接下来根据根据线19.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则20.如果两个角是两个相等角的余角那么这两个角相等真【解析】【分析】根据命题由题设和结论组成把条件两个角是同角的余角写在如果的后面把结论这两个角相等写在那么的后面即可【详解】命题同角的余角相等改写成如果那21.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab 旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的22.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷3123.【分析】先求出∠CAB及∠ABC的度数再根据三角形内角和是180°即可进行解答【详解】∵C岛在A岛的北偏东60°方向在B岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°24.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是25.5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键26.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二27.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【点睛】本题考查了认识立体图形,熟记各种图形的特征是解题关键.2.A解析:A【分析】由OM是∠AOD的平分线,求得∠AOM=21°,利用∠BOC=34°,根据平角的定义求出答案.【详解】∵OM是∠AOD的平分线,∴∠AOM=21°.又∵∠BOC=34°,∴∠MOC=180°-21°-34°=125°.【点睛】此题考查角平分线的有关计算,几何图形中角度的和差计算,根据图形掌握各角之间的关系是解题的关键.3.C解析:C【解析】根据折叠的性质,结合折叠不变性,可知剪下来的图形是C ,有四个直角三角形构成的特殊四边形.故选C.4.A解析:A【详解】要想4个人到工具箱的距离之和最短,据图可知:•位置在A 与B 之间时,距离之和;AD BC >+‚位置在B 与C 之间时,距离之和;AD BC =+ƒ位置在C 与D 之间时,距离之和.AD BC >+则工具箱在B 与C 之间时,距离之和最短.故选A .5.C解析:C【分析】先根据同角的余角相等得出∠1=∠BCE ,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH ⊥BC ,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE .∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C .【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质. 6.B解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是:故选:B .【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图. 7.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.C解析:C【分析】根据∠1的余角是∠2,并且∠1=2∠2求出∠1,再求∠1的补角.【详解】∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C .【点睛】本题考查了余角和补角,熟记概念并理清余角和补角的关系求解更简便.9.C解析:C【分析】分三种情况: C 在线段AB 上,C 在线段BA 的延长线上以及C 不在直线AB 上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C 在线段AB 上时,BC=AB-AC= 8-6=2;当C 在线段BA 的延长线上时,BC=AB+AC =8+6=14;当C 不在直线AB 上时,AB 、AC 、BC 三边构成三角形,则2<BC <14,综上所述①②④正确故选:C .【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键. 10.C解析:C【分析】可用特殊值法,设坐标轴上的点A 为0,C 为12m ,求出B 的值,得出BC 的长度,设D 为x ,则M 为2x ,N 为122m x +,即可求出MN 的长度为6m ,可算出MN 与BC 的关系. 【详解】设坐标轴上的点A 为0,C 为12m ,∵AB =BC+4m ,∴B 为8m ,∴BC =4m ,设D 为x ,则M 为2x ,N 为122m x +, ∴MN 为6m ,∴2MN =3BC ,故选:C .【点睛】本题考查了两点间的距离,解题关键是注意特殊值法的运用及方程思想的运用.11.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.12.D解析:D【解析】【分析】根据正方体侧面展开图中相邻的面和相对的面,进行判断即可.【详解】A三角形和正方形是对面,不符合题意;B不符合题意;C. 