数字信号处理实验报告一
数字信号处理实验报告
《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。
如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。
取模|)(|k jw e X 可绘出幅频特性曲线。
数字信号处理实验一实验报告
实验一离散时间信号与系统时域分析一、实验目的1、学习MATLAB语言编程和调试技巧。
2、学会简单的矩阵输入和图形表示法3、掌握简单的绘图命令。
二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令stem()和plot()。
实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。
其基本原理分别如下:对一个模拟信号x(t)进行采样离散化x(n),为了不失真地从采样信号x(n)中恢复原始信号x(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2备。
一个离散时间系统,输入信号为x(n),输出信号为y(n),运算关系用T【.】表示,则输入与输出的关系可表示为y(n)=T[x(n)]。
三、实验结果实验一x=[3 1 2 0 -4 2 -3];n=-3:1:3;stem(n,x);xlabel('n');ylabel('x(n)');axis([-4 4 -5 5]);grid;n x (n )实验二n=0:9;x=0.5.^n;stem(n,x);xlabel('n');ylabel('x(n)');grid;n x (n )实验三x=[-2 0 1 -1 3];h=[1 2 0 -1];c=conv(x,h);M=length(c)-1;n=0:1:M;stem(n,c);xlabel('n');ylabel('幅度’);n 幅度实验四t=0:1/256:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); plot(t,x);grid;实验五T=0.2;t=0:T:2;x=3*cos(2*pi*t)-2*cos(6*pi*t)+cos(10*pi*t); stem(t,x);grid;实验六N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[1 zeros(1,N-1)];n=0:1:N-1;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度');n 幅度实验七n=0:1:40;x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; plot(n,x);N=41;a=[0.8 -0.44 0.36 0.22];b=[1 0.7 -0.45 -0.6];x=[5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n)]; n=0:1:40;y=filter(a,b,x);stem(n,y);xlabel('n');ylabel('幅度 ');n 幅度。
数字信号处理实验报告1
实验一序列的产生姓名:高洪美学号:0819419213 班级:生医5班一、实验目的:熟悉MATLAB中产生信号和绘制信号的基本命令。
二、实验环境:基于Windows PC的MATLAB。
三、实验内容:1、单位样本和单位阶跃序列;2、指数信号;3、正弦序列;4、随机信号。
四、实验过程:(一)单位样本和单位阶跃序列:Q1.1运行程序P1.1以产生单位样本序列u[n]并显示它:程序:clf;% Generate a vector from -10 to 20n = -10:20;% Generate the unit sample sequenceu = [zeros(1,10) 1 zeros(1,20)];% Plot the unit sample sequencestem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);所得图像如下所示:Q1.2 命令clf,axis,title,xlable和ylable的作用是什么:答:clf:运行程序时弹出显示图像的面板;Axis:规定横纵坐标的范围;Title:使图像面板上方显示相应的题目名称;Xlable:定义横坐标的名字;Ylable:定义纵坐标的名字。
Q1.3 修改程序P1.1以产生带有延时11个样本的延迟单位样本序列ud[n],运行修改的程序并且显示产生的序列。
程序:clf;% Generate a vector from 0 to 30n = 0:30;% Generate the unit sample sequenceud = [zeros(1,11) 1 zeros(1,19)];% Plot the unit sample sequencestem(n,ud);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([0 30 0 1.2]);所得图像如下所示:Q1.4修改程序P1.1以产生单位步长序列s[n]。
数字信号处理实验报告
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
数字信号处理实验报告1
《数字信号处理》实验报告实验一:数字低通、高通滤波器实验实验二:数字带通、带阻滤波器实验系别:信息科学与技术系专业班级:电子信息工程0902班学生姓名:王俊知(053)同组学生:成绩:指导教师:刘海龙(实验时间:20年月日——20年月日)华中科技大学武昌分校实验一数字低通、高通滤波器实验1、实验目的使学生了解和熟悉软件Matlab的使用,了解数字低通、高通滤波器零极点的作用及数字低通、高通滤波器的幅频特性和相频特性。
使学生熟悉整数型滤波器的设计。
2、实验内容与步骤1、在计算机上运行Matlab软件,根据滤波器的参数,用Matlab软件设计出数字低通、高通滤波器、画出数字低通、高通滤波器的幅频特性和相频特性的程序,或按照范例程序进行修改,运行程序,观察滤波器的零极点分布图、幅频特性和相频特性图。
