算法初步全章总结
数学一轮复习第十章算法初步统计与统计案例10.1算法与算法框图学案理
![数学一轮复习第十章算法初步统计与统计案例10.1算法与算法框图学案理](https://img.taocdn.com/s3/m/558effbf50e79b89680203d8ce2f0066f433644f.png)
第十章算法初步、统计与统计案例10。
1算法与算法框图必备知识预案自诊知识梳理1.算法的含义在解决某些问题时,需要设计出一系列可操作或可计算的,通过实施这些来解决问题,通常把这些称为解决这些问题的算法。
2。
算法框图在算法设计中,算法框图可以准确、清晰、直观地表达解决问题的思想和步骤,算法框图的三种基本结构:、、。
3.三种基本逻辑结构(1)顺序结构:按照步骤的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.其结构形式为(2)选择结构:需要,判断的结果决定后面的步骤,像这样的结构通常称作选择结构。
其结构形式为(3)循环结构:指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为.其基本模式为4.基本算法语句任何一种程序设计语言中都包含五种基本的算法语句,它们分别是:、输出语句、、条件语句和.5。
赋值语句(1)一般形式:变量=表达式。
(2)作用:将表达式所代表的值赋给变量。
6.条件语句(1)If—Then—Else语句的一般格式为:If条件Then语句1Else语句2End If(2)If—Then语句的一般格式是:If条件Then语句End If7.循环语句(1)For语句的一般格式:For循环变量=初始值To终值循环体Next(2)Do Loop语句的一般格式:Do循环体Loop While 条件为真考点自诊1.判断下列结论是否正确,正确的画“√",错误的画“×”.(1)一个算法框图一定包含顺序结构,但不一定包含选择结构和循环结构。
()(2)算法只能解决一个问题,不能重复使用。
()(3)选择结构的出口有两个,但在执行时,只有一个出口是有效的。
()(4)循环结构中给定条件不成立时,执行循环体,反复进行,直到条件成立为止。
()(5)输入框只能紧接开始框,输出框只能紧接结束框.()2。
某地区打的士收费办法如下:不超过2公里收7元,超过2公里时,每车收燃油附加费1元,并且超过的里程每公里收2。
高中数学必修3知识点总结
![高中数学必修3知识点总结](https://img.taocdn.com/s3/m/f2bd67dcccbff121dc368311.png)
高中数学必修3知识点总结高中数学必修3知识点总结高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:2.算法的特点:(1)有限性;(2)确定性;(3)顺序性与正确性;(4)不唯一性;(5)普遍性;1.1.2程序框图(一)构成程序框的图形符号及其作用(二)、演算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。
2、条件结构:条件结构是依据指定条件选择执行不同指令的控制结构。
依据条件P是否成立而选择执行A框或B框。
无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。
一个预判判断结构可以有三十多个判断框。
3、循环结构:在一些算法中,经常会发生从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
1.2.1输入、输出语句和赋值语句AB1、输入语句一般格式Input“提示内容”;变量Print“提示内容”;表达式2、输出语句:一般格式3、赋值语句(1)赋值语句的一般格式变量=表达式(2)赋值语句的作用是将表达式所积极作用代表者的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中所的等号的意义是不同的。
赋值号的左右两边不必对换,它将赋值号右边的表达式的值赋给赋值号右边的变量;(4)赋值语句名号左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以真值十多次赋值。
1.2.2条件语句1、条件语句的一般格式:IF语句的一般格式为图1,对应的程序框图为图2。
if表达式语句序列1;else语句序列2;图1图2否满足条件?是语句1语句2end必修三IF语句的最简单格式为图3,对应的程序框图为图4。
1.2.3循环语句循环结构是由循环语句来实现的。
高中数学算法初步知识点整理
![高中数学算法初步知识点整理](https://img.taocdn.com/s3/m/381721db0912a2161579295d.png)
高中数学算法初步知识点整理高中数学算法初步知识点:考点(必考)概要1、算法的概念:①由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。
②算法的五个重要特征:ⅰ有穷性:一个算法必须保证执行有限步后结束;ⅱ确切性:算法的每一步必须有确切的定义;ⅲ可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;ⅳ输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。
所谓0个输入是指算法本身定出了初始条件。
ⅴ输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。
没有输出的算法是毫无意义的。
2、程序框图也叫流程图,是人们将思考的过程和的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法(1)程序框图的基本符号:(2)画流程图的基本规则:①使用标准的框图符号②从上倒下、从左到右③开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点④判断可以是两分支结构,也可以是多分支结构⑤语言简练⑥循环框可以被替代3、三种基本的逻辑结构:顺序结构、条件结构和循环结构(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
(2)条件结构:分支结构的一般形式两种结构的共性:①一个入口,一个出口。
特别注意:一个判断框可以有两个出口,但一个条件分支结构只有一个出口。
②结构中每个部分都有可能被执行,即对每一个框都有从入口进、出口出的路径。
以上两点是用来检查流程图是否合理的基本方法(当然,学习循环结构后,循环结构也有此特点)(3)循环结构的一般形式:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构又称重复结构,循环结构可细分为两类:①如左下图所示,它的功能是当给定的条件成立时,执行A框,框执行完毕后,再判断条件是否成立,如果仍然成立,再执行A框,如此反复执行框,直到某一次条件不成立为止,此时不再执行A框,从b离开循环结构。
《算法初步》知识点总结
![《算法初步》知识点总结](https://img.taocdn.com/s3/m/1fcb8e9177a20029bd64783e0912a21614797fdc.png)
《算法初步》知识点总结
一、算法定义
算法是一种操作的描述,在其中一种程度上,它可以用来解决问题并
提供有用的解决方案。
它是一种可以完成特定任务的一系列指令,可以将
输入转换为易于处理和理解的输出。
算法通常用数学语言来描述,但也可
以用图示、清单、图表或其他表达方式来描述。
算法分析是一种综合性的任务,它研究算法的性能、可行性和可靠性,以及它们的可扩展性和灵活性。
它可用于计算机程序设计,以及科学应用、网络系统设计、系统集成设计和性能优化。
二、算法步骤
1、描述算法的输入:每个算法都有一个或多个输入,它们是算法运
行所需要的数据集或值。
2、定义算法的输出:算法的输出是它对输入的处理结果,它可以是
确定的值或参数,也可以是不确定的,可变的值。
3、为输入数据定义算法的规则:可以通过比较数据和模式来定义算
法的规则,也可以采用算法中的公式或运算来定义规则。
4、设计算法步骤:算法的步骤是结构化和可重复的,它们也可以被
称为迭代步骤。
每个步骤都必须明确完成一些任务,并且可以通过计算机
来实现。
5、定义算法终止条件:算法终止的条件是必要的,以便终止算法。
算法初步知识点及习题
![算法初步知识点及习题](https://img.taocdn.com/s3/m/2a8c8b16c8d376eeafaa31a1.png)
