MIDASCIVIL钢桁梁桥建模及分析

合集下载

midas桥梁分析

midas桥梁分析

131
GETTING STARTED
施工阶段分析
1. 导入分析>施工阶段分析控制对话窗口后指定施工阶段分析中所要考虑 的材料的时间依存特性并指定计算徐变所需的反复计算次数和收敛条 件。
2. 分析模型为PSC建筑物时需指定是否考虑钢束张力的损失效果。 3. 点击分析>运行分析菜单或 运行分析进行分析。 4. 分析成功的完了之后在Result菜单中对各施工阶段的应力、构件内力及
时程分析过程和输出过程所需数据及阻尼比等。
4. 将时间荷载函数以动节点荷载输入时
利用荷载>时程分析数据>动力节点荷载功能选择荷载的工况名和
函数名并输入荷载方向、到达时间等。
将时间荷载函数以地面运动输入时
利用荷载>时程分析数据>地面加速度功能选择荷载工况名和各方
向的函数名后在操作点击
键。
5. 点击分析>运行分析菜单或 运行分析进行分析。
使用特征值分析功能对永宗大桥完成系模型的特征值分析结果 (竖直1次模式 : 0.485 Hz)
128
施工阶段一
分析
施工阶段二
考虑分段浇筑的各施工阶段PSC Box墩帽的水化热分析结果(应力分布)
利用悬臂法桥梁建模助手建立的施工阶段模型 129
GETTING STARTED
查看渲染 模型窗口 使用施工阶段群将西海大桥施工阶段分析模型按各施工阶段表现的画面
127
GETTING STARTED
· 影响线分析 · 影响面分析 热传导分析 (传导、对流、辐射) · 稳态分析 · 瞬态分析 水化热分析 · 热弹性分析 (温度应力) · 强度进展、徐变、收缩、管冷 施工阶段分析 · 时间依存性材料 · 边界条件 · 静力荷载群 其它分析功能 · 使用优化法计算未知荷载的功能 · 自动考虑桥梁支座沉降的分析 · 考虑钢组合桥组合前后截面特性变化的分析

03-Midas Civil应用-钢栈桥

03-Midas Civil应用-钢栈桥

01Midas Civil应用—钢栈桥1、栈桥建模及分析(1)基本概况一座用贝雷片搭建的施工栈桥,跨径15m(6片贝雷片),支承条件为简支,桥面宽6米。

设计荷载汽—20,验算荷载挂—50。

贝雷片的横向布置为5×90cm,共6片主梁,在贝雷片主梁上布置I20a分配梁,位置作用于贝雷片弦杆的每个节点处,间距约75cm。

贝雷片参数:栈桥采用15m一跨“321”型标准贝雷桁架。

支撑架参数:A3钢,截面L63×4。

分配横梁参数:A3钢,截面I20a,长度6m。

桩顶横梁参数:16Mn;截面I560×166×12.5/21,长度6m。

钢管桩参数:A3钢,管型截面(直径820mm,厚度10mm),长度为10m。

钢管桩横联参数:A3钢,截面[12.6,4.5m×2m。

贝雷片参数:材料16Mn;弦杆2I10a槽钢(C100×48×5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm,tf=4.5mm,tw=6.5mm),贝雷片的连接为销接。

支撑架参数:材料A3钢,截面L63×4。

贝雷片尺寸(2)Midas Civil 栈桥分析步骤钢栈桥的分析步骤如下:①设置操作环境及项目信息②定义材料和截面③建立结构三维模型④输入静力荷载⑤输入移动荷载数据⑥输入荷载组合⑦输入移动荷载分析控制数据⑧运行结构分析⑨查看分析结果(3)设置操作环境及项目信息打开【工具】/【单位系】/将单位体系设为KN,mm。

该单位可以根据输入数据的种类任意转换。

打开【文件】 /【项目信息】/完善基本信息。

(4)定义材料和截面。

打开【特性】/【截面特性值】/【截面】/【添加】/【数据库】/【用户】/填写截面名称及参数/【适用】。

打开【特性】/【截面特性值】/【截面】/【添加】/【数据库】/【用户】/填写截面名称及参数/【适用】。

打开【特性】/【截面特性值】/【板厚】/【添加】/【数值】/【面内和面外】(8mm)/【适用】。

迈达斯Midas_civil_梁格法建模实例

迈达斯Midas_civil_梁格法建模实例
徐变系数: 程序计算
混凝土收缩变形率: 程序计算
荷载
静力荷载
>自重
由程序内部自动计算
>二期恒载
桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等
具体考虑:
桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。每片T梁宽2.5m,所以铺装层的单位长度质量为:
> 混凝土
采用JTG04(RC)规范的C50混凝土
>普通钢筋
普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)
>预应力钢束
采用JTG04(S)规范,在数据库中选Strand1860
钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)
钢束类型为:后张拉
图7. 跨中等截面
模型/材料和截面特性/ 截面
数据库/用户> 截面号(3); 名称(端部变截面右)
截面类型>变截面>PSC-工形
尺寸
对称:(开)
拐点: JL1(开)
尺寸I
S1-自动(开),S2-自动(开),S3-自动(开),T-自动(开)
HL1:0.20;HL2:0.06 ;HL2-1: 0;HL3:1.28;HL4:0.17;HL5:0.29
(0.08×25+0.06×23)×2.5=8.45kN/m2.
护墙、栏杆和灯杆荷载:以3.55kN/m2计。
二期恒载=桥面铺装+护墙、栏杆和灯杆荷载=8.45+3.55=12kN/m2。
>预应力荷载
分成正弯矩钢束和负弯矩钢束
典型几束钢束的具体数据:

迈达斯midas梁桥专题—梁格

迈达斯midas梁桥专题—梁格

Integrated Solution System for Bridge and Civil Strucutres目录一、剪力-柔性梁格理论1. 纵梁抗弯刚度.......................................................................32.横梁抗弯刚度....................................................................... 43.纵梁、横梁抗弯刚度........................................................... 44.虚拟边构件及横向构件刚度.. (5)三、采用梁格建模助手生成梁格模型二、单梁、梁格模型多支座反力与实体模型结果比较1. 前言.......................................................................................72. 结构概况...............................................................................73. 梁格法建模助手建模过程及功能亮点...............................114. 修改梁格..............................................................................225. 在自重、偏载作用下与FEA 实体模型结果比较. (24)四、结合规范进行PSC 设计1.纵梁抗弯刚度【强制移轴(上部结构中性轴)法】一、剪力-柔性梁格理论a.各纵梁中性轴与上部结构中性轴基本重合b.强制移轴,使各纵梁中性轴与上部结构中性轴基本重合,等效纵梁抗弯刚度2.横向梁格抗弯刚度3.纵梁、横梁抗扭刚度4.虚拟边构件及横向构件刚度此处d’为顶板厚度。

迈达斯midascivil 梁格法建模实例

迈达斯midascivil 梁格法建模实例

北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。

定义材料和截面....................................................................................................... 错误!未定义书签。

建立结构模型........................................................................................................... 错误!未定义书签。

PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。

输入荷载 .................................................................................................................. 错误!未定义书签。

定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。

输入支座沉降........................................................................................................... 错误!未定义书签。

