北师大版八年级数学上册(课件)42一次函数与正比例函数
合集下载
北师大版八年级数学上册课件 4.4 一次函数的应用(共28张PPT)

5. 某地长途汽车客运公司规定旅客可随身携带一定质 量的行李,如果超过规定,则需要购买行李票,行李 票费用y元与行李质量的关系如图:
(1)旅客最多可免费携带多少 千克行李?
30千克
⑵超过30千克ห้องสมุดไป่ตู้,每千克需 付多少元?
0。2元
课堂小结
1、确定正比例函数 y kx的表达式: 只需要正比例函数 y kx的一组变量对应值
新知探究
Ⅱ、在弹性限度内,弹簧的长度y(厘米)是所挂物 体质量x(千克)的一次函数。一根弹簧不挂物体时 长14.5厘米;当所挂物体的质量为3千克时,弹簧 长16厘米。写出y与x之间的关系式,并求当所挂 物体的质量为4千克时弹簧的长度。
解:设一次函数的表达式为:ykxb
x=0时,y=14.5;x=3时,y=16
4.4 一次函数的应用〔1〕
新知探究 Ⅰ、某物体沿一个斜坡下滑,它的速度v(米/秒)与 其下滑时间t(秒)的关系如下图。 (1)写出v与t之间的关系式;
解:正比例函数的表达式为:vkt
当t=2时,v=5
5t2
(2, 5)
k5 2
v 5t 2
确定正比例函数的表达式需要几个条件?
要求出k值,只需要一个点的坐标。
引例、由于持续高温和连日无雨,某水库的蓄水量随时间的增 加而减少。干旱持续时间t(天)与蓄水量v(万米3)的关系如下图, 答复以下问题: (2)蓄水量小于400万米3时,将发出严重干旱警报,干旱多少 天后将发出严重干旱警报? (3)按照这个规律,预计持续 多少天水库将干涸?
解〔1〕因为一次函数解析式为y=-20x+1200 蓄水量小于400万米3,即y=400时, -20x+1200=400 得
解:设干旱持续时间t与蓄水量v的关系式为y=kx+b 由图上可知:当x=0时,y=1200;当x=60时,y=0;
北师版初中八年级上册数学精品授课课件 第四章 一次函数 2 一次函数与正比例函数

(2)由圆的面积公式,得y=πx2, y 不是 x 的正比例函数,也不是x的一次函数;
(3)某水池有水15m3,先打开进水管进水,进水的速度为 5m3/h,x h后这个水池内有水ym3.
(3)由y=15+5x得, y是x的一次函数,但不是x的正比例函数.
1. 下列函数中,是一次函数但不是正比例函数的是( C )
若两个变量x,y间的对应关系可以表示成 y=kx+b(k,b为常数,k≠0) 的形式,则称y是x的一次函数.
特别地,当b=0时,称y是x的正比例函数。
①k是常数,k≠0; y=kx+b的结构特征:
② x的次数是1.
正比例函数和一次函数有什么关系?
一次函数: y=kx+b(k,b为常数,k≠0) 正比例函数: y=kx(k为常数,k≠0) 正比例函数是一种特殊的一次函数
(2)y=5x x2 ,不是一次函数,也不是正比例函数.
5. 某电信公司手机的A类收费标准如下:不管通话时间多长,每部
手机每月必须缴月租费12元,另外,通话费按0.2元/min计。
(1)写出每月应缴费用y(元)与通话时间x(min)之间的关系式; (2)某手机用户这个月通话时间为180min,他应缴费多少元? (3)如果该手机用户本月预缴了100元的话费,那么该用户本月可通
解:(1)当每次收入超过800元但不超过4000元时, y=(x-800)×20%,即y=0.2x-160;
(2)某人某次取得劳务报酬3500元,他这笔所得应预扣预缴税款多少元?
(2)当x=3500时,y =0.2×3500-160= 540(元);
(3)如果某人某次预扣预缴劳务报酬所得税600元,那么此 人这次取得的劳务报酬是多少元?
(1)写出每月应缴费用y(元)与通话时间x(min)之间的关系式; (2)某手机用户这个月通话时间为180min,他应缴费多少元? (3)如果该手机用户本月预缴了100元的话费,那么该用户本月可通
(3)某水池有水15m3,先打开进水管进水,进水的速度为 5m3/h,x h后这个水池内有水ym3.
