最新高中物理选修3-2测试题全套及答案解析(教科版)

合集下载

高中物理选修3-2全册复习学案+模块测试(精品整理含答案)

高中物理选修3-2全册复习学案+模块测试(精品整理含答案)

高中物理选修3-2全册复习学案+模块测试第四章电磁感应知识网络电磁感应划时代的发现奥斯特梦圆“电生磁”,法拉第心系“磁生电”专题归纳专题一楞次定律的理解和应用1.楞次定律解决的是感应电流的方向问题,它涉及两个磁场——感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场),前者和后者的关系不是“同向”和“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。

2.对“阻碍意义的理解”(1)阻碍原磁场的变化。

“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转。

(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流。

(3)阻碍不是相反,当原磁通量减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动方向将和磁体运动同向,以阻碍其相对运动。

(4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其他形式的能转化为电能,因而楞次定律是能量转化和守恒定律在电磁感应中的体现。

3.运用楞次定律处理问题的思路(1)判定感应电流方向问题的思路运用楞次定律判定感应电流方向的基本思路可以总结为“一原、二感、三电流”。

①明确原磁场:弄清原磁场的方向以及磁通量的变化情况。

②确定感应磁场:即根据楞次定律中的“阻碍”原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向。

③判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向。

(2)判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略在电磁感应问题中,有一类综合性较强的分析判断类问题,主要是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动。

【例题1】(多选)在光滑水平面上固定一个通电线圈,如图所示,一铝块正由左向右滑动穿过线圈,不考虑任何摩擦,那么下面正确的判断是()A.接近线圈时做加速运动,离开时做减速运动B.接近和离开线圈时都做减速运动C.一直在做匀速运动D.在线圈中运动时是匀速的解析:当铝块接近或离开通电线圈时,由于穿过铝块的磁通量发生变化,所以在铝块内要产生感应电流。

高中物理选修32全册练习题(整理)

高中物理选修32全册练习题(整理)

高中物理选修32全册练习题(整理)高中物理选修3-2全册练习题第四章电磁感应第Ⅰ课时电磁感应现象?楞次定律1、如图12-1-9所示,在同一平面内有四根彼此绝缘的直导线,分别通有大小相同方向如图的电流,要使由四根直导线所围成的面积内的磁通量增加,则应切断哪一根导线中的电流()A、切断i1;B、切断i2;C、切断i3;D、切断i4.【解析】i1产生的的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里;i2产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里;i3产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里;i4产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向外;所以四根导线产生的磁场叠加后在导线所围的面积内的磁场方向向里.故要使由四根直导线所围成的面积内的磁通量增加,只要将磁场方向相反的i4去除就可以了.【答案】D2、磁悬浮列车是在车辆底部安装电磁铁,在轨道两旁铺设一系列的铝环.当列车运行时,电磁铁产生的磁场相对铝环运动,列车凌空浮起,使车与轨道间的摩擦减小到很小,从而提高列车的速度.以下说法正确的是()A、当列车通过铝环时,铝环中有感应电流,感应电流产生的磁场的方向与电磁铁产生的磁场的方向相同.B、当列车通过铝环时,铝环中有感应电流,感应电流产生的磁场的方向与电磁铁产生的磁场的方向相反.C、当列车通过铝环时,铝环中通有电流,铝环中电流产生的磁场的方向与电磁铁产生的磁场的方向相同.1D、当列车通过铝环时,铝环中通有电流,铝环中电流产生的磁场的方向与电磁铁产生的磁场的方向相反.【解析】列车通过铝环时,铝环中磁通量增大,铝环中产生感应电流,由楞次定律可知,铝环中感应电流的磁场方向与电磁铁的磁场方向相反,从而使电磁铁受到向上的力,使列车悬浮.【答案】B3、如图12-1-10所示,一闭合的金属环从静止开始由高处下落通过条形磁铁后继续下落,空气阻力不计,则在圆环运动过程中,下列说法正确的是() A、圆环在磁铁的上方时,圆环的加速度小于g,在下方时大于g B、圆环在磁铁的上方时,圆环的加速度小于g,在下方时也小于g C、圆环在磁铁的上方时,圆环的加速度小于g,在下方时等于g D、圆环在磁铁的上方时,圆环的加速度大于g,在下方时小于g【解析】一闭合的金属环从静止开始由高处下落通过条形磁铁的过程中,闭合金属环的磁通量先增大,而后减小,根据楞次定律它增大时,不让它增大即阻碍它增大;它要减小时,不让它减小即阻碍它减小,所以下落时圆环在磁铁的上方和下方,圆环所受的安培力都向上,故加速度都小于g.【答案】B4、如图12-1-11所示,螺线管CD的导线绕法不明.当磁铁AB插入螺线管时,电路中有图示方向的感应电流产生.下列关于螺线管极性的判断正确的是() A、C端一定是N极 B、C端的极性一定与磁铁B端的极性相同 C、C端一定是S极 D、无法判断,因螺线管的绕法不明确【解析】磁铁AB插入螺线管时,在螺线管中产生感应电流,感应电流的磁场必定阻碍AB插入,故螺线管的C端和磁铁的B端极性相同.【答案】B25、如图12-1-12所示,平行导体滑轨MM/、NN/水平放置,固定在匀强磁场中.磁场的方向与水平面垂直向下.滑线AB、CD横放其上静止,形成一个闭合电路.当AB向右滑动时,电路中感应电流的方向及滑线CD受到的磁场力的方向分别为()A、电流方向沿ABCDA,受力方向向右;B、电流方向沿ABCDA,受力方向向左;C、电流方向沿ADCBA,受力方向向右;D、电流方向沿ADCBA,受力方向向左.【解析】本题用右手定则和楞次定律都可以解决,但用楞次定律比较快捷.由于AB滑线向右运动,ABCD所构成的回路面积将要增大,磁通量将增大,根据楞次定律要阻碍它增大,所以产生的感应电流方向沿ADCBA,CD滑线将向右滑动,故受力方向向右.【答案】C6、如图12-1-13所示,在绝缘圆筒上绕两个线圈P和Q,分别与电池E和电阻R构成闭合回路,然后将软铁棒迅速插入线圈P中,则在插入的过程中() A、电阻R上有方向向左的电流 B、电阻R上没有电流 C、电阻R上有方向向右的电流 D、条件不足,无法确定【解析】软铁棒被磁化,相当于插入一根跟P的磁场同向的条形磁铁,使P、Q 线圈中的磁通量增加.由楞次定律得,在Q中产生的感应电流向右通过电阻R.【答案】C7、如图12-1-14所示,一有限范围的匀强磁场,宽度为d,将一个边长为L 的正方形导线框以速度υ匀速地通过磁场区域,若d>L,则在线框中不产生感应电流的时间应等于() A、d/υ;B、L/υ;C、(d–L)/υ;D、(d–2L)/υ;【解析】线框中不产生感应电流,则要求线框所组成的闭合回路内的磁通量不发生变化,即线框全部在磁场中匀速运动时没有感应电流.所以线框从左边框进入磁场时开始到线框的右边框将要离开磁场时止,这个过程中回路中将没有感应电流.【答案】C8、如图12-1-15所示,边长为h的正方形金属导线框,从图示的位置由静止开3始下落,通过一匀强磁场区域,磁场方向水平,且垂直于线框平面,磁场区域宽度为H,上下边界如图中虚线所示,H?h.从线框开始下落到完全穿过磁场区域的全过程中,以下判断正确的是()①线框中总有感应电流存在②线框受到磁场力的合力方向有时向上有时向下③线框运动方向始终是向下的④线框速度的大小不一定总是在增加 A、①② B、③④ C、①④ D、②③【解析】因H?h,故可以分为三个过程:①从下边开始进入磁场到全部进入磁场;②从全部开始进入磁场到下边开始离开磁场;③下边开始离开磁场到全部离开磁场.再由楞次定律和左手定则可以判断知道.可能会使线框离开磁场时线框所受的安培力大于线框的重力,从而使线框的速度减小.【答案】B9、如图12-1-16所示,A、B是两个相互垂直的线框,两线框相交点恰是两线框的中点,两线框互相绝缘,A线框中有电流,当线框A的电流强度增大时,线框B中________感应电流.(填“有”、“无”)【解析】A线框中虽然有电流,并且产生了磁场,但磁感应强度的方向与A线框的平面相垂直,即与B线框平行.所以不管A线框中的电流如何变化,B 线框中始终没有磁通量,即无磁通量变化.【答案】无210、与磁感应强度B?0.8T垂直的线圈面积为0.05m,此时线圈的磁通量是多大?若这0个线圈绕有50匝时,磁通量多大?线圈位置如果转过53时磁通量多大?【解析】根据磁通量的定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量,但要注意S是与磁感应强度B相垂直的那部分面积.即??BS 故:①?1?BS1?0.8?0.05Wb?4?10Wb②线圈绕有50匝,但与磁感应强度B垂直的面积还是0.05m,故穿过这个面的磁感线条数不变.磁通量也可理解为穿过这个面的磁感线的条数.所以仍然为?2?4?10Wb ③根据磁通量的定义:?3?BScos53?0.8?0.05?0.6Wb?2.4?10Wb 【答案】①?1?4?10Wb②?2?4?10Wb③?3?2.4?10Wb4?2?2?22?20?2?2第Ⅱ课时法拉第电磁感应定律?自感1、如图12-2-12所示,粗细均匀的电阻为r的金属圆环,放在图示的匀强磁场中,磁感应强度为B,圆环直径为d,长为L,电阻为r的金属棒ab放在圆环上,以速度2 ?0向左匀速运动,当ab棒运动到图示虚线位置时,金属棒两端电势差为()A、0; B、BL?0; C、 11BL?0 ; DBL?0. 23【解析】当金属棒ab以速度?0向左运动到图示虚线位置时,根据公式可得产生的感应电动势为E?BL?0 ,而它相当于一个电源,并且其内阻为路的端电压.外电路半个圆圈的电阻为r;金属棒两端电势差相当于外电2r,而这两个半个圆圈的电阻是并联关系,故外电2r11路总的电阻为,所以外电路电压为Uba?E?BL?0.433【答案】D2、如图12-2-13所示,竖直向下的匀强磁场中,将一水平放置的金属棒 ab 以水平的初速?0抛出,设在整个过程中棒的取向不变且不计空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情况是()A、越来越大;B、越来越小;C、保持不变;D、无法判断.【解析】金属棒做切割磁感线的有效速度是与磁感应强度B垂直的那个分速度,由于金属棒做切割磁感线的水平分速度不变,故感应电动势不变.【答案】C 3、(年杭州模拟题)如图12-2-14所示为日光灯的电路图,以下说法中正确的是()①日光灯的启动器是装在专用插座上的,当日光灯正常发光后,取下启动器,不会影响灯管发光.②如果启动器丢失,作为应急措施,可以用一小段带绝缘外皮的导线启动日光灯.③日光灯正常发光后,灯管两端的电压为220V.④镇流器在日光灯启动时,产生瞬时高压A、①②B、③④C、①②④D、②③④【解析】日光灯正常发光后,由于镇流器的降压限流作用,灯管两端的电压要低于220V.【答案】C5。

高中物理选修3-2期末复习题及答案

高中物理选修3-2期末复习题及答案

高中物理选修3-2期末复习测试题一、选择题(本题共12小题,每小题给出的四个答案中至少有一个是正确的,每小题4分,共48分)1.关于电路中感应电动势的大小,下列说法中正确的是: A.穿过电路的磁通量越大,感应电动势就越大 B.电路中磁通量的该变量越大,感应电动势就越大 C.电路中磁通量变化越快,感应电动势越大D.若电路中某时刻磁通量为零,则该时刻感应电流一定为零2.某线圈在匀强磁场中绕垂直于磁场的转轴匀速转动,产生交变电流的图像如图所示,由图中信息可以判断: A.在A 和C 时刻线圈处于中性面位置 B.在B 和D 时刻穿过线圈的磁通量为零C.从A~D 时刻线圈转过的角度为2πD.若从O~D 时刻历时0.02s ,则在1s 内交变电流的方向改变100次3.如图所示,导线框abcd 与通电导线在同一平面内,直导线中通有恒定电流并通过ad 和bc 的中点,当线框向右运动的瞬间,则:A.线框中有感应电流,且按顺时针方向B.线框中有感应电流,且按逆时针方向C.线框中有感应电流,但方向难以判断D.由于穿过线框的磁通量为零,所以线框中没有感应电流4.闭合线圈与匀强磁场垂直,现将线圈拉出磁场,第一次拉出速度为v 1,第二次拉出速度为v 2,且v 2=2v 1,则:A.两次拉力做的功一样多B.两次所需拉力一样大C.两次拉力的功率一样大D.两次通过线圈的电荷量一样多5.如图所示的电路为演示自感现象的实验电路,若闭合开关S ,电流达到稳定后通过线圈L 的电流为I 1,通过小灯泡L 2的电流为I 2,小灯泡L 2处于正常发光状态,则下列说法中正确的是:A.S 闭合瞬间,L 2灯缓慢变亮,L 1灯立即变亮B.S 闭合瞬间,通过线圈L 的电流由零逐渐增大到I 1C.S 断开瞬间,小灯泡L 2中的电流由I 1逐渐键位零,方向与I 2相反D.S 断开瞬间,小灯拍L 2中的电流由I 1逐渐减为零,方向不变6.两个相同的电阻,分别通以如图所示的正弦交流电和方波电流,两种交变电流的最大值、周期如图所示,则在一个周期内,正弦交流电在电阻上产生的热量Q 1与方波电流在电阻上产生的热量Q 2之比等于:a b c dA.3:1B.1:2C.2:1D.1:1 7.如图所示,变压器初级线圈接电压一定的交流电,在下列措施中能使电流表示数减小的是:A.只将S 1从2拨向1B.只将S 2从4拨向3C.只将S 3从闭合改为断开D.只将变阻器R 3的滑动触头上移8.如图,两条平行虚线之间存在匀强磁场,虚线间的距离为l ,磁场方向垂直纸面向里,abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为l ,t =0时刻bc 边与磁场区域边界重合。

(完整版)高中物理选修3-2课后习题答案及解释

(完整版)高中物理选修3-2课后习题答案及解释

电磁感应和楞次定律1. 答案:CD详解:导体棒做匀速运动,磁通量的变化率是一个常数,产生稳恒电流,那么被线圈缠绕的磁铁将产生稳定的磁场,该磁场通过线圈 c 不会产生感应电流;做加速运动则可以;2.答案:C详解:参考点电荷的分析方法,S 磁单极子相当于负电荷,那么它通过超导回路,相当于向左的磁感线通过回路,右手定则判断,回路中会产生持续的adcba 向的感应电流;3.答案:A详解:滑片从 a 滑动到变阻器中点的过程,通过 A 线圈的电流从滑片流入,从固定接口流出,产生向右的磁场,而且滑动过程中,电阻变大,电流变小,所以磁场逐渐变小,所以此时 B 线圈要产生向右的磁场来阻止这通过 A 线圈的电流从滑片流入,从固定接口流出种变化,此时通过R 点电流由c流向d;从中点滑动到b的过程,通过A线圈的电流从固定接口流入,从滑片流出,产生向左的磁场,在滑动过程中,电阻变小,电流变大,所以磁场逐渐变大,所以此时B线圈要产生向右的磁场来阻止这种变化,通过R的电流仍从c流向d o4.答案:B详解:aob 是一个闭合回路,oa 逆时针运动,通过回路的磁通量会发生变化,为了阻止这种变化,ob 会随着oa 运动;5.答案:A详解:开关在 a 时,通过上方的磁感线指向右,开关断开,上方的磁场要消失,它要阻止这种变化,就要产生向右的磁场来弥补,这时通过R2的电流从c指向d;开关合到b上时,通过上方线圈的磁场方向向左,它要阻止这种变化,就要产生向右的磁场来抵消,这时通过R2的电流仍从c指向d;6.答案:AC详解:注意地理南北极与地磁南北极恰好相反,用右手定则判断即可。

电磁感应中的功与能1.答案:C、D详解:ab 下落过程中,要克服安培力做功,机械能不守恒,速度达到稳定之前其减少的重力势能转化为其增加的动能和电阻增加的内能,速度达到稳定后,动能不再变化,其重力势能的减少全部转化为电阻增加的内能。

