实变函数与泛函分析基础第三版

合集下载

实变函数与泛函分析基础(第三版)----第五章_复习指导.docx

实变函数与泛函分析基础(第三版)----第五章_复习指导.docx

主要内容本章的中心内容是建立一种新的积分——勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上i般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下儿个方面:(1)勒贝格积分是一种绝对收敛积分,即兀兀)在E上可积当且仅当|/(兀)|在E上可积(/(x)在E上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设/(力在E上可积,则对任意£>0,存在》〉0,使当e u E且加£<5时,恒有(3)勒贝格积分的唯一性.即£|/(x)|ck = 0的充要条件是/(x) = 0 a.e. T E・由此可知,若f(x)与巩兀)几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近•设/(兀)是可积函数,对任意£>0,存在[°,切上的连续函数從无),使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理5.4. 1),勒贝格控制收敛定理(定理5. 4. 2),和法都定理(定理5.4. 3)在现代数学中都有广泛的应用.同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.|H|、关于勒贝格积分同黎曼积分之间的关系.我们知道,若[°,切上的有界函数/(兀)黎曼可积,则必勒贝格可积口二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可 积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化 为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要/(x, y)在R 〃xRq 上可积即 可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒 贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、 设/(x)是可测集E^R n上的非负简单函数,则f /(x)cLr -定存在。

实变函数与泛函分析基础(第三版)-----第三章_复习指导

实变函数与泛函分析基础(第三版)-----第三章_复习指导

实变函数与泛函分析基础(第三版)-----第三章_复习指导主要内容本章介绍了勒贝格可测集和勒贝格测度的性质.外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用.本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ?,*m E 都存在。

(√ )2、对任意nE R ?,mE 都存在。

(× )3、设nE R ?,则*m E 可能小于零。

(× )4、设A B ?,则**m A m B ≤。

(√ ) 5、设A B ?,则**m A m B <。

(× ) 6、**11()n n n n m S m S ∞∞===∑。

实变函数与泛函分析基础(第三版)

实变函数与泛函分析基础(第三版)

主要内容本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型. 学习本章时应注意以下几点.1、本章的基本概念较多,且有些概念(如内点、聚点、边界点等)相互联系,形式上也常有类似之处,因而容易混淆. 学习这些概念时要细心认真,注意准确牢固地掌握每一个概念的实质,学习时可同其类似的概念对照,注意区别概念间的异同点.尤其要注意的是,本章对有些概念(如聚点),给出了多种等价(充要)条件,这将有利于理解概念的本质,特别是在讨论某些具体问题时,如能恰当地选用某种条件,常常会给问题的解决带来方便. 所以对等价条件必须深刻理解,熟练灵活地运用.2、在开集、闭集和完备集的性质的讨论中,开集是基础,因为闭集是开集的补集,完备集是一种特殊的闭集,所以弄清了开集的性质,闭集和完备集的性质也就自然得到了.3、本章中定理亦较多,对定理的学习,要注意弄清下述三点:一是定理的条件和要证的结论;二是定理的证明方法和推理过程;三是定理的意义和作用. 要特别注意论证思路和方法,这样才能逐步提高分问题和解决问题的能力. 同是定理, 然它们的意义和作用也会不尽相同.本章有些定理,如有限覆盖定理(定理),聚点存在定理(定理)以及直线上开集的结构定理(定理)等都是本章中的重要定理,在今后的学习中常有应用.4、康托集是本章给出的一个重要例子. 对它的一些特殊性质,在直观上是难以想象的,比如它既是不包含任何区间的完备集,同时它还具有连续基数 ,下章中我们还将证明它的测度为零. 正是因为它的这些“奇怪”性质,使得它在许多问题的讨论中起着重要作用.复习题一、判断题1、设P ,n Q R ∈,则(,)0P Q ρ=⇔P Q =。

(× )2、设P ,nQ R ∈,则(,)0P Q ρ>。

(× )3、设123,,n P P P R ∈,则121323(,)(,)(,)P P P P P P ρρρ≥+。

实变函数与泛函分析-实变与泛函_ch3

实变函数与泛函分析-实变与泛函_ch3

3.1 距离空间的定义及例子 University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
3.3 距离空间的完备性和稠密性
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China