桥梁工程Midas Civil常见问题解答第04章 模型

桥梁工程Midas Civil常见问题解答第04章 模型

“模型”中的常见问题如何进行二维平面分析?具体问题为三维空间分析程序,如何进行二维平面分析?相关命令模型〉结构类型...问题解答“结构类型”对话框中有多种结构类型可供选择(、平面、平面、平面、约束)。

建立模型时,直接在本对话框定义相应的平面结构类型(平面、平面、平面)即可。

相关知识三维空间模型的一个节点有个自由度。

当结构类型定义为二维平面类型后,一个节点的自由度就变成个。

对于二维平面类型结构的节点定义边界条件时,只对相应的个自由度定义约束即可。

相关问题如何修改重力加速度值?具体问题物理重力加速度为2/m。

在程序中如何查看10sm,工程重力加速度为2/8.9s并修改重力加速度值?相关命令模型〉结构类型...问题解答可以在“结构类型”对话框中查看重力加速度值。

程序默认的重力加速度是物理重力加速度2/.9sm,如需要按工程重力加速度进行计算,可806在本对话框直接修改重力加速度值即可。

相关知识进行特征值分析时需要单元或节点的质量数据,单元的自重转化为质量时,程序将利用此重力加速度计算单元或节点的质量。

相关问题使用“悬索桥建模助手”时,如何建立中跨跨中没有吊杆的情况?*具体问题使用“悬索桥建模助手”建立中跨为奇数跨的悬索桥模型(中跨跨中没有吊杆的情况),程序提示错误“遵守事项:中间距离数为偶数”。

如何建立中跨为奇数跨的悬索桥模型?相关命令模型〉结构建模助手〉悬索桥...问题解答使用“悬索桥建模助手”功能只能建立偶数跨的模型。

需要建立奇数跨度模型时,首先利用建模住手建立原奇数跨跨(偶数跨)的模型,然后删除中跨跨中的吊杆单元,再利用“悬索桥分析控制”功能重新更新节点坐标以及几何初始刚度即可。

相关知识使用“悬索桥建模助手”建立的模型,往往与工程师预想的模型有些差异(例如主塔与加劲梁的连接处以及边界条件等),此时就要用户自己调整模型至预想模型。

模型被修改后,原来的节点坐标以及几何初始刚度不能满足新模型的平衡状态,必须对整体结构重新进行精密分析(悬索桥分析控制),求出新的节点坐标以及几何初始刚度。

MIDASCIVIL钢桁梁桥建模及分析

MIDASCIVIL钢桁梁桥建模及分析
XN.8所示点击材料和截面对话框中的按钮
图XN.8 添加完截面后的对话框
3.3.3 建立主桁架
3.3.3.1 建立下弦杆
(1) 在图标菜单中选择视图控制→
在主窗口中显示节点号和单元号。
(2) 在屏幕右侧工具条点击打开自动对其功能。
(3) 选择主菜单
建议使用黑色背景。 (5) 在屏幕右侧工具条点击
正面显示主窗口。 3.3 建立模型 3.3.1 输入构件的材料数据
(1) 在主菜单中选择模型→材料和截面特性→材料或在图标菜单中选择特性→

钮调出图XN.6(a)所示对话框。
(2) 点击按钮调出材料数据对话框如图XN.6(b)所示。
(3) 在一般的材料号输入栏中确认“1”。
(4) 在设计类型选择栏确认“钢材”。
(5) 在钢材的规范栏选择“GB(S)”。
(6) 在数据库选择栏选择“16Mnq”。
(7) 点击按钮添加新材料后的材料数据对话框如图XN.6(c)所示。 (a)
(c)
(b) 图XN.6 添加材料
12
下平纵联斜杆 用户 T型截面*1
0.16 0.18 0.01 0.01
13
桥门架上下横撑和短斜撑 用户 双角钢截面*10.08 0.125 0.01 0.01 0.01
14
桥门架长斜撑 用户 双角钢截面*10.1 0.16 0.01 0.01 0.01
击所需镜像平面对应的文本框后在主窗口结
构中挪动鼠标文本框中的数值会随着鼠标处
节点坐标的变化而变化点击对称平面上任一
点的即可得到所需坐标值这样就省去了计算
坐标值的麻烦。 3.3.3.2 建立上弦杆

钢便桥计算书(midas Civil 2019建模)

钢便桥计算书(midas Civil 2019建模)

第1章钢便桥计算书1.1受力模型及材料参数钢栈桥验算采用有限元法,选取便桥的标准跨径作为计算模型,利用midas Civil 2019计算程序建模进行验算。

1.1.1跨径9m单排3根桩钢便桥结构模型图1.1-2 跨径9m单排3根桩便桥结构模型桥型1:栈桥上部结构为贝雷梁结构,下部结构为钢管桩加型钢承重梁结构。

栈桥基础及桥墩全部采用φ630mm厚10mm的螺旋焊接钢管桩,钢管桩按单排3根桩桩布置。

横联及斜撑采用[20a槽钢,钢管桩顶设双拼I45a工字钢帽梁。

桩顶横梁上架设贝雷梁,采用单层3组每组2片总计6片贝雷架结构,每组贝雷架采用定制支撑架连接,相邻贝雷架组采用∠75×8角钢连接,间距为90+125+90+125+90cm形成主纵梁,贝雷梁上设按30㎝间距布置I25a工字钢分配横梁与桥面10mm厚钢板经焊接固定成型的6m宽模块。

1.1.2材料参数铺装钢板厚度10mm,材料Q235钢。

分配横梁参数:材料Q235钢,截面I25a,长度6m。

主梁参数:采用321型贝雷片,材料为16Mn钢。

贝雷梁支撑架参数:材料Q235,材料为∠63×4角钢。

贝雷梁组间斜撑参数:材料Q235,材料为∠75×8角钢。

桩顶横梁参数:材料Q235钢,截面2×I45a,长度6m。

钢管桩参数:材料Q235钢,管型截面(外径630mm,厚度10mm)长度为13.4m。

根据《钢结构设计标准》GB50017-2017,钢材强度设计值可查表得:型钢材质均为Q235钢,其抗弯设计强度a 215][MP =σ,抗剪设计强度[]a 125MP =τ。

贝雷片材质为16Mn 钢,其容许弯应力[]a 273MP =σ,容许剪应力[]a 156MP =τ。

根据《公路钢结构桥梁设计规范》JTG D64-2015,挠度计算可查表得:2.边界条件钢管桩的底部固结;桩顶横梁和钢管桩采用弹性连接(刚性); 桩顶横梁和贝雷片弹性连接(刚性); 贝雷片和分配横梁采用弹性连接(刚性)。

(整理)Midas钢筋混凝土板桥建模.

