数字信号处理实验

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验

数字信号处理实验

数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。

2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。

b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。

c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。

计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。

观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。

f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。

加深对采样定理的理解。

g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。

数字信号处理实验(民航无线电监测关键技术研究)

数字信号处理实验(民航无线电监测关键技术研究)

《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。

二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。

1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。

在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。

为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。

这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。

而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。

2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。

但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验要点提示

数字信号处理实验要点提示

实验报告思考题要点提示数字信号处理实验一:信号、系统及系统响应1、简述线性卷积结果y (n)的非零区间与x (n )、h (n )非零区间的关系?激励x (n )延时时输出如何变化?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。

2、 简述系统函数零极点分布与系统幅频特性间的对应关系。

(1) 位于原点处的零、极点对幅频特性没有影响,只影响相频特性。

(2) 极点位置主要影响幅频特性峰值的位置及尖锐程度,极点越靠近单位圆,所对应的峰值越尖锐。

(3) 零点位置主要影响幅频特性谷值的位置及形状,零点越靠近单位圆,谷值越小。

3、 y (n )=x (n )*h (n ),当输入x (n )有一时移时y (n )与)e (Y j ω有无变化,并说明为什么?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。

所以当输入x (n )有一时移时,y(n )也有同样的时移。

)()]([)()]([00ωωωj j e Y e n n y DTFT DTFT e Y n y DTFT n j -=-=的时移特性可知,由设,即时域位移,频域相移,所以幅频特性)e(Y j ω无变化。

数字信号处理实验二:信号的谱分析1、 描述随着DFT 变换点数N 的增加,X (k )的幅度谱的变化并解释原因。

随着DFT 变换点数N 的增加,X (k )的幅度谱序列间隔越来越密,其包络逐渐逼近x (n )的幅度谱)(ωj e X 。

这是因为M 点有限长序列x (n )的N 点DFT 是对有限长序列x (n )的频谱)(ωj e X 在频域0~2π区间内的N 点等间隔抽样。

即: k Nj e X n x DFT k X πωω2)()]([)(=== 因此变换点数越多,抽样间隔越小。

2、 用DFT 对连续非周期信号进行谱分析,试分析(1)采样点数足够多(即数据截断长度足够长)的情况下,采样频率对谱分析的影响;(2)采样频率足够高(即无明显的频域混叠现象)时,采样点数N (相应地时窗截断长度NT s )对谱分析的影响。

dsp实验报告

dsp实验报告

dsp实验报告DSP实验报告一、引言数字信号处理(Digital Signal Processing,DSP)是一种对数字信号进行处理和分析的技术。

它在许多领域中被广泛应用,如通信、音频处理、图像处理等。

本实验旨在通过实际操作,探索和理解DSP的基本原理和应用。

二、实验目的1. 理解数字信号处理的基本概念和原理;2. 掌握DSP实验平台的使用方法;3. 进行一系列DSP实验,加深对DSP技术的理解。

三、实验器材和软件1. DSP开发板;2. 电脑;3. DSP开发软件。

四、实验内容1. 实验一:信号采集与重构在此实验中,我们将通过DSP开发板采集模拟信号,并将其转换为数字信号进行处理。

首先,我们需要连接信号源和开发板,然后设置采样频率和采样时间。

接下来,我们将对采集到的信号进行重构,还原出原始模拟信号,并进行观察和分析。

2. 实验二:滤波器设计与实现滤波器是DSP中常用的模块,用于去除或增强信号中的特定频率成分。

在此实验中,我们将学习滤波器的设计和实现方法。

首先,我们将选择合适的滤波器类型和参数,然后使用DSP开发软件进行滤波器设计。

最后,我们将将设计好的滤波器加载到DSP开发板上,并进行实时滤波处理。

3. 实验三:频谱分析与频域处理频谱分析是DSP中常用的方法,用于分析信号的频率成分和能量分布。

在此实验中,我们将学习频谱分析的基本原理和方法,并进行实际操作。

我们将采集一个包含多个频率成分的信号,并使用FFT算法进行频谱分析。

然后,我们将对频谱进行处理,如频率选择、频率域滤波等,并观察处理后的效果。

4. 实验四:音频处理与效果实现音频处理是DSP中的重要应用之一。

在此实验中,我们将学习音频信号的处理方法,并实现一些常见的音频效果。

例如,均衡器、混响、合唱等。

我们将使用DSP开发软件进行算法设计,并将设计好的算法加载到DSP开发板上进行实时处理。

五、实验结果与分析通过以上实验,我们成功完成了信号采集与重构、滤波器设计与实现、频谱分析与频域处理以及音频处理与效果实现等一系列实验。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验1--5含代码