算法算法是高中数学课程中的新增内容,是中国数学课程内容的一个新特色.“算法”过程是指机械式地按照某种确定的步骤行事,通过一系列小的简单计算操作完成复杂计算的过程.算法的学习内容大致可分为三个步骤:用自然语言描述算法;精确刻画算法(程序框图);计算机实现执行算法(程序语言的描述过程).算法思想贯穿高中数学课程的相关部分.【知识要点】1.算法:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程序或步骤.2.程序框图程序框图:用一些通用的符号构成一张图来表示算法,这种图称为程序框图(程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形).用框图表示算法步骤的一些常用的图形符号:程序框名称功能终端框(起止框) 表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框) 赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”,不成立时标明“否”↓→流程线(指向线) 指引流程图的方向连接点连接另一页或另一部分的框图程序框图的三种基本逻辑结构:顺序结构:描述的是最简单的算法结构,语句与语句之间、框与框之间按从上到下的顺序进行(如图9-1).图9-1条件分支结构:依据指定条件选择执行不同指令的控制结构(如图9-2).图9-2循环结构:根据指定条件决定是否重复执行一条或多条指令的控制结构(如图9-3).图9-33.几种基本算法语句任何一个程序设计语言中,都包含五种基本的算法语句,即输入语句、输出语句、赋值语句、条件语句、循环语句.输入语句和输出语句分别用来实现算法的输入信息、输出结果的功能;赋值语句是用来表明赋给某一个变量一个具体的确定值的语句;条件语句是处理条件分支逻辑结构的算法语句;循环语句是用来处理算法中的循环结构的语句.4.中国古代算法案例:更相减损之术、辗转相除法:求两个正数的最大公因数的方法.辗转相除法算法步骤:第一步:用两数中较大数除以较小数,求商和余数.第二步:用除数除以余数.第三步:重复第二步,直到余数为0.第四步,得出两数的最大公约数,即余数0之前的余数.更相减损术算法步骤:第一步:用较大数减去较小数,得到差.第二步:比较减数与差的大小,再用较大数减去较小数.第三步:重复第二步,直到差与减数相等为止.第四步:相等数即为最大公约数.割圆术:用正多边形的面积逐渐逼近圆面积的算法求圆周率π. 秦九韶算法:求一元多项式的值的一种方法,递推关系为),,2,1(10n k a x v v a v k n k kn=⎩⎨⎧+==-- 【复习要求】1.了解算法的含义,了解算法的思想.2.理解程序框图的三种基本逻辑结构:顺序结构、条件分支结构、循环结构.3.理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.【例题分析】例1 如图(图9-4)所示,将一系列指令用框图的形式表示,箭头指向下一步的操作.请按照框图回答问题:图9-4(1)这个框图表示了怎样的算法?(2)输出的数是多少?【分析】由框图中的文字及图形符号表示的操作内容可知:此算法是“求1到50的和”,由此可以算出输出的数.解:(1)此框图表示的算法为:求1+2+3+…+50的和;(2)易知所求和为1275.【评析】程序框图主要包括三部分:表示相应操作的框,带箭头的流程线和框外必要的说明.读框图时要从这三个方面研究,流程线反映了命令执行的先后顺序,主要看箭头方向,框及内外的文字说明表明了操作内容.常用这种方式考察对算法的理解和应用.例2 (1)如图9-5所示的是一个算法的程序框图,已知a1=3,输出的结果为7,则a2的值为______.图9-5(2)如图9-6所示的是某个函数求值的程序框图,则满足该程序的函数解析式为_____.图9-6(3)如图9-7所示的是求某个数列和的程序框图,此程序输出的结果为_____.图9-7【分析】这三个小题的重点在于读懂框图.(1)只含有顺序结构,(2)含有条件分支结构,表明函数的定义域为R ,当x <0时,遵从解析式f (x )=3x -1,否则(即当x ≥0时),遵从解析式f (x )=2-5x ;(3)中有两个循环变量S 、I ,S 是累加变量,I 是计数变量;另外还要判断I 的奇偶性,以此决定是加还是减.解:(1)112=a ;(2)⎩⎨⎧≥-<-=)0(52)0(13)(x x x x x f ;(3)S =12-22+32-42+…+992-1002=-5050.【评析】题(1),只含有顺序结构,所表示的算法比较简单,只需按照框图箭头方向依次读出即可.题(2)含有条件分支结构,这是一个与分段函数有关的算法,框图中含有判断框.读包含有判断框的框图时,要特别重视判断框内的条件和框外的文字说明,对应的下一步操作会依条件不同而改变.题(3)含有循环结构,当解决一些有规律的科学计算问题,尤其是累加和累乘时,往往可以利用循环结构来实现算法.循环结构有两种,读包含有循环结构的框图时,除关注判断框内外的说明外,一般要从开始依顺序做几次循环,观察变量的变化规律来帮助读懂算法的含义.例3 (1)已知平面上的一点P 0(x 0,y 0)和直线l :Ax +By +C =0,求点P 0到直线l 的距离d ,并画出程序框图.(2)用条件分支结构写“已知三个数a 、b 、c ,找出其中最大数”的算法及框图.(3)写出求n131211++++的和的算法,画出程序框图,并写出相应程序(选做). 【分析】正确分析“算理”,才能选择恰当的算法结构,有条理的表达算法.(1)在已知点到直线距离公式的前提下,适合用顺序结构表示;(2)涉及比大小,必须用到条件分支结构;(3)中分母有规律的递增,可以引入累加变量S 和计数变量i ,且S =S +1/i 是反复进行的,可以用循环结构表示.解:(1)算法及框图为:S1 输入x 0,y 0;A ,B ,C ; S2 计算m =A 2+B 2;S3 计算n =Ax 0+By 0+C ; S4 计算mn d ||=; S5 输出d ;(2)算法及框图为:S1 输入a ,b ,c ; S2 令x =a ;S3 若b >x ,则令x =b ;否则,执行S4;S4 若c >x ,则令x =c ;否则,执行S5; S5 输出x ;(3)算法及框图为:S1 输入i =1,S =0; S2 当i ≤n 时,,1iS S += i =i +1;否则执行S3; S3 输出S ;程序如下; S =0For i =1:1:n S =S +1/i i =i +1 endprint(%io (2),S )【评析】书写算法时,一步一步的程序化步骤,即“算则”固然重要,但这些步骤的依据,即“算理”有着更基本的作用,“算理,,是“算则”的基础,“算则”是“算理”的表现.这三道小题由于算理不同,所蕴含的算法结构也不同.通过实例,模仿、操作、探索,经历通过设计程序框图表达解决问题的过程,可以更好的理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,体会和理解算法的含义,了解算法语言的基本构成.本例中涉及的“利用公式求点到直线的距离”、“实数排序求最值问题”、“求数列的和或积的问题”,还包括“二分法求函数零点”、“质数的判定”,“求π的近似值”等等,都是算法的典型案例,学习时要给予充分的重视.一般算法的表示方法并不唯一.不同的算法语言的书写形式是有差别的.本书所采用的是Scilab 语言,学习时要了解赋值语句、输入输出语句、if 语句、while 和for 语句的基本含义及表达方式,能够读懂语句表示的算法过程.例4 (1)用辗转相除法计算56和264的最大公约数时,需要做的除法次数是______. (2)用更相减损术求56和98的最大公约数时,操作如下:(98,56)(56,42)(42,14)(28,14)(14,14),由此可知两数的最大公约数为______.(3)用秦九韶算法求得多项式f (x )=x 6-2x 5+3x 3+4x 2-6x +5当x =2时函数值为______.解:(1)8216816240164015640564264+⨯=+⨯=+⨯=+⨯=所以最大公约数为8,需做的除法次数是4;(2)最大公约数为14; (3)33. 【评析】书上所涉及的古代基本算法案例包括:更相减损术与辗转相除法、秦九韶算法、割圆术.辗转相除法与更相减损术都是求最大公约数的方法,辗转相除法又叫欧几里得方法,计算上以除法为主,更相减损术以减法为主,计算次数上,前者相对较少,特别是两个整数相差较大时区别尤其明显;辗转相除法以余数为0结束,更相减损术则以减数与差相等结束.秦九韶算法的特点是把求n 次多项式的值转化为求n 个一次多项式的值,运算时只有加法和乘法,而且运算的次数比较少,求一个n 次多项式的值最多需要进行n 次加法、n 次乘法.割圆术是由中国古代数学家刘徽提出的,是当时计算圆周率比较先进的算法,“算理”明确,即用圆内接正多边形和外切正多边形逼近圆周率,重点是确定递推关系.例5 (09辽宁)某店一个月的收入和支出总共记录了N 个数据,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V .那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A .A >0,V =S -TB .A <0,V =S -TC .A >0,V =S +TD .A <0,V =S +T【分析】本题要注意三点:a k 有正有负;S 为总收入,是所有正数的和;T 为总支出,是所有非正数的和.答案为C【评析】本题结合实际背景,强调算法的应用价值,是一种比较新的题型,应引起关注.练习9一、选择题1.任何一个算法都必须有的基本结构是( )A.顺序结构B.条件分支结构C.循环结构D.以上三个都要有2.下面给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②判断框有一个入口,有不止一个出口;③对于一个算法来说,判断框内的条件表达方式是唯一的;其中正确的有( )A.0个B.1个C.2个D.3个3.在算法的逻辑结构中,要求进行逻辑判断并根据结果进行不同处理的是哪种结构( ) A.顺序结构B.条件分支结构和循环结构C.顺序结构和条件分支结构D.顺序结构和循环结构4.