2、改变滤波器的零极点分布,再运行程序,观察幅频特性和相频特性的不同,滤波器的通带有什么改变。
3、再次修改程序,输入数字信号,使其通过滤波器,并画出输入、输出滤波器的数字信号波形,运行程序。
观看输入、输出滤波器的数字信号波形,仔细观察其区别。
3、实验设备1、实验场所:信息科学与技术系实验室机房。
2、硬件设备:计算机若干(由学生人数定)。
3、实验软件:Matlab。
整系数低通滤波器程序如下:clear all;clc;close all;m=10;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,-1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:整系数高通滤波器程序如下:clear all;clc;close all;m=10;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:改变参数clear all;clc;close all;m=11;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=1;else B(i)=0;endendendA=[1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid; figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat'); x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号'); figure;plot(w);title('输出信号');正负120度零点抵消程序如下:clear all;clc;close all;m=24;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:正负60度零点抵消程序如下:clear all;clc;close all;m=24;for i=1:m+1if i==1B(i)=1;elseif i==m+1B(i)=-1;else B(i)=0;endendendA=[1,-1,1];N=8192;[H,f]=freqz(B,A,N);plot(f*25/pi,abs(H));grid;figure,plot(f*25/pi,angle(H));grid;figure,zplane(B,A);k=0:N-1;f=2*k/N;load('C:\MATLAB7\work\RawData.mat');x=rawdata(1,1:N);w=filter(B,A,x);figure;plot(x);title('输入信号');figure;plot(w);title('输出信号');滤波器的幅频特性和相频特性曲线、零极点分布、输入、输出滤波器的数字信号波形图:实验二数字带通、带阻滤波器实验1、实验目的使学生了解数字带通、带阻滤波器设计原理及数字带通、带阻滤波器的幅频特性和相频特性。
数字信号处理实验报告1-5
实验一时域离散信号的产生及时域处理实验目的:了解Matlab软件数字信号处理工具箱的初步使用方法。
掌握其简单的Matlab语言进行简单的时域信号分析。
实验内容:[1.1]已知两序列x1=[0,1,2,3,4,3,2,1,0];n1=[-2:6];x2=[2,2,0,0,0,-2,-2],n2=[2:8].求他们的和ya及乘积yp. 程序如下:x1=[0,1,2,3,4,3,2,1,0];ns1=-2;x2=[2,2,0,0,0,-2,-2];ns2=2;nf1=ns1+length(x1)-1;nf2=ns2+length(x2)-1;ny=min(ns1,ns2):max(nf1,nf2);xa1=zeros(1,length(ny));xa2=xa1;xa1(find((ny>=ns1)&(ny<=nf1)==1))=x1;xa2(find((ny>=ns2)&(ny<=nf2)==1))=x2;ya=xa1+xa2yp=xa1.*xa2subplot(4,4,1),stem(ny,xa1,'.')subplot(4,1,2),stem(ny,xa2,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,3),stem(ny,ya,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,4),stem(ny,yp,'.')line([ny(1),ny(end)],[0,0])[1.2]编写产生矩形序列的程序。
并用它截取一个复正弦序列,最后画出波形。
程序如下:clear;close alln0=input('输入序列起点:n0=');N=input('输入序列长度:N=');n1=input('输入位移:n1=');n=n0:n1+N+5;u=[(n-n1)>=0];x1=[(n-n1)>=0]-[(n-n1-N)>=0];x2=[(n>=n1)&(n<(N+n1))];x3=exp(j*n*pi/8).*x2;subplot(2,2,1);stem(n,x1,'.');xlabel('n');ylabel('x1(n)');axis([n0,max(n),0,1]);subplot(2,2,3);stem(n,x2,'.');xlabel('n');ylabel('x2(n)');axis([n0,max(n),0,1]);subplot(2,2,2);stem(n,real(x3),'.'); xlabel('n');ylabel('x3(n)的实部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);subplot(2,2,4);stem(n,imag(x3),'.'); xlabel('n');ylabel('x3(n)的虚部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);[1.3]利用已知条件,利用MATLAB生成图形。