(整理)Midas钢筋混凝土板桥建模.
Midas钢筋混凝土板桥建模
概述
这个例题介绍使用MIDAS/Civil对钢筋混凝土板桥进行了以及进行结构分析的方法。
具体顺序如下。
1.打开文件和设定操作环境
2.定义材料和截面
3.使用节点和单元建模
4.输入边界条件
5.输入车辆移动荷载和静荷载
6.运行结构分析
7.查看分析结果
结构概况
钢筋混凝土板桥的结构概况如图 3.1、3.2。
10.在旋转栏的复制次数中输入‘2’
11.在旋转角度里输入‘-0.5*360/2/pi/131.95’
12.在旋转轴栏里选择‘z轴’
13.在第一点栏里输入曲线中心点‘0, -131.95, 0’
14.点击
图3.14 建立桥台 A1 上的板单元
输入临时梁来建立1m长的板单元。
1.点击建立单元
2.连接节点23和33来建立临时梁
4.在类型栏中选择‘混凝土’
5.在混凝土的规范栏中选择‘GB-Civil(RC)’
6.在数据库中选择‘30’
7.点击
图3.12 输入截面数据
1.在特性值对话框(图3.10)选择厚度(在特性值工具条选择 厚度)
2.点击
3.确认厚度号为‘1’(图3.12)
4.面内和面外‘1000’
5.点击
6.根据上面的3~5,输入已有的厚度2~4(图3.9 )
3.点击 扩展单元
4.点击 选择最新建立的个体
5.在扩展类型栏里选择‘线单元→板单元’
6.确认删除栏为‘’
7.在单元属性栏里确认单元类型为‘板单元’
8.确认材料栏为‘1 : 30’
9.确认厚度栏为‘1 : 1.000’
10.确认类型栏为‘厚板’
图 3.1 板桥的模型

迈达斯Midas-civil-梁格法建模实例

迈达斯Midas-civil-梁格法建模实例

北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。

定义材料和截面....................................................................................................... 错误!未定义书签。

建立结构模型........................................................................................................... 错误!未定义书签。

PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。

输入荷载 .................................................................................................................. 错误!未定义书签。

定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。

输入支座沉降........................................................................................................... 错误!未定义书签。