三角形和正方形是对面,不符合题意;D符合题意;故选D【点睛】本题考查正方体展开图,掌握正方体侧面展开图中相邻的面和相对的面是解题的关键.13.C解析:C【分析】根据题意分两种情况,①C为线段AB延长线上的点,②C为线段AB上的点,利用中点的性质分别进行求解.【详解】如图1, ①C为线段AB延长线上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB+BC)=6cm,CN=12BC=1cm,∴MN=CM-CN=5cm;如图2,②C为线段AB上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB-BC)=4cm,CN=12BC=1cm,∴MN=CM+CN=5cm;故选C.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.14.D解析:D【解析】【分析】圆锥是由圆和扇形围成的几何体,圆锥的底面是圆,侧面是曲面,截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关,据此对所给选项一一进行判断.【详解】圆锥的轴截面是B,平行于底面的截面是C,当截面与轴截面斜交时截面是A;无论如何截,截面都不可能是D.故选D.【点睛】此题考查截一个几何体,解题关键是掌握圆锥的特点进行求解.15.B解析:B【解析】【分析】利用公式:()21n n-来计算即可.【详解】根据公式:()21n n-来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.二、填空题16.40°【解析】【分析】由题意可知∠1+∠2=100°从而得到∠BOD=80°由角平分线的定义可得到结论【详解】∵∠1=28°∠2=72°∴∠1+∠2=100°∴∠BOD=80°∵OC 平分∠BOD ∴∠ 解析:40°【解析】【分析】由题意可知∠1+∠2=100°,从而得到∠BOD =80°,由角平分线的定义可得到结论.【详解】∵∠1=28°,∠2=72°,∴∠1+∠2=100°,∴∠BOD =80°.∵OC 平分∠BOD ,∴∠COD =∠BOC 12BOD ∠==40°. 故答案为40°.【点睛】本题考查了角平分线的定义,掌握图形间角的和差关系是解题的关键. 17.∠BOC 【分析】根据图中各角的和与差的关系进行运算即可完成解答;【详解】(1);(2)=∠AOB-∠AOC (3)====∠BOC 【点睛】此题主要考查角的和差关系解答的关键在于在图形中寻找角的和差关系解析:BOC ∠ BOD ∠ AOB ∠ AOC ∠ ∠BOC【分析】根据图中各角的和与差的关系进行运算,即可完成解答;【详解】(1)AOB AOC ∠=∠+BOC ∠;(2)COB COD ∠=∠-BOD ∠=∠AOB-∠AOC(3)AOB COD AOD ∠+∠-∠=()AOB COD AOB BOD ∠+∠-∠+∠=AOB COD AOB BOD ∠+∠-∠-∠=COD BOD ∠-∠=∠BOC【点睛】此题主要考查角的和差关系,解答的关键在于在图形中寻找角的和差关系.18.情景一:两点之间线段最短;情景二:两点确定一条直线;赞同第二种应用科学知识为人类服务时应注意保护周边的环境等(合理即可)【解析】【分析】学校和图书馆两根立桩之间的路线可看做是一条线段接下来根据根据线解析:情景一:两点之间,线段最短;情景二:两点确定一条直线;赞同第二种,应用科学知识为人类服务时,应注意保护周边的环境等.(合理即可)【解析】【分析】学校和图书馆、两根立桩之间的路线可看做是一条线段,接下来,根据根据线段的性质来分析得出即可.【详解】第一个情景是根据两点之间线段最短的原理来做的,第二个是两点确定一条直线;我赞同第二种做法.我们利用科学的同时,必须注意保护我们周围赖以生存的生态环境.故答案为:两点之间线段最短;两点确定一条直线;我赞同第二种做法.我们利用科学的同时,必须注意保护我们周围赖以生存的生态环境.【点睛】此题考查两点之间线段最短的应用,两点确定一条直线,掌握线段的性质是解题的关键. 19.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则解析:16 30【解析】【分析】利用度分秒的换算1度= 60分,1分=60秒,来计算.【详解】36.275︒=36度16分30秒故答案为:36,16,30.【点睛】此题考查度分秒的换算,解题关键在于掌握换算法则.20.如果两个角是两个相等角的余角那么这两个角相等真【解析】【分析】根据命题由题设和结论组成把条件两个角是同角的余角写在如果的后面把结论这两个角相等写在那么的后面即可【详解】命题同角的余角相等改写成如果那解析:如果两个角是两个相等角的余角,那么这两个角相等. 真【解析】【分析】根据命题由题设和结论组成,把条件“两个角是同角的余角”写在如果的后面,把结论“这两个角相等"写在那么的后面即可【详解】命题“同角的余角相等”改写成“如果..,那么."的形式是“如果两个角是同角的余角,那么这两个角相等”如果两个角是同角的余角,那么这两个角相等是真命题【点睛】此题考查命题与定理,掌握三角形的性质是解题关键21.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.22.16【分析】先根据圆的周长公式得到原来圆的半径进一步得到半径增加了2m后的半径再根据圆的面积公式分别得到它们的面积相减即可求解【详解】解:314×(628÷314÷2+2)2﹣314×(628÷31解析:16.【分析】先根据圆的周长公式得到原来圆的半径,进一步得到半径增加了2m后的半径,再根据圆的面积公式分别得到它们的面积,相减即可求解.