实变函数与泛函分析基础(第三版)----第五章_复习指导

实变函数与泛函分析基础(第三版)----第五章_复习指导

主要内容本章的中心内容是建立一种新的积分−− 勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上一般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即)(x f 在E 上可积当且仅当)(x f 在E 上可积()(x f 在E 上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设)(x f 在E 上可积,则对任意0>ε,存在0>δ,使当E e ⊂且 δ<e m 时,恒有(3)勒贝格积分的唯一性.即0d )(=⎰Ex x f 的充要条件是..0)(e a x f =于E .由此可知,若)(x f 与)(x g 几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近.设)(x f 是可积函数,对任意0>ε,存在],[b a 上的连续函数)(x ϕ,使此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理,勒贝格控制收敛定理(定理,和法都定理(定理同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.四、关于勒贝格积分同黎曼积分之间的关系.我们知道,若],[b a 上的有界函数)(x f 黎曼可积,则必勒贝格可积且二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要),(y x f 在q p R R ⨯上可积即可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。

实变函数与泛函分析基础第三版答案

实变函数与泛函分析基础第三版答案
由于 d (x, y) d (E, F ) r inf d (x, y) 0 ,故得矛盾。因此 O G 。 xE , yF
9、设 X 是可分距离空间, F 为 X 的一个开覆盖,即 F 是一族开集,使得对每个 x X ,有 F 中的开集 O ,
使 x O ,证明必可从 F 中选出可数个集组成 X 的一个开覆盖。
证明:记
r

d (E, F )

inf
xE , yF
d (x,
y)

0
。 x
E
,以 x

1 2
d ( x,
F)
为半径作点
x
的邻域
U (x, x ) ,令 O U (x, x ) ,则 O 是开集且 E O 。同理可作开集 G ,使得
xF
F

G

U (y, y )( y
的开球U (1,1) {x X ; d (1, x) 1} 的的闭包是[0,1] ,而 S (1,1) {x X ; d (1, x) 1} [0,1] {2}

2、设 C[a,b] 是区间[a, b] 上无限次可微函数全体,定义 d ( f , g)
r0
1 2r
max
a t b
|f 1 |
(r)(t) h(r)(t) h(r)(t) g(r)(t) | f (r )(t) h(r )(t) h(r )(t) g (r )(t)
|

r0
1 2r
max
a t b
| 1
f |
(r)(t) h(r)(t) | | h(r) (t) g (r) (t) | f (r) (t) h(r) (t) | | h(r) (t) g (r) (t)

实变函数和泛函分析 序言

实变函数和泛函分析 序言

n
并作和 Sf(i)xi,
i1
记 m 1 i n {x 1 ,a x 2 , x ,x n } ,如果不论对 [a,b]
怎样的分法, 也不论在小区间 [xi1,xi]上
点 i 怎样的取法, 只 要 当 0 时 , 和S总 趋 于
确定的极限 I,
n
即Ilim 0i1
f(i)xi
我们称这个极限 I 为函数 f(x)在区间 [a,b] 上
课程教学总体安排:
第一章集与点集(16 学时) 第二章勒贝格测度(18学时)
期中考试(2学时) 第三章可测函数(16学时) 第四章勒贝格积分(18学时)
复习与考试(4学时)
主要教学参考资料:
[1].《实变函数与泛函分析基础》(第二 版),程其襄、张奠宙编,高等教育出版社, 2003 年。 [2].《实变函数论》,周民强编著,北京大 学出版社,2003 年。 [3]. 《实变函数与泛函分析》,郭大钧、 黄春朝、梁方豪编,山东大学出版社,2005 年。
[a,b]
0 i1
imiE
(R) a
f(x)d x|T l||i | m 0i1f(i)xi
Lebesgue 正是基于这个思路创立了 Lebesgue 积分理论,建立了一种新 的积分理论.
新的积分理论消除了上述缺陷, 并且包 含了原有的Riemann 积分理论.
思路非常简单,但实现起来并非易事。
顾名思义,实变函数论即讨论以 实数为变量的函数,这样的内容早在 中学及大学的数学分析,常微分方程 都是研究的以实数为变量的函数,那 么实函还有哪些可学呢?
简单地说:实函主要做一件事, 那就是恰当的改造《数学分析》中 Riemann 积分的定义使得更多的函数 可积。