算法:S1 输入n;S2 判断n是否是2;若n=2,则n满足条件,若n>2,则执行S3;S3 依次从2到n-1检验能否整除n,若都不能整除,则n满足条件;满足上述算法的n是( )A.奇数B.偶数C.质数D.合数二、填空题5.阅读下面两个程序框图,框图1输出的结果为______;框图2输出的结果为______.框图1 框图26.(08广东)阅读图9-8的程序框图,若输入m=4,n=6,则输出a=______,i=______.图9-8 图9-97.阅读图9-9的程序框图,若输入的n是100,则输出的变量S和T的值依次是______.8.“x=3*5”和“x=x+1”是某个程序中的先后相邻两个语句,下列说法中①“x=3*5”是将数值15赋给x,而不是普通运算“x=3*5=15”;②“x=3*5”可以写成“3*5=x”③语句“x=x+1”在执行时,“=”右边x为15,“=”左边x为16;正确的有______.三、解答题9.分别用辗转相除法和更相减损术求189和81的最大公约数.10.用循环语句书写求1+2+3+…+n>1000的最小自然数n的算法,画出程序框图,并写出相应的程序(选做).11.(09宁夏)为了测量两山顶MN间的距离,飞机沿水平方向在AB两点进行测量,MN在同一个铅垂平面内(如图).飞机能够测量的数据有俯角和AB间的距离,请你设计一个方案,包括:指出需要测量的数据(用字母表示,并在图中标出);用文字和公式写出计算MN间距离的步骤.专题九 算法参考答案练习9一、选择题1.A 2.C 3.B 4.C 二、填空题5.27,21 6.12,3 7.2550,2500 8.①③. 三、解答题9.解:辗转相除法:3278127281189 ⨯=⨯=,所以最大公约数为27.更相减损术:189-81=108,108-81=27,81-27=54,54-27=27, 所以最大公约数为27. 10.解:S1 输入S =0,i =1; S2 S =S +i ,i =i +1;S3 若S ≤1000,重复执行S2; 若 S >1000,输出i .S =0,i =1; While S ≤1000 S =S +i ; i =i +1; endprint (%io (2),i )11.解:如图(1)需要测量的数据有:A 点到M 、N 的俯角α1,β1;B 点到M 、N 的俯角α 2,β 2;A 、B 的距离d .11 / 11 (2)第一步:计算BM ,由正弦定理)sin(sin 211ααα+=d BM ; 第二步:计算BN ,由正弦定理)sin(sin 121βββ-=d BN ; 第三步:计算MN ,由余弦定理 )cos(22122αβ+++=⋅⋅BN BM BN BM MN .。
高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术
![高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术](https://img.taocdn.com/s3/m/7086d4a5767f5acfa0c7cd79.png)
高二数学必修3第一章算法初步知识点:辗转相除法与更相减损术
高二数学必修3第一章算法初步知识点:辗转相
除法与更相减损术
高二数学对于知识点的掌握的要求是比较高的。
小编准备了高二数学必修3第一章算法初步知识点,希望能帮助到大家。
1.3.1辗转相除法与更相减损术
1、辗转相除法。
也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(1):用较大的数m除以较小的数n 得到一个商
S和一个余数
R;(2):若
R=0,则n为m,n的最大公约数;若
R0,
则用除数n除以余数0
R得到一个商
1
S和一个余数
1
R;(3):若
1
R=0,则
1
减小数。
继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。
例2 用更相减损术求98与63的最大公约数. 分析:(略)3、辗转相除法与更相减损术的区别:
(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到以上是高二数学必修3第一章算法初步知识点的全部内容,更多精彩内容请同学们持续关注查字典数学网。
算法初步知识点doc资料
![算法初步知识点doc资料](https://img.taocdn.com/s3/m/58220d92fad6195f302ba666.png)
算法初步知识点高中数学必修3知识点总结第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行顺序结构在程序框图中的体现就是用流程线将程序框自上而 下地连接起来,按顺序执行算法步骤。
高中数学必修(3)第一章算法初步(知识点汇总)
![高中数学必修(3)第一章算法初步(知识点汇总)](https://img.taocdn.com/s3/m/e0f5618751e79b89680226a7.png)
算法初步与程序框图1、算法的概念:算法通常指按照一定的规则解决某一类问题的明确和有限的步骤。
2、程序框图:用程序框、流程线及文字说明来表示算法的图形叫做程序框图或流程图。
(1)用框图表示算法步骤的一些常用的图形符号图形符号名称功能终端框(起止框)表示一个算法的起始和结束,是任何算法程序框图不可缺少的输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置处理框(执行框)赋值、计算.算法中处理数据需要的算式、公式等,它们分别写在不同的用以处理数据的处理框内判断框判断某一条件是否成立,成立时出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框,表示算法进行的前进方向以及先后顺序连接点如果一个流程图需要分开来画,要在断开处画上连接点,并标出连接的号码(2)程序框图的结构形式①顺序结构;②条件结构;③循环结构;(3)基本算法语句①输入语句;②输出语句;③赋值语句;④条件语句;⑤循环语句;3、程序框图举例:开始11(1)(2)4、辗转相除法:5、更相减损术:6、秦九韶算法:7、二分法:8、进位制:9、流程图和结构图框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系,框图可分为流程图和结构图,流程图与结构图直观形象、简洁、明了,在日常生活中应用广泛.一、流程图:流程图常常用来表示一个动态过程,通常会有一个“起点”,一个或多个“终点”.程序框图是流程图的一种.流程图可以直观、明确地表示动态过程从开始到结束的全部步骤.它是由图形符号和文字说明构成的图示.流程图用于描述一个过程性的活动,活动的每一个明确的步骤构成流程图的一个基本单元,基本单元之间用流程线联系.基本单元中的内容要根据需要而确定.可以在基本单元中具体说明,也可以为基本单元设置若干子单元.10、流程图的种类(1)算法流程图①算法流程图在必修课程中已经学过,它是一种特殊的流程图,主要适用于计算机程序的编写.②在算法流程图内允许有闭合回路.(2)工艺流程图①工艺流程图是常见的一种流程图,又称统筹图,在日常生活、生产实践等各方面经常用到工艺流程图.②用来描述具有先后顺序的时间特征的动态过程.③工艺流程图的构成由矩形框、流程线和名称(代号)构成.④工艺流程图可以有一个或多个“起点”,一个或多个“终点”,对于同一个矩形框可以有多个流出点和流入点.⑤在工艺流程图中不允许出现几道工序首尾相连接的圈图或循环回路.20、绘制流程图的一般过程首先,用自然语言描述流程步骤;其次,分析每一步骤是否可以直接表达,或需要借助于逻辑结构来表达; 再次,分析各步骤之间的关系;最后,画出流程图表示整个流程.二、结构图:表示一个系统中各部分之间的组成结构的框图叫做结构图.10、结构图的种类常用的结构图一般包括知识结构图、组织结构图、建筑结构图、布局结构图及分类结构图.20、绘制结构图步骤:(1)确定组成系统的基本要素,及它们之间的关系.(2)将系统的主体要素及其之间的关系表示出来.(3)确定主体要素的下位要素(从属主体的要素)“下位”要素比“上位”要素更为具体,“上位”要素比“下位”要素更为抽象.(4)逐步细化各层要素,直到将整个系统表示出来为止.三、结构图与流程图的区别:流程图和结构图不同.流程图是表示一系列活动相互作用、相互制约的顺序的框图.结构图是表示一个系统中各部分之间的组成结构的框图.流程图描述动态过程,结构图刻画系统结构.流程图通常会有一个“起点”,一个或多个“终点”,其基本单元之间由有向线连接;结构图则更多地表现为“树”状结构,其基本要素之间一般为逻辑关系.四、考点详解考点一:流程图类型一:算法流程图例1、写出方程0ax b += (,a b 为常数)的根的流程图.分析:因为,a b 是实数,要解方程需先判断a 是否为0,当0a ≠时,方程根为b x a =-;当0a =时,需再次判断b 是否为0,若0b =,则方程根为全体实数,若0b ≠,则方程无解,因此可以用算法中的条件结构来实现,相应程序语句是条件语句.解:根据以上的算法分析可得出算法流程图:点评:算法流程图是学习算法语言的必备工具,在使用时必须用其标准的图形符号.变式练习1:某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7类型二: 工序流程图例2、某工厂装配一辆轿车的工序、工序所花的时间及各工序的先后关系如下表所示:开始输入,a b0a ≠? b x a=- 0b ≠? 输出方程无解 输出方程根是全体实数输出原方程根为x 结束否 否是是注:紧前工序,即与该工序相衔接的前一工序.