MidasCivil桥梁工程分析常见问题汇总

MidasCivil桥梁工程分析常见问题汇总

目录“文件”相关问题 (1)1.1 如何方便地实现对施工阶段模型的数据文件的检查? (1)1.2 如何导入CAD图形文件? (2)1.3 如何将几个模型文件合并成一个模型文件? (3)1.4 如何将模型窗口显示的内容保存为图形文件? (5)“编辑”相关问题 (6)2.1 如何实现一次撤销多步操作? (6)“视图”相关问题 (7)3.1 如何方便地检查平面模型中相交单元是否共节点? (7)3.2 为什么板单元消隐后不能显示厚度? (8)3.3 如何在模型窗口中显示施加在结构上的荷载? (9)3.4 如何修改模型窗口背景颜色? (11)3.5 如何修改内力结果图形中数值显示的字体大小和颜色? (12)“模型”相关问题 (15)4.1 如何进行二维平面分析? (15)4.2 如何修改重力加速度值? (15)4.3 使用“悬索桥建模助手”时,如何建立中跨跨中没有吊杆的情况? (16)4.4 使用“悬臂法桥梁建模助手”时,如何定义不等高桥墩? (16)4.5 程序中的标准截面,为什么消隐后不能显示形状? (17)4.6 如何复制单元时同时复制荷载? (17)4.7 复制单元时,单元的结构组信息能否同时被复制? (18)4.8 薄板单元与厚板单元的区别? (18)4.9 如何定义索单元的几何初始刚度? (19)4.10 索单元输入的初拉力是i端或j端的切向拉力吗? (20)4.11 如何考虑组合截面中混凝土的收缩徐变? (20)4.12 定义收缩徐变函数时的材龄与定义施工阶段时激活材龄的区别? (21)4.13 如何自定义混凝土强度发展函数? (21)4.14 如何定义变截面梁? (22)4.15 使用“变截面组”时,如何查看各个单元截面特性值? (23)4.16 如何定义鱼腹形截面? (24)4.17 如何定义设计用矩形截面? (24)4.18 如何输入不同间距的箍筋? (25)4.19 定义联合截面时,“梁数量”的含义? (26)4.20 如何定义哑铃形钢管混凝土截面? (26)4.21 导入mct格式截面数据时,如何避免覆盖已有截面? (27)4.22 如何定义“设计用数值型截面”的各参数? (29)4.23 如何考虑横、竖向预应力钢筋的作用? (30)4.24 板单元“面内厚度”与“面外厚度”的区别? (31)4.25 定义“塑性材料”与定义“非弹性铰”的区别? (32)4.26 定义“非弹性铰”时,为什么提示“项目:不能同时使用的材料、截面和构件类型”? (32)4.27 为什么“非弹性铰特性值”不能执行自动计算? (33)4.28 为什么“非弹性铰特性值”自动计算的结果P1〉P2? (34)4.29 程序中有多处可定义“阻尼比”,都适用于哪种情况? (34)4.30 如何定义弯桥支座? (37)4.31 如何快速定义多个支承点的只受压弹性连接? (37)4.32 如何模拟满堂支架? (38)4.33 如何连接实体单元和板单元? (38)4.34 如何模拟桩基础与土之间的相互作用? (39)4.35 梁格法建模时,如何模拟湿接缝? (39)4.36 为什么用“弹性连接”模拟支座时,运行分析产生了奇异? (40)4.37 为什么两层桥面之间用桁架单元来连接后,运行分析产生奇异? (41)4.38 “梁端刚域”与“刚域效果”的区别? (41)4.39 为什么定义梁端刚域后,梁截面偏心自动恢复到中心位置? 424.40 为什么“只受压弹性连接”不能用于移动荷载分析? (42)4.41 为什么“刚性连接”在施工阶段中不能钝化? (43)4.42 如何考虑PSC箱梁的有效宽度? (43)4.43 为什么只考虑节点质量进行“特征值分析”时,程序提示“ERROR”? (44)4.44 如何删除重复单元? (45)“荷载”相关问题 (46)5.1 为什么自重要定义为施工阶段荷载? (46)5.2 “支座沉降组”与“支座强制位移”的区别? (46)5.3 如何定义沿梁全长布置的梯形荷载? (47)5.4 如何对弯梁定义径向荷载? (48)5.5 如何定义侧向水压力荷载? (49)5.6 如何定义作用在实体表面任意位置的平面荷载? (50)5.7 如何按照04公路规范定义温度梯度荷载? (52)5.8 定义“钢束布置形状”时,直线、曲线、单元的区别? (52)5.9 如何考虑预应力结构管道注浆? (53)5.10 为什么预应力钢束采用“2-D输入”与“3-D输入”的计算结果有差别? (54)5.11 “几何刚度初始荷载”与“初始单元内力”的区别? (54)5.12 定义索单元时输入的初拉力与预应力荷载里的初拉力的区别? (55)5.13 为什么定义“反应谱荷载工况”时输入的周期折减系数对自振周期计算结果没有影响? (56)5.14 定义“反应谱函数”时,最大值的含义? (57)5.15 为什么定义“节点动力荷载”时找不到已定义的时程函数? (57)5.16 如何考虑移动荷载横向分布系数? (58)5.17 为什么按照04公路规范自定义人群荷载时,分布宽度不起作用? (59)5.18 定义车道时,“桥梁跨度”的含义? (60)5.19 如何定义曲线车道? (60)5.20 定义“移动荷载工况”时,单独与组合的区别? (60)5.21 定义移动荷载子荷载工况时,“系数”的含义? (61)5.22 为什么定义车道面时,提示“车道面数据错误”? (61)5.23 “结构组激活材龄”与“时间荷载”的区别? (62)5.24 施工阶段定义时,边界组激活选择“变形前”与“变形后”的区别? (62)5.25 定义施工阶段联合截面时,截面位置参数“Cz”和“Cy”的含义? (63)“分析”相关问题 (64)6.1 为什么稳定分析结果与理论分析结果相差很大?(是否考虑剪切对稳定的影响) (64)6.2 为什么定义几何刚度初始荷载对结构的屈曲分析结果没有影响? (65)6.3 为什么不能同时执行屈曲分析与移动荷载分析? (66)6.4 为什么特征值分析时,提示“错误:没有质量数据”? (66)6.5 如何在“特征值分析”时,考虑索单元初始刚度? (67)6.6 为什么“反应谱分析”时,提示“没有质量数据”? (67)6.7 定义“移动荷载分析控制”时,影响线加载与所有点加载的区别? (68)6.8 定义“移动荷载分析控制”时,“每个线单元上影响点数量”的含义? (69)6.9 如何对某个施工阶段进行稳定分析? (70)6.10 如何对存在索单元的模型进行“移动荷载分析”? (70)6.11 如何考虑普通钢筋对收缩徐变的影响? (72)6.12 定义“施工阶段分析控制”时,体内力与体外力的区别? (73)6.13 为什么不能使用“施工阶段非线性累加模型分析”功能? (73)6.14 为什么定义了“悬索桥分析控制”,执行分析后不能进入后处理? (74)6.15 定义“悬索桥分析控制数据”时,更新节点组与垂点组区别? (75)6.16 能否指定分析所需内存? (75)“结果”相关问题 (77)7.1 施工阶段分析时,自动生成的“CS:恒荷载”等的含义? (77)7.2 为什么“自动生成荷载组合”时,恒荷载组合了两次? (77)7.3 为什么“用户自定义荷载”不能参与自动生成的荷载组合? (78)7.4 为什么在自动生成的正常使用极限状态荷载组合中,汽车荷载的组合系数不是0.4或0.7? (79)7.5 为什么在没有定义边界条件的节点上出现了反力? (79)7.6 为什么相同的两个模型,在自重作用下的反力不同? (80)7.7 为什么小半径曲线梁自重作用下内侧支反力偏大? (81)7.8 为什么移动荷载分析得到的变形结果与手算结果不符? (82)7.9 为什么考虑收缩徐变后得到的拱顶变形增大数十倍? (82)7.10 为什么混凝土强度变化,对成桥阶段中荷载产生的位移没有影响? (83)7.11 为什么进行钢混叠合梁分析时,桥面板与主梁变形不协调? 83 7.12 为什么悬臂施工时,自重作用下悬臂端发生向上变形? (84)7.13 为什么使用“刚性连接”连接的两点,竖向位移相差很大? 86 7.14 为什么连续梁桥合龙后变形达上百米? (87)7.15 为什么主缆在竖直向下荷载作用下会发生上拱变形? (88)7.16 为什么索单元在自重荷载作用下转角变形不协调? (89)7.17 为什么简支梁在竖向荷载下出现了轴力? (90)7.18 为什么“移动荷载分析”时,车道所在纵梁单元的内力远大于其它纵梁单元的内力? (91)7.19 如何在“移动荷载分析”时,查看结构同时发生的内力? (91)7.20 空心板梁用单梁和梁格分析结果相差15%? (93)7.21 为什么徐变产生的结构内力比经验值大上百倍? (93)7.22 如何查看板单元任意剖断面的内力图? (94)7.23 为什么相同荷载作用下,不同厚度板单元的内力结果不一样? (96)7.24 为什么无法查看“板单元节点平均内力”? (97)7.25 如何一次抓取多个施工阶段的内力图形? (97)7.26 如何调整内力图形中数值的显示精度和角度? (98)7.27 为什么在城-A车道荷载作用下,“梁单元组合应力”与“梁单元应力PSC”不等? (101)7.28 为什么“梁单元组合应力”不等于各分项正应力之和? (101)7.29 为什么连续梁在整体升温作用下,跨中梁顶出现压应力? .. 101 7.30 为什么PSC截面应力与PSC设计结果的截面应力不一致? 102 7.31 为什么“梁单元应力PSC”结果不为零,而“梁单元应力”结果为零? (103)7.32 如何仅显示超过某个应力水平的杆件的应力图形? (104)7.33 为什么“水化热分析”得到的地基温度小于初始温度? (105)7.34 “梁单元细部分析”能否查看局部应力集中? (106)7.35 为什么修改自重系数对“特征值分析”结果没有影响? (107)7.36 为什么截面偏心会影响特征值计算结果? (108)7.37 为什么“特征值分析”没有扭转模态结果? (109)7.38 “屈曲分析”时,临界荷载系数出现负值的含义? (109)7.39 “移动荷载分析”后自动生成的MVmax、MVmin、MVall工况的含义? (110)7.40 为什么“移动荷载分析”结果没有考虑冲击作用? (110)7.41 如何得到跨中发生最大变形时,移动荷载的布置情况? (111)7.42 为什么选择影响线加载时,影响线的正区和负区还会同时作用有移动荷载? (112)7.43 为什么移动荷载分析得到的结果与等效静力荷载分析得到结果不同? (113)7.44 如何求解斜拉桥的最佳初始索力? (114)7.45 为什么求斜拉桥成桥索力时,“未知荷载系数”会出现负值? (115)7.46 为什么定义“悬臂法预拱度控制”时,提示“主梁结构组出错”? (116)7.47 如何在预拱度计算中考虑活载效应? (116)7.48 桥梁内力图中的应力、“梁单元应力”、“梁单元应力PSC”的含义? (117)7.49 由“桥梁内力图”得到的截面应力的文本结果,各项应力结果的含义? (117)7.50 为什么定义查看“结果>桥梁内力图”时,提示“设置桥梁主梁单元组时发生错误!”? (119)7.51 为什么无法查看“桥梁内力图”? (120)7.52 施工阶段分析完成后,自动生成的“POST:CS”的含义?1207.53 为什么没有预应力的分析结果? (120)7.54 如何查看“弹性连接”的内力? (122)7.55 为什么混凝土弹性变形引起的预应力损失为正值? (122)7.56 如何查看预应力损失分项结果? (123)7.57 为什么定义了“施工阶段联合截面”后,无法查看“梁单元应力”图形? (124)7.58 为什么拱桥计算中出现奇异警告信息? (125)7.59 如何在程序关闭后,查询“分析信息”的内容? (126)“设计”相关问题 (127)8.1 能否进行钢管混凝土组合结构的设计验算.... (127)8.2 施工阶段联合截面进行PSC设计的注意事项? (127)8.3 PSC设计能否计算截面配筋量? (128)8.4 为什么执行PSC设计时提示“跳过:没有找到钢束序号为(1)的构件”? (128)8.5 为什么执行PSC设计时提示“钢束组中有其他类型的钢束材料”? (129)8.6 为什么PSC设计时,提示“PSC设计用荷载组合数据不存在”? (129)8.7 A类构件能否分别输出长、短期荷载组合下的正截面抗裂验算结果? (130)8.8 为什么PSC设计结果中没有“正截面抗裂验算”结果? (130)8.9 为什么PSC设计时,斜截面抗裂验算结果与梁单元主拉应力分析结果不一致? (131)8.10 为什么承载能力大于设计内力,验算结果仍显示为“NG”? (131)8.11 PSC设计斜截面抗剪承载力结果表格中“跳过”的含义? (132)8.12 为什么改变箍筋数量后,对斜截面抗剪承载力没有影响? .. 1338.13 为什么定义“截面钢筋”后,结构承载能力没有提高? (134)8.14 如何指定PSC设计计算书封面上的项目信息内容? (136)“查询”相关问题 (138)9.1 如何查询任意节点间距离? (138)9.2 如何查询梁单元长度、板单元面积、实体单元体积? (138)9.3 如何查询模型的节点质量? (139)“工具”相关问题 (140)10.1 如何取消自动保存功能? (140)10.2 如何定义快捷键? (140)10.3 如何查询工程量? (141)10.4 为什么采用SPC计算的薄壁钢箱截面的抗扭惯性矩小于理论计算值? (142)10.5 为什么相同的截面用CAD与SPC计算的截面特性不同? (143)10.6 为什么SPC里定义的截面无法导出sec格式文件? (143)“文件”相关问题1.1 如何方便地实现对施工阶段模型的数据文件的检查?具体问题本模型进行施工阶段分析,在分析第一施工阶段时出现“WARNING:NODENO.7DXDO FMAYBESINGULAR”,如下图所示。