实变函数论第三版课件 PPT

实变函数论第三版课件 PPT

当且仅当 xA且 xB 。
对于一簇集合 {A}A,可类似定义其交集,

A A { x|对每 A ,有 x 一 A }
大家学习辛苦了,还是要坚持
继续保持安静
3.并运算
假设A,B是两个集合,所谓Aபைடு நூலகம்B的并集 (或和集),指的是由A与B中所有元素构成的 集合,记作 AB,换句话说 ,
x A B 当且 x A 或 仅 x B . 当 对于一簇集合{A}A,可类似定义其并集, 即
实变函数论第三版课件
目的:了解集合的表示法;掌握集合的基本运算; 熟悉一些常用集合的符号;准确理解集合序列 的上、下限集。 重点与难点:集合序列的上、下限集。
基本内容: 一.背景 1.Cantor的朴素集合论 2.悖论 3.基于公理化的集合论
二.集合的定义—具有某种特定性质的对 象的全体
1.集合的几种表示法
设 A1,A2,,An, 是一个集合序列
上极限集
limAn(或limsupAn)
n
n
{x: x属于无限多个集合An}
{x : 存在无限多个An,使xAn}
例:设A2n=[0,1] A2n+1=[1,2]; 则上极限集为[0,2]
称为空集,记作 。
集合及其运算
三.集合的运算 1.集合的子集
假设A,B是两个集合,如果A中的元素都是B中 的元素,则称A是B的子集,记作 前A 者B 读或 作B“A A 包含于B中”,后者读着“B包含A”。显然,空
集 是任何集合的子集,任何集合是其自身的子
集。假如要证明A是B的子集,最常用的办法是,
任取 xA,然后设法证 x明 B。
如果A是B的子集,且存在bB,使 bA,则称 A是B的真子集,记作 A B 。

实变函数与泛函分析基础_第三版综合练习题

实变函数与泛函分析基础_第三版综合练习题

实变函数综合练习题《实变函数》综合训练题(一)(含解答)一、选择题(单选题)1、下列集合关系成立的是( A ) (A )(\)A B B A B ⋃=⋃ (B )(\)A B B A ⋃=(C )(\)B A A A ⋃⊆ (D )(\)B A A ⊆2、若nE R ⊂是开集,则( B )(A )E E '⊂ (B )E 的内部E = (C )E E = (D )E E '= 3、设P 是康托集,则( C )(A )P 是可数集 (B )P 是开集 (C )0mP = (D )1mP =4、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则( D )(A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数5、设E 是nR 中的可测集,()f x 为E 上的可测函数,若()d 0Ef x x =⎰,则( A )(A )在E 上,()f z 不一定恒为零 (B )在E 上,()0f z ≥ (C )在E 上,()0f z ≡ (D )在E 上,()0f z ≠二、多项选择题(每题至少有两个或两个以上的正确答案) 1、设E 是[0,1]中的无理点全体,则(C 、D )(A )E 是可数集 (B )E 是闭集 (C )E 中的每一点都是聚点 (D )0mE >2、若1E R ⊂至少有一个内点,则( B 、D )(A )*m E 可以等于零 (B )*0m E >(C )E 可能是可数集 (D )E 是不可数集3、设[,]E a b ⊂是可测集,则E 的特征函数()E X x 是 (A 、B 、C ) (A )[,]a b 上的简单函数 (B )[,]a b 上的可测函数 (C )E 上的连续函数 (D )[,]a b 上的连续函数4、设()f x 在可测集E 上L 可积,则( B 、D )(A )()f z +和()f z -有且仅有一个在E 上L 可积(B )()f z +和()f z -都在E 上L 可积 (C )()f z 在E 上不一定L 可积(D )()f z 在E 上一定L 可积5、设()f z 是[,]a b 的单调函数,则( A 、C 、D )(A )()f z 是[,]a b 的有界变差函数 (B )()f z 是[,]a b 的绝对连续函数 (C )()f z 在[,]a b 上几乎处处连续 (D )()f z 在[,]a b 上几乎处处可导三、填空题(将正确的答案填在横线上) 1、设X 为全集,A ,B 为X的两个子集,则\A B =C A B ⋂ 。