(1)画出装配该轿车的工序流程图;(2)装配一辆轿车的最短时间是多少小时?分析:要画工序流程图,首先要弄清整项工程应划分为多少道工序,这当然应该由上到下,先粗略后精细,其次是仔细考虑各道工序的先后顺序及相互联系、制约的程度,最后考虑哪些工序可以平行进行,哪些工序可以交叉进行.一旦上述问题都考虑清楚了,一个合理的工序流程图就成竹在胸了,依据其去组织生产,指挥施工,就能收到统筹兼顾的功效.解:(1)工序流程图如下图所示:(2)装配一辆轿车的最短时间是1154125340+++++=(小时).点评: 有关工序流程图应先理清工序大体分几个阶段,再对每一阶段细分,每一步应注意先后顺序,这是十分关键的,否则会产生错误.在画工序流程图时,不能出现几道工序首尾相接的圈图或循环回路.变式练习2:某成品的组装工序图如下,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是( )A. 11小时B. 13小时C. 15小时D. 17小时考点二: 结构图类型一: 知识结构图例3、设计一个结构图,表示《数学{5}》第二章“数列”的知识结构图. 分析:画知识结构图的过程与方法:首先,要对所画结构图从头到尾抓住主要脉络进行分解;然后将每一步分解进行归纳与提炼,形成一个个知识点,并将其逐一地写在矩形框内;最后,按其内在的逻辑顺序将它们排列起来并且用线段相连,这样就画成了知识结构图.解:本章的知识结构图如下:点评:要熟悉知识结构,注意实际问题的逻辑顺序和概念上的从属关系,这个结构图从整体上反映了数列的结构,从左向右反映的是要素之间的从属关系.在画结构图时,应根据具体需要确定复杂程度,简洁的结构图有时能更好地反映主体要素之间的关系和系统的整体特点.另外在画结构图时还应注意美观、明了. 变式练习3:下图是《集合》的知识结构图,如果要加入“子集”,则应该放在( )A. “集合的概念”的下位B. “集合的表示”的下位C. “基本关系”的下位D. “基本运算”的下位类型二: 组织结构图例4、下面为某集团的组织结构图,请据下图分析财务部和人力资源部的隶属关系.分析: 根据组织结构图,分析好各部门之间的从属关系,最后作答.解:由组织结构图可分析得:财务部直属总裁管理;而总裁又由董事长管理,董事长服从于董事会管理.人力资源部由董事长助理直接管理,董事长助理服从董事长管理,董事长又服从于董事会管理,董事会是最高管理部门.点评:有关组织结构图一般都呈“树”形结构.这种图直观,容易理解,被应用于很多领域中.在组织结构图中,可采用从上到下或从左到右的顺序绘制图,注意各单元要素之间的关系,并对整个组织结构图进行浏览处理,注重美观、简洁、明了.变式练习4:某公司做人事调整:设总经理一个,配有经理助理一名;设副经理两人,直接对总经理负责,设有6个部门,其中副经理A 管理生产部、安全部和质量部,经理B 管理销售部、财务部和保卫部;生产车间由生产部和安全部共同管理,公司配有质检中心和门岗。
算法初步主要知识点总结
![算法初步主要知识点总结](https://img.taocdn.com/s3/m/2f117869182e453610661ed9ad51f01dc28157d0.png)
算法初步主要知识点总结一、算法的基本概念1. 什么是算法算法是解决问题的一系列有序的步骤。
它是一种解题方法,目的是找到一个问题的解决方案。
在计算机科学中,算法是对问题的描述和解决方法的精确定义。
2. 算法的特点(1)有穷性:算法必须在有限的步骤内结束。
(2)确定性:算法的每一步必须有确定的含义。
(3)可行性:算法的每一步都必须是可以实现的。
(4)输入:算法具有零个或多个输入。
这些输入以约定的顺序列在参数列表中。
(5)输出:算法至少具有一个输出。
这些输出以约定的顺序列在参数列表中。
3. 算法的评价标准算法的好坏可以通过以下标准来评价:(1)正确性:算法能够得到正确的输出。
(2)效率:算法执行所需要的时间和空间。
(3)可读性:算法的代码结构明了,易于理解。
二、算法的设计方法1. 穷举法穷举法也叫暴力搜索法,是一种简单粗暴的思想,它通过穷尽所有可能的情况,找到问题的解。
穷举法的效率通常不高,但是在某些情况下,却是最直接的解决方法。
2. 分而治之分而治之是一种将问题分成若干个子问题,分别解决的方法。
通过将原问题分解成一些规模较小的子问题,再将子问题的解合并起来,就能得到原问题的解。
分而治之的典型应用是归并排序和快速排序。
3. 贪心算法贪心算法是一种采用每一步的最优选择来解决问题的方法。
它通常用于求解最优化问题,但是不一定能够得到最优解。
贪心算法思想简单,实现容易,但是需要注意选择最优策略时的约束条件。
4. 动态规划动态规划是一种通过将原问题分解成若干个子问题,并记忆子问题的解,最终得到原问题的解的方法。
它通常用于解决最优化问题。
动态规划需要一个递推公式来描述问题的结构,并用一个表格或者数组来存储中间状态。
典型的动态规划问题有背包问题和最长公共子序列问题。
5. 回溯法回溯法是一种通过尝试所有可能的情况来解决问题的方法。
在解决问题时,回溯法会不断尝试所有可能的解,然后通过一些条件来剪枝,直到得到问题的解。
回溯法通常用于解决排列组合问题、图搜索问题等。
《算法初步》知识点总结
![《算法初步》知识点总结](https://img.taocdn.com/s3/m/9fd55797a76e58fafab003b3.png)
《算法初步》知识点总结1、在数学中,算法通常就是指按照一定规则解决某一类问题得明确与有限得步骤、现在,算法通常可以编成计算机程序,让计算机执行并解决问题、算法得特征:①确定性②逻辑性③有穷性2、程序框图图形符号名称功能终端框(起止框)表示一个算法得起始与结束输入、输出框表示一个算法输入与输出得信息处理框(执行框)赋值、计算判断某一条件就是否成立,成立时在出口处标判断框明“就是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图得两部分3、输入、输出与赋值语句(1)输入语句输入语句得格式:INPUT“提示内容”;变量例如:INPUT “x=”;x功能:实现算法得输入变量信息(数值或字符)得功能、要求:1°输入语句要求输入得值就是具体得常量、2°提示内容提示用户输入得就是什么信息,必须加双引号,提示内容“原原本本”得在计算机屏幕上显示,提示内容与变量之间要用分号隔开、3°一个输入语句可以给多个变量赋值,中间用“,”分隔、形式如:INPUT“a=,b=,c=,”;a,b,c(2)输出语句输出语句得一般格式:PRINT“提示内容”;表达式例如:PRINT“S=”;S功能:实现算法输出信息(表达式)得功能、要求:1°表达式就是指算法与程序要求输出得信息、2°提示内容提示用户要输出得就是什么信息,提示内容必须加双引号,提示内容要用分号与表达式分开、3°如同输入语句一样,输出语句可以一次完成输出多个表达式得功能,不同得表达式之间可用“,”分隔、形式如:PRINT “a,b,c:”;a,b,c(3)赋值语句赋值语句得一般格式:变量=表达式、赋值语句中得“=”称作赋值号、功能:将表达式所代表得值赋给变量、要求:1°赋值语句左边只能就是变量名字,而不就是表达式,右边表达式可以就是一个常量、变量或含变量得运算式、如:2=x就是错误得、2°赋值号得左右两边不能对换、赋值语句就是将赋值号右边得表达式得值赋给赋值号左边得变量、如“A=B”“B=A”得含义运行结果就是不同得,如x=5就是对得,5=x就是错得,A+B=C 就是错得,C=A+B就是对得、3°不能利用赋值语句进行代数式得演算(如化简、因式分解、解方程等),如y=x2-1=(x-1)(x+1),这就是实现不了得、在赋值号右边表达式中每一个变量得值必须事先赋给确定得值、在一个赋值语句中只能给一个变量赋值,不能出现两个或以上得“=”、但对于同一个变量可以多次赋值、4、条件结构与条件语句(1)一个算法中,经常会遇到一些条件得判断,算法得流程根据条件就是否成立有不同得流向,条件结构就就是处理这种过程得结构、用程序框图表示条件结构如下图:(2)条件语句1°“IF—THEN—ELSE”语句格式:IF 条件THEN语句体1ELSE语句体2END IF功能:在“IF—THEN—ELSE”语句中,“条件”表示判断得条件,“语句体1”表示满足条件时执行得操作内容;“语句体2”表示不满足条件时执行得操作内容;END IF表示条件语句得结束、计算机在执行“IF—THEN—ELSE”语句时,首先对IF后得条件进行判断,如果符合条件,则执行THEN后面得“语句1”;若不符合条件,则执行ELSE后面得“语句2”、2°“IF—THEN”语句格式:IF 条件THEN语句体END IF功能:“条件”表示判断得条件;“语句”表示满足条件时执行得操作内容,条件不满足时,直接结束判断过程;END IF表示条件语句得结束、计算机在执行“IF—THEN”语句时,首先对IF后得条件进行判断,如果符合条件就执行THEN后边得语句,若不符合条件则直接结束该条件语句,转而执行其她后面得语句、(3)相同点:首先对IF后得条件进行判断,如果符合条件就执行THEN后边得语句、不同点:对于“IF—THEN—ELSE”语句,若不符合条件,则执行ELSE后面得“语句体2”、对于“IF—THEN”语句,若不符合条件则直接结束该条件语句,转而执行其她后面得语句、(4)程序中得条件语句与程序框图中得条件结构存在一一对应关系如下图:5、循环结构与循环语句(1)循环结构循环结构有两种形式:当型循环结构与直到型循环结构、1°当型循环结构,如图(1)所示2°直到型循环结构,如图(2)所示,(1)当型循环结构(2)直到型循环结构(2)循环语句1°当型循环语句当型(WHILE型)语句得一般格式为:WHILE 