数字信号处理实验1--5含代码

数字信号处理实验1--5含代码实验一离散时间信号的时域分析 1. 在MATLAB中利用逻辑关系式n,,0来实现序列,显示范围。

(产生如下,,,n,nn,n,n012图所示的单位脉冲信号的函数为impseq(n0,n1,n2),程序如示例所示),3,n,10并利用impseq函数实现序列:; ,,,,,,yn,2,n,3,,n,6,,xn1nnnn120源代码:impseq.mfunction y=impseq(n0,n1,n2)n=[n1:n2]y=[(n-n0)==0]exp01-1.mfunction impseq(n0,n1,n2)n=-3:1:10y=2*impseq(3,-3,10)+impseq(6,-3,10);stem(n,y)n,,0,,2. 在MATLAB中利用逻辑关系式来实现序列,显示范围。

(自己编写un,nn,n,n012产生单位阶跃信号的函数,函数命名为stepseq(n0,n1,n2)) 并利用编写的stepseq函数实现序列: ,,,,,,yn,un,2,un,2,5,n,10源代码:stepseq.mfunction y=stepseq(n0,n1,n2)n=n1:1:n2y=[(n-n0)>=0]exp01-2.mfunction stepseq(n0,n1,n2)n=-5:1:20y=stepseq(-2,-5,20)+stepseq(2,-5,20)stem(n,y)3. 在MATLAB中利用数组运算符“.^”来实现一个实指数序列。

如: n ,,,,xn,0.30,n,15源代码:n=0:1:15;x=0.3.^nstem(n,x)4. 在MATLAB中调用函数sin或cos产生正余弦序列,如:π,, ,,,,xn,3sin0.4πn,,5cos0.3πn0,n,20,,5,,源代码:n=0:1:20x=11*sin(0.3*pi*n+pi/5)+5*cos(0.3*pi*n)stem(n,x)思考题:1.在MATLAB环境下产生单位脉冲序列和单位阶跃序列各有几种方法,如何使用,2.在MATLAB环境下进行序列的相乘运算时应注意什么问题,实验二离散时间系统的时域分析1. 在MATLAB中利用内部函数conv来计算两个有限长序列的卷积。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

数字信号处理实验教案五篇范文

数字信号处理实验教案五篇范文

数字信号处理实验教案五篇范文第一篇:数字信号处理实验教案数字信号处理实验教案信息工程学院-通信工程教研室数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼同学们的独立解决问题的能力。

本讲义在第三版的基础上编写了五个实验,前2个实验属基础性的验证性实验,第3、4、5个实验属基本应用综合性实验。

实验一离散时间信号的MATLAB实现实验二线性卷积与循环卷积的原理及应用实验三频率采样定理实验四离散系统的因果性和稳定性及频率响应特性实验五基于MATLAB的快速傅里叶变换根据教学进度,理论课结束后进行相关实验。

实验一时域离散信号的产生一实验目的(1)了解常用的时域离散信号及其特点。

(2)掌握MATLAB产生常用时域离散信号的方法。

二实验内容(1)编写程序,产生下列离散序列:A.f(n)=δ(n)(-3B.f(n)=e(0.1+j1.6π)n(0(2)一个连续的周期性三角波信号频率为50Hz,信号幅度在0~+2V之间,在窗口上显示2个周期信号波形,对信号的一个周期进行16点采样来获取离散信号。

试显示原连续信号和采样获得的离散信号波形。

(3)一个连续的周期性方波信号频率为200Hz,信号幅度在-1~+1V 之间,在窗口上显示2个周期信号波形,用Fs=4kHz的频率对连续信号进行采样,试显示原连续信号和采样获得的离散信号波形。