(3)由y=15+5x得, y是x的一次函数,但不是x的正比例函数.
1. 下列函数中,是一次函数但不是正比例函数的是( C )
若两个变量x,y间的对应关系可以表示成 y=kx+b(k,b为常数,k≠0) 的形式,则称y是x的一次函数.
特别地,当b=0时,称y是x的正比例函数。
①k是常数,k≠0; y=kx+b的结构特征:
② x的次数是1.
正比例函数和一次函数有什么关系?
一次函数: y=kx+b(k,b为常数,k≠0) 正比例函数: y=kx(k为常数,k≠0) 正比例函数是一种特殊的一次函数
(2)y=5x x2 ,不是一次函数,也不是正比例函数.
5. 某电信公司手机的A类收费标准如下:不管通话时间多长,每部
手机每月必须缴月租费12元,另外,通话费按0.2元/min计。
(1)写出每月应缴费用y(元)与通话时间x(min)之间的关系式; (2)某手机用户这个月通话时间为180min,他应缴费多少元? (3)如果该手机用户本月预缴了100元的话费,那么该用户本月可通
解:(1)当每次收入超过800元但不超过4000元时, y=(x-800)×20%,即y=0.2x-160;
(2)某人某次取得劳务报酬3500元,他这笔所得应预扣预缴税款多少元?
(2)当x=3500时,y =0.2×3500-160= 540(元);
(3)如果某人某次预扣预缴劳务报酬所得税600元,那么此 人这次取得的劳务报酬是多少元?
(1)写出每月应缴费用y(元)与通话时间x(min)之间的关系式; (2)某手机用户这个月通话时间为180min,他应缴费多少元? (3)如果该手机用户本月预缴了100元的话费,那么该用户本月可通
北师大版八年级数学上册ppt课件4.2 一次函数与正比例函数

地理课件:/kejian/dili/
PPT素材:/sucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
个人简历:/jianli/
教案下载:/jiaoan/
-6-
10.( 教材母题变式 )在弹性限度内,弹簧的长度y( cm )是所挂物体质量x( kg )的一次函数.
一根弹簧不挂物体时长15 cm;当所挂物体的质量为5 kg时,弹簧长20 cm.所挂物体质量为8
kg时,弹簧的长度是 23 cm.
第四章
4.2 一次函数与正比例函数
知识要点基础练
综合能力提升练
地理课件:/kejian/dili/
PPT素材:/sucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
个人简历:/jianli/
教案下载:/jiaoan/
A.±1
B.-1
C.1
D.2
2
【变式拓展】如果 y=( m-1 ) 2- +3 是一次函数,那么 m 的值是
( B )
A.1
B.-1
C.±1
D.± 2
-2-
第四章
4.2 一次函数与正比例函数
知识要点基础练
综合能力提升练
拓展探究突破练
-3-
3.甲、乙两地相距880千米,一辆汽车以平均每小时110千米的速度从甲地开往乙地,t小时后
历史课件:/kejian/lishi/
4.2 一次函数与正比例函数
知识要点基础练
综合能力提升练
Hale Waihona Puke 5.下列关于 x 的函数中,是正比例函数的是( B )
A.y=-2x+5
PPT素材:/sucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
个人简历:/jianli/
教案下载:/jiaoan/
-6-
10.( 教材母题变式 )在弹性限度内,弹簧的长度y( cm )是所挂物体质量x( kg )的一次函数.
一根弹簧不挂物体时长15 cm;当所挂物体的质量为5 kg时,弹簧长20 cm.所挂物体质量为8
kg时,弹簧的长度是 23 cm.
第四章
4.2 一次函数与正比例函数
知识要点基础练
综合能力提升练
地理课件:/kejian/dili/
PPT素材:/sucai/
PPT图表:/tubiao/
PPT教程: /powerpoint/
个人简历:/jianli/
教案下载:/jiaoan/
A.±1
B.-1
C.1
D.2
2
【变式拓展】如果 y=( m-1 ) 2- +3 是一次函数,那么 m 的值是
( B )
A.1
B.-1
C.±1
D.± 2
-2-
第四章
4.2 一次函数与正比例函数
知识要点基础练
综合能力提升练
拓展探究突破练
-3-
3.甲、乙两地相距880千米,一辆汽车以平均每小时110千米的速度从甲地开往乙地,t小时后
历史课件:/kejian/lishi/
4.2 一次函数与正比例函数
知识要点基础练
综合能力提升练
Hale Waihona Puke 5.下列关于 x 的函数中,是正比例函数的是( B )
A.y=-2x+5
北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT课件

体会数学应用的广泛性.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.