条件循环体WEND功能:计算机执行此程序时,遇到WHILE语句,先判断条件就是否成立,如果成立,则执行WHILE与WEND之间得循环体;然后返回到WHILE语句再判断上述条件就是否成立,如果成立,再执行循环体,这个过程反复执行,直到一次返回到WHILE语句判断上述条件不成立为止,这时不再执行循环体,而就是跳到WEND语句后,执行WEND后面得语句、因此当型循环又称“前测试型”循环,也就就是我们经常讲得“先测试后执行”“先判断后循环”、2°直到型循环语句直到型(UNTIL型)语句得一般格式为:DO循环体LOOP UNTIL 条件功能:计算机执行UNTIL语句时,先执行DO与LOOP UNTIL之间得循环体,然后判断“LOOP UNTIL”后面得条件就是否成立,如果条件不成立,返回DO语句处重新执行循环体、这个过程反复执行,直到一次判断“LOOP UNTIL”后面得条件成立为止,这时不再返回执行循环体,而就是跳出循环体执行“LOOP UNTIL条件”下面得语句、因此直到型循环又称“后测试型”循环,也就就是我们经常讲得“先执行后测试”“先循环后判断”、(3)相同点:都就是反复执行循环体语句、不同点:当型循环语句就是先判断后循环,直到型循环语句就是先循环后判断、(4)下面为循环语句与程序框图中得条件结构得一一对应关系、1°直到型循环结构:2°当型循环结构:例1 编写程序,使任意输入得3个整数按从大到小得顺序输出、算法步骤如下:第一步,输入3个整数a,b,c、第二步,将a与b比较,并把小者赋给b,大者赋给a、第三步,将a与c比较,并把小者赋给c,大者赋给a(此时a已就是三者中最大得)、第四步,将b与c比较,并把小者赋给c,大者赋给b(此时a,b,c已按从大到小得顺序排列好)、第五步,按顺序输出a,b,c、如下图所示,上述操作步骤可以用程序框图更直观地表达出来、例2 编写程序,输出两个不相等得实数a、b得最大值、解:算法一:第一步,输入a,b得数值、第二步,判断a,b得大小关系,若a>b,则输出a得值,否则,输出b得值、算法二:第一步,输入a,b得数值、第二步,判断a,b得大小关系,若b>a,则将b得值赋予a;否则,直接执行第三步、第三步,输出a得值,结束、(程序框图如下图)。
《算法初步》知识点总结.doc
![《算法初步》知识点总结.doc](https://img.taocdn.com/s3/m/717c68d56529647d272852d3.png)
《算法初步》知识点总结1、在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.算法的特征:①确定性②逻辑性③有穷性2、程序框图图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断某一条件是否成立,成立时在出口处标明判断框“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分3、输入、输出和赋值语句(1)输入语句输入语句的格式:INPUT“提示内容”;变量例如:INPUT “x=”;x功能:实现算法的输入变量信息(数值或字符)的功能.要求:1°输入语句要求输入的值是具体的常量.2°提示内容提示用户输入的是什么信息,必须加双引号,提示内容“原原本本”的在计算机屏幕上显示,提示内容与变量之间要用分号隔开.3°一个输入语句可以给多个变量赋值,中间用“,”分隔.形式如:INPUT“a=,b=,c=,”;a,b,c(2)输出语句输出语句的一般格式:PRINT“提示内容”;表达式例如:PRINT“S=”;S功能:实现算法输出信息(表达式)的功能.要求:1°表达式是指算法和程序要求输出的信息.2°提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开.3°如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.形式如:PRINT “a,b,c:”;a,b,c(3)赋值语句赋值语句的一般格式:变量=表达式.赋值语句中的“=”称作赋值号.功能:将表达式所代表的值赋给变量.要求:1°赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的.2°赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”“B=A”的含义运行结果是不同的,如x=5是对的,5=x是错的,A+B=C是错的,C=A+B是对的.3°不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等),如y=x2-1=(x-1)(x+1),这是实现不了的.在赋值号右边表达式中每一个变量的值必须事先赋给确定的值.在一个赋值语句中只能给一个变量赋值,不能出现两个或以上的“=”.但对于同一个变量可以多次赋值.4、条件结构和条件语句(1)一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构.用程序框图表示条件结构如下图:(2)条件语句1°“IF—THEN—ELSE”语句格式:IF 条件THEN语句体1ELSE语句体2END IF功能:在“IF—THEN—ELSE”语句中,“条件”表示判断的条件,“语句体1”表示满足条件时执行的操作内容;“语句体2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束.计算机在执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果符合条件,则执行THEN后面的“语句1”;若不符合条件,则执行ELSE后面的“语句2”.2°“IF—THEN”语句格式:IF 条件THEN语句体END IF功能:“条件”表示判断的条件;“语句”表示满足条件时执行的操作内容,条件不满足时,直接结束判断过程;END IF表示条件语句的结束.计算机在执行“IF—THEN”语句时,首先对IF后的条件进行判断,如果符合条件就执行THEN后边的语句,若不符合条件则直接结束该条件语句,转而执行其他后面的语句.(3)相同点:首先对IF后的条件进行判断,如果符合条件就执行THEN后边的语句.不同点:对于“IF—THEN—ELSE”语句,若不符合条件,则执行ELSE后面的“语句体2”.对于“IF—THEN”语句,若不符合条件则直接结束该条件语句,转而执行其他后面的语句.(4)程序中的条件语句与程序框图中的条件结构存在一一对应关系如下图:5、循环结构和循环语句(1)循环结构循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示2°直到型循环结构,如图(2)所示,(1)当型循环结构(2)直到型循环结构(2)循环语句1°当型循环语句当型(WHILE型)语句的一般格式为:WHILE 条件循环体WEND功能:计算机执行此程序时,遇到WHILE语句,先判断条件是否成立,如果成立,则执行WHILE和WEND之间的循环体;然后返回到WHILE语句再判断上述条件是否成立,如果成立,再执行循环体,这个过程反复执行,直到一次返回到WHILE语句判断上述条件不成立为止,这时不再执行循环体,而是跳到WEND语句后,执行WEND 后面的语句.因此当型循环又称“前测试型”循环,也就是我们经常讲的“先测试后执行”“先判断后循环”.2°直到型循环语句直到型(UNTIL型)语句的一般格式为:DO循环体LOOP UNTIL 条件功能:计算机执行UNTIL语句时,先执行DO和LOOP UNTIL之间的循环体,然后判断“LOOP UNTIL”后面的条件是否成立,如果条件不成立,返回DO语句处重新执行循环体.这个过程反复执行,直到一次判断“LOOP UNTIL”后面的条件成立为止,这时不再返回执行循环体,而是跳出循环体执行“LOOP UNTIL条件”下面的语句.因此直到型循环又称“后测试型”循环,也就是我们经常讲的“先执行后测试”“先循环后判断”.(3)相同点:都是反复执行循环体语句.不同点:当型循环语句是先判断后循环,直到型循环语句是先循环后判断.(4)下面为循环语句与程序框图中的条件结构的一一对应关系.1°直到型循环结构:2°当型循环结构:例1 编写程序,使任意输入的3个整数按从大到小的顺序输出.算法步骤如下:第一步,输入3个整数a,b,c.第二步,将a与b比较,并把小者赋给b,大者赋给a.第三步,将a与c比较,并把小者赋给c,大者赋给a(此时a已是三者中最大的).第四步,将b与c比较,并把小者赋给c,大者赋给b(此时a,b,c已按从大到小的顺序排列好).第五步,按顺序输出a,b,c.如下图所示,上述操作步骤可以用程序框图更直观地表达出来.例2 编写程序,输出两个不相等的实数a、b的最大值.解:算法一:第一步,输入a, b的数值.第二步,判断a,b的大小关系,若a>b,则输出a的值,否则,输出b的值.算法二:第一步,输入a,b的数值.第二步,判断a,b的大小关系,若b>a,则将b的值赋予a;否则,直接执行第三步. 第三步,输出a的值,结束.(程序框图如下图)知识改变命运。
算法初步知识点
![算法初步知识点](https://img.taocdn.com/s3/m/6c3216b2690203d8ce2f0066f5335a8103d26641.png)