【详解】解:3.14×(62.8÷3.14÷2+2)2﹣3.14×(62.8÷3.14÷2)2=3.14×(10+2)2﹣3.14×102=3.14×144﹣3.14×100=3.14×44=138.16(m2)故答案为:138.16.【点睛】本题考查了有理数的混合运算,本题关键是熟练掌握圆的周长和面积公式.23.【分析】先求出∠CAB及∠ABC的度数再根据三角形内角和是180°即可进行解答【详解】∵C岛在A岛的北偏东60°方向在B岛的北偏西45°方向∴∠CAB+∠ABC=180°﹣(60°+45°)=75°解析:【分析】先求出∠CAB及∠ABC的度数,再根据三角形内角和是180°即可进行解答.【详解】∵C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,∴∠CAB+∠ABC=180°﹣(60°+45°)=75°,∵三角形内角和是180°,∴∠ACB=180°﹣∠CAB﹣∠ABC=180°﹣30°﹣45°=105°.故答案为105.【点睛】此题主要考查了方向角的概念和三角形的内角和定理,根据题意得到∠CAB和∠ABC的度数是解题关键.24.或【分析】分别讨论射线OBOC在射线OA同侧和异侧的情况问题可解【详解】解:如图(1)当OBOC在射线OA同侧时如图(2)当OBOC在射线OA异侧时故答案为或【点睛】本题考查了角的加减运算解答关键是解析:60︒或90︒【分析】分别讨论射线OB、OC在射线OA同侧和异侧的情况,问题可解【详解】解:如图(1)当OB、OC在射线OA同侧时,∠=∠-∠=︒-︒=︒BOC AOB AOC701560如图(2)当OB、OC在射线OA异侧时,∠=∠+∠=︒+︒=︒BOC AOB AOC701590故答案为60︒或90︒【点睛】本题考查了角的加减运算,解答关键是应用分类讨论思想,找到不同情况分别求解. 25.5248【分析】根据互为余角列式再进行度分秒换算求出结果【详解】5712°=根据题意得:∠B=90°-=-==故答案为【点睛】本题考查余角的定义正确进行角度的计算是解题的关键解析:52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【详解】57.12°='''57712︒根据题意得:∠B=90°-'''57712︒='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点睛】本题考查余角的定义,正确进行角度的计算是解题的关键.26.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二 解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力. 27.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题28.(1)数轴见解析;(2)6;(3)C A−AB 的值不会随着t 的变化而改变,理由见解析;【分析】(1)在数轴上表示出A ,B ,C 的位置即可;(2)求出CA 的长即可;(3)不变,理由如下:当移动时间为t 秒时,表示出A ,B ,C 表示的数,求出CA-AB 的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm ,(3)不变,理由如下:当移动时间为t 秒时,点A. B. C 分别表示的数为−2+t 、−5−2t 、4+4t ,则CA=(4+4t)−(−2+t)=6+3t ,AB=(−2+t)−(−5−2t)=3+3t ,∵C A−AB=(6+3t)−(3+3t)=3∴CA−AB 的值不会随着t 的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 29.(1)面F ,面E ;(2)F =12a 2b ,E =1 【分析】(1)根据“相间Z 端是对面”,可得B 的对面为F ,C 的对面是E ,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A 与D ,B 与F ,C 与E ,列式计算即可.【详解】(1)由“相间Z 端是对面”,可得B 的对面为F ,C 的对面是E.故答案为:面F ,面E.(2)由题意得:A 与D 相对,B 与F 相对,C 与E 相对,A +D =B +F =C +E将A=a315+a2b+3,B12=-a2b+a3,C=a3﹣1,D15=-(a2b+15)代入得:a315+a2b+315-(a2b+15)12=-a2b+a3+F=a3﹣1+E,∴F12=a2b,E=1.【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.30.见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图,由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.。

几何图形巩固练习

几何图形巩固练习