导入新知
…
康乃馨
6 元/支
君子兰
8 元/支
…
包装费
20 元/次
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
若小美想给妈妈买康乃馨.设买花的费用z元,买花及包装的
总费用y元,所买康乃馨数量x支.
(1)题中有几个量,哪些是常量?哪些是变量?有哪些等
量关系? 题中有7个量,48、6、8、20是常量,
次收入超过800元但不超过4000元的,预扣预缴税款=(每次收入800)×20%;……如某人取得劳务报酬2000元,他这笔所得应预扣
预缴税款(2000-800)×20%=240(元).
(3)如果某人某次预扣预缴劳务报酬所得税600元,那么此人这次取
得的劳务报酬是多少元?
(3)因为(4000-800)×20%=640(元),600<640,
z、y、x是变量,等量关系:z=6x,y=6x+20.
导入新知
明天是小美妈妈的生日,小Байду номын сангаас坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
导入新知
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.
导入新知
…
康乃馨
6 元/支
君子兰
8 元/支
…
包装费
20 元/次
明天是小美妈妈的生日,小美坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
此时小美爸爸提出了一些数学问题,你能帮忙解决吗?
若小美想给妈妈买康乃馨.设买花的费用z元,买花及包装的
总费用y元,所买康乃馨数量x支.
(1)题中有几个量,哪些是常量?哪些是变量?有哪些等
量关系? 题中有7个量,48、6、8、20是常量,
次收入超过800元但不超过4000元的,预扣预缴税款=(每次收入800)×20%;……如某人取得劳务报酬2000元,他这笔所得应预扣
预缴税款(2000-800)×20%=240(元).
(3)如果某人某次预扣预缴劳务报酬所得税600元,那么此人这次取
得的劳务报酬是多少元?
(3)因为(4000-800)×20%=640(元),600<640,
z、y、x是变量,等量关系:z=6x,y=6x+20.
导入新知
明天是小美妈妈的生日,小Байду номын сангаас坐爸爸的车以48 km/h的速度去
花店为妈妈准备生日礼物.很快到了花店,花店里琳琅满目:
康乃馨6元/支,君子兰8元/支,……包装费为20元/次.
4.2一次函数与正比例-正比例函数的图象与性质+课件+2023-2024学年北师大版数学八年级上册

5.写出一个图象经过第二、四象限的正比例函数___y_=__-__3_x_(答__案__不___ _唯__一__). 6.在正比例函数y=(m+8)x中,如果y的值随自变量x的增大而增大, 那么m的取值范围是_m__>__-__8_.
7.【空间观念】已知关于x的正比例函数y=(m+2)x. (1)当m为何值时,函数图象经过第一、三象限? 解:因为正比例函数y=(m+2)x的图象经过第一、三象限,所以m+2 >0.解得m>-2. 所以当m>-2时,函数图象经过第一、三象限.
B.15 D.-53
3.关于函数y=
1 3
x,下列结论正确的是(
C
)
A.函数图象经过点(1,3)
B.函数图象经过第二、四象限
C.y随x的增大而增大
D.不论x为何值,总有y>0
4.已知P1(x1,y1),P2(x2,y2)是正比例函数y=-2x图象上的两点,若 x1>x2,则y1与y2的大小关系是( B ) A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定
(2)当m为何值时,y随x的增大而减小? 解:因为正比例函数y=(m+2)x中y随着x的增大而减小,所以m+2< 0.解得m<-2. 所以当m<-2时,y随x的增大而减小.
(3)当m为何值时,点(1,3)在该函数的图象上? 解:因为点(1,3)在正比例函数y=(m+2)x的图象上,所以3=(m+ 2)×1.所以m=1. 所以当m=1时,点(1,3)在该函数的图象上.
(3)m为何值时,点(1,3)在该函数图象上. 解:因为点(1,3)在该函数图象上, 所以 2m+4=3.解得 m=-12.