实变函数与泛函分析基础

实变函数与泛函分析基础

实变函数与泛函分析基础实变函数是数学分析的基础,它是研究实数集上的函数性质和运算规律的学科。

实变函数的研究内容包括连续性、可导性、极限性质、积分性质等等。

实变函数的研究不仅有助于理解和掌握数学分析的基本概念和方法,也为其他学科提供了基本工具和语言。

实变函数的研究可以追溯到古希腊数学家欧多克索斯的研究工作,随着时间的推移,人们对实变函数的研究越发深入和丰富。

泛函分析是实变函数的推广,它研究的对象是函数空间上的函数。

函数空间是指一组函数的集合,通过定义合适的范数或者度量,可以使得函数空间具备向量空间的结构。

泛函分析主要研究函数空间上函数的连续性、一致收敛性、极限性质、积分性质等等。

泛函分析的研究内容非常广泛,它不仅可以应用于实际问题的建模和求解,还为其他数学学科提供了基本工具和语言。

实变函数与泛函分析的基本思想和方法是相通的,都基于对函数的研究和分析。

不同之处在于实变函数的研究对象是定义在实数集上的函数,而泛函分析的研究对象是函数空间上的函数。

实变函数可以看作是泛函分析的特殊情况,而泛函分析则是对实变函数进行推广和推理。

实变函数与泛函分析的应用非常广泛,涵盖了很多学科,比如物理学、工程学、经济学等等。

实变函数可以用来描述物理问题中的函数关系,比如速度与时间的关系、力与位移的关系等等。

而泛函分析则可以应用于优化问题、偏微分方程的求解等等。

实变函数与泛函分析的研究成果也广泛应用于科学和技术的各个领域。

总之,实变函数与泛函分析是数学分析领域的两个重要概念,它们的研究内容相互关联,但也有一定的区别。

实变函数是研究定义在实数集上的函数的基础学科,而泛函分析是实变函数的推广,研究函数空间上函数的分析学科。

实变函数与泛函分析的研究结果在科学和技术的各个领域都有广泛的应用。

实变函数论第三版课件

实变函数论第三版课件


例 a a+1/k f(x)
域与б-域
有理数全体(或实数全体)相对于四则运算是封闭的,人们通常称它们为有理数域(或实数域),整数集则不然。
前面已经定义了集合的“并”、“交”、“差”运算,那么什么样的集簇相对于集合的运算是封闭的呢?
第1讲 集合及其运算
第1讲 集合及其运算
集合 称为A与B的对称差,记作 。
1
2
集合及其运算
第1讲 集合及其运算
集合的运算 问题1:回忆数的四则运算,由此猜测集合的运算应该具有什么性质。
定理1 (1)
集合及其运算

1
2
3
4
5
6
集合及其运算
集合及其运算
上述基本性质都是常用的,其中(9),(10)两式通常称为德摩根(De Morgan )法则,它们的证明也是容易的。现在以(10)式为例进行证明。
集合及其运算
集合及其运算
集合序列的上、下(极)限集
上极限集
例:设A2n=[0,1] A2n+1=[1,2]; 则上极限集为[0,2]
下极限集
上极限集
例:设A2n=[0,1] A2n+1=[1,2]; 则上极限集为[0,2], 下极限集为{1}
极限集
如果集列 的上极限集与下极限集相等,即