MIDAS CIVIL 装配式简支梁桥建模及分析

MIDAS CIVIL 装配式简支梁桥建模及分析

第四章 MIDAS/CIVIL装配式简支梁桥建模及分析4.1 工程概况图4. 1图4. 2图4. 3桥面宽度布置:净—9+2×1.5m(人行道)。

设计荷载:公路—II级;人群荷载标准值:3.0kN/m2C50混凝土钢绞线φS15.20,f pk=1860MPa1860MPa4.2 MIDAS/CIVIL梁格法建模要点4.2.1 综论中国的桥梁建设已步入全新的阶段,桥梁设计、施工、检测技术水平也随着时间推移不断提高,以往多采用的平面程序在实际使用中将逐渐为三维空间程序所取代,通过三维的分析可以不用像二维程序那样计算横向分布系数,建模及后处理更加直观。

T形梁在实际工程中广泛采用,现存数量巨大,T梁格单元划分简单,基本概念清晰,受力明确,较易为初学梁格法者掌握,对进一步将复杂结构离散为力学模型及应用力学原理解决问题很有帮助。

4.2.2 梁格法基本原理用等效梁格代替桥梁上部结构,将分散在板、梁每一区段内的弯曲刚度和抗扭刚度集中于最邻近的等效梁格内,实际结构的纵向刚度集中于纵向梁格构件内,横向刚度集中于横向梁格内。

理想的刚度等效原则是:当原型实际结构和对应的等效梁格承受相同的荷载时,两者的挠曲将是恒等的,并且每一梁格内的弯矩、剪力和扭矩等于该梁格所代表的实际结构部分的内力。

由于实际结构和梁格体系在结构特性上的差异,这种等效只是近似的,但对一般的设计,梁格法的计算精度是足够的。

4.3.3 梁格理论要点(1) 如为T梁,计算前应先对有效宽度进行计算,结构翼板拟定尺寸时尽量控制在有效宽度范围内。

有效宽度计算参考规范《公路钢筋混凝土及预应力混凝土桥涵设计规范》4.2.2条。

(2) 对于非密排的T梁,可取单个T梁为一个纵向梁格。

若T梁未设横隔板则纵向弯曲由T形截面承受,横向视为通过翼板连接的板条。

一般来说,纵横方向上结构的部分刚度可以假定为相似横截面的梁一样。

(3) 梁格网格的划分以最能反映上部结构的结构性能为好。

Civil钢桥专题——钢箱梁MIDAS

Civil钢桥专题——钢箱梁MIDAS

压弯构件单向整稳:5.4.2-2
1
9
5.3 受弯构件
腹板
受弯构件腹板剪应力:5.3.1-3
0 f vd
共同作用:
2 2
0
x 1 fd f vd
腹板最小厚度及加劲肋设置 :
(1)腹板最小厚度:表 5.3.3
I. 工程概况 II. 规范规定(构造) III. Civil钢箱梁建模 IV. 规范规定(构件) V. CDN涉及流程
2
工程概况
3
1.1 工程概况 主梁为20+30+40+30m单箱单室正交钢箱梁,钢材为Q345;桥面宽8m,梁高2.335m,翼
缘板长1.8m;顶板、腹板、翼缘板均厚16mm,底板标准段厚16mm,支座两侧3~3.5m范围内加
厚为24mm;顶板设置闭口U型加劲肋;翼缘板、腹板均设置板型加劲肋;底板标准段设置板型加 劲肋,桥墩两侧5~7m范围内设置T型加劲肋;横隔板等设置详见图纸。
4
规范规定
5
6
腹板及加劲肋
翼缘及加劲肋
钢箱梁8.3
正交异性板及 加劲肋
横隔板、纵/横联结系

bw 80t or b 16t
8.3.2.1
1-N d /N cr 1
Mz =0时,令βm,z =0
1
轴心受拉构件强度:5.2.1-1
0
Nd fd A0
N d 0时
拉/压弯构件强度:5.4.1-1
N M N d ez M z N d e y 0 d y N M Rd,y M Rd,z Rd 1

翼缘设置加劲肋 8.3.2-2

迈达斯(MIDAS-Civil)结构力学分析(全)

迈达斯(MIDAS-Civil)结构力学分析(全)
名称 (温度荷载) ; 类型 >用户定义的荷载(USER)
图1.8 输入荷载条件
输入均布荷载
给连续梁施加均布荷载 1 tonf/m。
荷载 /梁单元荷载(单元)
节点号(关)
全选
荷载工况名称> 均布荷载 ; 选择 >添加
荷载类型>均布荷载; 方向>整体坐标系 Z; 投影>否
数值 >相对值; x1( 0 ); x2( 1 ); W( -1 )
复制单元
复制连续梁(模型 1)来建立多跨静定梁(模型 2,模型 3)。为了同时复制连续梁(模型1)均布荷载、温度荷载、边界条件,使用复制节点属性和复制单元属性功能。
显示
边界条件>一般支承(开)
模型 / 单元 / 单元的复制和移动
全选
形式 >复制; 移动和复制 >等间距
dx, dy, dz( 0, 0, -5 ); 复制次数( 2 )
图 1.3 定义材料 图 1.4 定义截面
建立节点和单元
为了生成连续梁单元,首先输入节点。
正面, 捕捉点(关), 捕捉轴线(关)
捕捉节点(开), 捕捉单元(开), 自动对齐源自模型 / 节点 / 建立节点
坐标 ( x, y, z )( 0, 0, 0 )
图 1.5 建立节点
用扩展单元功能来建立连续梁。
模型 / 单元/ 扩展单元
复制节点属性(开),复制单元属性(开)
图 1.11 复制单元
输入铰接条件
在复制的连续梁输入内部铰支座来建立多跨静定梁。
在梁单元的端部使用释放梁端约束功能来生成铰接条件。
模型 / 边界条件/释放梁端约束
单元号(开)
单选( 单元 :19, 23, 33)

MIDAS CIVIL 钢桁梁桥建模及分析

MIDAS CIVIL 钢桁梁桥建模及分析

第三章 MIDAS/CIVIL钢桁梁桥建模及分析3.1概述易学易用,能够迅速、准确地完成类似结构的分析和设计是MIDAS的独到之处。

MIDAS/Civil是针对土木结构,特别是分析预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁结构形式,同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、动力弹塑性分析。

本教程手把手教你如何使用MIDAS/Civil,以64m下承式铁路简支钢桁梁桥为例,详细介绍设定操作环境、建立模型、定制分析选项和查找计算结果的完整过程,旨在引导初学者快速熟悉和掌握MIDAS/Civil的基本操作和使用注意事项。

