可燃冰PPT
海洋地球化学-可燃冰--天然气水合物PPT课件
2020/3/23
11
开采过程中天然气水合物的分解还会产生大量的 水,释放岩层孔隙空间,使天然气水合物赋存区地层 的固结性变差,引发地质灾变。海洋天然气水合物的 分解则可能导致海底滑塌事件。进入海水中的甲烷量 如果特别大,则还可能造成海水汽化和海啸,甚至会 产生海水动荡和气流负压卷吸作用,严重危害海面作 业甚至海域航空作业。
2020/3/23
9
可燃冰开采方案主要有三种。 第一是热解法。利用“可燃冰”在加温时分解的特性,使其由固态分 解出甲烷蒸汽。但此方法难处在于不好收集。海底的多孔介质不是集中 为“一片”,也不是一大块岩石,而是较为均匀地遍布着。如何布设管道 并高效收集是急于解决的问题。 方案二是降压法。有科学家提出将核废料埋入地底,利用核辐射效 应使其分解。但它们都面临着和热解法同样布设管道并高效收集的问题。 方案三是“置换法”。研究证实,将CO2液化(实现起来很容易), 注入1500米以下的洋面(不一定非要到海底),就会生成二氧化碳水合 物,它的比重比海水大,于是就会沉入海底。如果将CO2注射入海底的 甲烷水合物储层,因CO2较之甲烷易于形成水合物,因而就可能将甲烷 水合物中的甲烷分子“挤走”,从而将其置换出来。
一方面,可燃冰有着其他传统 能源无可比拟的开发优势,而另 一方面,可燃冰的利用难度极大, 不仅要求技术高,而且要方案完 备。
可见,“可燃冰”带给人 类的不仅是新的希望,同样 也有新的困难,只有合理的、 科学的开发和利用,“可燃 冰”才会真正的为人类造福。
可燃冰存在于海底或陆地冻土带内,具有非常高的使用 价值,1m3可燃冰等于164m3 的常规天然气藏,是其他非常规 气源岩( 如煤层、黑色页岩)能量密度的10 倍,是常规天然气 能量密度的2 ~ 5倍
2020/3/23
可燃冰PPT课件
球开始掀起大规模研究、探测
和勘探天然气水合物藏的热潮。
•
至90年代中期,美、俄、
荷、德、加、日等诸多国家探
测可燃冰的目标和范围已覆盖
了世界上几乎所有大洋陆缘的
重要潜在远景地区,以及高纬
度极地永冻土地带和南极大陆
及陆缘区等。
•
目前,至少已有40多个国
家,针对可燃冰展开了国家级
的资源调查和研究工作,并已
调查发现可燃冰的矿点共有100
多处。
.
10
可燃冰概念
可燃冰顾名思义像冰一样的固体点火能燃 烧,是一种非常规能源。它是天然气分子(除 氢、氦和氖外)充填在水的晶体笼架中形成的 冰状固体物,又叫天然气水合物或固体气。
现已证实分子结构式: CH4·8H2O
可燃冰燃烧方程式: .
11
性质
可燃冰是一种白色固体物质,外形像冰,有极强 的燃烧力。主要以甲烷(大于90%)为主,故也称 甲烷水合物。
将核废料埋入地底, 利用核辐射效应使其分解
但它们都面临着和热解法同样 布设管道并高效收集的问题。
.
难处
23
可燃冰的开采方法
方案三是置换法
使CO2液化将CO2注射入海底的甲烷 水合物储层,因CO2较之甲烷易于形 成水合物,因而就可能将甲烷水合物 中的甲烷分子“挤走”,从而将其置 换出来
较前两种方法可行性更高
• 1965年,前苏联首次在西西 伯利亚永久冻土带发现天然气 水合物矿藏。
• 至此,各国科学家相继开始了 对可燃冰的研究,一步一步解 开了其神秘的面纱。
.