11.在y=k1x中,y随x的增大而减小,k1k2<0,则在同一平面直角坐 标系中,y=k1x和y=k2x的图象大致为( B )
北师大版八年级数学上册 (一次函数与正比例函数)一次函数教育教学课件

当x=-2时,y=5×(-2)+2=-8,
所以当x=-2时,y的值是-8.
知识点 3
答案
根据条件列一次函数的关系式
知识点 3
根据条件列一次函数的关系式
7.如图,在△ABC中,BC边的长是10,BC边上的高是6,点D在BC边上运动(点D不与点B,C重合).设BD的长为x,则
△ACD的面积y与x之间的函数关系式为
解得m=1,
所以当m=1时,y是x的正比例函数.
答案
答案
7.[2019四川巴中期末]某公司计划十月份组织员工到外地旅游,人数在10~30人之间.甲、乙两个旅行社的服务质
量相同,且价格都是每人500元.甲旅行社表示可先免去两位游客的旅游费用,其余人九折优惠,乙旅行社表示给予
每位游客八折优惠.如果你是这次出游的组织者,当去多少人时两家旅行社的总费用相同?当去17人时,选哪家旅
答案
,自变量x的取值范围是
.
知识点 3
根据条件列一次函数的关系式
8.(1)已知等腰三角形的周长为30,底边长为y,腰长为x,试写出y与x之间的函数关系式;
(2)已知一根蜡烛长20厘米,点燃后匀速燃烧,每分钟燃烧0.2厘米,燃烧x分钟后剩下的蜡烛长y厘米,试写出y与x之
间的函数关系式;
(3)已知某种商品每件进价为100元,售出1件获利20元,若售出x件的利润为y元,试写出y与x之间的函数关系式.
B.y是x的一次函数
C.y与x没有函数关系
D.以上都不正确
答案
)
3.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为常数)的“联盟数”.若“联盟数”为[1,m-5]的一次函数是正比例函数,则m
的值为
.
所以当x=-2时,y的值是-8.
知识点 3
答案
根据条件列一次函数的关系式
知识点 3
根据条件列一次函数的关系式
7.如图,在△ABC中,BC边的长是10,BC边上的高是6,点D在BC边上运动(点D不与点B,C重合).设BD的长为x,则
△ACD的面积y与x之间的函数关系式为
解得m=1,
所以当m=1时,y是x的正比例函数.
答案
答案
7.[2019四川巴中期末]某公司计划十月份组织员工到外地旅游,人数在10~30人之间.甲、乙两个旅行社的服务质
量相同,且价格都是每人500元.甲旅行社表示可先免去两位游客的旅游费用,其余人九折优惠,乙旅行社表示给予
每位游客八折优惠.如果你是这次出游的组织者,当去多少人时两家旅行社的总费用相同?当去17人时,选哪家旅
答案
,自变量x的取值范围是
.
知识点 3
根据条件列一次函数的关系式
8.(1)已知等腰三角形的周长为30,底边长为y,腰长为x,试写出y与x之间的函数关系式;
(2)已知一根蜡烛长20厘米,点燃后匀速燃烧,每分钟燃烧0.2厘米,燃烧x分钟后剩下的蜡烛长y厘米,试写出y与x之
间的函数关系式;
(3)已知某种商品每件进价为100元,售出1件获利20元,若售出x件的利润为y元,试写出y与x之间的函数关系式.
B.y是x的一次函数
C.y与x没有函数关系
D.以上都不正确
答案
)
3.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为常数)的“联盟数”.若“联盟数”为[1,m-5]的一次函数是正比例函数,则m
的值为
.
北师大版八年级上册数学一次函数与正比例函数课件

y=50-5x,是一次函数。 (2)耗油量Q(升)与行驶时间x(时) 之间的解析式. 并判断它是什么函数
耗油量Q=5x,是正比例函数。
例2:
某电信公司手机的A类收费标准如下:不管通话时间 多长,每部手机每月必须缴月租费12元,另外,通话费 按0.2元/min计;B类收费标准如下:没有月租费,但通 话费按0.25元/min计。
一次函数与正比例函数
情境1:
某弹簧的自然长度为3cm,在弹性限度内,所挂物
体的质量m每增加1千克,弹簧长度l增加0.5cm,
(21)你计能算写所出挂弹物簧体长的度质量l(c分m别)与为物1体千质克量、m2千(kg克)之、间3千的关 系克式、吗4千?克、 5千克时的长度,并填入下表:
m/千克 0
1
2
110
情境3:
把一个长10cm、宽5cm的长方形的长减少acm,宽 不变,长方形的面积s(cm2)随a的值而变化。
(1)你能列出s与a的关系式吗?
a/cm s/cm2
0 12 3 4 5 50 45 40 35 30 25
(2)你能列出s与a的关系式吗?