本教程使用软件版本为2006,为了适应不同习惯的读者,该教程在尽可能多的地方给出了菜单和工具栏两种操作方式;为了使读者快速全面地掌握MIDAS的实际操作,本教程对同样的操作功能在不同的地方给出了尽可能多的实现方法,如对不同选择方式的操作。

本教程中64m下承式铁路简支钢桁梁桥共8个节间,节间长度8m,主桁高11m,基本尺寸如图3. 1所示。

图3. 1 64m下承式铁路简支钢桁梁桥结构的基本尺寸3.2 设定操作环境3.2.1 启动MIDAS/Civil安装完成后,双击桌面上或相应目录中的MIDAS/Civil的图标打开程序,启动界面如图3.2所示,分为主菜单、图标菜单、树形菜单、工具条、主窗口、信息窗口、状态条等部分。

图3.2 MIDAS/Civil的启动界面3.2.2 创建新项目通过选择主菜单的文件→新项目(或者点击工具条按钮)创建新项目,之后选择文件→保存菜单(或者)设置路径保存项目。

3.2.3 定制工具条图3.3 定制菜单对话框选择主菜单的工具→用户定制→用户定制…调出如图 3.3所示定制工具条对话框,在Toolbars选项卡下,通过勾选复选框可以定制符合自己风格的工具条,该教程采用默认选项,点击按钮,关闭对话框。

3.2.4 设置单位体系(1) 在主菜单中选择工具→单位体系,打开单位体系设置对话框,如图XN.4所示。

钢桥、组合梁桥-midas操作例题资料-钢箱梁-新OK

钢桥、组合梁桥-midas操作例题资料-钢箱梁-新OK

Civil&Civil Designer一、钢箱梁操作例题资料1概要钢桥是高强、轻型薄壁结构,截面和自重比混凝土桥小,跨越能力大,因而在实际工程中有广泛应用。

钢桥按形式可大致分为钢箱梁、钢板梁(工字钢)、钢桁梁、组合梁桥等类型。

钢桥在使用时不仅要求钢材具有较高的强度,而且还要求具有良好的塑性。

钢桥的刚度相对比较小,变形和振动比混凝土桥大。

为了保证车辆行驶安全和舒适性、避免过大的变形和振动对钢桥结构产生不利的影响,钢桥必须有足够的整体刚度[2] 。

钢桥缺点除容易腐蚀影响耐久性外,另一缺点是疲劳。

影响疲劳的因素很多,除钢材品质、连接的构造与方法等外,与荷载性质、疲劳细节关系也很大。

钢箱梁除钢材等力学特性外,还具有箱梁的受力特点,广泛应用于市政高架、匝道、大跨度斜拉桥、悬索桥、拱桥加劲梁、大跨连续钢箱梁及人行桥钢箱梁等方面。

本专题将通过介绍工程概况、结合规范构造检查、midas Civil详细建模过程以及midas Civil Designer设计平台及结果查看等操作流程,希望能为读者结合实际项目学习程序,通过程序了解钢箱梁提供帮助。

钢箱梁操作例题资料2 钢桥概况及构造检查2.1 钢桥概况主梁为20+30+40+30m单箱单室正交钢箱梁,钢材为Q345;桥面宽8m,梁高2.335m,翼缘板长1.8m;顶板、腹板、翼缘板均厚16mm,底板标准段厚16mm,支座两侧3~3.5m范围内加厚为24mm;顶板设置闭口U型加劲肋;翼缘板、腹板均设置板型加劲肋;底板标准段设置板型加劲肋,桥墩两侧5~7m范围内设置T型加劲肋;横隔板等设置距离详见图1~图3所示。

建模之前,应按照《公路钢结构桥梁设计规范》(JTG D64—2015)[1] (以下简称规范)对钢桥面板、加劲肋、翼缘板及腹板等尺寸进行构造检查。

2.2构造检查2.2.1钢桥面板近年来正交异性钢桥面板出现疲劳和桥面铺装损伤的现象较为普遍,为保证钢桥面板具有足够的刚度,需对最小厚度有要求;为减小应力集中和避免采用疲劳等级过低的构造细节,需对纵向闭口加劲肋尺寸进行规定[1]。

利用Midas-Civil优化钢栈桥结构设计杨闯邵刚漆涛乔志娜李臣

利用Midas-Civil优化钢栈桥结构设计杨闯邵刚漆涛乔志娜李臣

利用Midas-Civil 优化钢栈桥结构设计杨闯邵刚漆涛乔志娜李臣发布时间:2023-05-28T08:59:54.006Z 来源:《建筑实践》2023年6期作者:杨闯邵刚漆涛乔志娜李臣[导读] 本文以漩水沱岷江特大桥钢栈桥为例,建立Midas-Civil 有限元模型,模拟分析实体结构受力,并通过分析有限元模型得出的数据,优化初始设计方案。

经实际施工证明,Midas-Civil 的预测数据与实际检测数据大致相符,为判断钢栈桥结构设计合理性提供有力依据,优化结果具有良好的经济效果。

(中国建筑一局(集团)有限公司,成都 610023)[摘要]:本文以漩水沱岷江特大桥钢栈桥为例,建立Midas-Civil 有限元模型,模拟分析实体结构受力,并通过分析有限元模型得出的数据,优化初始设计方案。

经实际施工证明,Midas-Civil 的预测数据与实际检测数据大致相符,为判断钢栈桥结构设计合理性提供有力依据,优化结果具有良好的经济效果。

[关键词:] Midas-Civil;钢栈桥;有限元模型;结构优化引言钢栈桥施工简洁方便,结构安全可靠,计算模型简单,因此被广泛运用在水上桥梁施工中。

作为大型临建,钢栈桥需要平衡安全、经济两大问题,利用 Mi⁃ das-Civil 建立有限元模型模拟实际受力情况,可以为以上问题的解决提供新思路[1- 3]。

在保证钢栈桥安全稳定的前提下,最大程度的进行结构形式简化,避免材料浪费,提高经济实用性。

本文以漩水沱岷江特大桥钢栈桥为例,在 Midas-Civil 中建模分析,优化其结构设计,对具有类似地质情况地区的钢栈桥结构设计具有借鉴意义。

1 工程概述漩水沱岷江特大桥位于乐山市,是连接岷江两岸的特大桥工程。

本项目起点为 K2+717.457,终点为 K4+018.457。

为规划河堤预留桥孔,牟子镇岸引桥跨径加大,采用6×25m 预应力砼简支T 梁+10×40m 预应力砼简支T 梁+3×40m 现浇预应力砼连续箱梁。

(整理)MIDAS连续梁桥建模详细介绍.

(整理)MIDAS连续梁桥建模详细介绍.