选CD2.答案:A详解:E=BLvI=E/R=BLv/RF=BIL=B A2L A2v/R W=Fd=B A2L A2dv/R=B A2SLv/R, 选A3.答案:B、C详解:开始重力大于安培力,ab 做加速运动,随着速度的增大,安培力增大,当安培力等于重力时,加速度为零;当速度稳定时达到最大,重力的功率为重力乘以速度,也在此时达到最大,最终结果是安培力等于重力,安培力不为0,热损耗也不为0.选BC4. 答案:(1) 5m/s。

高中物理选修3-2期末测试题及答案

高中物理选修3-2期末测试题及答案

高中物理选修3-2期末测试题命题人:邹纪平 学生姓名: 测试成绩:第I 卷(选择题12小题 共 36分)一选择题(本题包括12小题,每小题3分,共36分。

每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得3分,选对但不全对的得2分,有选错的或不答的得0分) 1.关于电磁场理论,下列说法正确的是:( )A.变化的电场周围产生的磁场一定是变化的B. 变化的磁场周围产生的电场不一定是变化的C. 均匀变化的磁场周围产生的电场也是均匀变化的D. 振荡电场周围产生的磁场也是振荡的 2.质子和一价钠离子分别垂直进入同一匀强磁场中做匀速圆周运动,如果它们的圆周半径恰好相等,这说明它们在刚进入磁场时:( )A.速率相等B.带电量相等C.动量大小相等D.质量相等3.矩形线圈ABCD 位于通电直导线附近,如图所示,线圈和导线在同一平面内,且线圈的两个边与导线平行,下列说法正确的是:( )A.当线圈远离导线移动时,线圈中有感应电流B.当导线中的电流I 逐渐增大或减小时,线圈中无感应电流C.当线圈以导线为轴转动时,线圈中有感应电流D.当线圈以CD 为轴转动时,线圈中有感应电流4.若在磁场是由地球表面带电产生的,则地球表面带电情况是: ( ) A.正电 B.负电 C.不带电 D.无法确定5.关于日光灯的工作原理下列说法正确的是: ( )A. 启动器触片接通时,产生瞬时高压B. 日光灯正常工作时,镇流器起降压限流以保证日光灯正常工作C.日光灯正常工作时, 日光灯管的电压稳定在220VD.镇流器作用是将交流电变为直流电6.矩形线圈在匀强磁场中,绕垂直磁场方向的轴匀速转动时,线圈跟中性面重合的瞬间,下列说法中正确的是:I2( )A.线圈中的磁通量为零B. 线圈中的感应电动势最大C. 线圈的每一边都不切割磁感线D.线圈所受到的磁场力不为零7.正离子源发射出正离子经加速电压后,进入互相垂直的电场和磁场中,电场和磁场方向如图所示,发现离子向上偏转,要使离子沿直线通过混合场,需要: ( ) A.增大电场强度E ,减小磁感应强度B B.增大电场强度E ,减小加速电压U C.适当增大加速电压U D.适当减小电场强度E8.如图所示是日立NP82C21型电视机电路的开始部分,最左边是电源插头,S901是电源开关,F901是保险丝,L901是两只带铁芯的电感线圈,后面复杂的电路没有画出.关于电感线圈的作用,以下叙述正确的是: ( ) A.打开电源的瞬间,线圈会产生自感电动势,自感电动势的作用是使电视机更容易起动,所以我们刚一打开电视机就能听到声音和图象B.线圈在电路里起的是缓冲作用,能延缓开机瞬间电流对后面元件的冲击,提高电视机的使用寿命C.电视机正常工作之后,线圈就不会产生自感电动势了D.线圈的自感系数越大越好9.如图所示,abcd 为一闭合金属线框,用绝缘线挂在固定点O ,当线框经过匀强磁场摆动时,可以判断(空气阻力不计):( )A.线框进入磁场或离开磁场时,线框中均有感应电流产生B.线框进入磁场后,越靠近OO /线时,电磁感应现象越明显dC.此摆最终会停下来D.此摆的机械能不守恒10.如图所示,L 为一个带铁芯的线圈,R 是纯电阻,两支路的直流电阻相等,那么在接通和断开开关瞬间,两表的读数I 1和I 2的大小关系分别是: ( )A. I 1<I 2, I 1>I 2B. I 1>I 2, I 1<I 2C. I 1<I 2, I 1=I 2D. I 1=I 2, I 1<I 211.如图所示,abc 为三个同心圆环,且在同一平面内,垂直于此平面向里的磁场局限在b 环内部,当磁场减弱时,三个金属圆环中产生的感应电动势的大小关系是:( )A.E a >E b >E cB. E a <E b <E cC. E a <E b =E cD. E a =E b >E c12.一理想变压器给负载供电,变压器输入电压不变,如图所示.如果负载电阻的滑片向上移动则图中所有交流电表的读数及输入功率变化情况正确的是(均为理想电表): ( )A.V 1、V 2不变,A 1增大,A 2减少,P 增大B. V 1、V 2不变,A 1 、A 2增大,P 增大C. V 1、V 2不变,A 1、A 2减少,P 减少D. V 1不变、V 2增大,A 1、A 2减少,P 减少第II 卷(非选择题 64分)二.填空题(每小题6分,共24分)13.如图所示,电阻R ab =0.1Ω的导体ab 沿光滑导线框向右做匀速运动线框中接有电阻R=0.4Ω,线框放在磁感应强度B =0.1T 的匀强磁场中,磁场方向垂直于线框平面,导体的ab 长度l =0.4m,运动速度v =10m/s.线框的电阻不计. (1)电路abcd 中相当于电源的部分是 ,相当于电源的正极是 端. (2)使导体ab 向右匀速运动所需的外力F ’= N,方向 (3)电阻R 上消耗的功率P = W. (4)外力的功率P ’=414.如图所示,线圈内有理想边界的磁场,当磁感应强度均匀增加时,有一带电粒子静止于水平放置的平行板电容器中间,则此粒子带 电,若增大磁感应强度的变化率,则带电粒子将 (填“向上运动”“向下运动”或静止”)15.当屏幕上出现如图所示的波形时,应调节 旋钮.(填写数字或旋钮名称) 以使正弦波的整个波形出现16.如图所示,是用来做电磁感应实验装置的示意图,当闭合开关S 时,发现电流表的指针向左偏转一下后,又回到中央位置.现继续进行实验(1)把原线圈插入副线圈的过程中,电流表的指针将 . (2)把原线圈插入副线圈后电流表的指针将(3)原、副线圈保持不动,把变阻器滑动片P 向右移动过程中,电流表的指针将三.计算题:(本题共4个题,计40分,解答时写出必要的文字说明,方程式和重要演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)17.(8分)如图所示,两根平行放置的导电轨道,间距为L ,倾角为θ,轨道间接有电动势为E (内阻不计)的电源,整个导轨处在一个竖直向上的匀强磁场中,电阻为R 的金属杆ab 与轨道垂直放于导电轨道上静止,轨道的摩擦和电阻无不计,要使ab 杆静止,磁感应强度应多大?(设金属杆的质量为m )18. (10分) 如图所示,为交流发电机示意图,匝数为n =100匝矩形线圈,边长分别10cm 和20cm ,内电阻r =5Ω,在磁感应强度B =0.5T 的匀强磁场中绕OO ’以轴ω=250 rad/s 角速度匀速转动,线圈和外电阻为R =20Ω相连接,求:(1)S 断开时,电压表示数;(2)开关S 合上时,电压表和电流表示数。

新课标高中物理选修3-2课后习题答案

新课标高中物理选修3-2课后习题答案

高中物理3.2课后习题答案第4章第1节划时代的发现1.奥斯特实验,电磁感应等.2.电路是闭合的.导体切割磁感线运动.第2节探究电磁感应的产生条件1.(1)不产生感应电流(2)不产生感应电流(3)产生感应电流2.答:由于弹簧线圈收缩时,面积减小,磁通量减小,所以产生感应电流.3.答:在线圈进入磁场的过程中,由于穿过线圈的磁通量增大,所以线圈中产生感应电流;在线圈离开磁场的过程中,由于穿过线圈的磁通量减小,所以线圈中产生感应电流;当个线圈都在磁场中时,由于穿过线圈的磁通量不变,所以线圈中不产生感应电流.4.答:当线圈远离导线移动时,由于线圈所在位置的磁感应强度不断减弱,所以穿过线圈的磁通量不断减小,线圈中产生感应电流.当导线中的电流逐渐增大或减小时,线圈所在位置的磁感应强度也逐渐增大或减小,穿过线圈的磁通量也随之逐渐增大或减小,所以线圈中产生感应电流.5.答:如果使铜环沿匀强磁场的方向移动,由于穿过铜环的磁通量不发生变化,所以,铜环中没有感应电流;如果使铜环在不均匀磁场中移动,由于穿过铜环的磁通量发生变化,所以,铜环中有感应电流.6. 答:乙、丙、丁三种情况下,可以在线圈B 中观察到感应电流.因为甲所表示的电流是稳恒电流,那么,由这个电流产生的磁场就是不变的.穿过线圈B 的磁通量不变,不产生感应电7. 流.乙、丙、丁三种情况所表示的电流是随时间变化的电流,那么,由这样的电流产生的磁场也是变化的,穿过线圈B 的磁通量变化,产生感应电流.8. 为了使MN 中不产生感应电流,必须要求DENM 构成的闭合电路的磁通量不变,即2BS B l =,而()S l vt l =+,所以,从0t =开始,磁感应强度B 随时间t 的变化规律是0B l B l vt =+ 第3节 楞次定律1. 答:在条形磁铁移入线圈的过程中,有向左的磁感线穿过线圈,而且线圈的磁通量增大.根据楞次定律可知,线圈中感应电流磁场方向应该向右,再根据右手定则,判断出感应电流的方向,即从左侧看,感应电流沿顺时针方向.2. 答:当闭合开关时,导线AB 中电流由左向右,它在上面的闭合线框中引起垂直于纸面向外的磁通量增加.根据楞次定律,闭合线框中产生感应电流的磁场,要阻碍它的增加,所以感应电流的磁场在闭合线框内的方向是垂直纸面向里,再根据右手定则可知感应电流的方向是由D 向C .当断开开关时,垂直于纸面向外的磁通量减少.根据楞次定律,闭合线框中产生感应电流的磁场,要阻碍原磁场磁通量的减少,所以感应电流的磁场在闭合线框内的方向是垂直纸面内外,再根据右手定则可知感应电流的方向是由C向D.3.答:当导体AB向右移动时,线框ABCD中垂直于纸面向内的磁通量减少.根据楞次定律,它产生感应电流的磁场要阻碍磁通量减少,即感应电流的磁场与原磁场方向相同.垂直于纸面向内,所以感应电流的方向是A→B→C→D.此时,线框ABFE中垂直纸面向内的磁通量增加,根据楞次定律,它产生的磁场要阻碍磁通量的增加,即感应电流的磁场与原磁场方向相反,垂直于纸面向外.所以,感应电流的方向是A→B→F→E.所以,我们用这两个线框中的任意一个都可以判定导体AB中感应电流的方向.说明:此题对导体AB中的电流方向的判定也可用右手定则来确定.4.答:由于线圈在条形磁铁的N极附近,所以可以认为从A 到B的过程中,线圈中向上的磁通量减小,根据楞次定律,线圈中产生的感应电流的磁场要阻碍磁通量的减少,即感应电流的磁场与原磁场方向相同,再根据右手螺旋定则可知感应电流的方向,从上向下看为逆时针方向.从B到C的过程中,线圈中向下的磁通量增加,根据楞次定律,线圈中产生的感应电流的磁场要阻碍磁通量的增加,即感应电流的磁场与原磁场方向相反,再根据右手螺旋定则可知感应电流的方向,从上向下看为逆时针方向.5. 答:(1)有感应电流(2)没有感应电流;(3)有感应电流;(4)当合上开关S 的一瞬间,线圈P 的左端为N 极;当打开开关S 的上瞬间,线圈P 的右端为N 极.6. 答:用磁铁的任一极(如N 极)接近A 球时,穿过A 环中的磁通量增加,根据楞次定律,A 环中将产生感应电流,阻碍磁铁与A 环接近,A 环将远离磁铁;同理,当磁铁远离发A 球时,A 球中产生感应电流的方向将阻碍A 环与磁铁远离,A 环将靠近磁铁.由于B 环是断开的,无论磁极移近或远离B 环,都不会在B 环中形成感应电流,所以B 环将不移动.7. 答:(1)如图所示.圆盘中任意一根半径CD 都在切割磁感线,这半径可以看成一个电源,根据右手定则可以判断,D 点的电势比C 点高,也就是说,圆盘边缘上的电势比圆心电势高,(2)根据右手定则判断,D 点电势比C 点高,所以流过电阻R 的电流方向自下向上.说明:本题可拓展为求CD 间的感应电动势.设半径为r ,转盘匀速转动的角速度ω,匀强磁场的磁感应强度为B ,求圆盘转动时的感应电动势的大小.具体答案是212E Br ω=. 第4节 法拉第电磁感应定律1. 正确的是D .2. 解:根据法拉第电磁感应定律,线圈中感应电动势为0.090.021000V 175V 0.4E n t -∆Φ==⨯=∆;根据闭合电路欧姆定律可得,通过电热器的电流为175A=0.175A 99010E I R r ==++3. 解:根据导线切割磁感线产生感应电动势的公式E Blv =得:缆绳中的感应电动势54334.6102.05107.610V=7.210V E -=⨯⨯⨯⨯⨯⨯ 4. 答:可以.声音使纸盒振动,线圈切割磁感线,产生感应电流.5. 答:因为线圈绕OO '轴转动时,线圈长2L 的边切割磁感线的速度变化,感应电动势因而变化.根据公式sin E Blv θ=和v r ω=有12sin E BL L ωθ=.因为12S L L =,90θ=︒,所以,E BS ω=. 6. 答:(1)根据法拉第电磁感应定律,线圈中感应电动势2B E n n R t t π∆Φ∆==∆∆,所以,22441AB E E ==.(2)根据闭合电路欧姆定律,可得通过线圈的电流2122S E B B I n R n R R tR t Sππρρ∆∆===∆∆,所以,221A A B B I R I R ===. 7. 答:管中有导电液体流过时,相当于一段长为d 的导体在切割磁感线,产生的感应电动势E Bdv =.液体的流量()22d Q v π=,即液体的流量与电动势E 的关系为4d Q E B π=. 第5节 电磁感应定律的应用1. 解:根据导线切割磁感线产生感应电动势的公式E Blv =,该机两翼尖间的电势差为54.71012.70.7340V=0.142V E -=⨯⨯⨯⨯,根据右手定则可知,从驾驶员角度来说,左侧机翼电势高。

最新高中物理选修3-2测试题全套及答案解析(教科版)

最新高中物理选修3-2测试题全套及答案解析(教科版)