数字信号处理实验报告实验一
实验一:系统响应及系统稳定性1 实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2 实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析系统的稳定性,包括观察系统的暂态响应和稳态响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件,可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的,系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
3 实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv 函数求解系统输出响应的主程序。
程序中要有绘制信号波形的功能。
(2)给定一个低通滤波器的差分方程为y(n) = 0.05x(n) + 0.05x(n-1) + 0.9y(n-1)输入信号x1(n) = R8(n) , x8 = u(n)①分别求出x1 = R8(n) 和x8 = u(n) 的系统响应,并画出其波形。
数字信号处理实验报告完整版[5篇模版]
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理实验报告
数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。
实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。
程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。
数字信号处理实验一报告
实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。
2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3.实验步骤及内容(1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
史上最全数字信号处理实验报告完美版
实验一、零极点分布对系统频率响应的影响Y(n)=x(n)+ay(n-1)1、调用MATLAB函数freqz计算并绘制的幅频特性和相频特性其中:1 代表a=0.7;2代表a=0.8;3代表a=0.9a=0.7时的零极点图A=0.8时的零极点图a=0.9时的零极点图观察零极点的分布与相应曲线易知:小结:系统极点z=a,零点z=0,当B点从w=0逆时针旋转时,在w=0点,由于极点向量长度最短,形成波峰,并且当a越大,极点越接近单位圆,峰值愈高愈尖锐;在w=pi点形成波谷;z=0处零点不影响幅频响应2、先求出系统传函的封闭表达式,通过直接计算法得出的幅频特性和相频特性曲线。
其中:1代表a=0.7;2代表a=0.8;3代表a=0.9附录程序如下:(对程序进行部分注释)>> a=0.7;w=0:0.01:2*pi;%设定w的范围由0到2π,间隔为0.01y=1./(1-a*exp(-j*w)); %生成函数subplot(211);plot(w/2/pi,10*log(abs(y)),'g');%生成图像其中通过调用abs函数计算幅值hold on;xlabel('Frequency(Hz)');%定义横坐标名称ylabel('magnitude(dB)');%定义纵坐标名称title('a=0.8,直接计算h(ejw)');grid on;%定义图片标题subplot(212);plot(w/2/pi,unwrap(angle(y)),'g');grid on;%生成图像其中通过调用angle计算相角,‘g’为规定线条颜色hold on;>> a=0.8;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'r');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.8,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'r');grid on;hold on;>> a=0.9;w=0:0.01:2*pi;y=1./(1-a*exp(-j*w));subplot(211);plot(w/2/pi,10*log(abs(y)),'b');hold on;xlabel('Frequency(Hz)');ylabel('magnitude(dB)');title('a=0.9,直接计算h(ejw)');grid on;subplot(212);plot(w/2/pi,unwrap(angle(y)),'b');grid on;hold on;2、y(n)=x(n)=ax(n-1)通过调用freqz函数绘图,其中:1代表a=0.7,;2代表a=0.8;3代表a=0.9附录程序如下:(因为程序同实验一相同不再进行注释)a=0.7;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.7');hold on;a=0.8;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.8');hold on;a=0.9;A=1;B=[1,a];freqz(B,A,256,'whole',1);title('a=0.9');以下为a为不同数值时的零极点图a=0.7A=0.8A=0.9小结:系统极点z=0,零点z=a,当B点从w=0逆时针旋转时,在w=0点,由于零点向量长度最长,形成波峰:在w=pi点形成波谷;z=a处极点不影响相频响应。
数字信号处理实验报告
数字信号处理 实验报告实验一 序列的傅立叶变换一、实验目的1.进一步加深理解DFS,DFT 算法的原理;2.研究补零问题;3.快速傅立叶变换(FFT )的应用。