该过程是将三垮桥的运营状态进行有限元分析,下面介绍了本人在对模型模拟的主要步骤,若中间出现的错误,请读者朋友们指出修改。

注:“,”表示下一个过程“()”该过程中需做的内容一.结构1.单元及节点建立的主桁:因为桥面具有一定纵坡,故将《桥跨布置》图的桥面线复制到《节段划分》图对应桥跨位置,然后进行单元划分,将该线段存入新的图层,以便下步导入,将文件保存为.dxf格式文件。

2.打开midas运行程序,将程序里的单位设置成《节段划分》图的单位,这里为cm。

导入上步的.dxf文件。

将节点表格中的z坐标与y坐标交换位置(midas中的z与cad中的y对应)。

结构建立完成。

模型如图:二.特性值1.材料的定义:在特性里面定义C50的混凝土及Strand1860(添加预应力钢筋使用)2.截面的赋予:1).在《截面尺寸》和《预应力束锚固》图里,做出截面轮廓文件,保存为.dxf 文件2).运行midas,工具,截面特性计算器,统一单位cm。

导入上步的.dxf文件先后运行generate,calculate property,保存文件为.sec文件,截面文件完成3)运行midas,特性,截面,添加,psc,导入.sec文件。

根据图例,将各项特性值填入;验算扭转厚度为截面腹板之和;剪切验算,勾选自动;偏心,中上部4)变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端(i为左,j为右);偏心,中上部;命名(注:各个截面的截面号不能相同)5)变截面赋予单元:进入模型窗口,将做好的变截面拖给对应的单元。

注:1.建模资料所给的《预应力束锚固图》的0-0和14-14截面与《节段划分》图有出入,这里采用《截面尺寸》做这两个截面,其余截面按照《预应力束锚固图》做2.定义材料先定义混凝土,程序自动将C50赋予所建单元(C50是定义的第一个材料,程序将自动赋予给所建单元)三.边界条件1.打开《断面》图,根据I、II断面可知,支座设置位置。

midas civil桥梁工程实例精解

midas civil桥梁工程实例精解

Midas Civil桥梁工程实例精解一、引言Midas Civil是一款专门针对桥梁工程设计和分析的软件,其功能强大、应用广泛。

本文将重点讨论Midas Civil在桥梁工程实例中的应用和精解,以帮助读者更好地了解该软件的工程实践价值。

二、Midas Civil桥梁工程实例分析1. 拱桥设计与分析以某某大型拱桥工程为例,介绍Midas Civil在拱桥设计与分析中的具体应用。

包括结构建模、材料设定、荷载分析、抗震设计等方面。

2. 梁桥设计与分析以某某梁桥工程为例,介绍Midas Civil在梁桥设计与分析中的具体应用。

包括纵横断面设计、施工阶段分析、架设过程模拟等方面。

3. 悬索桥设计与分析以某某悬索桥工程为例,介绍Midas Civil在悬索桥设计与分析中的具体应用。

包括索塔设计、索缆分析、振动稳定性分析等方面。

4. 桥梁监测与维护介绍Midas Civil在桥梁监测与维护方面的应用,如结构健康监测、裂缝分析、加固方案评估等。

三、Midas Civil在桥梁工程中的优势和应用价值1. 强大的建模和分析功能Midas Civil具有强大的建模和分析功能,能够准确模拟各类桥梁结构,在设计和施工阶段提供可靠的分析结果。

2. 多场景下的适用性Midas Civil不仅适用于各类桥梁类型,还可以应用于不同地理、气候条件下的工程实践,具有较强的通用性和灵活性。

3. 创新的工程实践技术Midas Civil在桥梁工程实践中引入了许多创新的技术和方法,如基于BIM的协同设计、结构优化算法等,推动了桥梁工程实践的进步。

4. 提高工程质量和效率通过Midas Civil的应用,桥梁工程的设计质量和施工效率得到了有效提升,有力支撑了工程质量和进度的保障。

四、Midas Civil在桥梁工程中的应用案例1. 桥梁工程A案例介绍Midas Civil在桥梁工程A中的应用情况,包括具体的建模分析过程、工程效果和成果展示等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MIDASCIVIL钢桁梁桥建模及分析第三章 MIDAS/CIVIL钢桁梁桥建模及分析 3.1概述易学易用能够迅速、准确地完成类似结构的分析和设计是MIDAS的独到之处。

MIDAS/Civil是针对土木结构特别是分析预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁结构形式同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、动力弹塑性分析。

本教程手把手教你如何使用MIDAS/Civil 以64m下承式铁路简支钢桁梁桥为例详细介绍设定操作环境、建立模型、定制分析选项和查找计算结果的完整过程旨在引导初学者快速熟悉和掌握MIDAS/Civil的基本操作和使用注意事项。

本教程使用软件版本为2006该教程在尽可能多的地方给出了菜单和工具栏两种操作为了适应不同习惯的读者方式为了使读者快速全面地掌握MIDAS的实际操作本教程对同样的操作功能在不同的地方给出了尽可能多的实现方法如对不同选择方式的操作。

本教程中64m下承式铁路简支钢桁梁桥共8个节间节间长度8m 主桁高11m 基本尺寸如图3. 1所示。

图3. 1 64m下承式铁路简支钢桁梁桥结构的基本尺寸 3.2 设定操作环境3.2.1 启动MIDAS/Civil安装完成后双击桌面上或相应目录中的MIDAS/Civil的图标打开程序启动界面如图3.2所示分为主菜单、图标菜单、树形菜单、工具条、主窗口、信息窗口、状态条等部分。

图3.2 MIDAS/Civil的启动界面 3.2.2 创建新项目通过选择主菜单的文件?新项目(或者点击工具条按钮)创建新项目之后选择文件?保存菜单(或者)设置路径保存项目。

3.2.3 定制工具条图3.3 定制菜单对话框选择主菜单的工具?用户定制?用户定制…调出如图3.3所示定制工具条对话框在Toolbars选项卡下通过勾选复选框可以定制符合自己风格的工具条该教程采用默认选项点击按钮关闭对话框。

3.2.4 设置单位体系(1) 在主菜单中选择工具?单位体系打开单位体系设置对话框如图XN.4所示。

(2) 在长度栏中选择“m”。

(3) 在力(质量)栏中选择“kN”。

(4) 在热度栏中默认选择“kJ”。

(5) 在温度栏中默认选择“Celsius”。

(6) 点击按钮。

图3. 4 单位体系设置对话框图图3. 5 显示选项对话框图※提示 MIDAS在建模和查看计算结果过程中可以随时更改长度和力的单位以方便输入和查看。

3.2.5 设定建模环境(1) 在屏幕左上角图标菜单中选择常用?确保捕捉节点和捕捉单元功能图标呈现暗红色处于被选中状态。

(2) 在图标菜单中点击常用? 确保消隐功能图标呈现淡蓝色不被选中。

(3) 在图标菜单中选择UCS/GCS? 确保全局坐标系功能处于被选中状态。

(4) 在图标菜单中选择视图控制?显示选项调出显示选项对话框在颜色选项卡下点击按钮如图3. 5所示点击按钮关闭对话框。

※提示这里使用白色背景是为了抓图方便实际操作中建议使用黑色背景。

(5) 在屏幕右侧工具条点击正面显示主窗口。

3.3 建立模型 3.3.1 输入构件的材料数据(1) 在主菜单中选择模型?材料和截面特性?材料或在图标菜单中选择特性?按钮调出图XN.6(a)所示对话框。

(2) 点击按钮调出材料数据对话框如图XN.6(b)所示。

(3) 在一般的材料号输入栏中确认“1”。

(4) 在设计类型选择栏确认“钢材”。

(5) 在钢材的规范栏选择“GB(S)”。

(6) 在数据库选择栏选择“16Mnq”。

(7) 点击按钮添加新材料后的材料数据对话框如图XN.6(c)所示。

(a)(c)(b) 图XN.6 添加材料3.3.2 输入构件的截面数据(1) 在材料和截面对话框中选择截面选项卡(或在图标菜单中选择特性?截面) 调出如图XN.7(a)所示添加截面对话框。