最新高中物理选修3-2测试题全套及答案解析(鲁科版) 本文档含本书的模块测试和期中,期末试题,共3套,带答案解析,适合测试和自我提高模块综合检测(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题4分,共40分)1.如图1所示,电阻和面积一定的圆形线圈垂直放入匀强磁场中,磁场的方向垂直纸面向里,磁感应强度随时间的变化规律为B=B0sin ωt.下列说法正确的是()图1A.线圈中产生的是交流电B.当t=π/2ω时,线圈中的感应电流最大C.若增大ω,则产生的感应电流的频率随之增大D.若增大ω,则产生的感应电流的功率随之增大2.两个完全相同的灵敏电流计A、B,按图2所示的连接方式,用导线连接起来,当把电流计A的指针向左边拨动的过程中,电流计B的指针将()图2A.向左摆动B.向右摆动C.静止不动D.发生摆动,由于不知道电流计的内部结构情况,故无法确定摆动方向3.如图3甲所示,一矩形线圈放在随时间变化的匀强磁场内.以垂直线圈平面向里的磁场为正,磁场的变化情况如图乙所示,规定线圈中逆时针方向的感应电流为正,则线圈中感应电流的图象应为()图34.如图4所示,在光滑绝缘水平面上,有一铝质圆形金属球以一定的初速度通过有界匀强磁场,则从球开始进入磁场到完全穿出磁场的过程中(磁场宽度大于金属球的直径),则小球()图4A.整个过程匀速运动B.进入磁场的过程中球做减速运动,穿出过程做加速运动C.整个过程都做匀减速运动D.穿出时的速度一定小于初速度5. 线框在匀强磁场中绕OO′轴匀速转动(由上向下看是逆时针方向),当转到如图5所示位置时,磁通量和感应电动势大小的变化情况是()图5A.磁通量和感应电动势都在变大B.磁通量和感应电动势都在变小C.磁通量在变小,感应电动势在变大D.磁通量在变大,感应电动势在变小6.如图6所示的电路中,变压器是理想变压器.原线圈匝数n1=600匝,装有0.5 A的保险丝,副线圈的匝数n2=120匝,要使整个电路正常工作,当原线圈接在180 V的正弦交变电源上时,下列判断正确的是()A.副线圈可接耐压值为36 V的电容器B.副线圈可接“36 V,40 W”的安全灯两盏C.副线圈可接电阻为14 Ω的电烙铁D.副线圈可以串联一个量程为3 A的电流表,去测量电路中的总电流7.一交变电流的i-t图象如图7所示,由图可知()A.用电流表测该电流示数为10 2 AB.该交变电流的频率为100 HzC.该交变电流通过10 Ω的电阻时,电阻消耗的电功率为2 000 WD.该交变电流的电流瞬时值表达式为i=102sin 628t A8.图8是测定自感系数很大的线圈L直流电阻的电路,L两端并联一只电压表,用来测量自感线圈的直流电压,在测量完毕后,将电路解体时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电阻R9.如图9所示的电路中,L为自感系数很大的电感线圈,N为试电笔中的氖管(启辉电压约70 V),电源电动势约为10 V.已知直流电使氖管启辉时辉光只产生在负极周围,则()A.S接通时,氖管不会亮B.S接通时启辉,辉光在a端C.S接通后迅速切断时启辉,辉光在a端D.条件同C,辉光在b端10.如图10所示是一种延时开关,当S1闭合时,电磁铁将衔铁吸下,将C线路接通,当S1断开时,由于电磁作用,D将延迟一段时间才被释放,则()A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的开关S2,无延时作用D.如果断开B线圈的开关S2,延时将变长图6 图7图8图9图10二、填空题(本题共2小题,共20分)11.(5分)如图11所示,是一交流电压随时间变化的图象,此交流电压的有效值等于________V.12.(15分)硅光电池是一种可将光能转换为电能的器件,某同学用图12所示的电路探究硅光电池的路端电压U与总电流I的关系,图中R0为定值电阻且阻值的大小已知,电压表视为理想电压表.图11(1)请根据图12,将图13中的实验器材连接成实验电路.图12图13(2)若电压表V2的读数为U0,则I=________.姓名:________班级:________学号:________得分:________(3)实验一:用一定强度的光照射硅光电池,调节滑动变阻器,通过测量得到该电池的U—I曲线a,见图14.由此可知电池内阻________(选填“是”或“不是”)常数,短路电流为______ mA,电动势为________ V.(4)实验二:减小实验一中光的强度,重复实验,测得U—I曲线b,见图14.当滑动变阻器的电阻为某值时,实验一中的路端电压为 1.5 V,则实验二中外电路消耗的电功率为________ mW(计算结果保留两位有效数字)图14三、计算题(本题共4小题,共40分)13.(8分)如图15所示,理想变压器原线圈Ⅰ接到220 V的交流电源上,副线圈Ⅱ的匝数为30,与一标有“12 V,12 W”的灯泡连接,灯泡正常发光.副线圈Ⅲ的输出电压为110 V,电流为0.4 A.求:图15(1)副线圈Ⅲ的匝数;(2)原线圈Ⅰ的匝数以及通过原线圈的电流.14.(10分)某发电站的输出功率为104kW,输出电压为4 kV,通过理想变压器升压后向80 km远处的用户供电.已知输电线的电阻率为ρ=2.4×10-8Ω·m,导线横截面积为1.5×10-4 m2,输电线路损失的功率为输出功率的4%.求:(1)升压变压器的输出电压;(2)输电线路上的电压损失.15.(8分)如图16所示,光滑导轨MN、PQ在同一水平面内平行固定放置,其间距d=1 m,右端通过导线与阻值R L=8 Ω的小灯泡L相连,CDEF矩形区域内有方向竖直向下、磁感应强度B=1 T的匀强磁场,一质量m=50 g、阻值为R=2 Ω的金属棒在恒力F作用下从静止开始运动x=2 m后进入磁场恰好做匀速直线运动.(不考虑导轨的电阻,金属棒始终与导轨垂直并保持良好接触).求:图16(1)恒力F的大小;(2)小灯泡发光时的电功率.16.(14分)如图17所示,在坐标xOy平面内存在B=2.0 T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程x=0.50sin π5y m,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1和R2,其中R1=4.0 Ω、R2=12.0 Ω.现有一足够长、质量m=0.10 kg的金属棒MN在竖直向上的外力F作用下,以v=3.0 m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,g取10 m/s2,求:图17(1)金属棒MN在导轨上运动时感应电流的最大值;(2)外力F的最大值;(3)金属棒MN滑过导轨OC段,整个回路产生的热量.模块综合检测 答案1.ACD [线圈中产生的感应电流的规律和线圈在匀强磁场中匀速运动时一样,都是正(余)弦交变电流.由规律类比可知A 、C 、D 正确.]2.B [因两表的结构完全相同,对A 来说就是由于拨动指针带动线圈切割磁感线产生感应电流,电流方向应用右手定则判断;对B 表来说是线圈受安培力作用带动指针偏转,偏转方向应由左手定则判断,研究两表的接线可知,两表串联,故可判定电流计B 的指针向右摆动.]3.B [0~t 1时间内,磁场均匀增强,穿过线圈的磁通量均匀增大,产生的感应电流大小不变,由楞次定律知电流方向为逆时针;同理,t 1~t 2时间内无电流,t 2~t 4时间内有顺时针大小不变的电流.]4.D [小球进出磁场时,有涡流产生,要受到阻力,故穿出时的速度一定小于初速度.]5.D [由题图可知,Φ=Φm cos θ,e =E m sin θ,所以磁通量变大,感应电动势变小.]6.BD [根据输入电压与匝数关系,有U 1U 2=n 1n 2,解得U 2=n 2n 1U 1=120600×180 V =36 V .根据保险丝熔断电流,有P 2=P 1=I 1U 1=0.5×180 W =90 W .根据正弦交变电流有效值与最大值间的关系,有U 2m =2U 2=36 2 V .允许副线圈通过的最大电流有效值为I 2=n 1n 2I 1=600120×0.5 A =2.5 A .负载电阻是最小值R =U 2I 2=362.5 Ω=14.4 Ω.根据以上数据,得B 、D 正确.] 7.BD8.B [S 1断开瞬间,L 中产生很大的自感电动势,若此时S 2闭合,则可能将电压表烧坏,故应先断开S 2.]9.AD [接通时电压不足以使氖管发光,迅速切断S 时,L 中产生很高的自感电动势,会使氖管发光,b 为负极,辉光在b 端.故A 、D 项正确.]10.BC [如果断开B 线圈的开关S 2,那么在S 1断开时,该线圈中会产生感应电动势,但没有感应电流,所以无延时作用.]11.50 2解析 题图中给出的是一方波交流电,周期T =0.3 s ,前T 3时间内U 1=100 V ,后2T3时间内U 2=-50V .设该交流电压的有效值为U ,根据有效值的定义,有U 2R T =U 21R ·⎝⎛⎭⎫T 3+U 22R ·⎝⎛⎭⎫23T ,代入已知数据,解得U=50 2 V.12.(1)实验电路如下图所示(2)U 0R 0 (3)不是 0.295(0.293~0.297) 2.67(2.64~2.70) (4)0.068(0.060~0.070) 解析 (1)略.(2)根据欧姆定律可知I =U 0R 0(3)路端电压U =E -Ir ,若r 为常数,则U —I 图为一条不过原点的直线,由曲线a 可知电池内阻不是常数;当U =0时的电流为短路电流,约为295 μA =0.295 mA ;当电流I =0时路端电压等于电源电动势E 、约为2.67 V.(4)实验一中的路端电压为U 1=1.5 V 时电路中电流为I 1=0.21 mA ,连接a 中点(0.21 mA,1.5 V)和坐标原点,此直线为此时对应滑动变阻器阻值的外电路电阻(定值电阻)的U —I 图,和图线b 的交点为实验二中的路端电压和电路电流,如下图,电流和电压分别为I =97 μA ,U =0.7 V ,则外电路消耗功率为P =UI =0.068 mW.13.(1)275匝 (2)550匝 0.25 A解析 理想变压器原线圈两端电压跟每个副线圈两端电压之比都等于原、副线圈匝数之比.由于有两个副线圈,原、副线圈中的电流跟它们的匝数并不成反比,但输入功率等于输出的总功率.(1)已知U 2=12 V ,n 2=30;U 3=110 V 由U 2U 3=n 2n 3,得n 3=U 3U 2n 2=275匝; (2)由U 1=220 V ,根据U 1U 2=n 1n 2,得n 1=U 1U 2n 2=550匝由P 1=P 2+P 3=P 2+I 3U 3=56 W ,得I 1=P 1U 1=0.25 A14.(1)8×104 V (2)3.2×103 V解析 (1)导线电阻r =ρ2l S =2.4×10-8×2×80×1031.5×10-4Ω=25.6 Ω输电线路上损失的功率为输出功率的4%,则4%P =I 2r 代入数据得I =125 A由理想变压器P 入=P 出及P =UI 得输出电压U =P I =107125 V =8×104 V(2)输电线路上的电压损失 U ′=Ir =125×25.6 V =3.2×103 V 15.(1)0.8 N (2)5.12 W 解析 (1)对导体棒由动能定理得Fx =12m v 2因为导体棒进入磁场时恰好做匀速直线运动所以F =BId =B Bd vR +R Ld代入数据,根据以上两式方程可解得:F =0.8 N ,v =8 m/s(2)小灯泡发光时的功率P L =⎝ ⎛⎭⎪⎫Bd v R +R L 2·R L =5.12 W 16.(1)1.0 A (2)2.0 N (3)1.25 J解析 (1)金属棒MN 沿导轨竖直向上运动,进入磁场中切割磁感线产生感应电动势.当金属棒MN 匀速运动到C 点时,电路中感应电动势最大,产生的感应电流最大.金属棒MN 接入电路的有效长度为导轨OCA 形状满足的曲线方程中的x 值.因此接入电路的金属棒的有效长度为L =x =0.5sin π5y ,L m =x m=0.5 m ,由E m =BL m v ,得E m =3.0 V ,I m =E m R 并,且R 并=R 1R 2R 1+R 2,解得I m =1.0 A(2)金属棒MN 匀速运动的过程中受重力mg 、安培力F 安、外力F 外作用,金属棒MN 运动到C 点时,所受安培力有最大值,此时外力F 有最大值,则F 安m =I m L m B ,F 安m =1.0 N , F 外m =F 安m +mg ,F 外m =2.0 N.(3)金属棒MN 在运动过程中,产生的感应电动势e =3.0sin π5y ,有效值为E 有=E m2.金属棒MN 滑过导轨OC 段的时间为tt =y Oc v ,y =52 m ,t =56 s滑过OC 段产生的热量 Q =E 2有R 并t ,Q =1.25 J.期中综合检测(时间:90分钟 满分:100分)一、选择题(本题共10小题,每小题4分,共40分) 1.与x 轴夹角为30°的匀强磁场的磁感应强度为B ,如图1所示,长为L 的金属杆在匀强磁场中运动时始终与xOy 平面垂直(图中小圆为其截面),以下哪些情况一定能在杆中获得方向相同、大小为BL v 的感应电动势( )图1①杆以2v 速率向+x 方向运动 ②杆以速率v 垂直磁场方向运动③杆以速率233v 沿+y 方向运动 ④杆以速率233v 沿-y 方向运动A .①和②B .①和③C .②和④D .①和④2.两个闭合的金属环穿在一根光滑的绝缘杆上,如图2所示,当条形磁铁的S 极自右向左插向圆环时,环的运动情况是( )图2A .两环同时向左移动,间距增大B .两环同时向左移动,间距变小C .两环同时向右移动,间距变小D .两环同时向左移动,间距不变3.如图3所示,MSNO 为同一根导线制成的光滑导线框,竖直放置在水平方向的匀强磁场中,OC 为一可绕O 轴始终在轨道上滑动的导体棒,当OC 从M 点无初速度释放后,下列说法中正确的是( )图3A .由于无摩擦存在,导体棒OC 可以在轨道上往复运动下去B .导体棒OC 的摆动幅度越来越小,机械能转化为电能 C .导体棒OC 在摆动中总受到阻碍它运动的磁场力D .导体棒OC 只有在摆动加快时才受到阻碍它运动的磁场力4.一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个电压表相接,如图4所示,整个系统放在磁感应强度为B 的均匀磁场中,B 的方向沿z 轴正方向.如果电压表与导体平板均以速度v 向y 轴正方向移动,则电压表指示的电压值为( )图4A .0 B.12v Bl C .v Bl D .2v Bl5.如图5甲所示,光滑导体框架abcd 水平放置,质量为m 的导体棒PQ 平行于bc 放在ab 、cd 上,且正好卡在垂直于轨道平面的四枚光滑小钉之间,回路总电路为R ,整个装置放在垂直于框架平面的变化的磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(规定磁感应强度方向向上为正),则在时间0~t 内,关于回路内的感应电流I 及小钉对PQ 的弹力N ,下列说法中正确的是( )图5A .I 的大小是恒定的B .I 的方向是变化的C .N 的大小是恒定的D .N 的方向是变化的6.铁路上使用一种电磁装置向控制中心传输信号,以确定火车的位置.有一种磁铁能产生匀强磁场,被安装在火车首节车厢下面,如图6所示(俯视图),当它经过安装在两铁轨之间的线圈时,便会产生一种电信号被控制中心接收到.当火车以恒定的速度v 通过线圈时,下面四个选项中的图象能正确表示线圈两端的电压随时间变化的关系是( )图67.如图7所示,线圈的自感系数L 和电容器的电容C 都很小(如:L =1 mH ,C =200 pF),此电路的作用是( )图7A .阻直流、通交流,输出交流B .阻交流、通直流、输出直流C .阻低频、通高频、输出高频交流D .阻高频、通低频、输出低频交流和直流8.有一边长为L 的正方形导线框,质量为m ,由高度H 处自由下落,如图8所示,其下边ab 进入匀强磁场区域后,线圈开始减速运动,直到其上边cd 刚好穿出磁场时,速度减为ab 边刚进入磁场时速度的一半,此匀强磁场的宽度也是L ,线框在穿过匀强磁场的过程中产生的电热是( )图8A .2mgLB .2mgL +mgHC .2mgL +34mgHD .2mgL +14mgH9.如图9所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直于导轨所在的平面向里,金属棒ab 可沿导轨自由滑动,导轨一端跨接一个定值电阻R ,导轨电阻不计,现将金属棒沿导轨由静止向右拉.若保持拉力恒定,当速度为v 时,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率恒定,当速度为v 时,加速度为a 2,最终也以速度2v 做匀速运动,则( )图9A .a 2=a 1B .a 2=2a 1C .a 2=3a 1D .a 2=4a 1 10.在生产实际中,有些高压直流电路含有自感系数很大的线圈,当电路中的开关S 由闭合到断开时,线圈中产生很高的自感电动势,使开关S 处产生电弧,危及操作人员的人身安全.为了避免电弧的产生,可在线圈处并联一个元件,如图所示的方案中可行的是( )题号12345678910答案二、填空题(本题共2小题,共12分)11.(6分)如图10所示,两水平放置的金属板相距为d,用导线与一个n匝线圈连接,线圈置于方向竖直向上的变化磁场中.若金属板间有一质量m、带电荷量+q的微粒恰好处于平衡状态,则磁场的变化情况是________,磁通量的变化率为________.12.(6分)由于国际空间站的运行轨道上各处的地磁场强弱及方向均有所不同,所以在运行过程中,穿过其外壳地磁场的磁通量将不断变化,这样将会导致________产生,从而消耗空间站的能量.为了减少这类损耗,国际空间站的外壳材料的电阻率应尽可能选用______(填“大”或“小”)一些的.图10姓名:________班级:________学号:________得分:________三、计算题(本题共4小题,共48分)13.(10分)如图11所示,电阻为r0的金属棒OA以O为轴可以在电阻为4r0的圆环上滑动,外电阻R1=R2=4r0,其他电阻不计.如果OA棒以某一角速度匀速转动时电阻R1的电功率最小值为P0,求OA 棒匀速转动的角速度.图1114.(12分)两根光滑的长直金属导轨MN、M′N′平行置于同一水平面内,导轨间距为l,电阻不计,M、M′处接有如图12所示的电路,电路中各电阻的阻值均为R,电容器的电容为C.长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中.ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q.求:图12(1)ab运动速度v的大小;(2)电容器所带的电荷量q.15.(10分)光滑平行金属导轨长L =2.0 m ,两条导轨之间的距离d =0.10 m ,它们所在的平面与水平方向之间的夹角θ=30°,导轨上端接一个阻值为R =0.80 Ω的电阻,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B =0.4 T ,有一金属棒ab 其质量m =500 g ,垂直放在导轨的最上端,如图13所示.当ab 从最上端由静止开始滑下,直到滑离轨道时,电阻R 上放出的热量Q =1 J ,g =10 m/s 2,求ab 在下滑的过程中,通过R 上的最大电流.图1316.(16分)如图14所示,abcd 为静止于水平面上宽度为L 、长度很长的U 形金属滑轨,bc 边接有电阻R ,其他部分电阻不计.ef 为一可在滑轨平面上滑动、质量为m 的均匀金属棒.现金属棒通过一水平细绳跨过定滑轮,连接一质量为M 的重物,一匀强磁场B 垂直滑轨平面.重物从静止开始下落,不考虑滑轮的质量,且金属棒在运动过程中均保持与bc 边平行.忽略所有摩擦力.则:图14(1)当金属棒做匀速运动时,其速率是多少?(忽略bc 边对金属棒的作用力);(2)若重物从静止开始至匀速运动时下落的总高度为h ,求这一过程中电阻R 上产生的热量.期中综合检测 答案1.D [根据E =BLv sin θ可知四种情况下产生的感应电动势均为BLv ,再由右手定则判断四种情况下电流的方向,符合题意的是D.]2.B [由楞次定律可知,两金属环将向左运动,来阻碍穿过它们的磁通量的增加.另外,两金属环中会产生同方向的感应电流,因此它们还会因相互吸引而靠近.]3.BC [导体棒OC 在摆动时,OCSN 组成的闭合回路的磁通量不断变化,回路中产生感应电流,使导体棒摆动时的机械能转化为电能,故A 错误,B 正确;无论导体棒向哪个方向运动,安培力总是阻碍其运动,故C 正确,D 错误.]4.A [整个金属板在切割磁感线,相当于是个边长为l 的导线在切割磁感线,而连接电压表的边也在切割磁感线,这两个边是并联关系,整个回路中电流为零,所以电压表测得的数值为0.]5.AD [由E =ΔB Δt ·S ,ΔBΔt 恒定,所以回路中感应电动势E 恒定,I 的大小和方向均恒定,A 正确,B错误;水平方向,导体棒PQ 受力平衡,由N =F 安=BIL 可知,N 将随B 的大小和方向的变化而变化,故C 错误,D 正确.]6.C [当火车下面的磁场刚接触线圈时,线圈中有一边切割磁感线,产生的感应电动势为E =BLv ;当磁场完全进入时,穿过线圈的磁通量不发生变化,无感应电动势;当磁场要离开线圈时,线圈中又有另一边在切割磁感线,产生感应电动势E =BLv .根据右手定则判断知,两段时间内产生的感应电动势方向相反.故选项C 正确.]7.D [因自感系数L 很小,所以对低频成分的阻碍作用很小,这样直流和低频成分能顺利通过线圈,电容器并联在电路中,起旁路作用,因电容C 很小,对低频成分的阻碍作用很大,而对部分通过线圈的高频成分阻碍作用很小,被它旁路,最终输出的是低频交流和直流.]8.C [线圈穿过磁场的过程中,由动能定理2mgL -W F =12m (v 2)2-12m v 2,而v 2=2gH ;则产生的电热为Q =W F =2mgL +34mgH .]9.C [第一种模式拉动时,设拉力为F ,由于最终速度为2v ,即匀速,有F =BI 1L ,I 1=BL 2vR,所以F =2B 2L 2v R,当速度是v 时ab 棒所受安培力为F 1.同理可得F 1=B 2L 2vR,此时的加速度为a 1.由牛顿第二定律得F -F 1=ma 1.联立以上各式得a 1=B 2L 2vmR.第二种模式拉动时,设外力的恒定功率为P ,最终的速度也是2v ,由能量关系可知P =I 21R =4B 2L 2v 2R .速度为v 时,ab 棒所受的外力为F 2,有P =F 2v ,此时的加速度为a 2,ab 棒所受的安培力仍为F 1,根据牛顿第二定律得F 2-F 1=ma 2,联立有关方程可以解得a 2=3B 2L 2vmR,所以有a 2=3a 1.]10.D [在D 选项中,S 闭合,二极管不导通,线圈中有由小到大的电流,稳定后电流保持不变;断开S ,二极管与线圈L 构成回路,二极管处于导通状态,可避免开关S 处产生电弧.]11.均匀减弱 mgdnq解析 微粒处于平衡状态表明电场稳定,电压稳定,故B 应均匀变化,又由楞次定律知,B 应减弱.由q U d =mg 又由U =E =n ΔΦΔt 得ΔΦΔt =mgd nq . 12.涡流 大解析 穿过空间站外壳的磁通量发生变化,金属材料的外壳中将自成回路,产生感应电流.为了降低这个损耗,应让产生的感应电流越小越好,也就是说,材料的电阻率越大越好.第一个空可填“涡流”或“电磁感应”;第二个空填“大”.13.8P 0r 0BL 2解析 OA 棒转动时感应电动势为E =12BL 2ω,等效电路如图所示,棒转动时,R 1的功率变化,当棒的A 端处于环的最上端时,环的电阻最大,此时r 1=r 2=2r 0,总电阻为R =r 0+r 1r 2r 1+r 2+R 1R 2R 1+R 2=4r 0,R 1的最小功率为P 0=⎝⎛⎭⎫E 2R 2R 1=B 2L 4ω264r 0,解得ω=8P 0r 0BL 2.14.(1)4QR B 2l 2s (2)CQRBls解析 (1)设ab 上产生的感应电动势为E ,回路中电流为I ,ab 运动距离s ,所用的时间为t ,则有 E =Bl v I =E 4R v =s tQ =I 2(4R )t由上述方程得v =4QRB 2l 2s(2)设电容器两极板间的电势差为U ,则有U =IR 电容器所带电荷量q =CU解得q =CQRBls15.0.174 A解析 棒ab 在导轨的最上端由静止下滑的过程中,开始一段时间内,速度逐渐增大,回路产生的感应电流也逐渐增大,ab 所受安培力逐渐增大,ab 所受的的合力逐渐减小,加速度也逐渐减小.可能出现两种情况,一种情况是ab 棒离开导轨前,加速度已减为0,这时以最大速度匀速下滑;另一种情况是ab 棒离开导轨时,ab 仍然有加速度.根据题中条件,无法判定ab 离开导轨时,是否已经达到匀速下滑的过程.但无论哪种情况,ab 离开导轨时的速度,一定是运动过程中的最大速度,求解运动过程不太清楚的问题,用能量守恒比较方便.设ab 棒离开导轨时的速度为v m ,由能量守恒定律得mgL sin θ=12m v 2m+Q ,上式表明,ab 在下滑过程中,重力势能的减少量,等于ab 离开导轨时的动能和全过程中产生的热量的总和,由上式可得v m = 2mgL sin 30°-2Qm=2×0.5×10×2×0.5-2×10.5m/s=4 m/s最大感应电动势E m =B ⊥d v m ,B ⊥是B 垂直ab 棒运动速度方向上的分量,由题图可知B ⊥=B cos 30°, E m =B ⊥d v m =Bd v m cos 30°=0.4×0.1×4×32V =0.139 V 最大电流I m =E m R =0.1390.8A =0.174 A. 16.(1)MgRB 2L 2 (2)Mg [2hB 4L 4-(M +m )MgR 2]2B 4L 4解析 视重物M 与金属棒m 为一系统,使系统运动状态改变的力只有重物的重力与金属棒受到的安培力.由于系统在开始的一段时间里处于加速运动状态,由此产生的安培力是变化的,安培力做功属于变力做功.系统的运动情况分析可用简图表示如下:棒的速度v ↑BL v ,棒中产生的感应电动势E ↑E /R,通过棒的感应电流I ↑――→BIL棒所受安培力F安↑――→Mg -F 安棒所受合力F 合↓――→F 合/(M +m )棒的加速度a ↓.(1)当金属棒做匀速运动时,金属棒受力平衡,即当a =0时,有Mg -F 安=0,又F 安=BIL ,I =E R ,E =BL v ,解得v =MgRB 2L 2(2)题设情况涉及的能量转化过程可用简图表示如下: M 的重力势能−−−−→重力做功⎣⎢⎢⎡系统匀速运动时的动能被转化的动能――→安培力做负功电能――→电流做功内能,由能量守恒定律有Mgh =(M +m )v 22+Q ,解得Q =Mg [2hB 4L 4-(M +m )MgR 2]2B 4L 4.期末综合检测(时间:90分钟 满分:100分)一、选择题(本题共10小题,每小题4分,共40分)图11.铜质金属环从条形磁铁的正上方由静止开始下落,如图1所示,在下落过程中,下列判断中正确的是( )A .金属环机械能守恒B .金属环动能的增加量小于其重力势能的减少量C .金属环的机械能先减小后增大D .磁铁对桌面的压力始终大于其自身的重力2.如图2所示,一宽40 cm 的匀强磁场区域,磁场方向垂直纸面向里.一边长为20 cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v =20 cm/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行,取它刚进入磁场的时刻t =0,在以下四个图线中,正确反映感应电流随时间变化规律的是( )图23.如图3所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的12.磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )图3A.12EB.13EC.23E D .E 4.如图4甲、乙所示的电路中,电阻R 和自感线圈L 的电阻值都很小,且小于灯泡S 的电阻,接通K ,使电路达到稳定,灯泡S 发光,则( )图4A .在甲图中,断开K 后,S 将逐渐变暗B .在甲图中,断开K 后,S 将先变得更亮,然后才变暗C .在乙图中,断开K 后,S 将逐渐变暗D .在乙图中,断开K 后,S 将先变得更亮,然后才变暗5.如图5所示,在闭合铁芯上绕着两个线圈M 和P ,线圈P 与电流表构成闭合回路,若在t 1至t 2这段时间内,观察到通过电流表的电流方向自上向下(即为由c 经电流表至d ),则可判断出线圈M 两端的电势差U ab 随时间t 的变化情况可能是下图中的( )图56.多数同学家里都有调光台灯、调速电风扇.过去是用变压器来实现上述调节的,缺点是成本高、体积大、效率低,且不能任意调节灯的亮度或电风扇转速.现在的调光台灯、调速电风扇是用可控硅电子元件来实现调节的.如图6所示为一个经过双向可控硅电子元件调节后加在电灯上的电压,即在正弦交流电的每一个12周期中,前面的14被截去,调节台灯上旋钮可以控制截去多少,从而改变电灯上的电压.则现在电灯上的电压为( )。