三实验步骤(1)在matlab命令窗口中逐行输入下列语句>> n1=-3;n2=4;n0=0;%在起点n1、终点n2的范围内,于n0处产生冲激 >> n=n1:n2;%生成离散信号的时间序列 >> x=[n==n0];%生成离散信号x(n)>> stem(n,x,'filled');%绘制杆状图,且圆心处用实心圆表示>> title('单位脉冲序列');>> xlabel('时间(n)');ylabel('幅度x(n)');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,产生了f(n)=δ(n),(-3 >> n1=16;a=0.1;w=1.6*pi;>> n=0:n1;>> x=exp((a+j*w)*n);>>subplot(2,1,1),stem(n,real(x));%在指定位置描绘图像>> title('复指数序列的实部');>> subplot(2,1,2),stem(n,imag(x));>> title('复指数序列的虚部');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,产生了f(n)=e(0.1+j1.6π)n,(0>> f=50;Um=1;nt=2;%输入信号频率、振幅、显示周期 >> N=16;T=1/f;%N为信号一个采样周期的采样点数,T为信号周期 >> dt=T/N;%采样时间间隔 >> n=0:nt*N-1;%建立离散时间的时间序列 >> tn=n*dt;%确定时间序列样点在时间轴上的位置>> f=Um*sawtooth(2*f*pi*tn)+1;>> subplot(2,1,1),stem(tn,f);%显示经采样的信号>> title('离散信号');>> subplot(2,1,2),plot(tn,f);%显示原连续信号 >> title('连续信号');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,显示了原连续信号和采样获得的离散信号波形(4)在matlab命令窗口中逐行输入下列语句>> f=200;Um=1;nt=2;%输入信号频率、振幅、显示周期 >> Fs=4000;N=Fs/f;T=1/f;%输入采样频率、求采样点数N、T为信号周期 >> dt=T/N;%采样时间间隔 >> n=0:nt*N-1;%建立离散时间的时间序列 >> tn=n*dt;%确定时间序列样点在时间轴上的位置>> f=Um*sin(2*f*pi*tn);>> subplot(2,1,2),plot(tn,f);%显示原连续信号 >> title('连续信号');>> subplot(2,1,1),stem(tn,f);%显示经采样的信号 >> title('离散信号');在上述语句输入完成之后,敲击回车键,弹出图形窗口,显示出如下图形,即已经满足题干所述条件,显示了原连续信号和采样获得的离散信号波形四思考题(1)如何在matlab下生产f(n)=3sin(nπ/4)(0(2)改变实验步骤中最后两个实验的频率参数,分别重新生成相关的信号?实验二线性卷积与循环卷积的原理及应用一、实验目的(1)掌握两种卷积的原理和两者的异同。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告
数字信号处理是指利用数字技术对模拟信号进行采样、量化、编码等处理后,再通过数字信号处理器进行数字化处理的技术。