4
可燃冰简介
• 天然气水合物,因其 外观象冰一样,而且 遇火即可燃烧,所以 又被称作“可燃冰”
• 它是在一定条件下由 水和天然气在高压和 低温条件下混合组成 的笼形结晶化合物。
6物理高新技术--海洋技术——可燃冰课件
“ 可燃冰” 的形成有三个基本条件
第一,温度不能太高,在零度以上可以生成 0℃~10℃为宜,最高限是20℃左右,温度再高 “可燃冰”就会分解。
第二,压力要够,但也不能太大,0℃时,30个大 气压以上它就可能生成。
正是由于需要同时具备高压和低温的环境,“可燃 冰”大多分布在深海底和冻土区域,这样才能保持稳 定的状态,而且,海洋中的“可燃冰”数量远大于冻 土区域,其分布的陆海比例为1∶100。科学家估计, “可燃冰”主要分布在海底之下1000米范围内,海底 “可燃冰”分布的范围约占海洋总面积的10%,分布 面积达4000万平方公里。
据一则新闻报道,日前,我国青藏高原再次获得可燃冰 实物样品。国土资源部日前召开新闻发布会称,我国在青海 省天峻县木里镇永久冻土带多次成功钻获天然气水合物(又 称“可燃冰”)实物样品。我国成为世界第一个在中低纬度 冻土区发现“可燃冰”的国家,是继加拿大、美国之后第三 个在陆域钻获“可燃冰”的国家。科学家初略估算,我国远 景可燃冰资源量至少有350亿吨油当量。
迄今,世界上至少有30多个国家和地区在进行可燃冰 的研究与调查勘探 。1960年,前苏联在西伯利亚发现了 第一个可燃冰藏,并于1969年投入开发,采气14年,总 采气50.17亿立方米。 美国于1 9 6 9 年开始实施可燃冰调查。1998年,把 可燃冰作为国家发展的战略能源列入国家级长远计划,计 划到2015年进行商业性试开采。 日本开始关注可燃冰是在1992年,目前,已基本完成 周边海域的可燃冰调查与评价,钻探了7口探井,圈定了 12块矿集区,并成功取得可燃冰样本。
可燃冰开采方案主要有三种 方案一是热解法。利用“可燃冰”在加温时分 解的特性,使其由固态分解出甲烷蒸汽。但此方 法难处在于不好收集。海底的多孔介质不是集中 为“一片”,也不是一大块岩石,而是较为均匀 地遍布着。如何布设管道并高效收集是急于解决 的问题。 方案二是降压法。有科学家提出将核废料埋入 地底,利用核辐射效应使其分解。但它们都面临 着和热解法同样布设管道并高效收集的问题。
可燃冰资料
时间
1999年 2002年 2004年 2005年 2006年 2007年
2008年
2009年 2011年
未来之路 中国可燃冰开发历程主要研究成绩
•南海首次发现了天然气水合物存在标志。
•勘测南海储量相当于700亿t油当量,在西沙海槽圈出天然气水合 物矿区。
成立中科院广州天然气水合物研究中心;中德联合在南海北部发 现430万平方公里的“九龙甲烷礁”。
勘测青藏高原五道沟永久冻土区、青海省祁连山南缘永久冻土带 远景资源量有350亿t油当量以上 在“十二五”能源规划中,可燃冰作为一种新型资源被纳入其中
和勘探天然气水合物藏的热潮。
•
至90年代中期,美、俄、
荷、德、加、日等诸多国家探
测可燃冰的目标和范围已覆盖
了世界上几乎所有大洋陆缘的 重要潜在远景地区,以及高纬 度极地永冻土地带和南极大陆 及陆缘区等。
•
目前,至少已有40多个国
家,针对可燃冰展开了国家级
的资源调查和研究工作,并已
调查发现可燃冰的矿点共有100
• 它是在一定条件下由 水和天然气在高压和 低温条件下混合组成 的笼形结晶化合物。
可燃冰简介
• 可燃冰的构成可用 mCH(2m+2)·nH2O 来表示,m代表水合物 中的气体分子,n为水 合指数
• 形成天然气水合物的 主要气体为甲烷
可燃冰简介
• 关于“可燃冰”的成因,目前 认为有两条途径。
• 一种途径是,海底的动植物残 骸被细菌分解时释放出的甲烷 被高压低温的海底环境锁进水 分子笼中。
• 另一种途径是,可燃冰由海洋 板块活动而成。当海洋板块运 动时时,海底石油和天然气便 随板块的边缘涌上表面。当接 触到冰冷的海水和深海压力, 天然气与海水产生化学作用, 就形成“甲烷水合物”。
可燃冰ppt课件
降压法开采原理图
202233
2 可燃冰开采技术
降压法