(2) 点击按钮打开如图XN.7(b)所示。

(a) (b) 图XN.7 添加截面对话框表XN.1 截面特性值表杆号名称类型截面形状H B1(B) tw tf1(tf) B2 tf2 C1下弦杆E0E2 用户 H型截面0.46 0.46 0.01 0.012 0.46 0.0122下弦杆E2E4 用户 H型截面0.46 0.46 0.012 0.02 0.46 0.023上弦杆A1A3 用户 H型截面0.46 0.46 0.012 0.02 0.46 0.02 4上弦杆A3A3’ 用户 H型截面0.46 0.46 0.02 0.024 0.46 0.024 5斜杆E0A1 用户 H型截面0.46 0.6 0.012 0.02 0.6 0.026斜杆A1E2 用户 H型截面0.46 0.44 0.01 0.012 0.44 0.012 7斜杆E2A3 用户 H型截面0.46 0.46 0.01 0.016 0.46 0.016 8斜杆A3E4 用户 H型截面0.46 0.44 0.01 0.012 0.44 0.012 9竖杆用户 H型截面0.46 0.26 0.01 0.012 0.26 0.01210横梁用户 H型截面0.012 0.024 0.24 0.024 1.29 0.2411纵梁用户 H型截面1.29 0.24 0.01 0.016 0.24 0.01612下平纵联斜杆用户 T型截面*10.16 0.18 0.01 0.0113桥门架上下横撑和短斜撑用户双角钢截面*10.08 0.125 0.01 0.01 0.01 14桥门架长斜撑用户双角钢截面*10.1 0.16 0.01 0.01 0.0115横联上横撑用户双角钢截面*10.1 0.1 0.01 0.01 0.0116横联下横撑和斜杆用户双角钢截面*10.08 0.125 0.01 0.01 0.0117上平纵联斜杆用户 T型截面*10252 0.24 0.012 0.01218纵梁间水平斜杆用户角钢*10.1 0.1 0.01 0.0119纵梁间横向连接用户角钢*10.09 0.09 0.009 0.00920制动撑架用户 T型截面*10.16 0.18 0.01 0.01 注标注*1截面修改偏心为“中上部” (3) 在数据库/用户选项卡的截面号输入栏确认“1”。

(4) 在名称输入栏输入“下弦杆E0E2”。

(5) 在截面形状中选择“工字形截面”。

(6) 在用户和数据库中选择“用户”。

(7) 在H对应文本框中输入“0.46”。

(8) 在B1对应文本框中输入“0.46”。

(9) 在tw对应文本框中输入“0.01”。

(10) 在tf1对应文本框中输入“0.012”。

(11) 在B2对应文本框中输入“0.46”。

(12) 在tf2对应文本框中输入“0.012”。

(13) 其它保持默认设置点击按钮。

(14) 参考(2) (13)的步骤依次输入截面2 20 其截面特性数据详见表XN.1。

(15)对话框中会显示刚增加截面的编号、名称、类型及其形状添加截面后对话框如图XN.8所示点击材料和截面对话框中的按钮图XN.8 添加完截面后的对话框3.3.3 建立主桁架3.3.3.1 建立下弦杆(1) 在图标菜单中选择视图控制?在主窗口中显示节点号和单元号。

(2) 在屏幕右侧工具条点击打开自动对其功能。

(3) 选择主菜单模型?节点?建立节点 (或者选择图标菜单节点?)。

(4) 在屏幕左侧文本框填写如图XN.9(a)所示坐标(0 0 0) 复制次数(8) 距离(8 00) 点击按钮。

※提示数学建模形成自己的惯用整体坐标系是个好习惯本实例采用纵向为X轴横向为Y轴竖向为Z轴。

(5) 选择主菜单模型?单元?建立 (或者选择图标菜单单元?)。

(6) 在屏幕左侧设置如图XN.9(b)所示单元类型选择一般梁/变截面梁材料名称选择1:16Mnq 截面名称选择1:下弦杆E0E2 Beta角选择90 选中交叉分隔中的节点和单元复选框用鼠标依次拾取节点1和3。

(7) 更改截面号为2 名称为2:下弦杆E2E4 用鼠标依次拾取节点3和5。

(8) 在工具条中点击全选图标按钮选择主菜单模型?单元?镜像 (或者选择图标菜单单元?)。

设置如图XN.9(c)所示形式为复制镜像平面为y-z平面x:32m 其它默认点击按钮。

(a) (b) (c)图XN.9 建立下弦杆※提示在MIDAS软件中为了便于用户理解和输入引进了构件β角的概念。

当梁单元的单元坐标系x轴和整体坐标系的X轴平行时单元的β角为整体坐标系Z轴和单元坐标系z轴的夹角夹角的符号由绕单元坐标系x轴旋转的右手法则决定。

下弦杆β角计算如图XN.10所示。

Y 整体坐标系横向Z 整体坐标系竖向y 单元坐标系横向z 单元坐标系竖向β 下弦杆单元坐标系β角90角计算XN.10 下弦杆※提示在用镜像功能填写镜象平面坐标的时候可以通过两种方式来完成 (1)点击所需镜像平面对应的文本框直接填写对称平面坐标数值 (2)点击所需镜像平面对应的文本框后在主窗口结构中挪动鼠标文本框中的数值会随着鼠标处节点坐标的变化而变化点击对称平面上任一点的即可得到所需坐标值这样就省去了计算坐标值的麻烦。

3.3.3.2 建立上弦杆(1) 在工具条中点击窗口选择按钮选取中间7个节点(节点号为2~8)。

※提示在用窗口选择方式选取对象的时候需要用鼠标点击对角线的两点确定一个矩形框点取一点后先放开鼠标键再去确定下一点。

MIDAS中选择方向不一样所选取对象会所有不同 (1)从左往右选择选择区域以边界矩形框和两条对角线表示见图XN.11(a) 全部被包围的对象才会被选中与矩形框相交的对象不会选中 (2)从右往左选择选择区域仅以边界矩形框表示见图XN.11(b) 被包围在矩形框内以及与矩形框相交的对象都会被选中。

该处选择的是节点只求选择区域包围2~8节点两个选择方向均可。

(a)(b)图XN.11 MIDAS的窗口选择方式(2) 选择主菜单模型?节点?复制和移动 (或者选择图标菜单节点?) 复制节点在主窗口左侧出现复制节点设置选项如图XN.12所示设置如下形式选择复制等间距设置为(0 011) 复制次数为(1) 其它默认点击按钮。

图XN.12 复制节点设置选项(3) 选择主菜单模型?单元?建立 (或者选择图标菜单单元?)。

(4) 参考图XN.9(b) 单元类型选择一般梁/变截面梁材料名称选择1:16Mnq 截面名称选择3:上弦杆A1A3 Beta角选择90 选中交叉分隔中的节点和单元复选框在主窗口中用鼠标依次拾取节点10和12 拾取节点14和16。

(5) 截面名称选择4:上弦杆A3A3’ 用鼠标依次拾取节点12和14。

3.3.3.3 建立斜杆(1) 截面名称选择5:斜杆E0A1 用鼠标依次拾取节点1和10。

(2) 截面名称选择6:斜杆A1E2 用鼠标依次拾取节点10和3。

相关文档
最新文档