在数字信号处理实验中,我们通过对数字信号进行滤波、变换、解调等处理,来实现信号的处理和分析。

在实验中,我们首先进行了数字信号采集和处理的基础实验,采集了包括正弦信号、方波信号、三角波信号等在内的多种信号,并进行了采样、量化、编码等处理。

通过这些处理,我们可以将模拟信号转换为数字信号,并对其进行后续处理。

接着,我们进行了数字信号滤波的实验。

滤波是指通过滤波器对数字信号进行处理,去除其中的噪声、干扰信号等不需要的部分,使其更加纯净、准确。

在实验中,我们使用了低通滤波器、高通滤波器、带通滤波器等多种滤波器进行数字信号滤波处理,得到了更加干净、准确的信号。

除了滤波,我们还进行了数字信号变换的实验。

数字信号变换是指将数字信号转换为另一种表示形式的技术,可以将信号从时域转换到频域,或者从离散域转换到连续域。

在实验中,我们使用了傅里叶变换、离散傅里叶变换等多种变换方式,对数字信号进行了变换处理,得到了信号的频谱信息和其他相关参数。

我们进行了数字信号解调的实验。

数字信号解调是指将数字信号转换为模拟信号的技术,可以将数字信号还原为原始信号,并进行后续处理。

在实验中,我们使用了频率解调、相干解调等多种解调方式,将数字信号转换为模拟信号,并对其进行了分析和处理。

总的来说,数字信号处理实验是一项非常重要的实验,可以帮助我们更好地理解数字信号处理的原理和方法,为我们今后从事相关领域的研究和工作打下坚实的基础。

数字信号处理实验

数字信号处理实验

数字信号处理实验数字信号处理实验讲义前⾔ (2)实验⼀MATLAB简介 (3)实验⼆⽤FFT实现信号的谱分析 (5)实验三IIR数字巴特沃思滤波器的设计 (8)实验四FIR数字滤波器的设计 (9)前⾔信号处理与计算机的应⽤紧密结合。

⽬前⼴泛应⽤的MA TLAB⼯具软件包,以其强⼤的分析、开发及扩展功能为信号处理提供了强有⼒的⽀持。

在数字信号处理实验中,我们主要应⽤MA TLAB的信号处理⼯具箱及其灵活、便捷的编程⼯具,通过上机实验,帮助学⽣学习、掌握和应⽤MA TLAB软件对信号处理所学的内容加以分析、计算,加深对信号处理基本算法的理解。

实验⼀ MATLAB 简介实验⽬的1.熟悉MATLAB 软件的使⽤⽅法; 2.MA TLAB 的绘图功能;3.⽤MA TLAB 语句实现信号的描述及变换。

实验原理1.在MA TLAB 下编辑和运⾏程序在MA TLAB 中,对于简单问题可以在命令窗(command windows )直接输⼊命令,得到结果;对于⽐较复杂的问题则可以将多个命令放在⼀个脚本⽂件中,这个脚本⽂件是以m 为扩展名的,所以称之为M ⽂件。

⽤M ⽂件进⾏程序的编辑和运⾏步骤如下:(1)打开MA TLAB ,进⼊其基本界⾯;(2)在菜单栏的File 项中选择新建⼀个M ⽂件;(3)在M ⽂件编辑窗⼝编写程序;(4)完成之后,可以在编辑窗⼝利⽤Debug ⼯具调试运⾏程序,在命令窗⼝查看输出结果;也可以将此⽂件保存在某个⽬录中,在MATLAB 的基本窗⼝中的File 项中选择Run The Script ,然后选择你所要运⾏的脚本⽂件及其路径,即可得出结果;也可以将此⽂件保存在当前⽬录中,在MA TLAB 命令窗⼝,“>>”提⽰符后直接输⼊⽂件名。

2.MA TLAB 的绘图功能plot(x,y) 基本绘图函数,绘制 x 和y 之间的坐标图。

figure(n ) 开设⼀个图形窗⼝nsubplot(m,n,N) 分割图形窗⼝的MATLAB 函数,⽤于在⼀个窗⼝中显⽰多个图形,将图形窗⼝分为m ⾏n 列,在第N 个窗⼝内绘制图形。

数字信号处理上机实验

数字信号处理上机实验

数字信号处理上机实验一声音信号的频谱分析班级___________________ 学号_____________________ 姓名____________________一、实验目的1、了解声音信号的基本特征2、掌握如何用Matlab处理声音信号3、掌握FFT变换及其应用二、实验原理与方法根据脉动球表面波动方程可知,声压与该球的尺寸和振动的频率的乘积成正比,即声压一定时,球的尺寸越大,振动的频率越小。

可以将此脉动球看作人的声带,人说话的声压变化在0.1~0.6pa的很小范围内,可以看作恒定,所以声带越大,声音频率就越小,反之,声带越小,声音频率就越大。

女子的声带为11~15mm,男子的声带为17~21mm,由此可见,女声频率高,男声频率低,因此听起来女声尖利而男声低沉。

人类歌唱声音频率最大范围的基频:下限可达65.4 Hz,上限可达1046.5 Hz,不包括泛音。

出色的女高音的泛音最高的可达2700hz。

童声:童高音:261.6Hz~880Hz,童低音:196Hz~698.5Hz;女声:女高音:220Hz~1046.5Hz,女低音:174.6Hz~784Hz;男声:男高音:110Hz~523.3Hz,男低音:24.5Hz~349.2Hz。