Exploitation of Combustible Ice
最大的优点是不需要连续激发,且生产成本低
1.大面积开采时自身能量不能满足压降的需 要
2.对可燃冰矿藏性质有要求,适合于水合 物层下部有天然气层时
3.降压引起储层温度降低,因而在水合物储 层接近0℃及在 0℃以下时不能采用,否则 会使水结冰或二次形成水合物堵塞储层
2017年 • 中国首次海域天然气水合物(可燃冰)试采成功。 101031
2 可燃冰开采技术
Exploitation of Combustible Ice
“可燃冰”相平衡条件
“可燃冰”是在一定低温和高压的 条件下存在的。
通过改变温度或者压力数值,使表 示可燃冰的点越过分界线。平衡打 破后,“可燃冰”可分解为可自由 流动的气体和水
热流体从地面泵入水合物地层,进行电 磁加热和微波加热,促使温度上升。高 于地层温度的外界物质的注入,使储层 温度上升到水合物分解的温度,并持续 提供热量来维持水合物的分解
1156
2 可燃冰开采技术
热激发法
Exploitation of Combustible Ice
a.热水注入阶段 b.可燃冰分解阶段 c.开采阶段
2256
3 可燃冰开采案例 Case of combustible ice mining
日本——首个掌握海底可燃冰采掘技术的国家
2013年3月12日,日本成功地在 爱知县渥美半岛以南70公里、水 深1000米处海底开采出可燃冰并 提取出甲烷,成为世界上首个掌 握海底可燃冰采掘技术的国家。
2013年,日本尝试过开采海底可燃冰并提取了甲烷,但由于海底砂流入开采 井,试验仅6天就被迫中断。本次试验持续12天后也因出砂问题中断,未能 完成原计划连续三四周稳定生产的目标,12天产气量只有3.5万立方米。
可燃冰ppt讲解
晶体类型 I型 II型
H型
水分子数 晶穴种类 晶穴数 晶穴结构
46
小
2
512
大
6
51262
136
小
16
512
大
8
51264
小
3
512
34
中
2
435663
大
1
51268
1 m3 水合物
Chen-Guo模型
VDW模型
VDW模型
0.85
0.70
实验值
实验值
0.65 0.60
0.50
0.40
272
274
276
278
280
T ,K
0.45
0.25 46
Chen-Guo模型 VDW模型 气相实验值
56
66
z CO2 , mol%
Chen-Guo模型 VDW模型 水合物相实验值
76
86
CH4+CO2体系V-H相平衡计算值与 实验值比较
核能 ?! 可再生能源
可燃冰-天然气 水合物有可能成 为未来的新能源
初步认为,地球上27%的陆地和90%的海域均具备天然气水合物生成 的条件
天然气水合物赋存于水深大于100-250米(两极地区)和大于400-650 米(赤道地区)的深海海底以下数百米至1000多米的沉积层内,这里 的压力和温度条件能使天然气水合物处于稳定的固态。
4. CO2置换过程强化方法研究 3.CO2置换动力学实验及模型研究 2.水合物存在条件下,CO2和CH4在溶液中溶解度 1. CO2+CH4+H2O体系V-H相平衡研究
可燃冰ppt课件
Introduction to combustible ice
可燃冰在全球分布
可燃冰主要分布在全 世界的边缘海、深海 槽区和大洋盆地中, 约占海洋面积的10% ,此外还有高原冻土 带。
可燃冰分类
根据可燃冰的分布位 置,可以将可燃冰分 为陆上可燃冰气藏与 海洋可燃冰气藏两大 类。
图片来源:李代广.神秘的可燃冰[M]
2017年 • 中国首次海域天然气水合物(可燃冰)试采成功。 101031
2 可燃冰开采技术
Exploitation of Combustible Ice
“可燃冰”相平衡条件
“可燃冰”是在一定低温和高压的 条件下存在的。
通过改变温度或者压力数值,使表 示可燃冰的点越过分界线。平衡打 破后,“可燃冰”可分解为可自由 流动的气体和水
8,20
0 标题数字等都可以通过点
击和重新输入进行更改, 顶部“开始”面板中可以 对字体、字号、颜色、行介
Introduction to combustible ice
什么是可燃冰?