算法初步知识点算法初步知识点(上):什么是算法?算法是指在规定时间内,解决特定问题的一种方法。
算法的特点:算法具有以下特点:1. 有穷性:算法必须在有限的步骤内完成。
2. 确定性:算法的每一个步骤都必须是确定的。
3. 可行性:算法的每一步都必须可行,能够执行的。
4. 输入:算法有零个或多个输入值。
5. 输出:算法有一个或多个输出值。
算法的分类:算法可以分为以下几类:1. 算数运算的算法:例如加法、减法、乘法、除法等。
2. 排序算法:例如冒泡排序、选择排序、插入排序、快速排序、归并排序等。
3. 查找算法:例如线性查找、二分查找等。
4. 图算法:例如最短路径算法、最小生成树算法等。
5. 动态规划算法:例如背包问题。
6. 贪心算法:例如最小生成树问题、背包问题。
算法的效率:算法的效率通常用时间复杂度和空间复杂度来表示。
时间复杂度是指算法解决问题所需的时间大小。
空间复杂度是指算法执行过程中所需的内存空间大小。
一般来说,时间复杂度越小,算法的效率越高。
算法的基本结构:算法的基本结构有三种:顺序结构、选择结构和循环结构。
顺序结构是指程序按顺序执行,依次处理。
选择结构是指程序根据某些条件进行选择执行不同的代码块。
循环结构是指程序可以反复执行某些代码块,直到满足某个条件。
算法的设计思路:算法的设计思路有两种:迭代法和递归法。
迭代法是指通过一个循环来完成某个任务。
递归法是指通过函数自身的调用来完成某个任务。
算法的常用工具:1. 数组:是一种用来存储一组相同类型的数据的数据结构。
2. 链表:是由一组节点组成的数据结构。
3. 栈:是一种后入先出的数据结构。
4. 队列:是一种先入先出的数据结构。
5. 树:是一个由节点组成的层级结构。
6. 图:是由节点和边组成的数据结构。
算法初步知识点(下):常见的排序算法:常见的排序算法有以下几种:1. 冒泡排序算法:通过比较相邻的元素大小,将较大的元素逐个交换到右侧。
2. 快速排序算法:通过选取一个基准元素,将数组分为两部分,一部分小于基准元素,一部分大于基准元素。
《算法初步》知识点总结精编版
![《算法初步》知识点总结精编版](https://img.taocdn.com/s3/m/f9707e51ccbff121dc368349.png)
《算法初步》知识点总结1、在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.算法的特征:①确定性②逻辑性③有穷性2、程序框图图形符号名称功能终端框(起止框)表示一个算法的起始和结束输入、输出框表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断某一条件是否成立,成立时在出口处标明判断框“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分3、输入、输出和赋值语句(1)输入语句输入语句的格式:INPUT“提示内容”;变量例如:INPUT “x=”;x功能:实现算法的输入变量信息(数值或字符)的功能.要求:1°输入语句要求输入的值是具体的常量.2°提示内容提示用户输入的是什么信息,必须加双引号,提示内容“原原本本”的在计算机屏幕上显示,提示内容与变量之间要用分号隔开.3°一个输入语句可以给多个变量赋值,中间用“,”分隔.形式如:INPUT“a=,b=,c=,”;a,b,c(2)输出语句输出语句的一般格式:PRINT“提示内容”;表达式例如:PRINT“S=”;S功能:实现算法输出信息(表达式)的功能.要求:1°表达式是指算法和程序要求输出的信息.2°提示内容提示用户要输出的是什么信息,提示内容必须加双引号,提示内容要用分号和表达式分开.3°如同输入语句一样,输出语句可以一次完成输出多个表达式的功能,不同的表达式之间可用“,”分隔.形式如:PRINT “a,b,c:”;a,b,c(3)赋值语句赋值语句的一般格式:变量=表达式.赋值语句中的“=”称作赋值号.功能:将表达式所代表的值赋给变量.要求:1°赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个常量、变量或含变量的运算式.如:2=x是错误的.2°赋值号的左右两边不能对换.赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量.如“A=B”“B=A”的含义运行结果是不同的,如x=5是对的,5=x是错的,A+B=C是错的,C=A+B是对的.3°不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等),如y=x2-1=(x-1)(x+1),这是实现不了的.在赋值号右边表达式中每一个变量的值必须事先赋给确定的值.在一个赋值语句中只能给一个变量赋值,不能出现两个或以上的“=”.但对于同一个变量可以多次赋值.4、条件结构和条件语句(1)一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构.用程序框图表示条件结构如下图:(2)条件语句1°“IF—THEN—ELSE”语句格式:IF 条件THEN语句体1ELSE语句体2END IF功能:在“IF—THEN—ELSE”语句中,“条件”表示判断的条件,“语句体1”表示满足条件时执行的操作内容;“语句体2”表示不满足条件时执行的操作内容;END IF表示条件语句的结束.计算机在执行“IF—THEN—ELSE”语句时,首先对IF后的条件进行判断,如果符合条件,则执行THEN后面的“语句1”;若不符合条件,则执行ELSE后面的“语句2”.2°“IF—THEN”语句格式:IF 条件THEN语句体END IF功能:“条件”表示判断的条件;“语句”表示满足条件时执行的操作内容,条件不满足时,直接结束判断过程;END IF表示条件语句的结束.计算机在执行“IF—THEN”语句时,首先对IF后的条件进行判断,如果符合条件就执行THEN后边的语句,若不符合条件则直接结束该条件语句,转而执行其他后面的语句.(3)相同点:首先对IF后的条件进行判断,如果符合条件就执行THEN后边的语句.不同点:对于“IF—THEN—ELSE”语句,若不符合条件,则执行ELSE后面的“语句体2”.对于“IF—THEN”语句,若不符合条件则直接结束该条件语句,转而执行其他后面的语句. (4)程序中的条件语句与程序框图中的条件结构存在一一对应关系如下图:5、循环结构和循环语句(1)循环结构循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示2°直到型循环结构,如图(2)所示,(1)当型循环结构(2)直到型循环结构(2)循环语句1°当型循环语句当型(WHILE型)语句的一般格式为:WHILE 条件循环体WEND功能:计算机执行此程序时,遇到WHILE语句,先判断条件是否成立,如果成立,则执行WHILE和WEND之间的循环体;然后返回到WHILE语句再判断上述条件是否成立,如果成立,再执行循环体,这个过程反复执行,直到一次返回到WHILE语句判断上述条件不成立为止,这时不再执行循环体,而是跳到WEND语句后,执行WEND后面的语句.因此当型循环又称“前测试型”循环,也就是我们经常讲的“先测试后执行”“先判断后循环”.2°直到型循环语句直到型(UNTIL型)语句的一般格式为:DO循环体LOOP UNTIL 条件功能:计算机执行UNTIL语句时,先执行DO和LOOP UNTIL之间的循环体,然后判断“LOOP UNTIL”后面的条件是否成立,如果条件不成立,返回DO语句处重新执行循环体.这个过程反复执行,直到一次判断“LOOP UNTIL”后面的条件成立为止,这时不再返回执行循环体,而是跳出循环体执行“LOOP UNTIL条件”下面的语句.因此直到型循环又称“后测试型”循环,也就是我们经常讲的“先执行后测试”“先循环后判断”.(3)相同点:都是反复执行循环体语句.不同点:当型循环语句是先判断后循环,直到型循环语句是先循环后判断.(4)下面为循环语句与程序框图中的条件结构的一一对应关系.1°直到型循环结构:2°当型循环结构:例1 编写程序,使任意输入的3个整数按从大到小的顺序输出.算法步骤如下:第一步,输入3个整数a,b,c.第二步,将a与b比较,并把小者赋给b,大者赋给a.第三步,将a与c比较,并把小者赋给c,大者赋给a(此时a已是三者中最大的).第四步,将b与c比较,并把小者赋给c,大者赋给b(此时a,b,c已按从大到小的顺序排列好).第五步,按顺序输出a,b,c.如下图所示,上述操作步骤可以用程序框图更直观地表达出来.例2 编写程序,输出两个不相等的实数a、b的最大值.解:算法一:第一步,输入a,b的数值.第二步,判断a,b的大小关系,若a>b,则输出a的值,否则,输出b的值.算法二:第一步,输入a,b的数值.第二步,判断a,b的大小关系,若b>a,则将b的值赋予a;否则,直接执行第三步. 第三步,输出a的值,结束.(程序框图如下图)。
高考数学一轮第11章 算法初步、复数、推理与证明 11-2
![高考数学一轮第11章 算法初步、复数、推理与证明 11-2](https://img.taocdn.com/s3/m/e7cae44da8114431b80dd81b.png)
板块三 启智培优·破译高考
数学思想系列 12——解决复数问题的实数化思想 [2018·金华模拟]已知 z∈C,解方程 z·-z -3i-z =1+3i. 解题视点 设 z=a+bi(a,b∈R),根据已知中恒等的 条件,列出一组含 a,b 的方程,解方程组使问题获得解决.