FFT方法是处理声音信号的基本方法,详细原理参见参考书三、实验内容1、应用Windows录音机录入一段声音文件;2、应用Matlab分析该声音文件的信息,包括采样频率、数据位数,数据格式等;3、应用Matlab画出该声音文件的时域曲线;(如果是双声道数据,只处理左声道数据)4、应用FFT分析该声音文件的频谱信息,并画出频域曲线;5、以100Hz为间隔,在0-1100Hz的基频范围内统计声音能量分布情况,并画出柱形图。

四、思考题1、同一个人不同的声音文件是否具有相同的频谱信号?2、试分析男女声的频谱区别。

3、能否从频谱信号中将自己的声音与其他人的声音区分开来?五、实验报告要求1、简述实验目的及原理2、按实验要求编写Matlab文件,并附上程序及程序运行结果;3、结合所学知识总结实验中的主要结论;4、简要回答思考题。

《数字信号处理》信号卷积实验

《数字信号处理》信号卷积实验

《数字信号处理》信号卷积实验一、实验目的1. 理解卷积的概念及物理意义;2. 通过实验的方法加深对卷积运算的图解方法及结果的理解。

二、实验设备1. 信号与系统实验箱 1台2. 双踪示波器1台3. 铆孔连接线 若干二、实验原理说明卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)(*)()(t h t x t y =()()x t h t d ττ∞-∞=-⎰。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为:()()()12f t f t f t d ττ∞-∞=-⎰=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

1. 两个矩形脉冲信号的卷积过程两信号)t (x 与)t (h 都为矩形脉冲信号,如图10-1所示。

下面由图解的方法(图10-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。

0≤<∞-t210≤≤t 1≤≤t 41≤≤t ∞<≤t 2124τ(b)(a)(c)(d)(e)(f)(g)(h)(i)2卷积结果图10-1 两矩形脉冲的卷积积分的运算过程与结果2. 矩形脉冲信号与锯齿波信号的卷积信号)t (f 1为矩形脉冲信号,)t (f 2为锯齿波信号,如图10-2所示。

根据卷积积分的运算方法得到)t (f 1和)t (f 2的卷积积分结果)t (f ,如图10-2(c)所示。

)t (f 1111tt)t (f 212)t (f *)t (f )t (f 21 (a)(b)(c)t100.5图10-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果3. 本实验进行的卷积运算的实现方法在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。

《数字信号处理》圆周卷积和与线性卷积和实验

《数字信号处理》圆周卷积和与线性卷积和实验

《数字信号处理》圆周卷积和与线性卷积和实验一、实验目的1. 掌握用MTALAB软件实现有限长序列的圆周移位和圆周翻褶的方法;2. 掌握在MATLAB中圆周卷积和的时域和频域计算方法;3. 理解圆周卷积和与线性卷积和的关系,掌握用FFT计算线性卷积和的方法。

二、实验原理和实验内容1. 圆周移位和圆周翻褶(1)求余数(模运算)函数mod(n,N)调用方法:n1=mod(n,N)功能:n1=n + KN,0≤ n1≤ N-1,K为整数,余数n1在0至N-1之间将模运算用到位置向量上,可实现有限长序列的周期延拓,即1(mod)(())Nn n N n==。

设x的起始位置为0,长度为N,坐标为:n=0:K*N-1 % N为延拓周期,K为周期数延拓后序列的值为:x=x(mod(n, N)+1)由于MATLAB中数组x的下标是为nx=[1:N],而mod(n, N)的值在0到N-1之间,因此要将mod( )函数的结果加1。

➢练习调用该函数mod( )将序列()[1,2,3,4,5]x n=延拓5个周期得到序列y(n)。

程序x=[1,2,3,4,5]nx=[0:1:4];n=[0:1:24];N=5;y=x(mod(n,N)+1)subplot(121),stem(nx,x);title('原序列');subplot(122),stem(n,y);title('延拓后序列');结果x =1 2 3 4 5y =Columns 1 through 151 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Columns 16 through 251 2 3 4 5 1 2 3 4 5(2)圆周移位N 点有限长序列的m 点移位可以看成将()x n 以N 为周期,延拓成周期序列()(())N x n x n =,将(())N x n 做m 点线性移位后,再取主值区间中的序列,即可得到()x n 的m 点圆周移位序列()m x n ,即()(())()m N N x n x n m R n =+注意:只能计算有限长序列的DTFT ,对于无限长序列,要进行截取。