干冰,本水 合物,英文名为natural gas
新能源技术及应用 可燃冰
第一组 朱艳峰 贺禹 赖一铭 蒋雪峰
1
目录
1.可燃冰简介 2.可燃冰开采技术 3.可燃冰开采案例 4.可燃冰开发中存在的问题 5.人工合成可燃冰
12
研究背景 Research Backgrounds
能源危机
全球能源
环危境机污染
4,80 全球变0 暖
据2016年最新公布的数据显示,目前全球石油 储量为3184亿桶,还能供人类使用48.4年。
0738
1 可燃冰简介
Introduction to combustible ice
可燃冰简介
带刺的玫瑰
进入海水中的甲烷会影响海 洋生态。甲烷进入海水中后会发生
较快的微生物氧化作用,影响海水 的化学性质。甲烷气体如果大量排 入海水中,其氧化作用会消耗海水 中大量的氧气,使海洋形成缺氧环 境,从而对海洋微生物的生长发育 带来危害。
带刺的玫瑰
高昂的开采成本:
有
那
2000年开始,可燃冰的研究与勘探 闲 钱
形成天然气水合物的主要气 体为甲烷;
可燃冰简介
关于“可燃冰”的成因,目前认为 有两条途径。
一种途径是,海底的动植物残骸被 细菌分解时释放出的甲烷被高压低温的 海底环境锁进水分子笼中。
另一种途径是,可燃冰由海洋板块 活动而成。当海洋板块运动时时,海底 石油和天然气便随板块的边缘涌上表面 。当接触到冰冷的海水和深海压力,天 然气与海水产生化学作用,就形成“甲 烷水合物”。
带刺的玫瑰
开采过程中天然气水合物的分解还会产生大量的水,释放岩层孔隙空间,使天 然气水合物赋存区地层的固结性变差,引发地质灾变。海洋天然气水合物的分解 则可能导致海底滑塌事件。进入海水中的甲烷量如果特别大,则还可能造成海水 汽化和海啸,甚至会产生海水动荡和气流负压卷吸作用,严重危害海面作业甚至 海域航空作业。
澳大利亚的科学家曾做过一个看似滑稽
的比较:澳洲畜牧业与火力发电,谁对 全球暖化的影响更大?