解 设 z=a+bi(a,b∈R),则(a+bi)(a-bi)-3i(a-bi) =1+3i,即 a2+b2-3b-3ai=1+3i.
∴-2λ-λ+μμ==-3,4, 解得λμ==-2. 1, ∴λ+μ=1.
考向 复数的代数运算 命题角度 1 复数的乘法运算 例 3 [2017·山东高考]已知 a∈R,i 是虚数单位.若 z=a+ 3i,z·z =4,则 a=( ) A.1 或-1 B. 7或- 7 C.- 3 D. 3
A. 5 B.2 5 C.5 2 D. 10
解析 ∵z=-2+i,∴-z =-2-i, ∴|(1+z)·-z |=|(1-2+i)·(-2-i)|=|3-i|= 1+9= 10,故选 D.
5.[2017·江苏高考]已知复数 z=(1+i)(1+2i),其中 i 是虚数单位,则 z 的模是____1_0___.
解析 ∵a∈R,a2-+ii=a2-+ii22--ii=2a-1-5a+2i= 2a5-1-a+5 2i 为实数,∴-a+5 2=0,∴a=-2.
触类旁通 求解与复数概念相关问题的技巧
复数的分类、复数的相等、复数的模、共轭复数的概念 都与复数的实部和虚部有关,所以解答与复数相关概念有关 的问题时,需把所给复数化为代数形式,即 a+bi(a,b∈R) 的形式,再根据题意列方程(组)求解.
∴a=43, b=1,
解析 依题意得(a+ 3i)(a- 3i)=4,即 a2+3=4,∴ a=±1.故选 A.
人教A版高考总复习一轮文科数学精品课件 第10章 算法初步、 统计与统计案例 第1节 算法初步
![人教A版高考总复习一轮文科数学精品课件 第10章 算法初步、 统计与统计案例 第1节 算法初步](https://img.taocdn.com/s3/m/243ca73b49d7c1c708a1284ac850ad02de8007e4.png)
则i=4,s=24,不满足s≤20,结束循环,输出i=4.
规律方法 基本算法语句应用中需注意的问题
(1)赋值号“=”的左、右两边不能对调,A=B和B=A的含义及运行结果是不
同的.
(2)不能利用赋值语句进行代数式的演算(如化简、因式分解等),在赋值语
考点二
算法的交汇性问题(多考向探究)
考向1算法与函数的交汇
例3(1)执行如图所示的程序框图,如果输出的y值为1,则输入的x值为(
A.0
B.e
C.0或e
D.0或1
)
(2)(2020江苏,5)如图是一个算法流程图.若输出y的值为-2,则输入x的值
是
.
答案:(1)C (2)-3
e , ≤ 0,
解析:(1)程序对应的函数为 y=
2-ln, > 0.
若x≤0,由y=ex=1,得x=0,满足条件;
若x>0,由y=2-ln x=1,得x=e,满足条件.综上,输入的x值为0或e,故选C.
(2)当输入的x>0时,y=2x>1,所以x>0不符合题意.
当输入的x≤0时,y=x+1,由输出y的值为-2,得x+1=-2,x=-3.
考向2算法与数列的交汇
循环语句的含义.
核心素养
1.直观想象
2.数学抽象
3.逻辑推理
4.数学建模
5.数学运算
强基础 固本增分
1.算法的定义
通常是指按照一定规则解决某一类问题的 明确
和 有限
的步骤.