二、 实验步骤1.复习DFS 和DFT 的定义,性质和应用;2熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;3利用提供的程序例子编写实验用程序;4.按实验内容上机实验,并进行实验结果分析;5.写出完整的实验报告,并将程序附在后面。
三、 实验内容1.周期方波序列的频谱试画出下面四种情况下的的幅度频谱, 并分析补零后,对信号频谱的影响。
2.有限长序列x(n)的DFT (1)取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2)将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3)取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。
利用FFT 进行谱分析3.已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。
请分别画出N=45; N=50;N=55;N=60时的幅值曲线。
四、 实验数据分析)8cos(5)4sin(2)(t t t x ππ+=)52.0cos()48.0cos()(n n n x ππ+=1.周期方波序列的频谱分析首先定义一个功能函数dfsfunction[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;(1)L=5,N=20;%题1.(1)L=5;N=20;%对于(2),(3),(4)问,只要修改L,N的数值就好。
n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)');title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5,N=40;(3).L=5,N=60(4)L=7,N=60;结果分析:虽然周期序列不存在FT,但是一个周期序列可以利用其DFS系数X(k)表示它的频谱分布规律,从以上各频谱图可以看出,随着补零点数的增加,周期序列的谐波次数越来越多,其频谱的包络线越来越平滑连续,更能反映幅度值随时间的变化。
数字信号处理实验报告_完整版
实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
数字信号处理实验一
DSP 实验一 报告(1)编写程序产生下列离散序列: ①()()(),34f n n n δ=-≤≤Matlab 程序如下: n1 = -3; n2 = 4; n0 = 0; n = n1:n2;x = [n==n0]; % x 在n=n0时为1,其余为0 stem(n,x,'filled'); %filled:序列圆心处用实心圆表示 axis([n1,n2,0,1.1*max(x)]) title('单位抽样序列') xlabel('time(n)')ylabel('Amplitude:x(n)')② ,55f n u n n =-≤≤Matlab 程序如下: n1 = -5; n2 = 5; n0 = 0; n = n1:n2;x = [n>=n0]; % x 在n>=n0时为1,其余为0 stem(n,x,'filled');axis([n1,n2,0,1.1*max(x)])title('单位阶跃序列') xlabel('time(n)')ylabel('Amplitude:x(n)')运行结果如下:③ ()()()0.1 1.6*,016j nf n e n π+=≤≤Matlab 程序如下: sigma = 0.1; omega = 1.6; n = 0:16;x = exp((sigma+i*omega)*n); subplot(2,2,1),plot(n,real(x)); title('复指数信号的实部')subplot(2,2,3),stem(n,real(x),'filled'); title('复指数序列的实部') subplot(2,2,2),plot(n,imag(x)); title('复指数信号的虚部')subplot(2,2,4),stem(n,imag(x),'filled'); title('复指数序列的虚部')运行结果如下:④ ()()3sin,0204n f n n π=≤≤Matlab 程序如下: n=0:20;y=3*sin(n*pi/4); stem(n,y)运行结果如下:⑤()()() sin5,2020 5nf n nn=-≤≤Matlab程序如下:n = -20:20;f = sinc(n/5);subplot(2,1,1),plot(n,f);title('sinc信号')subplot(2,1,2),stem(n,f);title('sinc序列')运行结果如下:(2)一个连续的周期性三角波信号频率为50Hz,信号幅度在0~+2V之间,在窗口上显示2个周期的信号波形,对信号的一个周期进行16点采样来获得离散信号。
数字信号处理实验报告(1)
数字信号处理实验报告(1)河南工业大学电气工程学院《数字信号处理》课程实验报告学生姓名:俞阳学号:201323020620 专业班级:自动1306实验日期:5月15日成绩:实验一离散时间信号与系统分析一、实验目的1.掌握离散时间信号与系统的时域分析方法。
2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。
3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
二、实验原理1.离散时间系统一个离散时间系统是将输入序列变换成输出序列的一种运算。
若以][ T来表示这种运算,则一个离散时间系统可由下图来表示:图 离散时间系统输出与输入之间关系用下式表示)]([)(n x T n y =离散时间系统中最重要、最常用的是线性时不变系统。
2.离散时间系统的单位脉冲响应设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。