教科版 高中物理 选修3-2 第一章电磁感应 寒假复习题(解析版)

教科版 高中物理 选修3-2  第一章电磁感应  寒假复习题(解析版)

绝密★启用前教科版高中物理选修3-2 第一章电磁感应寒假复习题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。

分卷I一、单选题(共10小题,每小题4.0分,共40分)1.如图所示,一沿水平方向的匀强磁场分布在宽度为2L的某矩形区域内(长度足够大),该区域的上、下边界MN、PS是水平的.有一边长为L的正方形导线框abcd从距离磁场上边界MN的某高处由静止释放下落并穿过该磁场区域,已知当线框的ab边到达MN时线框刚好做匀速直线运动(以此时开始计时),以MN处为坐标原点,取如图坐标轴x,并规定逆时针方向为感应电流的正方向,则关于线框中的感应电流与ab边的位置坐标x间的以下图线中,可能正确的是()A.B.C.D.【答案】D【解析】在第一个L内,线框匀速运动,电动势恒定,电流恒定;在第二个L内,线框只在重力作用下加速,速度增大;在第三个L内,安培力大于重力,线框减速运动,电动势减小,电流减小.这个过程加速度逐渐减小,速度是非线性变化的,电动势和电流都是非线性减小的,选项A、B均错误.安培力再减小,也不至于减小到小于第一段时的值,因为当安培力等于重力时,线框做匀速运动,选项C错误,D正确.2.如图所示,一个金属圆环水平放置在竖直向上的匀强磁场中,能使圆环中产生感应电流的做法是()A.使匀强磁场均匀减弱B.保持圆环水平并在磁场中上下移动C.保持圆环水平并在磁场中左右移动D.保持圆环水平并使圆环绕过圆心的竖直轴转动【答案】A【解析】使匀强磁场均匀减弱,穿过圆环的磁通量减小,产生感应电流,A正确;保持圆环水平并在磁场中上下移动时,穿过圆环的磁通量不变,不产生感应电流,B错误;保持圆环水平并在磁场中左右移动,穿过圆环的磁通量不变,不产生感应电流,C错误;保持圆环水平并使圆环绕过圆心的竖直轴转动,穿过圆环的磁通量不变,不产生感应电流,D错误.3.如图所示,两块水平放置的金属板间距离为d,用导线与一个n匝线圈连接,线圈置于方向竖直向上的磁场B中.两板间有一个质量为m、电荷量为+q的油滴恰好处于平衡状态,则线圈中的磁场B的变化情况和磁通量变化率分别是()A.正在增强;=B.正在减弱;=C.正在减弱;=D.正在增强;=【答案】B【解析】油滴平衡有mg=q,U=,电容器上极板必带负电,那么螺线管下端相当于电源正极,由楞次定律知,磁场B正在减弱,又E=n,U=E,可得=.故选B.4.如图所示,有一个等腰直角三角形的匀强磁场区域,其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B.边长为L、总电阻为R的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿a→b→c→d→a的感应电流为正,则表示线框中电流i随bc边的位置坐标x变化的图象正确的是()A.B.C.D.【答案】C【解析】据题意,由楞次定律得:正方形线框进入三角形磁场时,穿过线框的磁通量逐渐增加,线框中产生顺时针方向电流,为正方向,D选项可以排除;正方形线框离开三角形磁场时,穿过线框的磁通量减少,线框中的电流方向逆时针,为负方向,A选项可以排除;由于线框切割磁感线的有效长度为l=vt·tan 45°=vt,则线框产生的感应电动势为E=B·vt·v=Bv2t,而感应电流为I=,所以感应电流大小随着时间的增加而增加,只有C选项正确.5.两根相互平行的金属导轨水平放置于如图所示的匀强磁场中,在导轨上与导轨接触良好的导体棒AB和CD可以自由滑动.当AB在外力F作用下向右运动时,下列说法中正确的是()A.导体棒CD内有电流通过,方向是D→CB.导体棒CD内有电流通过,方向是C→DC.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向右【答案】B【解析】两个导体棒与两根金属导轨构成闭合回路,AB向右运动,闭合回路磁通量增加,由安培定则判断回路中感应电流的方向是B→A→C→D→B.再根据左手定则,判定导体棒CD受到的磁场力向右;AB受到的磁场力向左.6.下列对物理学家的主要贡献的说法中正确的有()A.奥斯特发现了电磁感应现象,打开了研究电磁学的大门B.法拉第发现了磁生电的现象,从而为电气化的发展奠定了基础C.安培发现了电流的磁效应,并总结了电流方向与磁场方向关系的右手螺旋定则D.牛顿提出了分子电流假说,总结了一切磁场都是由运动电荷产生的【答案】B【解析】奥斯特发现了电流的磁效应,打开了研究电磁学的大门,选项A错误;法拉第发现了磁生电的现象,从而为电气化的发展奠定了基础,选项B正确;奥斯特发现了电流的磁效应,安培总结了电流方向与磁场方向关系的右手螺旋定则,选项C错误;安培提出了分子电流假说,总结了一切磁场都是由运动电荷产生的,选项D错误;故选B.7.如图所示,闭合线圈abcd从高处自由下落一段时间后垂直于磁场方向进入一有界磁场,从ab边刚进入磁场到cd边刚进入磁场的这段时间内,下列说法正确的是()A.a端的电势高于b端B.ab边所受安培力方向为水平向左C.线圈可能一直做匀速运动D.线圈可能一直做匀加速直线运动【答案】C【解析】此过程中ab边始终切割磁感线,ab边为电源,由右手定则可知电流为逆时针方向,由a 流向b,电源内部电流从低电势流向高电势,故a端的电势低于b端,选项A错误;由左手定则可知ab边所受安培力方向竖直向上,选项B错误;如果刚进入磁场时安培力等于重力,则一直匀速进入,如果安培力不等于重力,则mg-=ma,做变加速运动,选项C正确,D错误.8.图中L是绕在铁芯上的线圈,它与电阻R、R0及开关和电池E构成闭合回路.开关S1和S2开始都处在断开状态.设在t=0时刻,接通开关S1,经过一段时间,在t=t1时刻,再接通开关S2,则能较准确表示电阻R两端的电势差Uab随时间t变化的图线是()A.B.C.D.【答案】A【解析】闭合S1,由于线圈会阻碍电流的突然变大,Uab不会突然变大,D错误;达到稳定后,再闭合S2,由于线圈的作用,原有电流慢慢变小,Uab也从原来的数值慢慢减小,故选A.9.如图所示,一个闭合的矩形金属框abcd与一根绝缘轻杆B相连,轻杆上端O点是一个固定转轴,转轴与线框平面垂直,线框静止时恰位于蹄形磁铁的正中央,线框平面与磁感线垂直.现将线框从静止释放,在左右摆动过程中,线框受到磁场力的方向是()A.向左摆动的过程中,受力方向向左;向右摆动的过程中,受力方向向右B.向左摆动的过程中,受力方向向右;向右摆动的过程中,受力方向向左C.向左摆动的过程中,受力方向先向左后向右;向右摆动的过程中,受力方向先向右后向左D.摆动过程中始终不受力【答案】B【解析】从阻碍相对运动的角度来看,由于磁通量的变化是由线框和磁场做相对运动引起的,因此感应电流的磁场总是阻碍线框相对磁场的运动.要阻碍相对运动,磁场对线框因产生感应电流而产生的作用力——安培力,一定和相对运动的方向相反,即线框向左摆动时受力方向向右,线框向右摆动时受力方向向左.B正确.10.如图所示,为两个同心圆环,当一有界匀强磁场恰好完全垂直穿过A环面时,A环面磁通量为Φ1,此时B环磁通量为Φ2,有关磁通量的大小说法正确是()A.Φ1<Φ2B.Φ1=Φ2C.Φ1>Φ2D.不确定【答案】B【解析】磁通量Φ=BS,S为通过环的有效面积,因A、B环面所包含的有效面积相等,所以Φ1=Φ2故选B.二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示是用涡流金属探测器探测地下金属物的示意图,下列说法中正确的是()A.探测器内的探测线圈会产生交变磁场B.只有有磁性的金属物才会被探测器探测到C.探测到地下的金属是因为探头中产生了涡流D.探测到地下的金属物是因为金属物中产生了涡流【答案】AD【解析】金属探测器利用电磁感应的原理,利用有交流电通过的线圈,产生迅速变化的磁场.这个磁场能在金属物体内部产生涡电流.涡电流又会产生磁场,倒过来影响原来的磁场,引发探测器发出鸣声.故选AD.12.如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化,下列说法正确的是()A.当磁感应强度增加时,线框中的感应电流可能减小B.当磁感应强度增加时,线框中的感应电流一定增大C.当磁感应强度减小时,线框中的感应电流一定增大D.当磁感应强度减小时,线框中的感应电流可能不变【答案】AD【解析】由法拉第电磁感应定律可知,感应电流的大小取决于磁通量的变化率,与磁感应强度的增与减无关,选项A、D正确.13.(多选)如下图所示是等腰直角三棱柱,其中abcd面为正方形,边长为L,它们按图示方式放置于竖直向下的匀强磁场中,磁感应强度为B,下面说法中正确的是()A.通过abcd面的磁通量大小为L2·BB.通过dcfe面的磁通量大小为L2·BC.通过abfe面的磁通量大小为零D.通过bcf面的磁通量为零【答案】BCD【解析】通过abcd面的磁通量大小为L2B,A错误;dcfe面是abcd面在垂直磁场方向上的投影,所以磁通量大小为L2B,B正确;abfe面与bcf面和磁场平行,所以磁通量为零,C、D正确.故选B、C、D.14.(多选)高频焊接原理示意图如图所示,线圈通以高频交流电,金属工件的焊缝中就产生大量焦耳热,将焊缝融化焊接,要使焊接处产生的热量较大可采用()A.增大交变电流的电压B.增大交变电流的频率C.增大焊接缝的接触电阻D.减小焊接缝的接触电阻【答案】ABC【解析】当增大交变电流的电压,则线圈中交变电流增大,那么磁通量变化率增大,因此产生感应电动势增大,感应电流也增大,那么焊接时产生的热量也增大,故A正确;高频焊接利用高频交变电流产生高频交变磁场,在焊接的金属工件中就产生感应电流,根据法拉第电磁感应定律分析可知,电流变化的频率越高,磁通量变化频率越高,产生的感应电动势越大,感应电流越大,焊缝处的温度升高的越快,故B正确;增大电阻,在相同电流下,焊缝处热功率大,温度升的更高,故C正确,D错误.分卷II三、实验题(共1小题,每小题10.0分,共10分)15.在研究电磁感应现象的实验中所用的器材如图所示:①电流表,②直流电源,③带铁芯的线圈A,④线圈B,⑤电键,⑥滑动变阻器(用来控制电流以改变磁场强弱).试按实验的要求在实物图上连线(图中已连接好一根导线).若连接滑动变阻器的两根导线接在接线柱C和D上,而在电键刚闭合时电流表指针右偏,则电键闭合后滑动变阻器的滑动触头向接线柱C移动时,电流表指针将________.(填“左偏”“右偏”或“不偏”)【答案】实物图连线如图所示左偏【解析】电键闭合瞬间,电路中电流变大,穿过B中的磁通量增大,由题干可知指针向右偏转,因此可以得出电流增大,指针向右偏,电流变小,指针向左偏的结论.电键向C移动时,电路中电流变小,穿过B的磁通量减小,所以指针向左偏转.三、计算题(共3小题,每小题10.0分,共30分)16.磁悬浮列车是一种高速低耗的新型交通工具.它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l平行于y轴,宽为d的NP边平行于x轴,如图甲所示.列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁感应强度B沿Oz方向按正弦规律分布,其空间波长为λ,最大值为B0,如图乙所示,金属框同一长边上各处的磁感应强度相同,整个磁场以速度v0沿Ox方向匀速平移.设在短暂时间内,MN、PQ边所在位置的磁感应强度随时间的变化可以忽略,并忽略一切阻力.列车在驱动系统作用下沿Ox方向加速行驶,某时刻速度为v(v<v0).(1)简要叙述列车运行中获得驱动力的原理;(2)为使列车获得最大驱动力,写出MN、PQ边应处于磁场中的什么位置及λ与d之间应满足的关系式;(3)计算在满足第(2)问的条件下列车速度为v时驱动力的大小.【答案】(1)见解析(2)位置见解析d=(2k+1)或λ=(k∈N)(3)【解析】(1)由于列车速度与磁场平移速度不同,导致穿过金属框的磁通量发生变化,由于电磁感应,金属框中会产生感应电流,该电流受到的安培力即为驱动力.(2)为使列车获得最大驱动力,MN、PQ应位于磁场中磁感应强度同为最大值且反向的地方,这会使得金属框所围面积的磁通量变化率最大,使金属框中电流最强,从而使得金属框长边中电流受到的安培力最大.因此,d应为的奇数倍,即d=(2k+1)或λ=(k∈N)①(3)由于满足第(2)问条件,则MN、PQ边所在处的磁感应强度大小均为B0且方向总相反,经短暂的时间Δt,磁场沿Ox方向平移的距离为v0Δt,同时,金属框沿Ox方向移动的距离为vΔt.因为v0>v,所以在Δt时间内MN边扫过磁场的面积S=(v0-v)lΔt,在此Δt时间内,MN边左侧的磁感线移进金属框而引起框内磁通量变化ΔΦMN=B0l(v0-v)Δt②同理,该Δt时间内,PQ边右侧的磁感线移出金属框引起框内磁通量变化ΔΦPQ=B0l(v0-v)Δt③故在Δt内金属框所围面积的磁通量变化ΔΦ=ΔΦMN+ΔΦPQ④根据法拉第电磁感应定律,金属框中的感应电动势大小E=⑤根据闭合电路欧姆定律有I=⑥根据安培力公式,MN边所受的安培力FMN=B0IlPQ边所受的安培力FPQ=B0Il,根据左手定则,MN、PQ边所受的安培力方向相同,此时列车驱动力的大小F=FMN+FPQ=2B0Il⑦联立解得F=17.如图所示,光滑导轨立在竖直平面内,匀强磁场的方向垂直于导轨平面,磁感应强度B=0.5 T.电源的电动势为1.5 V,内阻不计.当电键K拨向a时,导体棒(电阻为R)PQ恰能静止.当K 拨向b后,导体棒PQ在1 s内扫过的最大面积为多少?(导轨电阻不计)【答案】3 m2【解析】设导体棒PQ长为L,电阻为R,电键接a时,电路中电流I=,导体棒PQ静止时mg=B()L电键K接b,导体棒PQ从静止下落,切割磁感线产生感应电流,同时PQ受安培力作用,导体棒向下做加速运动,速度增大,而加速度减小,最后以v m做匀速运动.此时mg=F安=,有:=,v m=.PQ达到最大速度后,单位时间内扫过的面积最大,故PQ在1 s内扫过的最大面积:S m=v m·L·t==m2=3 m2.18.如图甲所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1.在线圈中半径为r2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示.图线与横、纵轴的截距分别为t0和B0.导线的电阻不计.求0至t1时间内:(1)通过电阻R1的电流大小和方向;(2)通过电阻R1的电荷量q及电阻R1产生的热量.【答案】(1)方向从b到a(2).【解析】(1)由图象分析可知,0至t1时间内=由法拉第电磁感应定律有E=n=n S,而S=πr 由闭合回路欧姆定律有I1=联立以上各式解得通过电阻R1的电流大小为I1=由楞次定律可判断通过电阻R1的电流方向为从b到a.(2)通过电阻R1的电荷量q=I1t1=通过电阻R1产生的热量Q=I R1t1=.。

选修3-2物理试卷(含答案)

选修3-2物理试卷(含答案)

高中物理试卷第I卷(选择题12小题共36分)一选择题(本题包括12小题,每小题3分,共36分。

每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得3分,选对但不全对的得2分,有选错的或不答的得0分)1. 根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是()A.带负电B.带正电C.不带电D.不能确定2.关于电磁场理论,下列说法正确的是:( )A.变化的电场周围产生的磁场一定是变化的B. 变化的磁场周围产生的电场不一定是变化的C. 均匀变化的磁场周围产生的电场也是均匀变化的D. 振荡电场周围产生的磁场也是振荡的3.一个质子和一个α粒子沿垂直于磁感线方向从同一点射入一个匀强磁场中,若它们在磁场中的运动轨迹是重合的,则它们在磁场中( )A 运动的时间相等B加速度的大小相等C动量的大小相等D动能的大小相等4 如图4-2-5所示,A、B两回路中各有一开关S1、S2,且回路A中接有电源,回路B中接有灵敏电流计,下列操作及相应的结果可能的是A、先闭合S2,后闭合S1的瞬间,电流计指针偏转B、S1、S2闭合后,在断开S2的瞬间,电流计指针偏转C、先闭合S1,后闭合S2的瞬间,电流计指针偏转D、S1、S2闭合后,在断开S1的瞬间,电流计指针偏转5.关于日光灯的工作原理下列说法正确的是: ( )A. 启动器触片接通时,产生瞬时高压B. 日光灯正常工作时,镇流器起降压限流以保证日光灯正常工作C.日光灯正常工作时, 日光灯管的电压稳定在220VD.镇流器作用是将交流电变为直流电6.在赤道附近有一竖直向下的匀强电场,在此区域内有一根沿东西方向放置的直导体棒,由水平位置自静止落下,不计空气阻力,则导体棒两端落地的先后关系是()A.东端先落地B.西端先落地C.两端同时落地D.无法确定7.如图,带电平行金属板中匀强电场方向竖直上,匀强磁场方向垂直纸面向里,带电小球从光滑绝缘轨道上的a点由静止滑下,经过1/4圆弧轨道从端点Pa点稍低的b点由静止滑下,在经过P点进入板间的运动过程中( )A带电小球的动能将会增大B 带电小球的电势能将会增大C带电小球所受洛伦兹力将会减小D带电小球所受电场力将会增大8.如图所示是日立NP82C21型电视机电路的开始部分,最左边是电源插头,S901是电源开关,F901是保险丝,L901是两只带铁芯的电感线圈,后面复杂的电路没有画出.关于电感线圈的作用,以下叙述正确的是: ( )A.打开电源的瞬间,线圈会产生自感电动势,自感电动势的作用是使电视机更容易起动,所以我们刚一打开电视机就能听到声音和图象B.线圈在电路里起的是缓冲作用,能延缓开机瞬间电流对后面元件的冲击,提高电视机的使用寿命C.电视机正常工作之后,线圈就不会产生自感电动势了D.线圈的自感系数越大越好9.如图所示,abcd为一闭合金属线框,用绝缘线挂在固定点O,当线框经过匀强磁场摆动时,可以判断(空气阻力不计):( )dP+A.线框进入磁场或离开磁场时,线框中均有感应电流产生B.线框进入磁场后,越靠近OO /线时,电磁感应现象越明显C.此摆最终会停下来D.此摆的机械能不守恒10.如图,在倾角为α的光滑斜面上,放置一根长为L ,质量为m ,通过电流为I 的导线,若使导线静止,应该在斜面上施加匀强磁场B 的大小和方向为( ) A B=mgsin α/IL ,方向垂直斜面向下 B B=mgsin α/IL ,方向垂直水平面向上 C B=mgtan α/IL ,方向竖直向下 D B=mgsin α/IL ,方向水平向右11、在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B 随时间如图2变化时,图3中正确表示线圈中感应电动势E 变化的是 ( )A .B .C .D .12.一理想变压器给负载供电,变压器输入电压不变,如图所示.如果负载电阻的滑片向上移动则图中所有交流电表的读数及输入功率变化情况正确的是(均为理想电表): ( ) A.V 1、V 2不变,A 1增大,A 2减少,P 增大 B. V 1、V 2不变,A 1 、A 2增大,P 增大 C. V 1、V 2不变,A 1、A 2减少,P 减少 D. V 1不变、V 2增大,A 1、A 2减少,P 减少第II 卷(非选择题 64分)二.填空题(每小题10分,共28分)13.如图所示,电阻R ab =0.1Ω的导体ab 沿光滑导线框向右做匀速运动线框中接有电阻R=0.4Ω,线框放在磁感应强度B =0.1T 的匀强磁场中,磁场方向垂直于线框平面,导体的ab 长度l =0.4m,运动速度v =10m/s.线框的电阻不计.(1)电路abcd 中相当于电源的部分是 ,相当于电源的正极是 端. (2)使导体ab 向右匀速运动所需的外力F ’= N,方向(3)电阻R 上消耗的功率P = W.(4)外力的功率P ’=14.如图所示是测量通电螺线管A 内部磁感应强度B 及其与电流I 关系的实验装置。