2.程序框图
(1)概念:程序框图又称 流程图
流程线
文字说明
算法初步知识点
![算法初步知识点](https://img.taocdn.com/s3/m/887def99cf2f0066f5335a8102d276a200296090.png)
算法初步知识点算法是计算机科学的基础,是解决问题的一种方法或步骤的描述。
它对于计算机程序员来说非常重要,因为它们能够帮助我们设计和优化程序。
在本文中,我们将探讨一些算法的基本知识点。
一、算法的定义及特点算法是解决特定问题的有限步骤集。
它具有以下几个特点:1. 有穷性:算法必须在有限的步骤之内结束,不会无限循环。
2. 确定性:算法的每一步骤都必须明确且无二义性。
3. 可行性:算法的每一个步骤必须可行执行。
4. 输入和输出:算法具有输入和输出,通过输入得到相应的输出。
二、算法的时间复杂度时间复杂度是度量算法执行时间所需资源的度量。
它根据输入数据的规模n来估算算法的执行时间。
常见的时间复杂度包括:1. 常数时间复杂度O(1):无论输入数据的规模如何,算法的执行时间都不变,例如直接访问数组中的某个元素。
2. 线性时间复杂度O(n):算法的执行时间与输入数据的规模成线性关系,例如遍历一个数组。
3. 对数时间复杂度O(log n):算法的执行时间与输入数据的规模的对数成正比,例如二分查找算法。
4. 平方时间复杂度O(n^2):算法的执行时间与输入数据的规模的平方成正比,例如冒泡排序算法。
三、排序算法排序算法是最经典的算法之一,它将一组无序的数据按照特定的规则进行排序。
常见的排序算法包括:1. 冒泡排序:依次比较相邻的两个数,将较大(或较小)的数向后(或向前)移动,直到所有的数据有序。
2. 插入排序:将数组分为两部分,将无序部分的元素一个一个插入已经有序的部分,直到所有的数据有序。
3. 快速排序:选择一个基准元素,将小于它的数放在它的左边,大于它的数放在右边,然后递归地对左右两部分进行排序。
四、查找算法查找算法用于在一组数据中查找某个特定的元素。
常见的查找算法包括:1. 顺序查找:按照顺序逐个比较,直到找到目标元素或搜索结束。
2. 二分查找:对于有序数组,将数组分为两部分,每次取中间元素与目标元素比较,缩小搜索范围,直到找到目标元素或搜索结束。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修3 第一章算法初步全章小结【知识内容结构】割圆术【重点知识梳理与注意事项】『算法与程序框图』◆算法算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的明确的计算序列,并且这样的步骤或序列能够解决一类问题。
描述算法可以有不同的方式。
可以用自然语言和数学语言加以叙述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌。
◆程序框图◇概念:通常用一些通用图形符号构成一张图来表示算法,这种图称作程序框图(简称框图)。
◇常用图形符号:注意:i)起、止框是任何流程不可少的;ii)输入和输出可用在算法中任何需要输入、输出的位置;iii)算法中间要处理数据或计算,可分别写在不同的处理框内;iv)当算法要求对两个不同的结果进行判断时,判断条件要写在判断框内;v)如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码。
◇画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,其他框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)一种判断框是二择一形式的判断,有且仅有两个可能结果;另一种是多分支判断,可能有几种不同的结果;(5)在图形符号内描述的语言要非常简练清楚。
◆算法的三种基本逻辑结构◇顺序结构:描述的是最简单的算法结构,语句与语句之间,框与框之间按从上到下的顺序进行。
例:◇条件分支结构:是依据指定条件选择执行不同指令的控制结构。
例:◇循环结构:根据指定条件决定是否重复执行一条或多条指令的控制结构。
例:『基本算法语句』◆赋值、输入和输出语句◇赋值语句:用来表明赋给某一个变量一个具体的确定的语句叫做赋值语句。
一般格式:变量名=表达式。
注意:赋值号左边只能是变量名字,而不是表达式;赋值号左右不能对换;不能利用赋值语句进行代数式的演算;赋值号与数学中的等号意义不同。
◇输入语句一般格式:a=input(“a=”)◇输出语句一般格式:print(%io(2), x)◆条件语句:处理条件分支逻辑结构的算法语句。
一般格式:if 表达式语句序列1;else语句序列2;end◆循环语句:处理算法中的循环结构。
一般格式:(1)for 循环变量=初值:步长:终值循环体;end(2)while 表达式循环体;en d『中国古代数学中的算法案例』◆更相减损之术(求两个正整数最大公约数的算法)例如,求16,12的最大公约数,则(16,12)→(4,12)→(4,8)→(4,4),4为16,12的最大公约数。
程序:a=input(“please give the first number”);b=input(“please give the second number”);while a<>bif a>ba=a-b;elseb=b-a;endendprint(%io(2),a,b);◆割圆术(求π的不足近似值)程序(面积法):n=6;x=1;s=6*sqrt(3)/4;for i=1:5h=sqrt(1-(x/2)^2);s=s+n*x*(1-h)/2;n=2*n;x=srt((x/2)^2+(1-h)^2);endprint(%io(2),n,s);◆秦九韶算法例题:【全章课程实录】第一次课:知识:学习某一问题的一般思路是定义→表达(结构)→实现(语言)→应用引入了算法的概念(即定义),应注意“有限的、确切的、解决一类问题”这三个关键词。
例题:解二元一次方程组的算法;鸡兔同笼两种解法的算法。
第二次课:知识:引入如何在算法中体现循环,开始设计程序框图。
例题:鸡兔同笼第三种解法的算法;计算b=ax的程序框图。
第三次课:知识:通过一道例题实现程序框图中的循环结构。
例题:鸡兔同笼第一种方法、第三种方法的程序框图。
第四次课:知识:引入基本算法语句的知识,赋值、输入、输出的程序语句。
引入条件语句。
例题:求任意两数乘法的程序。
解一元二次方程的程序(先设计程序框图,在写程序);书P12/B/4的程序。
第五次课:知识:引入循环语句,介绍了for、while语句的区别。
for在知道终值的情况下较适用,while则不需要知道确切的终值。
注意:设计程序是应先想好每循环一次干什么,再考虑别的。
例题:在解一元二次方程的程序(上一次课设计的)加入循环结构。
书P26/A/5的程序框图。
第六次课:知识:进入程序的较综合题目的讲解。
例题:有6个学生,每个学生都选相同的4门课。
输入每人每门课的成绩,计算每人总成绩、平均成绩并输出。
计算每门课6人的平均成绩。
(画出程序框图)第七次课:知识:中国古代算法案例,割圆术、秦九韶算法。
例题:用周长计算π的不足近似值;用实例演算秦九韶算法。
第八次课:知识:开始学习第二章统计。
通过学习章前序言明确统计的概念(书P48),讲了随机抽样中的简单随机抽样(抽签法、随机数表法)、系统抽样和分层抽样。
例题:从50名同学中选10名同学参加活动;从500同学中选10名同学参加活动;从500名同学中(400男、100女)选10名同学参加活动。
三种情况分别应选什么抽样方法?第九次课:知识:。
考试。
= =。
第二节课还是用上次课的例题,再次明确了三种抽样方法的特点、异同。
例题:(同第八次课)【经典例题】(1)鸡兔同笼问题的框图,择取其中的方法三、方法一的框图。
原因:不仅是典型例题,而且自己做的时候还错了,没有循环起来。
原因:典型例题,且自己做的时候只考虑了确定数值后的方法,没有普遍性。
(2)求一元二次方程的解的程序框图原因:注意分类讨论,这道题是在“条件分支结构”的基础上加上“循环结构”,因而比较有代表性。
体现了如何加入循环结构的过程。
(下图黑笔部分)(3)割圆术(计算π的不足近似值)原因:这道题是用的“计算周长”的方法,与书上“计算面积”的方法不同。
(4)秦九韶算法原因:很有成就感地这道题是自己写的……亲身体验了一把如何减少乘法、加法的步骤。
当n=6时,只用算6次乘法、6次加法。
比书上那个……总结出来的公式好看多了。
╮(╯▽╰)╭(5)一道挺综合的题……泽出框图部分(出自小测06)原因:有一定综合性,老师课上带着一步步分析很容易就能想出来……但是自己做就想不到。
【典型错题】(1)用二分法求方程的近似根(练习册P2)原因:做它的时候我忘了“二分法”这个东西……它帮助我回忆了二分法。
(2)原题是:按下面框图运行程序后,输出结果是?(练习册P7)原因:用到了数列的知识……这也是我忘的差不多的内容。
且给解这类程序框图提供了一种方法——用通项公式。
(3)(练习册P8)原因:同一道题,两个判断框的“是”和“否”交换位置,导致判断框内的条件发生改变,且每循环一次的内容发生改变。
应注意判断框内的判断条件是否带“等号”。
(4)……我想说的是第8题。
(练习册P12)原因:涉及到复合函数,写出了如何用程序编写复合函数。
(5)……第1题是重点(练习册P17)原因:关于数循环次数的问题。
很容易错啊……(至少我是这样的)稍微总结一下经验:循环次数=终值÷步长+1。
……。
应该很实用。
(6)用while语句的注意事项(练习册P19)原因:与for语句不同,while语句不能体现出循环的初值,因此一定要在循环前加上初值~~。
(7)关于程序用语“floor”。
(小测04)原因:(大大的一张图。
= =。
)“floor”意为“向下取整”。
格式:floor()。
括号里为需要取整的数。
另外,注意图中“floor(T)==T”中的“==”。
在程序中,“==”才表示“等号”。
【复习方法、效率】复习时可以按照“定义→表达(结构)→实现(语言)→应用”这样的思路进行复习。
算法这一章虽然没有什么过于纠结的难点,但是有很多细节需要注意。
比如在判断框外,一定要看清“是”、“否”的位置;设计程序时注意加“;”;for语句和while语句在用法上的区别——for一般用语清楚终值的情况,而while语句只需要一个范围即可,且while语句需要在循环前加上初值。
学过这一章之后,除了各种框图、程序的设计,我还学会了大致以一种较普遍的方法来解决一类问题。
因此,算法这章不仅是教给我们算法,更重要的是让我们学会以一种方法来“解决一类问题”。
【下阶段注意事项】1.笔记啊笔记……笔记要标上日期。
这次惨了,每次笔记都是接着上次的直接记,于是写“课程实录”的时候就悲剧了。
= =。
2.还是笔记……得记得每次课把知识要点记上,不能只记例题。
3.注意总结某些特点明确的题的“解决一类题的方法”……以备考试用~~。
4.做完题后应注意总结,不能做完就完事儿了。
比如练习册上的某题把“是”、“否”换了位置,像这种题做完后可以考虑一下它为什么这么做。