可得到:)()()()()(n h n x m n h m x n y m *=-=∑∞-∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。
3.连续时间信号的采样采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。
对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘积,即:][⋅T)()()(ˆt t x t x T a a δ=其中,)(ˆt x a 是连续信号)(t xa 的理想采样,)(t T δ是周期冲激脉冲 ∑∞-∞=-=m T mT t t )()(δδ设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(ˆt xa 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(ˆΩj X a ,即)]([)(t x F j X a a =Ω)]([)(t F j M T δ=Ω)](ˆ[)(ˆt x F j Xa a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即)]()([21)(ˆΩ*Ω=Ωj X j M j X aa π 其中⎰∞∞-Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(ˆ 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。
数字信号处理实验报告
物理与电子电气工程学院实验报告课程名称:数字信号处理院系:物理与电子电气工程学院专业:电子信息科学与技术班级:学号:姓名:物理与电子电气工程学院实验报告实验报告(1)实验名称实验一离散时间信号分析实验日期2013.10.19 指导教师(2)绘制单位跃阶)u序列(n解:MATLAB程序如下:>> n=-10:10;>> x=[zeros(1,10),ones(1,11)]; >> stem(n,x,'fill')>> grid on(4)正弦型序列)35sin()(ππ+=n A n x解:MATLAB 程序如下: >> n=-10:10; >> w=pi/5; >> ph=pi/3; >> A=2;(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: >> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> stem(n,x,'fill') >> grid on(2)实现任意序列(2)()(-+=n n n h δδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=circshift(x,[0,-4]); %左移四位>> stem(n,y,'fill') >> grid on(4)实现任意序列)(=n x (2)2()1(2)()(+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x+y; %两数列相加(5)实现任意序列)(=n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x.*y; %实现两序列的积 >> stem(n,k,'fill')(6)分别实现()(=n n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: ①>> n=-10:10;②>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=cumsum(x); %%实现函数自身的累加(由左向右累加)>> stem(n,y,'fill')>> grid on实验一实验心得:首先,第一次实验,我又开始重拾MATLAB方法。
数字信号处理实验报告
实验一:频谱分析与采样定理 subplot(3,1,1),stem(t,x2);title('指数信号'); subplot(3,1,2),stem(f1,y2);title('指数信号频谱'); subplot(3,1,3),plot(f2,y21);title('指数信号频谱'); %%%%%%%%%%%%%%%%%%%%%%%%% x3=x1.*x2; y3=T*abs(fft(x3)); y31=fftshift(y3); figure(3), subplot(3,1,1),stem(t,x3);title('两信号相乘'); subplot(3,1,2),stem(f1,y3);title('两信号相乘频谱'); subplot(3,1,3),plot(f2,y31);title('两信号相乘频谱'); 实验结果: T=1/10000,������������ =10000,L=0.10
1/ 5
实验二:卷积定理 Y2=fft(y2); Z2=X2.*Y2; z2=ifft(Z2); figure(3), subplot(321),stem(x2);title('x2'); subplot(322),stem(real(X2));title('X2'); subplot(323),stem(y2);title('y2'); subplot(324),stem(real(Y2));title('Y2'); subplot(325),stem(z2);title('z2'); subplot(326),stem(real(Z2));title('Z2'); N=6; x3=[x zeros(1,N-length(x))]; y3=[y zeros(1,N-length(y))]; X3=fft(x3); Y3=fft(y3); Z3=X3.