( [ a-1/n a
( [ ( [ [ a-1/n-1 a-1/n a-1/n+1 a

( [ a a+1/n
集合及其运算
差(余)运算 由所有属于A但不属于B的元素组成的集合,称为A减B的差集,记作A-B(A\B),也就是说, ,但 。

实变函数与泛函分析基础(第三版)第五章 复习指导

实变函数与泛函分析基础(第三版)第五章 复习指导

主要内容本章的中心内容是建立一种新的积分−− 勒贝格积分理论.它也是实变函数数论研究的中心内容.一、关于勒贝格积分的建立.本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替.一般集合上一般函数的积分是通过两步完成的.第一步是建立非负函数的积分.它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的.第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的.二、勒贝格积分的性质.勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即)(x f 在E 上可积当且仅当)(x f 在E 上可积()(x f 在E 上可测).这是它与黎曼积分重要区别之一.(2)勒贝格积分的绝对连续性.设)(x f 在E 上可积,则对任意0>ε,存在0>δ,使当E e ⊂且 δ<e m 时,恒有ε<⎰ex x f d )((3)勒贝格积分的唯一性.即0d )(=⎰Ex x f 的充要条件是..0)(e a x f =于E .由此可知,若)(x f 与)(x g 几乎相等,则它们的可积性与积分值均相同.(4)可积函数可用连续函数积分逼近.设)(x f 是可积函数,对任意0>ε,存在],[b a 上的连续函数)(x ϕ,使εϕ<-⎰],[d )()(b a x x x f此外尚有许多与黎曼积分类似的性质,如线性性、单调性、介值性等,望同学们自己总结、比较.三、关于积分极限定理.积分极限定理是本章的重要内容,这是由于积分号下取极限和逐项积分,无论在理论上还是应用上都有着十分重要的意义.其中列维渐升函数列积分定理(定理5.4.1),勒贝格控制收敛定理(定理5.4.2),和法都定理(定理5.4.3)在现代数学中都有广泛的应用.同学们不难发现,与黎曼积分相比较,勒贝格积分与极限换序的条件大大减弱,这也是勒贝格积分优越于黎曼积分的重要之处.四、关于勒贝格积分同黎曼积分之间的关系.我们知道,若],[b a 上的有界函数)(x f 黎曼可积,则必勒贝格可积且二者积分值相等.值得注意的是,上述结论对于广义黎曼积分并不成立.实际上,广义黎曼可积函数成为勒贝格可积的充要条件是该函数广义黎曼绝对可积.关于勒贝格积分的计算,一般是应用积分的定义借助于积分的性质将其转化为黎曼积分.五、勒贝格重积分换序的富比尼定理指出,只要),(y x f 在q p R R ⨯上可积即可将重积分化为累次积分.特别是对非负可测函数来说,可无条件换序,这是勒贝格积分较黎曼积分的又一优越之处.复习题(一)一、判断题1、设()f x 是可测集nE R ⊆上的非负简单函数,则()d Ef x x ⎰一定存在。

实变函数与泛函分析-实变与泛函_ch3

实变函数与泛函分析-实变与泛函_ch3

University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
3.6.2 不动点定理
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
University of science & Technology of China
3.6.3 不动点定理的应用
University of science & Technology of China
1 在线性代数中的应用
University of science & Technology of China

(完整版)实变函数与泛函分析基础第三版第七章答案

(完整版)实变函数与泛函分析基础第三版第七章答案

习题解答1、设为一度量空间,令 ,(,)X d 00(,){|,(,)}U x x x X d x x εε=∈<00(,){|,(,)}S x x x X d x x εε=∈≤问的闭包是否等于。

0(,)U x ε0(,)S x ε解答:在一般度量空间中不成立,例如:取的度量子空间,则中00(,)(,)U x S x εε=1R [0,1][2,3]X = X 的开球的的闭包是,而(1,1){;(1,)1}U x X d x =∈<[0,1](1,1){;(1,)1}[0,1]{2}S x X d x =∈≤= 2、设是区间上无限次可微函数全体,定义,证[,]C a b ∞[,]a b ()()()()01|()()|(,)max21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑明:按构成度量空间。

[,]C a b ∞(,)d f g 证明:(1)显然且有(,)0d f g ≥(,)0d f g =⇔()()()()1|()()|,max 021|()()|r r r r r a t bf tg t r f t g t ≤≤-∀=+-⇒,[,]r t a b ∀∀∈,特别当时有有。

()()|()()|0r r f t g t -=0,[,]r t a b =∀∈|()()|0f t g t -=⇒[,]t a b ∀∈ ()()f t g t =(2)由函数在上单调增加,从而对有()1t f t t=+[0,)+∞,,[,]f g h C a b ∞∀∈()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max 21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三角不等式成立。

实变函数和泛函分析基础第三版答案

实变函数和泛函分析基础第三版答案

实变函数和泛函分析基础第三版答案泛函分析习题解答1、设(,)X d 为⼀度量空间,令00(,){|,(,)}U x x x X d x x εε=∈< 00(,){|,(,)}S x x x X d x x εε=∈≤,问0(,)U x ε的闭包是否等于0(,)S x ε。

解答:在⼀般度量空间中不成⽴00(,)(,)U x S x εε=,例如:取1R 的度量⼦空间[0,1][2,3]X =,则X 中的开球(1,1){;(1,)1}U x X d x =∈<的的闭包是[0,1],⽽(1,1){;(1,)1}[0,1]{2}S x X d x =∈≤=2、设[,]C ab ∞是区间[,]a b 上⽆限次可微函数全体,定义()()()()01|()()|(,)max 21|()()|r r r r r r a t bf tg t d f g f t g t ∞=≤≤-=+-∑,证明:[,]C a b ∞按(,)d f g 构成度量空间。