带刺的玫瑰
牛羊在消化过程中会产生甲烷。它们咀嚼反刍的食物,而第二个胃里的细菌 会分解植物的纤维素,释放其中的能量,该过程即所谓的厌氧程序,在无氧 状态下进行,而所产生的甲烷大多经由打嗝释放。
澳洲的养牛业、畜牧业、牛、 羊,目前每年约排放三百万 吨甲烷。
炙手可热的“冰”
炙手可热的“冰”
上世纪60年代末,苏联也发现了世界 上第一个可燃冰矿田:麦索亚哈气田。自此 ,全球开始掀起大规模研究、探测和勘探天 然气水合物藏的热潮。
21世纪新能源-可燃冰
《能源与环境》课程报告题目:21世纪新能源-可燃冰学号:201148250107203 姓名:胡兆鑫提交日期:2012-06-0121世纪新能源-可燃冰摘要:可燃冰又称天然气水合物,在低温、高压条件下形成,是近些年来世界各国相继发现的一大新型能源,因其优越的燃烧性能和清洁燃烧产物,有可能成为21世纪的新能源。
目前多个国家已进行了研究、勘探和试开发。
我国也将其纳入重大项目,并已获得样品。
本文阐述了可燃冰形成和发现过程,并分析总结目前国内外对可燃冰的研究现状,在此基础上分析了可燃冰的应用对环境产生的利与弊,说明对可燃冰的研究开发对未来能源储备具有重要意义。
关键词:可燃冰;天然气水合物;研究开发现状;开发前景0 引言在煤炭、石油、天然气等传统能源储量有限的情况下,世界各国的科学家正努力寻找清洁高效的新型能源,以取代日益枯竭的传统能源。
此时,一种俗称“可燃冰”的“冰块”,正以其独特的优势,进入科学家的视野,并有可能一举成为21世纪的新能源。
可燃冰又叫做“天然气水合物”也称作气体水合物(Natural Gas Hydrate,简称Gas Hydrate),是分布于深海沉积物中,它是由天然气与水在高压(大于100atm,或大于10MPa)和低温(0~10℃)条件下合成的一种固态类冰状结晶物质,因其外观像冰一样而且遇火即可燃烧,所以又被称作“固体瓦斯”或者“气冰”。
因形成天然气水合物的主要气体为甲烷,所以可燃冰又称为固态甲烷[1]。
可燃冰具有很强的浓缩(吸附)气体的能力,是其他非常规气源岩(如煤层、黑色页岩)能量密度的10倍,是常规天然气能量密度的2~5倍。
可燃冰的燃烧值高,清洁无污染,燃烧后几乎不产生任何废弃物,SO2产生量比燃烧原油或煤低两个数量级。
可燃冰是近20年来在海洋和冻土带发现的新型洁净优质能源,已引起了各国政府和能源专家的广泛关注[2,3]。
1 可燃冰的发现与形成条件1.1可燃冰的发现早在1778年,英国化学家普得斯特里就着手研究气体生成的气体水合物温度和压强。
《“可燃冰”将解千年能源忧?》ppt
本文是一篇科技新闻,是对 科学技术领域新近发生的事实 的报道。科技新闻既有新闻性, 又有科学性,一般来说,科技 新闻的主体部分属于科技说明 文。
阅读课文,理清文章结构
全文分为四个部分
第一部分(1—5)提出观点:可燃冰分布广泛, 储量丰富,有望解决人类即将面临的能源危机。 第二部分(6—9)介绍对气水化合物的探究历 史及认识过程,指出“可燃冰”作为第四代能 源的重要性。 第三部分(10)介绍可燃冰形成的条件及其分 布和储量。 第四部分(11—14)说明可燃冰作为未来新能 源的同时也是一种危险的能源。
可燃冰是一种怎样的物质?它的分布和储量如何?