*Y3; z3=ifft(Z3); figure(4), subplot(321),stem(x3);title('x3'); subplot(322),stem(real(X3));title('X3'); subplot(323),stem(y3);title('y3'); subplot(324),stem(real(Y3));title('Y3'); subplot(325),stem(z3);title('z3'); subplot(326),stem(real(Z3));title('Z3'); N=8; x4=[x zeros(1,N-length(x))]; y4=[y zeros(1,N-length(y))]; X4=fft(x4); Y4=fft(y4); Z4=X4.*Y4; z4=ifft(Z4); figure(5), subplot(321),stem(x4);title('x4'); subplot(322),stem(real(X4));title('X4'); subplot(323),stem(y4);title('y4'); subplot(324),stem(real(Y4));title('Y4'); subplot(325),stem(z4);title('z4'); subplot(326),stem(real(Z4));title('Z4'); %N=6 时
数字信号处理实验报告(全)
实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉工程大学数字信号处理实验报告姓名:周权学号:1204140228班级:通信工程02一、实验设备计算机,MATLAB语言环境。
二、实验基础理论1.序列的相关概念2.常见序列3.序列的基本运算4.离散傅里叶变换的相关概念5.Z变换的相关概念三、实验内容与步骤1.离散时间信号(序列)的产生利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。
四实验目的认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分实验一离散时间信号(序列)的产生代码一单位样值x=2;y=1;stem(x,y);title('单位样值 ')单位阶跃序列n0=0;n1=-10;n2=10;n=[n1:n2];x=[(n-n0)>=0];stem(n,x);xlabel('n');ylabel('x{n}');title('单位阶跃序列');实指数序列n=[0:10];x=(0.5).^n;stem(n,x);xlabel('n');ylabel('x{n}');title('实指数序列');正弦序列n=[-100:100];x=2*sin(0.05*pi*n); stem(n,x);xlabel('n');ylabel('x{n}');title('正弦序列');随机序列n=[1:10];x=rand(1,10); subplot(221); stem(n,x);xlabel('n'); ylabel('x{n}'); title('随机序列');实验二序列的运算(1)利用MATLAB语言编程实现信号平滑运算。
(2)利用MATLAB语言编程实现信号的调制。
(3)利用MATLAB语言编程实现信号卷积运算。
(4)利用MATLAB语言编程实现信号离散傅立叶的正反变换。
利用MATLAB语言编程实现信号的圆周移位、圆周卷积,验证DFT 的圆周时移、圆周卷积性质和圆周卷积与线性卷积的关系。
验证一个周期实序列奇偶部分的DFT与此序列本身的DFT之间的关系。
实验二序列的运算平滑运算r=51;d=0.8*(rand(r,1)-0.5);m=0:r-1;s=2*m.*(0.9.^m);x=s+d';subplot(2,1,1);plot(m,d','r-',m,s,'g--',m,x,'b-.');xlabel('Time index n');ylabel('Amplitude');legend('d[n]','s[n]','x[n]');x1=[0 0 x]; x2=[0 x 0]; x3=[x 0 0];y=(x1+x2+x3)/3;subplot(2,1,2);plot(m,y(2:r+1),'r-',m,s,'g--');legend('y[n]','s[n]');xlabel('Time index n');ylabel('Amplitude');调制程序Fm=10;Fc=100;Fs=500;k=0:199;t=k/Fs;x=sin(2*pi*Fm*t);y=x.*cos(2*pi*Fc*t);X=fft(x,256);Y=fft(y,256);subplot(2,2,1);plot(x);xlabel('t(s)');ylabel('x');title('±»µ÷ÐźÅ');subplot(2,2,2);plot(X);plot([-128:127],fftshift(abs(X)));xlabel('w');ylabel('X(jw)'); title('xx');subplot(2,2,3);plot(y);xlabel('t(s)');ylabel('y');title('xy');subplot(2,2,4);plot(Y);plot([-128:127],fftshift(abs(Y)));xlabel('w');ylabel('Y(jw)');title('yy');卷积M函数function[y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h)); ny=[nyb:nye];y=conv(x,h);卷积程序x=[0 0.5 1 1.5 0];nx=0:4;h=[1 1 1 10 0];nh=0:4;[y,ny]=conv_m(x,nx,h,nh);subplot(2,2,1);stem(nx,x);title('xulie x'); xlabel('n');ylabel('x(n)');subplot(2,2,2);stem(nh,h);title('xulie h'); xlabel('n');ylabel('h(n)');subplot(2,2,3);stem(ny,y);title('junji');xlabel('n');ylabel('y(n)');Dftfunction[Xk]=dft(xn,N) n=[0:1:N-1];k=n;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;Idftfunction[Xk]=idft(xn,N) n=[0:1:N-1];k=n;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^(-nk);Xk=xn*WNnk/N;程序xn=[1,1,1,1];N=4;xk=dft(xn,N)'xk=[4,0,0,0];N=4;xk=idft(xn,N)'Matlab程序xn=[1,1,1,1]; N=length(xn); n=0:N-1; k=0:N-1; Xk=xn*exp(-j*2*pi/N).