证明:(1)显然(,)0d f g ≥且(,)0d f g =?()()()()1|()()|,max021|()()|r r r r r a t bf tg t r f t g t ≤≤-?=+-?,[,]r t a b ??∈有()()|()()|0r r f t g t -=,特别当0,[,]r t a b =?∈时有|()()|0f t g t -=?[,]t a b ?∈有 ()()f t g t =。

(2)由函数()1t f t t=+在[0,)+∞上单调增加,从⽽对,,[,]f g h C a b ∞∈有 ()()()()0()()()()()()()()0()()01|()()|(,)max 21|()()|1|()()()()|=max21|()()()()|1|()()| max2r r r r r r a t br r r r r r r r r a t b r r r r a t b r f t g t d f g f t g t f t h t h t g t f t h t h t g t f t h t ∞=≤≤∞≤≤=∞≤≤=-=+--+-+-+--+≤∑∑∑()()()()()()()()()()()()0()()()()0|()()|1|()()||()()|1|()()|=max21|()()||()()|1|()()|max21|()()|r r r r r r r r r r r r r a t b r r r r r r a t b r h t g t f t h t h t g t f t h t f t h t h t g t h t g t f t h t ∞≤≤=∞≤≤=-+-+--+-+--++-+∑∑()()()()()()()()()()00|()()|1|()()|1|()()|max max21|()()|21|()()| (,)(,)r r r r r r r r r r r r a t b a t b r r h t g t f t h t h t g t f t h t h t g t d f h d h g ∞∞≤≤≤≤==---≤++-+-=+∑∑即三⾓不等式成⽴(,)(,)(,)d f g d f h d h g ≤+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

书籍目录:
第一篇实变函数
第一章集合
1 集合的表示
2 集合的运算
3 对等与基数
4 可数集合
5 不可数集合
第一章习题
第二章点集
1 度量空间,n维欧氏空间
2 聚点,内点,界点
3 开集,闭集,完备集
4 直线上的开集、闭集及完备集的构造
5 康托尔三分集
第二章习题
第三章测度论
1 外测度
2 可测集
3 可测集类
4 不可测集
.第三章习题
第四章可测函数
1 可测函数及其性质
2 叶果洛夫(EropoB)定理
3 可测函数的构造
4 依测度收敛
第四章习题
第五章积分论
1 黎曼积分的局限性,勒贝格积分简介
2 非负简单函数的勒贝格积分
3 非负可测函数的勒贝格积分
4 一般可测函数的勒贝格积分
5 黎曼积分和勒贝格积分
6 勒贝格积分的几何意义·富比尼(Fubini)定理第五章习题
第六章微分与不定积分
1 维它利(Vitali)定理
2 单调函数的可微性
3 有界变差函数
4 不定积分
5 勒贝格积分的分部积分和变量替换
6 斯蒂尔切斯(Stieltjes)积分
7 L-S测度与积分
第六章习题
第二篇泛函分析
第七章度量空间和赋范线性空间
1 度量空间的进一步例子
2 度量空间中的极限,稠密集,可分空间
3 连续映射”
4 柯西(CaHcLy)点列和完备度量空间
5 度量空间的完备化
6 压缩映射原理及其应用
7 线性空间
8 赋范线性空间和巴拿赫(Banach)空间第七章习题
第八章有界线性算子和连续线性泛函
1 有界线性算子和连续线性泛函
2 有界线性算子空间和共轭空间
3 广义函数
第八章习题
第九章内积空间和希尔伯特(Hilbert)空间
1 内积空间的基本概念
2 投影定理
3 希尔伯特空间中的规范正交系
4 希尔伯特空间上的连续线性泛函
5 自伴算子、酉算子和正常算子
第九章习题
第十章巴拿赫空间中的基本定理
l 泛函延拓定理
2 C[a,b)的共轭空间
3 共轭算子
4 纲定理和一致有界性定理
5 强收敛、弱收敛和一致收敛
6 逆算子定理
7 闭图像定理
第十章习题
第十一章线性算子的谱
1 谱的概念
2 有界线性算子谱的基本性质
3 紧集和全连续算子
4 自伴全连续算子的谱论
5 具对称核的积分方程
第十一章习题
附录一内测度,L测度的另一定义
附录二半序集和佐恩引理
附录三实变函数增补例题。

相关文档
最新文档