教科版高中物理选修3-2练习:第一章电磁感应第6节

教科版高中物理选修3-2练习:第一章电磁感应第6节

第6节 自感 日光灯1.由于导体线圈本身的电流发生变化而引起的电磁感应现象,叫做自感现象,在自感现象中产生的电动势叫做自感电动势.2.自感电动势E L 跟电流的变化率ΔI Δt 成正比,即E L =L ΔI Δt.其中L 叫线圈的自感系数,线圈的横截面积越大,匝数越多,它的自感系数就越大,有铁芯的线圈的自感系数比没有铁芯时要大得多.3.普通日光灯,由灯管、镇流器、启动器、导线和开关组成.灯管中气体导电发出紫外线,涂在管壁上的荧光粉在紫外线的照射下发出可见光.启动器的作用为自动开关.镇流器在启动器动静触片断开后,提供瞬时高压点燃灯管,之后起到降压限流的作用.4.通过一个线圈的电流在均匀增大时,则这个线圈的( )A .自感系数也将均匀增大B .自感电动势也将均匀增大C .磁通量也将均匀增大D .自感系数和自感电动势不变答案 CD解析 线圈的磁通量与电流大小有关,电流增大,磁通量增大,故C 项正确;而自感系数由线圈本身决定,与电流大小无关;自感电动势E L =L ΔI Δt,与自感系数和电流变化率有关,对于给定的线圈,L 一定,已知电流均匀增大,说明电流变化率恒定,故自感电动势不变,D 项正确.5.关于线圈自感系数的说法,错误的是( )A .自感电动势越大,自感系数也越大B .把线圈中的铁芯抽出一些,自感系数减小C .把线圈匝数增加一些,自感系数变大D .电感是自感系数的简称答案 A解析 自感系数是由线圈本身的特性决定的.线圈越长,单位长度上的匝数越多,横截面积越大,它的自感系数就越大.另外,有铁芯的线圈的自感系数比没有铁芯时要大得多.6.如下图所示,S为启动器,L为镇流器,其中日光灯的接线图正确的是()答案A解析根据日光灯的工作原理,要想使日光灯发光,灯丝需预热发出电子,灯管两端应有瞬时高压,这两个条件缺一不可.当动、静触片分离后,选项B中灯管和电源断开,选项B错误;选项C中镇流器与灯管断开,无法将瞬时高压加在灯管两端,选项C错误;选项D中灯丝左、右端分别被短接,无法预热放出电子,不能使灯管中气体导电,选项D错误;只有选项A是正确的.【概念规律练】知识点一对自感现象的理解1.关于自感现象,正确的说法是()A.感应电流一定和原来的电流方向相反B.对于同一线圈,当电流变化越大时,线圈产生的自感电动势也越大C.对于同一线圈,当电流变化越快时,线圈的自感系数也越大D.对于同一线圈,当电流变化越快时,线圈中的自感电动势也越大答案D解析当电流增加时,自感电动势的方向与原来的电流反向,当电流减小时与原来的电流同向,故选项A错误;自感电动势的大小,与电流变化快慢有关,与电流变化大小无关,故选项B错误;自感系数只取决于线圈的本身因素,与电流变化情况无关.故选项C错误;结合选项B的错误原因可知,选项D正确.点评自感的实质仍然是电磁感应现象,电流的强弱决定其周围磁场的强弱,当电流变化时引起电流周围的磁场发生变化,就会在线圈中产生感应电动势.2.关于线圈的自感系数、自感电动势下列说法中正确的是()A.线圈中电流变化越大,线圈自感系数越大B.对于某一线圈,自感电动势正比于电流的变化量C.一个线圈的电流均匀增大,这个线圈自感系数、自感电动势都不变D .自感电动势总与原电流方向相反答案 C解析 线圈的自感系数由线圈本身的因素决定.E 自∝ΔI Δt,而不是E 自∝ΔI ,C 对,A 、B 错.线圈中电流减小时,自感电动势方向与原电流方向相同,电流增大时,自感电动势方向与原电流方向相反,D 错.点评 电流的变化量ΔI 不等同于电流的变化率ΔI Δt ,E ∝ΔI Δt而不是E ∝ΔI .自感系数仅和线圈本身有关.知识点二 通电自感和断电自感3.如图1所示电路中,A 、B 是完全相同的灯泡,L 是电阻不计的电感线圈,下列说法中正确的是( )图1A .当开关S 闭合时,A 灯先亮,B 灯后亮B .当开关S 闭合时,B 灯先亮,A 灯后亮C .当开关S 闭合时,A 、B 灯同时亮,以后B 灯更亮,A 灯熄灭D .当开关S 闭合时,A 、B 灯同时亮,以后亮度不变答案 C解析 当开关S 闭合时,电路中电流增加,由于线圈的自感作用,其中产生一自感电动势阻碍电流的增加,此时A 、B 二灯相当于串联,同时亮;之后线圈相当于一段导线,将A 灯短路,A 灯熄灭,因B 灯所加电压增加而变得更亮.点评 开关闭合时,线圈自感电动势与电源电动势方向相反,若自感系数足够大,瞬间可以认为断路,随即变缓直至消失.4.在如图2所示的电路中,带铁芯的、电阻较小的线圈L 与灯A 并联,当合上开关S 后灯A 正常发光.则下列说法中正确的是( )图2A.当断开S时,灯A立即熄灭B.当断开S时,灯A突然闪亮后熄灭C.用阻值与灯A相同的线圈取代L接入电路,当断开S时,灯A逐渐熄灭D.用阻值与线圈L相同的电阻取代L接入电路,当断开S时,灯A突然闪亮后熄灭答案BC解析在S断开的瞬间,L与A构成闭合回路,灯A不会立即熄灭.问题是“小灯泡在熄灭之前是否更亮一下”这一点如何确定.根据P=I2R可知,灯A能否闪亮,取决于S 断开的瞬间,流过A的电流是否更大一些.在断开S的瞬间,灯A中原来的电流I A立即消失.但灯A和线圈L组成一闭合回路,由于线圈L的自感作用,其中的电流I L不会立即消失,它还要通过回路维持短暂的时间.如果I L>I A,则灯A熄灭之前要闪亮一下;如果I L≤I A,则灯A是逐渐熄灭而不闪亮一下.至于I L和I A的大小关系,由R A和R L的大小关系决定:若R A>R L,则I A<I L,灯将闪亮一下;若R A≤R L,则I A≥I L,灯将逐渐熄灭.点评开关断开时,原电源不提供电流,若线圈形成回路,则自感电动势会通过回路形成电流,因此断电时线圈起到瞬间电源的作用.知识点三日光灯5.在日光灯电路中接有启动器、镇流器和日光灯管,下列说法中正确的是()A.镇流器在点燃灯管时产生瞬时高压,点燃后起降压限流作用B.日光灯点燃后,镇流器、启动器都不能起作用C.日光灯点燃后,启动器不再起作用,可以将启动器去掉D.日光灯点燃后,使镇流器短路,日光灯仍能正常发光,并能降低电能的消耗答案AC解析镇流器在日光灯点燃时产生一个瞬时高压,点燃后起到降压限流作用,故A对;点燃后,镇流器仍有用,降压限流,而启动器就不起作用了,可以将启动器去掉,故B错,C对;日光灯灯管电阻很小,电流不能太大,灯管发光后,由于通入了交流电,使线圈产生了自感作用,阻碍了电流的变化,镇流器起降压限流的作用,若使镇流器短路日光灯就不能正常工作了,故D错.点评日光灯管在点燃和正常发光时的工作状态:日光灯管在点燃时需要500 V~700 V 的瞬时高压,这个高压是由镇流器产生的自感电动势与电源电压叠加后产生的.当灯管点燃后,它的电阻变得很小,只允许通过较小的电流,需要加在它两端的电压较小,镇流器这时又起到给灯管降压限流的作用.6.启动器是由电容和氖管两大部分组成,其中氖管中充有氖气,内部有静触片和U形动触片.通常动、静触片不接触,有一个小缝隙,则下列说法中正确的是()A.当电源的电压加在启动器两极时,氖气放电并产生热量,导致U形动触片受热膨胀B.当电源的电压加在启动器两极后,启动器的两个触片才接触,使电路有电流通过C.电源的电压加在启动器两极前,启动器的两个触片就接触着,电路就已经有电流通过D.当电路通电后,两个触片冷却,两个触片重新分离答案ABD解析依据日光灯的工作原理可知,电源把电压加在启动器的两极之间,使氖气放电而发出辉光.辉光产生热量使U形动触片膨胀伸展,跟静触片接触把电路接通.电路接通后,启动器的氖气停止放电,U形动触片冷却收缩,两个触片分开,电路自动断开.点评启动器利用氖管的辉光放电,U形动触片膨胀伸展,与静触片接触,自动把电路接通,电路接通后,氖气停止放电,U形动触片冷却收缩,两个触片分离电路断开,电路断开时镇流器产生瞬时高电压点亮日光灯.【方法技巧练】断电自感中灯泡亮度变化的分析技巧7.在图3甲、乙电路中,电阻R和电感线圈L的电阻都很小.接通S,使电路达到稳定,灯泡A发光,则()图3A.在电路甲中,断开S,A将渐渐变暗B.在电路甲中,断开S,A将先变得更亮,然后渐渐变暗C.在电路乙中,断开S,A将渐渐变暗D.在电路乙中,断开S,A将先变得更亮,然后渐渐变暗答案AD解析甲图中,灯泡A与电感线圈L在同一个支路中,流过的电流相同,断开开关S 时,线圈L中的自感电动势要维持原电流不变,所以,开关断开的瞬间,灯泡A的电流不变,以后电流渐渐变小.因此,灯泡渐渐变暗.乙图中,灯泡A所在支路的电流比电感线圈所在支路的电流要小(因为电感线圈的电阻很小),断开开关S时电感线圈的自感电动势要阻碍电流的变小,电感线圈相当于一个电源给灯A供电,因此在这一短暂的时间内,反向流过A的电流是从I L开始逐渐变小的,所以灯泡要先亮一下,然后渐渐变暗,故选项A、D正确.方法总结在开关断开时,电感线圈的自感电动势要阻碍原电流的减小,此时电感线圈在电路中相当于一个电源,表现为两个方面:一是自感电动势所对应的电流方向与原电流方向一致;二是在断电瞬间,自感电动势所对应的电流大小与原电流的大小相等,以后电流开始缓慢减小到零,断开开关后,灯泡是否瞬间变得更亮,取决于当初两支路中电流大小的关系.8.如图4所示的电路中,S闭合且稳定后流过电感线圈的电流2 A,流过灯泡的电流是1 A,将S突然断开,S断开前后,能正确反映流过灯泡的电流I随时间t变化关系的图象是()图4答案D解析开关S断开前,通过灯泡D的电流是稳定的,其值为1 A.开关S断开瞬间,灯泡支路的电流立即减为零,但是自感线圈的支路由于自感现象会产生与线圈中原电流方向相同的感应电动势,使线圈中的电流从原来的2 A逐渐减小,方向不变,且同灯泡D构成回路,通过灯泡D的电流和线圈L中的电流相同,也应该是从2 A逐渐减小为零,但是方向与原来通过灯泡D的电流方向相反,D对.方法总结解图象问题时,先要搞清楚研究什么元件上的电流随时间的变化关系;其次要根据线圈的自感电动势引起的感应电流的方向与原来电流的方向是相同还是相反、大小如何变化等因素来确定图象.1.关于自感电动势的大小和方向,下列说法中正确的是()A.在自感系数一定的条件下,通过导体的电流越大,产生的自感电动势越大B.在自感系数一定的条件下,通过导体的电流变化越快,产生的自感电动势越大C.自感电动势的方向总与原电流的方向相反D.当通过导体的电流减小时,自感电动势的方向与原电流方向相同答案BD图52.某线圈通有如图5所示的电流,则线圈中自感电动势改变方向的时刻有()A.第1 s末B.第2 s末C.第3 s末D.第4 s末答案BD解析在自感现象中当原电流减小时,自感电动势与原电流的方向相同,当原电流增加时,自感电动势与原电流方向相反.在0~1 s内原电流正方向减小,所以自感电动势的方向是正方向,在1 s~2 s内原电流负方向增加,所以自感电动势与其方向相反,即沿正方向;同理分析2 s~3 s、3 s~4 s内可得正确选项为B、D.3.关于日光灯管内气体导电的说法中,正确的是()A.点燃日光灯时,激发气体导电的电压比220 V低得多B.点燃日光灯时,激发气体导电的电压比220 V高得多C.日光灯正常发光后,加在灯管两端的电压比220 V低D.日光灯正常发光后,加在灯管两端的电压比220 V高答案BC4.在日光灯的连接线路中,关于启动器的作用,以下说法正确的是()A.日光灯启动时,为灯管提供瞬时高压B.日光灯正常工作时,起降压限流的作用C.起到一个自动开关的作用,实际上可用一个弹片开关代替(按下接通,放手断开)D.以上说法均不正确答案C5.如图6所示是演示自感现象的实验电路图.下列说法中正确的是()图6A.在断开开关S后的一段短暂时间里,A中仍有电流通过,方向为a→bB.在断开开关S后的一段短暂时间里,L中仍有电流通过,方向为a→bC.在断开开关S后,存储在线圈内的大部分磁场能将转化为电能D.在断开开关S后,存储在线圈内的大部分磁场能将转化为化学能答案BC b,在灯A中为b→b,在灯A中为b→a;断开开关后,灯泡要逐渐熄灭,电流减小,磁场能转化为电能.6.如图7所示,对于原来闭合的开关S突然断开的瞬间,会看到灯A更亮的闪一下再熄灭.设S闭合时,灯中电流为I灯,线圈L中电流为I L,断开瞬间灯A中电流为I灯′,线圈L中电流为I L′,则()图7A.I灯<I灯′,I L≥I L′B.I灯=I灯′,I L≤I L′C.I灯<I灯′,I L<I L′D.I灯>I灯′,I L≤I L′答案A解析本题的关键是要认清产生自感现象的根本原因,断开S的瞬间,因为I L的减小才产生自感电动势,自感电动势阻碍I L的减小,因此流过线圈L的电流只能是减小而不能是增大,断开瞬间有I L≥I L′,这时L和灯A组成的闭合回路是串联的,在自感电动势的作用下使I L′流过灯A,故I灯′=I L′.虽然I L′是减小的,但在开始断开的一小段时间内还是比灯A原来的电流I灯大,则有I灯<I灯′,使灯A在S断开瞬间闪亮一下才熄灭.7.如图8所示的电路,可用来测定自感系数较大的线圈的直流电阻,线圈两端并联一个电压表,用来测量自感线圈两端的直流电压,在实验完毕后,将电路拆开时应()图8A.先断开开关S1B.先断开开关S2C.先拆去电流表D.先拆去电阻R答案B解析b,表右端为“+”,左端为“-”,指针正向偏转,若先断开S1或先拆表或先拆去电阻R瞬间,线圈中产生的自感电动势相当于瞬间电源,其a端相当于电源的负极,b端相当于电源的正极,此时表加了一个反向电压,使指针反偏.由“自感系数较大的线圈”知其反偏电压很大,会烧坏表.而先断开S2,由于电压表内阻很大,电路中总电阻变化很小,电流几乎不变,不会损坏其他器件,故应先断开S2.→b,表右端为“+”,左端为“-”,指针正向偏转,若先断开S1或先拆表或先拆去电阻R瞬间,线圈中产生的自感电动势相当于瞬间电源,其a端相当于电源的负极,b端相当于电源的正极,此时表加了一个反向电压,使指针反偏.由“自感系数较大的线圈”知其反偏电压很大,会烧坏表.而先断开S2,由于电压表内阻很大,电路中总电阻变化很小,电流几乎不变,不会损坏其他器件,故应先断开S2.8.如图9所示,A、B、C是相同的白炽灯,L是自感系数很大、电阻很小的自感线圈.现将S闭合,下面说法正确的是()图9A.B、C灯同时亮,A灯后亮B.A、B、C灯同时亮,然后A灯逐渐变暗,最后熄灭C.A灯一直不亮,只有B灯和C灯亮D.A、B、C灯同时亮,并且亮暗没有变化答案B9.如图10所示,灯泡A、B与固定电阻的阻值均为R,L是自感系数很大的线圈.当S1闭合,S2断开且电路稳定时,A,B亮度相同,再闭合S2,待电路稳定后将S1断开,下列说法中正确的是()图10A.B灯立即熄灭B.A灯将比原来更亮一下后再熄灭C. 有电流通过B灯,方向为c→dD. 有电流通过A灯,方向为b→a答案AD解析S2断开而只闭合S1,稳定时,A,B两灯一样亮,可知线圈L的电阻也是R。

高中物理经典习题及答案选修3-2

高中物理经典习题及答案选修3-2

2. 右手定则。 对一部分导线在磁场中切割磁感线产生感应电流的情况, 完全一致的。这时,用右手定则更方便一些。
220V
右手定则和楞次定律的结论是
3. 楞次定律的应用。 楞次定律的应用应该严格按以下四步进行: (增大还是减小) ;③确定感应电流的磁场方向 的方向。
①确定原磁场方向; ②判定原磁场如何变化 (增反减同) ;④根据安培定则判定感应电流
例 2:如图所示,闭合导体环固定。条形磁铁
S 极向下以初速度 v0 沿
NS v0
M
过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?
解:从“阻碍磁通量变化”来看,当条形磁铁的中心恰好位于线圈
M所在的水平面时,
磁铁内部向上的磁感线都穿过了线圈, 而磁铁外部向下穿过线圈的磁通量最少, 所以此时刻
a
L
b
解:重新闭合瞬间,由于电感线圈对电流增大的阻碍作用,
a
将慢慢亮起来,而 b 立即变亮。这时 L 的作用相当于一个大电阻;
R
稳定后两灯都正常发光, a 的额定功率大,所以较亮。这时 L 的作用相当于一只普通的电阻
(就是该线圈的内阻) ;断开瞬间,由于电感线圈对电流减小的阻碍作用,通过
a 的电流将
论是一样的, 但是叙述要复杂得多。 可见这类定性判断的题要灵活运用楞次定律的各种表达
方式。
例 6: 如图所示,水平面上有两根平行导轨,上面放两根金属
a b
棒 a、b。当条形磁铁如图向下移动时(不到达导轨平面) , a、 b 将如何移动?
解:若按常规用“阻碍磁通量变化”判断,则需要根据下端磁极的极性分别进行讨论,
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,
电路中有感应电流产生。 这