几何图形巩固练习一、选择题1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是().2.如图所示的四种物体中,哪种物体最接近于圆柱().3.如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a在展开前所对的面上的数字是().A.2 B.3 C.4 D.54.按如图所示的图形中的虚线折叠可以围成一个棱柱的是().5.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是()6.(2015•眉山)下列四个图形中是正方体的平面展开图的是()A.B.C.D.二、填空题7.四棱锥,五棱锥,四棱柱,五棱柱中,有五个面的是_____.8.柱体包括________和________,锥体包括________和________.9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.(内蒙古赤峰)如图所示是一个几何体的三视图,则这个几何体是________.11.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形. 12.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .三、解答题13.将图中的几何体进行分类,并说明理由.14.如图所示是一个机器零件从正面看和从上面看所得到的图形,求该零件的体积(π取底面积×高).3.14,单位:mm)(提示:V=圆柱15. 如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.【答案与解析】一、选择题1.【答案】B2.【答案】A3.【答案】B【解析】要求面a在展开前所对的面上的数字,我们可以把正方体的展开图折叠起来,则面a、2、3、4按照第一、三个对应,第二、四个对应,于是面a在展开前所对的面上的数字为3.4. 【答案】C【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.5. 【答案】D【解析】选项A、B、C、D中的图形旋转一周分别形成圆台、球、圆柱和圆锥,故选D.6.【答案】B.二、填空题7.【答案】四棱锥.【解析】四棱锥有一个底面,四个侧面组成,共5个面.8. 【答案】圆柱,棱柱;圆锥,棱锥9. 【答案】自【解析】要弄清立体图形与其平面展开图各部分间的关系,需要较强的空间想象能力,这种能力是建立在动手操作、认真观察与善于思考的基础上.10.【答案】三棱柱(或填正三棱柱)【解析】考查空间想象能力.11.【答案】圆,曲,扇【解析】动手操作或空间想象,便得答案.12.【答案】一条线,点动成线;圆面,线动成面;圆柱体,面动成体三、解答题13.【解析】解:分类首先要确定标准,可以按组成几何体的面的平或曲来划分,也可以按柱、锥、球来划分.(1)长方体是由平面组成的,属于柱体.(2)三棱柱是由平面组成的,属于柱体.(3)球体是由曲面组成的,属于球体.(4)圆柱是由平面和曲面组成的,属于柱体.(5)圆锥是由曲面与平面组成的,属于锥体.(6)四棱锥是由平面组成的,属于锥体.(7)六棱柱是由平面组成的,属于柱体.若按组成几何体的面的平或曲来划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面,若按柱、锥、球来划分:(1)(2)(4)(7)是一类,即柱体;(5)(6)是一类,即锥体;(3)是球体.14.【解析】解:22032302540400482π⎛⎫⨯⨯+⨯⨯=⎪⎝⎭(mm3),即该零件的体积为40048 mm3.提示:由该零件从正面看和从上面看所得到的图形可以确定该零件是由上、下两部分组成的,上面是一个高为32 mm,底面直径为20 mm的圆柱;下面是一个长为30 mm,宽为25 mm,高为40 mm的长方体,零件的体积是圆柱与长方体体积之和.15. 【解析】解:能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5m,宽为2m,高为3m,所以它的体积为:5×2×3=30(m3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【巩固练习】
一、选择题
1.小亮在观察如图所示的热水瓶时,从左面看得到的图形是( ).
2.如图所示:桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,从左面看到的图是图中的( ).
3.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体是如图中的( ).
4.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()
A.5
B.6
C.7
D.8
5. (2016•资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()
A. B. C. D.
6.(2015•无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()
A.B.
C. D.
二、填空题
7.在圆、正方形、圆锥、长方体、线段、球、三棱柱、直角三角形中,是立体图形的有个.8.一个正方体的每个面分别标有数字1,2,3,4,5,6,根据图中该正方体A,B,C三种状态所显示的数字,可推出“?”处的数字是________.
9.如图是由小正方体堆积组成,图形看不见的地方也同样有小正方体,每个小正方体的体积为1个立方单位,则这堆正方体的体积是________个立方单位.
10.(2016•黄冈校级自主招生)如图是由几块相同的小正方体搭成的立体图形的三视图,则这个立体图形中小正方体共有块.
11.给出下列各结论:
①圆柱由3个面围成,这3个面都是平的;
②圆锥由2个面围成,这2个面中:1个是平的,1个是不平的;
③球仅由1个面围成,这1个面是平的;
④正方体由6个面围成,这6个面都是平的.