天然气水合物是天然气和水在中高压和低温条件下混 合时产生的晶体物质,外貌极似冰雪,点燃即可燃烧, 故又称之为可燃冰。从能源的角度看,可燃冰可视为被 高度压缩的天然气资源,每立方米能分解释放160—180 标准立方米的天然气。 分布广泛,海底以下0到1500米深的大陆架和北极等 地的永久冻土带都有可能存在。 储量,已探明的可燃冰储量是传统化石能源的两倍以 上。
第一阶段,好奇——所有的气体都可以和水生成可燃冰。
第二阶段,讨厌——人们对其进行预报、清除和阻化的 研究。 第三阶段,喜爱——发现其作为第四代能源的价值。
2℃—4℃
≥30个大气压
甲烷、天然气
分布广泛、储量丰富, 有着巨大的开发潜力, 可以作为代替能源解决 人类即将面临的能源危 机。
1.增加温室效应,使地球 升温更快。 2.可能引起大陆架斜坡滑 坡造成地质灾害。 3.不易开采和运输。
可燃冰
1.1可燃冰的性质
• 在自然界发现的天然气水合物多为白色、淡黄色、琥珀色等颜色,呈 轴状、层状、小针状结晶体或分散状 • 天然气水合物具有多孔性,硬度和剪切模量小于冰,密度与冰的密度 大致相同,热导率和电阻率远小于冰,可在0 ℃以上生成,超过20℃ 便会分解
1.2可燃冰的形成的三个基本条件
• 低温(0~10℃)
空气
10汽轮机
15除氧器 汽轮机抽汽
17高压海面汽轮机 回热加热系统
16高压水泵
14低压海面汽轮机 回热加热器系统
海平面以上
海底2200m及以下 二氧化碳 7深海蒸发 水加热器
6.深海蒸汽加热器 2.超 临界 水氧 化反 应器 蒸发水 可燃冰 1可燃冰给料装置 含盐水 5. 深海氧 气加热器 电点火装置
•
1.4可燃冰勘察方法
海底热流探测 地震探测
海底电视摄像探测
可燃冰勘查 的技术手段
电磁探测
海底微地貌勘查
流体地球化学探测
深海钻探
海底取样
二、可燃冰研究开发现状
• • 早在20世纪60年代,可燃冰即进入人类视野,1965年,苏联首次在西 西伯利亚永久冻土带发现可燃冰矿藏,并引起多国政府关注 美国、俄罗斯、英国、德国、加拿大、日本、印度、韩国、巴西等都 从能源储备战略角度重视天然气水合物的调查研究工作。它们将此作 为政府行为,投入巨资,相继开展了本国专属经济区和国际海底区域 内的调查研究和资源评价。美国、日本、加拿大、印度等国已制定了 勘探和开发天然气水合物的国家计划
•
1.3可燃冰的成因及存储
2. 冻土型
•
我国是世界上第三冻土大国,冻土区总面积达215万km2,具备良好 的天然气水合物赋存条件和资源前景。远景资源量至少有350亿t当量 油,可供中国使用近90年,而青海省的储量约占其中的1/4。 青海木里是我国陆域“可燃冰”的首个“现身地”,一方面,青海有 面积广、厚度较大的冻土带资源,为“可燃冰”的存在提供了地质条 件。另一方面,青海木里有丰富的煤炭资源,为“可燃冰”的形成提 供了可能的资源条件
可燃冰探测项目ppt【23页】
目标市场分析
这些能源开采公司批量开采时,需3~8个月时间 重金组建钻进平台,为了开采效率,也同样需要 同数量甚至更多的可燃冰探测仪为其探测服务。
2011年,我国已在南海圈定25个成矿区块,控制 资源量达到41亿吨油当量。如果一个区块需要30 套深海可燃冰探测仪,则共需750套探测仪,每 套探测仪售价按200万元保守估算,750套共15亿 元。尚有更多的成矿区块正在被发掘,也就是供 应需求不断在扩大。
项目背景
“十二五”能源规划主项 可燃冰作为一种新能源被纳入国家“十二
五”能源规划,关于可燃冰的战略规划为: 2006~2020年,调查阶段 2020~2030年,开发试生产阶段 2030~2050年,商业生产阶段
现有可燃冰测技术存在的问题
深海可燃冰探测技术已有重大突破。但是,也有存 如下严重问题:
公司技术领头人丁厚本教授简介
(1). 技术带头人:丁厚本教授 1963年起从事国防科技工作,参加我国第一颗