《数字信号处理》实验指导书(正文)

《数字信号处理》实验指导书(正文)

实验一 离散时间信号分析一、实验目的1.掌握各种常用的序列,理解其数学表达式和波形表示。

2.掌握在计算机中生成及绘制数字信号波形的方法。

3.掌握序列的相加、相乘、移位、反褶等基本运算及计算机实现与作用。

4.掌握线性卷积软件实现的方法。

5.掌握计算机的使用方法和常用系统软件及应用软件的使用。

6.通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。

二、实验原理1.序列的基本概念离散时间信号在数学上可用时间序列来表示,其中代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为∞<<∞-n 的整数,n 取其它值)(n x 没有意义。

离散时间信号可以是由模拟信号通过采样得到,例如对)(t x a 模拟信号进行等间隔采样,采样间隔为T ,得到一个{})(nT x a 有序的数字序列就是离散时间信号,简称序列。

2.常用序列常用序列有:单位脉冲序列(单位采样))(n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。

3.序列的基本运算序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。

4.序列的卷积运算∑∞∞-*=-=)()()()()(n h n x m n h m x n y上式的运算关系称为卷积运算,式中代表两个序列卷积运算。

两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。

其计算的过程包括以下4个步骤。

(1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。

当n 为正数时,右移n 位;当n 为负数时,左移n 位。

(3)相乘:将)(m n h -和)(m x 的对应点值相乘。

(4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 自适应滤波器一、实验目的1、掌握功率谱估计方法2、会用matlab 对功率谱进行仿真 二、实验原理功率谱估计方法有很多种,一般分成两大类,一类是经典谱估计;另一类是现代谱估计。

经典谱估计可以分成两种,一种是BT 法,另一种是周期法;BT 法是先估计自相关函数,然后将相关函数进行傅里叶变换得到功率谱函数。

相应公式如下所示:||1*01ˆ()()()(11)ˆˆ()(12)N m xx n jwn BTxx m rm x n x n m N P rm e --=∞-=-∞=+-=-∑∑周期图法是采用功率谱的另一种定义,但与BT 法是等价的,相应的功率谱估计如下所示:211ˆ()()01(13)N jw jwn xx n P e x n e n N N--==≤≤--∑其计算框图如下所示:)(jw xx e ∧图1.1周期图法计算用功率谱框图由于观测数据有限,所以周期图法估计分辨率低,估计误差大。