高中物理教科版选修32阶段水平测试(二)含解析

高中物理教科版选修32阶段水平测试(二)含解析

阶段水平测试(二)(时间90分钟,满分100分)一、选择题(每小题4分。

在每题给出的四个选项中,有的只有一个选项、有的有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的不得分。

)1.一矩形线圈在匀强磁场中匀速转动,产生交流电的图象如图所示,由图可以知道()A.0.01 s时刻线圈处于中性面位置B.0.01 s时刻穿过线圈的磁通量为零C.该交流电流有效值为2 AD.该交流电流频率为50 Hz解析:由题图可知t=0.01 s时,电流最大,感应电动势最大,线圈平面与中性面垂直,A错;此时线圈的磁通量为0,磁通量的变化率最大,B对;该交流电的有效值为6.282A≠2A,C错;该交流电的频率为f=1T=10.04 s=25 Hz,D错,选B。

答案:B2.如图所示,单匝矩形线圈的一半放在具有理想边界的匀强磁场中,线圈轴线OO′与磁场边界重合,线圈按图示方向匀速转动(ab 向纸外,cd向纸内)。

若从图中所示位置开始计时,并规定电流方向沿a→b→c→d→a为正方向,则线圈内感应电流随时间变化的图象是下列图中的()解析:在第一个14周期内,由题图可看出磁场的方向,容易得到感应电流方向与规定的正方向相反;在第二个14周期内,虽然磁场方向不变,但线圈平面已经转动,ab离开磁场,cd进入磁场,与第一个14周期相比,磁感线是从线圈的不同“面”进入线圈平面,由楞次定律可判断电流方向仍与正方向相反;同理,可判断后半个周期电流的方向与正方向相同。