原子弹试验和第一颗氢弹试验及多次国家重大 试验。 1986年1月至1991年,出任核九院工学院院长, 兼任重庆大学和四川大学客座教授,博士生导 师。 1991年7月,作为安徽引进的高科技人才,回 安徽合肥工作并继续投身研发工作。 1993年主持研制成功我国首台工业商业样机。
参赛项目介绍
可燃冰或称天然气水合物等,固态结晶物质,外 貌极像冰雪或固体酒精。分布于深海沉积物或陆 域的永久冻土中,其主要成分是甲烷。
怎么样才能获得实地探测的准确的数据?这成为 全球科学家技术攻关的难题之一。现在我国已形 成具有自主知识产权的关键探测技术体系。研制 成功了“深海甲烷原位探测系统”,这个探测设 备即探头插入海底,探头先吸入海底沉积物中的 孔隙水,经过金属烧结而成的过滤器过滤,采样 通过泵吸到一个只有0.087ml容器的光学微探测舱 中,经过激光照射检测出拉曼光谱,就可分析出 海底该处沉积物中的甲烷含量。2010年研制成功 中功率的海洋可控源电磁探测(MCAEM)仪器, 主要包括可控源电磁发射机和接收机。
可燃冰
可燃冰的应用
3
沉淀物生成的甲烷水合物含量可能还包含了 2 至 10 倍的已知的传统天然气量 。这代表它是未来很有潜力的重要矿物燃料来源。
数十倍, 同等条件下,可燃冰燃烧产生的能量比煤、石油、天然气要多出数十倍 数十倍 而且燃烧后不产生任何残渣,避免了最让人们头疼的污染问题。 作为世界上最大的发展中的海洋大国,中国能源短缺十分突出。 中国的油气资源供需差 距很大, 年中国已从油气输出国转变为净进口国, 多万吨, 距很大, 1993 年中国已从油气输出国转变为净进口国,1999 年进口石油 4000 多万吨, 2000 年进口石油近 7000 万吨,预计 2010 石油缺口可达 2 亿吨 万吨, 亿吨。因此急需开发新能源以 满足中国经济的高速发展。海底天然气水合物资源丰富,其上游的勘探开采技术可借鉴常 规油气,下游的天然气运输、使用等技术都很成熟。因此,加强天然气水合物调查评价是 贯彻实施党中央、国务院确定的可持续发展战略的重要措施,也是开发中国二十一世纪新 能源、改善能源结构、增强综合国力及国际竞争力、保证经济安全的重要途径。
3
要有甲烷气源,海底 古生物尸体的沉积 物,被细菌分解后 会产生甲烷。所以 ,可燃冰在世界各 大洋中均有分布。
开采方式
热激发开采法
传统
减压开采法 化学试剂 注入开采 法 CO2 置换 开采法
开采方式
新型
固体开采法
开采方面的问题
(1) 甲烷作为强温室气体,它对大气辐射平衡的贡献仅次于二氧化碳。一方面,全球天 然气水合物中蕴含的甲烷量约是大气圈中甲烷量的3 000倍 ;另一方面,天然气水合物 分解产生的甲烷进入大气的量即使只有大气甲烷总量的0. 5 %,也会明显加速全球变暖 的进程。因此,如果不能很好地对甲烷气体进行控制,就必然会加剧全球温室效应。 除温室效应之外,还会带来更多问题。①进入海水中的甲烷会影响海洋生态。甲烷进 入海水中后会发生较快的微生物氧化作用,影响海水的化学性质。甲烷气体如果大量 排入海水中,其氧化作用会消耗海水中大量的氧气,使海洋形成缺氧环境,从而对海 洋微生物的生长发育带来危害。②进入海水中的甲烷量如果特别大,则还可能造成海 水汽化和海啸,甚至会产生海水动荡和气流负压卷吸作用,严重危害海面作业甚至海 域航空作业。 开采过程中天然气水合物的分解还会产生大量的水,释放岩层孔隙空间,使天然气水 合物赋存区地层的固结性变差,引发地质灾变。海洋天然气水合物的分解则可能导致 海底滑塌事件]。近年的研究发现,因海底天然气水合物分解而导致陆坡区稳定性降低 是海底滑塌事件产生的重要原因。钻井过程中如果引起天然气水合物大量分解,还可 能导致钻井变形,加大海上钻井平台的风险。 (3) 如何在天然气水合物开采中对天然气水合物分解所产生的水进行处理,也是一个应 该引起重视的问题