其中正确的为________(写出序号即可).
12. (1)一张纸对折后,纸上会留下一道折痕,用数学知识可解释为________,与之原理相同的例子还有_______ _(尽量多举出几种来);
(2)黑板擦在黑板上擦出一片干净的区域,用数学知识可解释为________,与之原理相同的例子还有_______ _(尽量多举出几种来);
(3)数学课本绕它的一边旋转,形成了一个圆柱体,用数学知识可解释为________,与之原理相同的例子还有_______ _(尽量多举出几种来).
三、解答题
13.如图所示,一长方体的长、宽、高分别是10 cm、8 cm、6 cm,有一只蚂蚁从A点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到A点时,最多爬行多少厘米?并把蚂蚁所爬行的
路线用字母按顺序表示出来.
14. (1)一个梯形ABCD,如图所示,画出绕AB所在直线旋转一周所形成的几何体的三视图(即从正面看,从上面看,从左面看).
(2)梯形绕BC所在直线旋转一周形成什么图形?
(3)梯形绕DC所在直线旋转一周形成什么图形?
15.如图,是一个正六棱柱,它的底面边长是3cm,高是6cm.
(1)这个棱柱的侧面积是多少?
(2)这个棱柱共有多少条棱?所有的棱长的和是多少?
(3)这个棱柱共有多少个顶点?
(4)通过观察,试用含n的式子表示n棱柱的面数与棱的条数.
【答案与解析】
一、选择题
1.【答案】B
【解析】从左面看到的平面图形,仍是热水瓶的轮廓,可排除C、D.而从左面看时热水瓶的柄恰在正中,所以排除A,故选B.
2.【答案】C
3.【答案】D
【解析】选项A中圆柱是以长方形绕其一边所在直线旋转得到的,选项B中圆锥是以直角三角形绕其直角边所在直线旋转得到的,选项C中几何体是以直角梯形绕其下底所在的直线旋转得到的,选项D中几何体是两个圆锥倒放在一起的,以直角三角形绕其斜边所在直线旋转得到的,故选D.
4.【答案】B
【解析】如右图,其中正方形中的数字表示该位置上的小正方体的个数.
5.【答案】C
【解析】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.
故选C.
6.【答案】D.
二、填空题
7.【答案】4.
8.【答案】6
【解析】与l相邻的四个面分别为4、5、2、3,则1的对面为6,再由B可知3的对面为4,由A可知5的对面为2,可推出“?”处的数字为6.
9.【答案】33
【解析】由下向上各层的立方单位为:9、8、6、5、3、1、1,则总共正方体的个数为33个.所以这一堆正方体的体积为33个立方单位.
10.【答案】9
【解析】解:综合主视图,俯视图,左视图,底层有2+2+1=5个正方体,第二层有3个正方体,第三层有1个正方体,所以搭成这个几何体所用的小立方块的个数是
5+3+1=9个.
故答案为:9.
11.【答案】②④
【解析】认识立体图形,观察是重要的环节,解题时如果凭想象得出答案较困难,那么可以动手制作图形,进行观察.
12.【答案】 (1)面与面相交得到线,相邻的墙面相交所成的线;长方体的六个面相交所成的线;圆柱的侧面与底面相交所成的曲线等.
(2)线动成面,汽车的雨刷在挡风玻璃上刷出一片干净的区域;刷漆时刷子刷出的漆面.
(3)面动成体,半圆绕它的直径旋转形成一个球面.
三、解答题
13.【解析】
解:10×4+8×2+6×2=68(cm),所以最多爬行68cm.
路线:A→B→C→D→H→G→F→E→A.
14.【解析】
解:(1)如图所示.
(2)梯形ABCD绕BC所在直线旋转一周形成是的圆台.
(3)梯形ABCD绕DC所在直线旋转一周形成的是圆柱和一段圆柱挖去同底的一个圆锥的复合体.
15.【解析】
解:(1)正六棱柱的侧面积3×6×6=108(cm2);
(2)这个棱柱共有 6+6+6=18条棱;
所有的棱长的和是12×3+6×6=36+36=72(cm);
(3)这个棱柱共有12个顶点;
(4)n棱柱的面数是(n+2)面,
n棱柱棱的条数是3n条.。

相关文档
最新文档