^(n'*k);x=(Xk*exp(j*2*pi/N).^(n'*k))/N;subplot(1,2,2);stem(k,abs(Xk));grid;title('|X(k)|');axis([-1,N,1.1*min(abs(Xk)),1.1*max(abs(Xk))]); subplot(1,2,1);stem(n,xn);grid;title('x(n)');axis([-1,N,1.1*min(xn),1.1*max(xn)]);序列的圆周移位已知序列X(n)=10(0.8)n(0≤n ≤10),序列圆周向右移m=3,绘制原序列波形和圆周移位序列波形cigmod 函数function m=sigmod(n,N);m=rem(n,N);m=m+N;m=rem(m,N); cirshhift 函数function y=cirshift(x,m,N);if length(x)>Nerror('N must be greater then length(x)');endx=[x zeros(1,N-length(x))];n=[0:N-1];n=sigmod(n-m,N);y=x(n+1);圆周移位程序n=[0:10];M=6;N=11;x=10*0.8.^n;y=cirshift(x,M,N);subplot(211)stem(n,x);title('原序列波形');xlabel('n');ylabel('x(n)');subplot(212)stem(n,y);title('圆周移位序列波形');xlabel('n');ylabel('y(n)');圆周卷积已知X1=[1 2 2],x2=[1 2 3 4],试计算x1○4x2程序卷积程序function y=circonvt(x1,x2,N)if length(x1)>Nerror('Length(x1)is not great than N'); endif length(x2)>Nerroe('Lengeh(x2)is not greater than N'); endx1=[x1,zeros(1,N-length(x1))];x2=[x2,zeros(1,N-length(x2))];m=[0:N-1];x2=x2(mod(-m,N)+1);H=zeros(N,N);for n=1:N;H(n,:)=cirshift(x2,n-1,N); endy=x1*H';运算程序x1=[1 2 2];x2=[1 2 3 4];disp('N=5')N=5;y=circonvt(x1,x2,N)Z变换求(n-1)u(n)的Z变换F=ztrans(sym('n-1'))F=simplify(F)F =z/(z - 1)^2 - z/(z - 1)F =-(z*(z - 2))/(z - 1)^2结果分析:将函数分解为nu(n)-3u(n),再分别进行Z变换。
其中用到了ztrans函数和simplify函数逆Z变换求X(z)=z-1/(1+z-1-20z-2),4<|z|<5a=[1 1 -20];b=[0 1 0];[r,p,k]=residuez(b,a)结果分析:r=-1,1为函数z变换后的系数,p为逆变换后系数。
验证一个周期实序列奇偶部分的DFT与此序列本身的DFT之间关系dft程序function[Xk]=dft(xn,N) n=[0:1:N-1];k=n;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;Idft程序function[Xk]=idft(xn,N)n=[0:1:N-1];k=n;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^(-nk);Xk=xn*WNnk/N;function[xev,xod]=circevod(x)if any(imag(x)~=0)error('不是实序列')endN=length(x);n=0:(N-1);xev=0.5*(x+x(sigmod(-n,N)+1));xod=0.5*(x-x(sigmod(-n,N)+1));已知序列X(n)=10(0.8)n,序列长度N=21绘出傅里叶的奇数部分和偶数部分并求它们的DFT n=[0:20];N=length(n);x=10*0.8.^n;[xev,xod]=circevod(x);subplot(221);stem(n,xev);title('奇部');xlabel('n');ylabel('xev(n)'); subplot(222)stem(n,xod);title('偶部');xlabel('n');ylabel('xod(n)');hold on plot(n,zeros(1,N))hold offXkev=dft(xev,N);Xkod=dft(xod,N);Xkse=dft(x,N);subplot(223);stem(n,real(Xkev));xlabel('n');ylabel('Xkev(k)');title('偶部分的DFT');subplot(224);stem(n,imag(Xkod));xlabel('k');ylabel('Xkod(k)');title('奇部分的DFT');hold onplot(n,zeros(1,N))hold off四:实验总结通过这几个实验对MATLAB有了简单的认识,并学会了基本的编写方法,也从中了解到了一些基本运算函数。