所以选项A 正确。

答案:A3.正弦交流电源与电阻R 1、R 2、交流电压表按图甲所示的方式连接,R 1=20 Ω,R 2=10 Ω,交流电压表的示数是20 V ,图乙是交变电源输出电压u 随时间t 变化的图象,则( )A .通过R 1的电流i 1随时间t 变化的规律是i 1=22cos 100πt (A)B .通过R 1的电流i 1随时间t 变化的规律是i 1=22sin 100πt (A)C .R 2两端的电压u 2随时间t 变化的规律是u 2=20cos 100πt (V)D .R 2两端的电压u 2随时间t 变化的规律是u 2=20sin 100πt (V) 解析:电压表的示数是电压的有效值,即R 2两端的电压的有效值为20 V ,所以最大值为20 2 V ,C 、D 选项都不对;电路中的电流的有效值为20/10 A =2 A ,按照余弦规律变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高中物理选修3-2测试题全套及答案解析(鲁科版) 本文档含本书的模块测试和期中,期末试题,共3套,带答案解析,适合测试和自我提高模块综合检测(时间:90分钟满分:100分)一、选择题(本题共10小题,每小题4分,共40分)1.如图1所示,电阻和面积一定的圆形线圈垂直放入匀强磁场中,磁场的方向垂直纸面向里,磁感应强度随时间的变化规律为B=B0sin ωt.下列说法正确的是()图1A.线圈中产生的是交流电B.当t=π/2ω时,线圈中的感应电流最大C.若增大ω,则产生的感应电流的频率随之增大D.若增大ω,则产生的感应电流的功率随之增大2.两个完全相同的灵敏电流计A、B,按图2所示的连接方式,用导线连接起来,当把电流计A的指针向左边拨动的过程中,电流计B的指针将()图2A.向左摆动B.向右摆动C.静止不动D.发生摆动,由于不知道电流计的内部结构情况,故无法确定摆动方向3.如图3甲所示,一矩形线圈放在随时间变化的匀强磁场内.以垂直线圈平面向里的磁场为正,磁场的变化情况如图乙所示,规定线圈中逆时针方向的感应电流为正,则线圈中感应电流的图象应为()图34.如图4所示,在光滑绝缘水平面上,有一铝质圆形金属球以一定的初速度通过有界匀强磁场,则从球开始进入磁场到完全穿出磁场的过程中(磁场宽度大于金属球的直径),则小球()图4A.整个过程匀速运动B.进入磁场的过程中球做减速运动,穿出过程做加速运动C.整个过程都做匀减速运动D.穿出时的速度一定小于初速度5. 线框在匀强磁场中绕OO′轴匀速转动(由上向下看是逆时针方向),当转到如图5所示位置时,磁通量和感应电动势大小的变化情况是()图5A.磁通量和感应电动势都在变大B.磁通量和感应电动势都在变小C.磁通量在变小,感应电动势在变大D.磁通量在变大,感应电动势在变小6.如图6所示的电路中,变压器是理想变压器.原线圈匝数n1=600匝,装有0.5 A的保险丝,副线圈的匝数n2=120匝,要使整个电路正常工作,当原线圈接在180 V的正弦交变电源上时,下列判断正确的是()A.副线圈可接耐压值为36 V的电容器B.副线圈可接“36 V,40 W”的安全灯两盏C.副线圈可接电阻为14 Ω的电烙铁D.副线圈可以串联一个量程为3 A的电流表,去测量电路中的总电流7.一交变电流的i-t图象如图7所示,由图可知()A.用电流表测该电流示数为10 2 AB.该交变电流的频率为100 HzC.该交变电流通过10 Ω的电阻时,电阻消耗的电功率为2 000 WD.该交变电流的电流瞬时值表达式为i=102sin 628t A8.图8是测定自感系数很大的线圈L直流电阻的电路,L两端并联一只电压表,用来测量自感线圈的直流电压,在测量完毕后,将电路解体时应()A.先断开S1B.先断开S2C.先拆除电流表D.先拆除电阻R9.如图9所示的电路中,L为自感系数很大的电感线圈,N为试电笔中的氖管(启辉电压约70 V),电源电动势约为10 V.已知直流电使氖管启辉时辉光只产生在负极周围,则()A.S接通时,氖管不会亮B.S接通时启辉,辉光在a端C.S接通后迅速切断时启辉,辉光在a端D.条件同C,辉光在b端10.如图10所示是一种延时开关,当S1闭合时,电磁铁将衔铁吸下,将C线路接通,当S1断开时,由于电磁作用,D将延迟一段时间才被释放,则()A.由于A线圈的电磁感应作用,才产生延时释放D的作用B.由于B线圈的电磁感应作用,才产生延时释放D的作用C.如果断开B线圈的开关S2,无延时作用D.如果断开B线圈的开关S2,延时将变长图6 图7图8图9图10二、填空题(本题共2小题,共20分)11.(5分)如图11所示,是一交流电压随时间变化的图象,此交流电压的有效值等于________V.12.(15分)硅光电池是一种可将光能转换为电能的器件,某同学用图12所示的电路探究硅光电池的路端电压U与总电流I的关系,图中R0为定值电阻且阻值的大小已知,电压表视为理想电压表.图11(1)请根据图12,将图13中的实验器材连接成实验电路.图12图13(2)若电压表V2的读数为U0,则I=________.姓名:________班级:________学号:________得分:________(3)实验一:用一定强度的光照射硅光电池,调节滑动变阻器,通过测量得到该电池的U—I曲线a,见图14.由此可知电池内阻________(选填“是”或“不是”)常数,短路电流为______ mA,电动势为________ V.(4)实验二:减小实验一中光的强度,重复实验,测得U—I曲线b,见图14.当滑动变阻器的电阻为某值时,实验一中的路端电压为 1.5 V,则实验二中外电路消耗的电功率为________ mW(计算结果保留两位有效数字)图14三、计算题(本题共4小题,共40分)13.(8分)如图15所示,理想变压器原线圈Ⅰ接到220 V的交流电源上,副线圈Ⅱ的匝数为30,与一标有“12 V,12 W”的灯泡连接,灯泡正常发光.副线圈Ⅲ的输出电压为110 V,电流为0.4 A.求:图15(1)副线圈Ⅲ的匝数;(2)原线圈Ⅰ的匝数以及通过原线圈的电流.14.(10分)某发电站的输出功率为104kW,输出电压为4 kV,通过理想变压器升压后向80 km远处的用户供电.已知输电线的电阻率为ρ=2.4×10-8Ω·m,导线横截面积为1.5×10-4 m2,输电线路损失的功率为输出功率的4%.求:(1)升压变压器的输出电压;(2)输电线路上的电压损失.15.(8分)如图16所示,光滑导轨MN、PQ在同一水平面内平行固定放置,其间距d=1 m,右端通过导线与阻值R L=8 Ω的小灯泡L相连,CDEF矩形区域内有方向竖直向下、磁感应强度B=1 T的匀强磁场,一质量m=50 g、阻值为R=2 Ω的金属棒在恒力F作用下从静止开始运动x=2 m后进入磁场恰好做匀速直线运动.(不考虑导轨的电阻,金属棒始终与导轨垂直并保持良好接触).求:图16(1)恒力F的大小;(2)小灯泡发光时的电功率.16.(14分)如图17所示,在坐标xOy平面内存在B=2.0 T的匀强磁场,OA与OCA为置于竖直平面内的光滑金属导轨,其中OCA满足曲线方程x=0.50sin π5y m,C为导轨的最右端,导轨OA与OCA相交处的O点和A点分别接有体积可忽略的定值电阻R1和R2,其中R1=4.0 Ω、R2=12.0 Ω.现有一足够长、质量m=0.10 kg的金属棒MN在竖直向上的外力F作用下,以v=3.0 m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻R1、R2外其余电阻不计,g取10 m/s2,求:图17(1)金属棒MN在导轨上运动时感应电流的最大值;(2)外力F的最大值;(3)金属棒MN滑过导轨OC段,整个回路产生的热量.模块综合检测 答案1.ACD [线圈中产生的感应电流的规律和线圈在匀强磁场中匀速运动时一样,都是正(余)弦交变电流.由规律类比可知A 、C 、D 正确.]2.B [因两表的结构完全相同,对A 来说就是由于拨动指针带动线圈切割磁感线产生感应电流,电流方向应用右手定则判断;对B 表来说是线圈受安培力作用带动指针偏转,偏转方向应由左手定则判断,研究两表的接线可知,两表串联,故可判定电流计B 的指针向右摆动.]3.B [0~t 1时间内,磁场均匀增强,穿过线圈的磁通量均匀增大,产生的感应电流大小不变,由楞次定律知电流方向为逆时针;同理,t 1~t 2时间内无电流,t 2~t 4时间内有顺时针大小不变的电流.]4.D [小球进出磁场时,有涡流产生,要受到阻力,故穿出时的速度一定小于初速度.]5.D [由题图可知,Φ=Φm cos θ,e =E m sin θ,所以磁通量变大,感应电动势变小.]6.BD [根据输入电压与匝数关系,有U 1U 2=n 1n 2,解得U 2=n 2n 1U 1=120600×180 V =36 V .根据保险丝熔断电流,有P 2=P 1=I 1U 1=0.5×180 W =90 W .根据正弦交变电流有效值与最大值间的关系,有U 2m =2U 2=36 2 V .允许副线圈通过的最大电流有效值为I 2=n 1n 2I 1=600120×0.5 A =2.5 A .负载电阻是最小值R =U 2I 2=362.5 Ω=14.4 Ω.根据以上数据,得B 、D 正确.] 7.BD8.B [S 1断开瞬间,L 中产生很大的自感电动势,若此时S 2闭合,则可能将电压表烧坏,故应先断开S 2.]9.AD [接通时电压不足以使氖管发光,迅速切断S 时,L 中产生很高的自感电动势,会使氖管发光,b 为负极,辉光在b 端.故A 、D 项正确.]10.BC [如果断开B 线圈的开关S 2,那么在S 1断开时,该线圈中会产生感应电动势,但没有感应电流,所以无延时作用.]11.50 2解析 题图中给出的是一方波交流电,周期T =0.3 s ,前T 3时间内U 1=100 V ,后2T3时间内U 2=-50V .设该交流电压的有效值为U ,根据有效值的定义,有U 2R T =U 21R ·⎝⎛⎭⎫T 3+U 22R ·⎝⎛⎭⎫23T ,代入已知数据,解得U=50 2 V.12.(1)实验电路如下图所示(2)U 0R 0 (3)不是 0.295(0.293~0.297) 2.67(2.64~2.70) (4)0.068(0.060~0.070) 解析 (1)略.(2)根据欧姆定律可知I =U 0R 0(3)路端电压U =E -Ir ,若r 为常数,则U —I 图为一条不过原点的直线,由曲线a 可知电池内阻不是常数;当U =0时的电流为短路电流,约为295 μA =0.295 mA ;当电流I =0时路端电压等于电源电动势E 、约为2.67 V.(4)实验一中的路端电压为U 1=1.5 V 时电路中电流为I 1=0.21 mA ,连接a 中点(0.21 mA,1.5 V)和坐标原点,此直线为此时对应滑动变阻器阻值的外电路电阻(定值电阻)的U —I 图,和图线b 的交点为实验二中的路端电压和电路电流,如下图,电流和电压分别为I =97 μA ,U =0.7 V ,则外电路消耗功率为P =UI =0.068 mW.13.(1)275匝 (2)550匝 0.25 A解析 理想变压器原线圈两端电压跟每个副线圈两端电压之比都等于原、副线圈匝数之比.由于有两个副线圈,原、副线圈中的电流跟它们的匝数并不成反比,但输入功率等于输出的总功率.(1)已知U 2=12 V ,n 2=30;U 3=110 V 由U 2U 3=n 2n 3,得n 3=U 3U 2n 2=275匝; (2)由U 1=220 V ,根据U 1U 2=n 1n 2,得n 1=U 1U 2n 2=550匝由P 1=P 2+P 3=P 2+I 3U 3=56 W ,得I 1=P 1U 1=0.25 A14.(1)8×104 V (2)3.2×103 V解析 (1)导线电阻r =ρ2l S =2.4×10-8×2×80×1031.5×10-4Ω=25.6 Ω输电线路上损失的功率为输出功率的4%,则4%P =I 2r 代入数据得I =125 A由理想变压器P 入=P 出及P =UI 得输出电压U =P I =107125 V =8×104 V(2)输电线路上的电压损失 U ′=Ir =125×25.6 V =3.2×103 V 15.(1)0.8 N (2)5.12 W 解析 (1)对导体棒由动能定理得Fx =12m v 2因为导体棒进入磁场时恰好做匀速直线运动所以F =BId =B Bd vR +R Ld代入数据,根据以上两式方程可解得:F =0.8 N ,v =8 m/s(2)小灯泡发光时的功率P L =⎝ ⎛⎭⎪⎫Bd v R +R L 2·R L =5.12 W 16.(1)1.0 A (2)2.0 N (3)1.25 J解析 (1)金属棒MN 沿导轨竖直向上运动,进入磁场中切割磁感线产生感应电动势.当金属棒MN 匀速运动到C 点时,电路中感应电动势最大,产生的感应电流最大.金属棒MN 接入电路的有效长度为导轨OCA 形状满足的曲线方程中的x 值.因此接入电路的金属棒的有效长度为L =x =0.5sin π5y ,L m =x m=0.5 m ,由E m =BL m v ,得E m =3.0 V ,I m =E m R 并,且R 并=R 1R 2R 1+R 2,解得I m =1.0 A(2)金属棒MN 匀速运动的过程中受重力mg 、安培力F 安、外力F 外作用,金属棒MN 运动到C 点时,所受安培力有最大值,此时外力F 有最大值,则F 安m =I m L m B ,F 安m =1.0 N , F 外m =F 安m +mg ,F 外m =2.0 N.(3)金属棒MN 在运动过程中,产生的感应电动势e =3.0sin π5y ,有效值为E 有=E m2.金属棒MN 滑过导轨OC 段的时间为tt =y Oc v ,y =52 m ,t =56 s滑过OC 段产生的热量 Q =E 2有R 并t ,Q =1.25 J.期中综合检测(时间:90分钟 满分:100分)一、选择题(本题共10小题,每小题4分,共40分) 1.与x 轴夹角为30°的匀强磁场的磁感应强度为B ,如图1所示,长为L 的金属杆在匀强磁场中运动时始终与xOy 平面垂直(图中小圆为其截面),以下哪些情况一定能在杆中获得方向相同、大小为BL v 的感应电动势( )图1①杆以2v 速率向+x 方向运动 ②杆以速率v 垂直磁场方向运动③杆以速率233v 沿+y 方向运动 ④杆以速率233v 沿-y 方向运动A .①和②B .①和③C .②和④D .①和④2.两个闭合的金属环穿在一根光滑的绝缘杆上,如图2所示,当条形磁铁的S 极自右向左插向圆环时,环的运动情况是( )图2A .两环同时向左移动,间距增大B .两环同时向左移动,间距变小C .两环同时向右移动,间距变小D .两环同时向左移动,间距不变3.如图3所示,MSNO 为同一根导线制成的光滑导线框,竖直放置在水平方向的匀强磁场中,OC 为一可绕O 轴始终在轨道上滑动的导体棒,当OC 从M 点无初速度释放后,下列说法中正确的是( )图3A .由于无摩擦存在,导体棒OC 可以在轨道上往复运动下去B .导体棒OC 的摆动幅度越来越小,机械能转化为电能 C .导体棒OC 在摆动中总受到阻碍它运动的磁场力D .导体棒OC 只有在摆动加快时才受到阻碍它运动的磁场力4.