针对经典谱估计的缺点,一般有三种改进方法:平均周期图法、窗函数法和修正的周期图平均法。

三、实验要求信号是正弦波加正态零均值白噪声,信噪比为10dB,信号频率为2kHZ,取样频率为100kHZ。

四、实验程序与实验结果(1)用周期图法进行谱估计A、实验程序:%用周期法进行谱估计clear all;N1=128;%数据长度N2=256;N3=512;N4=1024;f=2;%正弦波频率,单位为kHZfs=100;%抽样频率,单位为kHZn1=0:N1-1;n2=0:N2-1;n3=0:N3-1;n4=0:N4-1;a=sqrt(20);%由信噪比为10dB计算正弦信号的幅度wn1=randn(1,N1);xn1=a*sin(2*pi*f*n1./fs)+wn1; Pxx1=10*log10(abs(fft(xn1).^2)/N1);%周期法求功率谱f1=((0:length(Pxx1)-1))/length(Pxx1);wn2=randn(1,N2);xn2=a*sin(2*pi*f*n2./fs)+wn2; Pxx2=10*log10(abs(fft(xn2).^2)/N2);f2=((0:length(Pxx2)-1))/length(Pxx2);wn3=randn(1,N3);xn3=a*sin(2*pi*f*n3./fs)+wn3; Pxx3=10*log10(abs(fft(xn3).^2)/N3);f3=((0:length(Pxx3)-1))/length(Pxx3);wn4=randn(1,N4);xn4=a*sin(2*pi*f*n4./fs)+wn4; Pxx4=10*log10(abs(fft(xn4).^2)/N4);f4=((0:length(Pxx4)-1))/length(Pxx4);subplot(2,2,1);plot(f1,Pxx1);xlabel('频率');ylabel('功率(dB)'); title('功率谱Pxx,N=128');subplot(2,2,2);plot(f2,Pxx2);xlabel('频率');ylabel('功率(dB)'); title('功率谱Pxx,N=256');subplot(2,2,3);plot(f3,Pxx3);xlabel('频率');ylabel('功率(dB)'); title('功率谱Pxx,N=512');subplot(2,2,4);plot(f4,Pxx4);xlabel('频率');ylabel('功率(dB)'); title('功率谱Pxx,N=1024');B、实验仿真结果:(2)采用汉明窗,分段长度L=32,用修正的周期图求平均法进行谱估计A:实验程序:clear all;N=512;%数据长度Ns=32;%分段长度f1=2;%正弦波频率,单位为kHZfs=100;%抽样频率,单位为kHZn=0:N-1;a=sqrt(20);%由信噪比为10dB计算正弦信号的幅度wn=randn(1,N);xn=a*sin(2*pi*f1*n./fs)+wn;w=hamming(32)';%汉明窗Pxx1=abs(fft(w.*xn(1:32),Ns).^2)/norm(w)^2;Pxx2=abs(fft(w.*xn(33:64),Ns).^2)/norm(w)^2;Pxx3=abs(fft(w.*xn(65:96),Ns).^2)/norm(w)^2;Pxx4=abs(fft(w.*xn(97:128),Ns).^2)/norm(w)^2;Pxx5=abs(fft(w.*xn(129:160),Ns).^2)/norm(w)^2;Pxx6=abs(fft(w.*xn(161:192),Ns).^2)/norm(w)^2;Pxx7=abs(fft(w.*xn(193:224),Ns).^2)/norm(w)^2;Pxx8=abs(fft(w.*xn(225:256),Ns).^2)/norm(w)^2;Pxx9=abs(fft(w.*xn(257:288),Ns).^2)/norm(w)^2;Pxx10=abs(fft(w.*xn(289:320),Ns).^2)/norm(w)^2;Pxx11=abs(fft(w.*xn(321:352),Ns).^2)/norm(w)^2;Pxx12=abs(fft(w.*xn(353:384),Ns).^2)/norm(w)^2;Pxx13=abs(fft(w.*xn(385:416),Ns).^2)/norm(w)^2;Pxx14=abs(fft(w.*xn(417:448),Ns).^2)/norm(w)^2;Pxx15=abs(fft(w.*xn(449:480),Ns).^2)/norm(w)^2;Pxx16=abs(fft(w.*xn(481:512),Ns).^2)/norm(w)^2;Pxx=10*log10((Pxx1+Pxx2+Pxx3+Pxx4+Pxx5+Pxx6+Pxx7+Pxx8+Pxx9 +Pxx10+Pxx11+Pxx12+Pxx13+Pxx14+Pxx15+Pxx16)/16);f=((0:length(Pxx)-1))/length(Pxx);plot(f,Pxx);xlabel('频率');ylabel('功率(dB)');title('加窗平均周期图法功率谱Pxx,N=512');grid on;B:实验仿真结果:五.参考文献:[1]丁玉美,阔永红,高新波.数字信号处理-时域离散随机信号处理[M].西安:西安电子科技大学出版社,2002.[2]万建伟,王玲.信号处理仿真技术[M].长沙:国防科技大学出版社,2008.实验二 卡尔曼滤波器的设计一.实验目的1.熟悉并掌握卡尔曼滤波、自适应滤波和谱估计的原理。