一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个电压表相接,如图4所示,整个系统放在磁感应强度为B 的均匀磁场中,B 的方向沿z 轴正方向.如果电压表与导体平板均以速度v 向y 轴正方向移动,则电压表指示的电压值为( )图4A .0 B.12v Bl C .v Bl D .2v Bl5.如图5甲所示,光滑导体框架abcd 水平放置,质量为m 的导体棒PQ 平行于bc 放在ab 、cd 上,且正好卡在垂直于轨道平面的四枚光滑小钉之间,回路总电路为R ,整个装置放在垂直于框架平面的变化的磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(规定磁感应强度方向向上为正),则在时间0~t 内,关于回路内的感应电流I 及小钉对PQ 的弹力N ,下列说法中正确的是( )图5A .I 的大小是恒定的B .I 的方向是变化的C .N 的大小是恒定的D .N 的方向是变化的6.铁路上使用一种电磁装置向控制中心传输信号,以确定火车的位置.有一种磁铁能产生匀强磁场,被安装在火车首节车厢下面,如图6所示(俯视图),当它经过安装在两铁轨之间的线圈时,便会产生一种电信号被控制中心接收到.当火车以恒定的速度v 通过线圈时,下面四个选项中的图象能正确表示线圈两端的电压随时间变化的关系是( )图67.如图7所示,线圈的自感系数L 和电容器的电容C 都很小(如:L =1 mH ,C =200 pF),此电路的作用是( )图7A .阻直流、通交流,输出交流B .阻交流、通直流、输出直流C .阻低频、通高频、输出高频交流D .阻高频、通低频、输出低频交流和直流8.有一边长为L 的正方形导线框,质量为m ,由高度H 处自由下落,如图8所示,其下边ab 进入匀强磁场区域后,线圈开始减速运动,直到其上边cd 刚好穿出磁场时,速度减为ab 边刚进入磁场时速度的一半,此匀强磁场的宽度也是L ,线框在穿过匀强磁场的过程中产生的电热是( )图8A .2mgLB .2mgL +mgHC .2mgL +34mgHD .2mgL +14mgH9.如图9所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直于导轨所在的平面向里,金属棒ab 可沿导轨自由滑动,导轨一端跨接一个定值电阻R ,导轨电阻不计,现将金属棒沿导轨由静止向右拉.若保持拉力恒定,当速度为v 时,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率恒定,当速度为v 时,加速度为a 2,最终也以速度2v 做匀速运动,则( )图9A .a 2=a 1B .a 2=2a 1C .a 2=3a 1D .a 2=4a 1 10.在生产实际中,有些高压直流电路含有自感系数很大的线圈,当电路中的开关S 由闭合到断开时,线圈中产生很高的自感电动势,使开关S 处产生电弧,危及操作人员的人身安全.为了避免电弧的产生,可在线圈处并联一个元件,如图所示的方案中可行的是( )题号12345678910答案二、填空题(本题共2小题,共12分)11.(6分)如图10所示,两水平放置的金属板相距为d,用导线与一个n匝线圈连接,线圈置于方向竖直向上的变化磁场中.若金属板间有一质量m、带电荷量+q的微粒恰好处于平衡状态,则磁场的变化情况是________,磁通量的变化率为________.12.(6分)由于国际空间站的运行轨道上各处的地磁场强弱及方向均有所不同,所以在运行过程中,穿过其外壳地磁场的磁通量将不断变化,这样将会导致________产生,从而消耗空间站的能量.为了减少这类损耗,国际空间站的外壳材料的电阻率应尽可能选用______(填“大”或“小”)一些的.图10姓名:________班级:________学号:________得分:________三、计算题(本题共4小题,共48分)13.(10分)如图11所示,电阻为r0的金属棒OA以O为轴可以在电阻为4r0的圆环上滑动,外电阻R1=R2=4r0,其他电阻不计.如果OA棒以某一角速度匀速转动时电阻R1的电功率最小值为P0,求OA 棒匀速转动的角速度.图1114.(12分)两根光滑的长直金属导轨MN、M′N′平行置于同一水平面内,导轨间距为l,电阻不计,M、M′处接有如图12所示的电路,电路中各电阻的阻值均为R,电容器的电容为C.长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中.ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q.求:图12(1)ab运动速度v的大小;(2)电容器所带的电荷量q.15.(10分)光滑平行金属导轨长L =2.0 m ,两条导轨之间的距离d =0.10 m ,它们所在的平面与水平方向之间的夹角θ=30°,导轨上端接一个阻值为R =0.80 Ω的电阻,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B =0.4 T ,有一金属棒ab 其质量m =500 g ,垂直放在导轨的最上端,如图13所示.当ab 从最上端由静止开始滑下,直到滑离轨道时,电阻R 上放出的热量Q =1 J ,g =10 m/s 2,求ab 在下滑的过程中,通过R 上的最大电流.图1316.(16分)如图14所示,abcd 为静止于水平面上宽度为L 、长度很长的U 形金属滑轨,bc 边接有电阻R ,其他部分电阻不计.ef 为一可在滑轨平面上滑动、质量为m 的均匀金属棒.现金属棒通过一水平细绳跨过定滑轮,连接一质量为M 的重物,一匀强磁场B 垂直滑轨平面.重物从静止开始下落,不考虑滑轮的质量,且金属棒在运动过程中均保持与bc 边平行.忽略所有摩擦力.则:图14(1)当金属棒做匀速运动时,其速率是多少?(忽略bc 边对金属棒的作用力);(2)若重物从静止开始至匀速运动时下落的总高度为h ,求这一过程中电阻R 上产生的热量.期中综合检测 答案1.D [根据E =BLv sin θ可知四种情况下产生的感应电动势均为BLv ,再由右手定则判断四种情况下电流的方向,符合题意的是D.]2.B [由楞次定律可知,两金属环将向左运动,来阻碍穿过它们的磁通量的增加.另外,两金属环中会产生同方向的感应电流,因此它们还会因相互吸引而靠近.]3.BC [导体棒OC 在摆动时,OCSN 组成的闭合回路的磁通量不断变化,回路中产生感应电流,使导体棒摆动时的机械能转化为电能,故A 错误,B 正确;无论导体棒向哪个方向运动,安培力总是阻碍其运动,故C 正确,D 错误.]4.A [整个金属板在切割磁感线,相当于是个边长为l 的导线在切割磁感线,而连接电压表的边也在切割磁感线,这两个边是并联关系,整个回路中电流为零,所以电压表测得的数值为0.]5.AD [由E =ΔB Δt ·S ,ΔBΔt 恒定,所以回路中感应电动势E 恒定,I 的大小和方向均恒定,A 正确,B错误;水平方向,导体棒PQ 受力平衡,由N =F 安=BIL 可知,N 将随B 的大小和方向的变化而变化,故C 错误,D 正确.]6.C [当火车下面的磁场刚接触线圈时,线圈中有一边切割磁感线,产生的感应电动势为E =BLv ;当磁场完全进入时,穿过线圈的磁通量不发生变化,无感应电动势;当磁场要离开线圈时,线圈中又有另一边在切割磁感线,产生感应电动势E =BLv .根据右手定则判断知,两段时间内产生的感应电动势方向相反.故选项C 正确.]7.D [因自感系数L 很小,所以对低频成分的阻碍作用很小,这样直流和低频成分能顺利通过线圈,电容器并联在电路中,起旁路作用,因电容C 很小,对低频成分的阻碍作用很大,而对部分通过线圈的高频成分阻碍作用很小,被它旁路,最终输出的是低频交流和直流.]8.C [线圈穿过磁场的过程中,由动能定理2mgL -W F =12m (v 2)2-12m v 2,而v 2=2gH ;则产生的电热为Q =W F =2mgL +34mgH .]9.C [第一种模式拉动时,设拉力为F ,由于最终速度为2v ,即匀速,有F =BI 1L ,I 1=BL 2vR,所以F =2B 2L 2v R,当速度是v 时ab 棒所受安培力为F 1.同理可得F 1=B 2L 2vR,此时的加速度为a 1.由牛顿第二定律得F -F 1=ma 1.联立以上各式得a 1=B 2L 2vmR.第二种模式拉动时,设外力的恒定功率为P ,最终的速度也是2v ,由能量关系可知P =I 21R =4B 2L 2v 2R .速度为v 时,ab 棒所受的外力为F 2,有P =F 2v ,此时的加速度为a 2,ab 棒所受的安培力仍为F 1,根据牛顿第二定律得F 2-F 1=ma 2,联立有关方程可以解得a 2=3B 2L 2vmR,所以有a 2=3a 1.]10.D [在D 选项中,S 闭合,二极管不导通,线圈中有由小到大的电流,稳定后电流保持不变;断开S ,二极管与线圈L 构成回路,二极管处于导通状态,可避免开关S 处产生电弧.]11.均匀减弱 mgdnq解析 微粒处于平衡状态表明电场稳定,电压稳定,故B 应均匀变化,又由楞次定律知,B 应减弱.由q U d =mg 又由U =E =n ΔΦΔt 得ΔΦΔt =mgd nq . 12.涡流 大解析 穿过空间站外壳的磁通量发生变化,金属材料的外壳中将自成回路,产生感应电流.为了降低这个损耗,应让产生的感应电流越小越好,也就是说,材料的电阻率越大越好.第一个空可填“涡流”或“电磁感应”;第二个空填“大”.13.8P 0r 0BL 2解析 OA 棒转动时感应电动势为E =12BL 2ω,等效电路如图所示,棒转动时,R 1的功率变化,当棒的A 端处于环的最上端时,环的电阻最大,此时r 1=r 2=2r 0,总电阻为R =r 0+r 1r 2r 1+r 2+R 1R 2R 1+R 2=4r 0,R 1的最小功率为P 0=⎝⎛⎭⎫E 2R 2R 1=B 2L 4ω264r 0,解得ω=8P 0r 0BL 2.14.(1)4QR B 2l 2s (2)CQRBls解析 (1)设ab 上产生的感应电动势为E ,回路中电流为I ,ab 运动距离s ,所用的时间为t ,则有 E =Bl v I =E 4R v =s tQ =I 2(4R )t由上述方程得v =4QRB 2l 2s(2)设电容器两极板间的电势差为U ,则有U =IR 电容器所带电荷量q =CU解得q =CQRBls15.0.174 A解析 棒ab 在导轨的最上端由静止下滑的过程中,开始一段时间内,速度逐渐增大,回路产生的感应电流也逐渐增大,ab 所受安培力逐渐增大,ab 所受的的合力逐渐减小,加速度也逐渐减小.可能出现两种情况,一种情况是ab 棒离开导轨前,加速度已减为0,这时以最大速度匀速下滑;另一种情况是ab 棒离开导轨时,ab 仍然有加速度.根据题中条件,无法判定ab 离开导轨时,是否已经达到匀速下滑的过程.但无论哪种情况,ab 离开导轨时的速度,一定是运动过程中的最大速度,求解运动过程不太清楚的问题,用能量守恒比较方便.设ab 棒离开导轨时的速度为v m ,由能量守恒定律得mgL sin θ=12m v 2m+Q ,上式表明,ab 在下滑过程中,重力势能的减少量,等于ab 离开导轨时的动能和全过程中产生的热量的总和,由上式可得v m = 2mgL sin 30°-2Qm=2×0.5×10×2×0.5-2×10.5m/s=4 m/s最大感应电动势E m =B ⊥d v m ,B ⊥是B 垂直ab 棒运动速度方向上的分量,由题图可知B ⊥=B cos 30°, E m =B ⊥d v m =Bd v m cos 30°=0.4×0.1×4×32V =0.139 V 最大电流I m =E m R =0.1390.8A =0.174 A. 16.(1)MgRB 2L 2 (2)Mg [2hB 4L 4-(M +m )MgR 2]2B 4L 4解析 视重物M 与金属棒m 为一系统,使系统运动状态改变的力只有重物的重力与金属棒受到的安培力.由于系统在开始的一段时间里处于加速运动状态,由此产生的安培力是变化的,安培力做功属于变力做功.系统的运动情况分析可用简图表示如下:棒的速度v ↑BL v ,棒中产生的感应电动势E ↑E /R,通过棒的感应电流I ↑――→BIL棒所受安培力F安↑――→Mg -F 安棒所受合力F 合↓――→F 合/(M +m )棒的加速度a ↓.(1)当金属棒做匀速运动时,金属棒受力平衡,即当a =0时,有Mg -F 安=0,又F 安=BIL ,I =E R ,E =BL v ,解得v =MgRB 2L 2(2)题设情况涉及的能量转化过程可用简图表示如下: M 的重力势能−−−−→重力做功⎣⎢⎢⎡系统匀速运动时的动能被转化的动能――→安培力做负功电能――→电流做功内能,由能量守恒定律有Mgh =(M +m )v 22+Q ,解得Q =Mg [2hB 4L 4-(M +m )MgR 2]2B 4L 4.期末综合检测(时间:90分钟 满分:100分)一、选择题(本题共10小题,每小题4分,共40分)图11.铜质金属环从条形磁铁的正上方由静止开始下落,如图1所示,在下落过程中,下列判断中正确的是( )A .金属环机械能守恒B .金属环动能的增加量小于其重力势能的减少量C .金属环的机械能先减小后增大D .磁铁对桌面的压力始终大于其自身的重力2.如图2所示,一宽40 cm 的匀强磁场区域,磁场方向垂直纸面向里.一边长为20 cm 的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v =20 cm/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行,取它刚进入磁场的时刻t =0,在以下四个图线中,正确反映感应电流随时间变化规律的是( )图23.如图3所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的12.磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )图3A.12EB.13EC.23E D .E 4.如图4甲、乙所示的电路中,电阻R 和自感线圈L 的电阻值都很小,且小于灯泡S 的电阻,接通K ,使电路达到稳定,灯泡S 发光,则( )图4A .在甲图中,断开K 后,S 将逐渐变暗B .在甲图中,断开K 后,S 将先变得更亮,然后才变暗C .在乙图中,断开K 后,S 将逐渐变暗D .在乙图中,断开K 后,S 将先变得更亮,然后才变暗5.如图5所示,在闭合铁芯上绕着两个线圈M 和P ,线圈P 与电流表构成闭合回路,若在t 1至t 2这段时间内,观察到通过电流表的电流方向自上向下(即为由c 经电流表至d ),则可判断出线圈M 两端的电势差U ab 随时间t 的变化情况可能是下图中的( )图56.多数同学家里都有调光台灯、调速电风扇.过去是用变压器来实现上述调节的,缺点是成本高、体积大、效率低,且不能任意调节灯的亮度或电风扇转速.现在的调光台灯、调速电风扇是用可控硅电子元件来实现调节的.如图6所示为一个经过双向可控硅电子元件调节后加在电灯上的电压,即在正弦交流电的每一个12周期中,前面的14被截去,调节台灯上旋钮可以控制截去多少,从而改变电灯上的电压.则现在电灯上的电压为( )。

相关文档
最新文档