2.可以仿真符合要求的卡尔曼滤波器、自适应滤波器和各种谱估计方法。

3.掌握卡尔曼滤波器的递推公式和仿真方法。

4.熟悉matlab 的用法。

二.实验原理卡尔曼滤波是用状态空间法描述系统的,由状态方程和测量方程所组成。

卡尔曼滤波用前一个状态的估计值和最近一个观测数据来估计状态变量的当前值,并以状态变量的估计值的形式给出。

其状态方程和量测方程如下所示:1(11)(12)k k k k k k k kx A x w y C x v +=+-=+-其中,k 表示时间,输入信号k w 是一白噪声,输出信号的观测噪声k v 也是一个白噪声,输入信号到状态变量的支路增益等于1,即B=1;A 表示状态变量之间的增益矩阵,可随时间变化,k A 表示第k 次迭代的取值,C 表示状态变量与输出信号之间的增益矩阵,可随时间变化,其信号模型如图1.1所示(k 用1k -代替)。

图1.1 卡尔曼滤波器的信号模型卡尔曼滤波是采用递推的算法实现的,其基本思想是先不考虑输入信号k w 和观测噪声k v 的影响,得到状态变量和输出信号的估计值,再用输出信号的估计误差加权矫正状态变量的估计值,使状态变量估计误差的均方值最小。

其递推公式如下所示:0.020.021110.040.041ˆˆ(y x )(112)(1)(112)1(112)(I )(112)k k k k k k k kk k k k k x e x H e a H P P b P e P e c P H P d --------⎧=+--⎪''=+-⎪⎨'=+--⎪⎪'=--⎩ 假设初始条件11,,,,,,-∧-k k k k k k k P x y R Q C A 已知,其中]var[],[0000x P x E x ==∧,那么递推流程见图1.2所示。

-k P kP 式(1-3)kH k x ∧kP图1.2 卡尔曼滤波递推流程图三.实验要求一连续平稳的随机信号x(t),自相关()x r eττ-=,信号x(t)为加性噪声所干扰,噪声是白噪声,测量值的离散值y(k)为已知。

Matlab仿真程序如下:%编卡尔曼滤波递推程序,估计信号x(t)的波形clear all;clc;Ak=exp(-0.02); %各系数由前面确定;Ck=1; Rk=0.1; p(1)=20; %各初值;Qk=1-exp(-0.04);p1(1)=Ak*p(1)*Ak'+Qk; %由p1代表p';x(1)=0; %设信号初值为0;H(1)=p1(1)*Ck'*inv(Ck*p1(1)*Ck'+Rk);zk=[-3.2,-0.8,-14,-16,-17,-18,-3.3,-2.4,-18,-0.3,-0.4,-0.8,-19,-2.0,-1.2,-11, -14,-0.9,0.8,10,0.2,0.5,-0.5,2.4,-0.5,0.5,-13,0.5,10,-12,0.5,-0.6,-15,-0.7,15 ,0.5,-0.7,-2.0,-19,-17,-11,-14] %zk为测量出来的离散值;N=length(zk); %要测量的点数;for k=2:Np1(k)=Ak*p(k-1)*Ak'+Qk; %未考虑噪声时的均方误差阵;H(k)=p1(k)*Ck'*inv(Ck*p1(k)*Ck'+Rk); %增益方程;I=eye(size(H(k))); %产生和H(k)维数相同的单位矩阵;p(k)=(I-H(k)*Ck)*p1(k); %滤波的均方误差阵;x(k)=Ak*x(k-1)+H(k)*(zk(k)-Ck*Ak*x(k-1)); %递推公式;end,x %显示信号x(k)的数据;m=1:N;n=m*0.02;plot(n,zk,'-r*',n,x,'-bo'); %便于比较zk和x(k)在同一窗口输出;xlabel('t/s','Fontsize',16);ylabel('z(t),x(t)','fontsize',16);title('卡尔曼滤波递推——x(t)的估计波形与z(t)波形','fontsize',16) legend('观测数据z(t)','信号估计值x(t)',2);grid;四.实验结果五.实验小结通过卡尔曼滤波估计信号与观测信号比较知,卡尔曼滤波输出的估计信号)(t x与实际观测到的离散值)(t z还是存在一定的误差,卡尔曼滤波是从初始状态就采用递推方法进行滤波,那么在初值迭代后的一段时间内可能会出现较大的误差,随着迭代进行,各参数逐渐趋于稳定,后面的估计值与观察值的误差就减少了。

相关文档
最新文档