❖ 视察下列表格,你有什么发现吗?
m/千克 0 1 2 3 4 5 l /cm 3 3.5 4 4.5 5 5.5 x/月份 0 1 2 3 4 5 y/存款数 50 62 74 86 98 110
(1)写出每月应缴费yA(元)与通话时间x(min)之 间的关系式以及每月应缴费yB(元)与通话时间x(min) 之间的关系式;
(1)yA=12+0.2x
yB=0.25x
例2:
某电信公司手机的A类收费标准如下:不管通话时间 多长,每部手机每月必须缴月租费12元,另外,通话费 按0.2元/min计;B类收费标准如下:没有月租费,但通 话费按0.25元/min计.
耗油量Q=5x,是正比例函数。
例2:
某电信公司手机的A类收费标准如下:不管通话时间 多长,每部手机每月必须缴月租费12元,另外,通话费 按0.2元/min计;B类收费标准如下:没有月租费,但通 话费按0.25元/min计。
一次函数与正比例函数
情境1:
某弹簧的自然长度为3cm,在弹性限度内,所挂物
体的质量m每增加1千克,弹簧长度l增加0.5cm,
(21)你计能算写所出挂弹物簧体长的度质量l(c分m别)与为物1体千质克量、m2千(kg克)之、间3千的关 系克式、吗4千?克、 5千克时的长度,并填入下表:
m/千克 0
1
2
110
情境3:
把一个长10cm、宽5cm的长方形的长减少acm,宽 不变,长方形的面积s(cm2)随a的值而变化。
(1)你能列出s与a的关系式吗?
a/cm s/cm2
0 12 3 4 5 50 45 40 35 30 25
(2)你能列出s与a的关系式吗?
❖ 视察下列表格,你有什么发现吗?
m/千克 0 1 2 3 4 5 l /cm 3 3.5 4 4.5 5 5.5 x/月份 0 1 2 3 4 5 y/存款数 50 62 74 86 98 110
(1)写出每月应缴费yA(元)与通话时间x(min)之 间的关系式以及每月应缴费yB(元)与通话时间x(min) 之间的关系式;
(1)yA=12+0.2x
yB=0.25x
例2:
某电信公司手机的A类收费标准如下:不管通话时间 多长,每部手机每月必须缴月租费12元,另外,通话费 按0.2元/min计;B类收费标准如下:没有月租费,但通 话费按0.25元/min计.
北师大版数学八年级上册一次函数与正比例函数课件

思路点拨:注意正比例函数是特殊的一次函数.
举一反三
3. 下列问题中,成正比例函数关系的是( C ) A.人的身高与体重 B.正方形的面积与它的边长 C.买同一种练习本所需的钱数和所买的本数 D.从甲地到乙地,所用的时间与行驶的速度
典例精析
【例4】函数y=(2-a)x+b-1是正比例函数的条件是( C )
第四章 一次函数
2 一次函数与正比例函数
目录
01 本课目标 02 课堂演练
本课目标 1.掌握一次函数和正比例函数的概念,能举例说明什么是一次函 数、正比例函数.
2.能根据所给的条件写出一次函数的表达式.
知识重点 知识点一:一次函数的概念 若两个变量x,y间的对应关系可以表示成__y_=_k_x_+_b__(k,b为常数, k≠0)的情势,则称y是x的一次函数.
对点范例 1.下列函数:①y=7x;②y=πx;③y=x2;④y= 其中是一次函数的有__①__②__⑤___(数的概念 若两个变量x,y间的对应关系可以表示成___y_=_k_x___(k为常数, k≠0)的情势,则称y是x的正比例函数.
对点范例
A.①⑤
B.①④⑤
C.②⑤
D.②④⑤
③y=-2x2;④ A)
思路点拨:牢记一次函数的定义是解题的关键.
举一反三
2. 若y=(k-2)xk2-3+4是关于x的一次函数,则k的值为( B )
A. 2
B. -2
C. 2或-2
D.不能确定
典例精析 【例3】下列说法不正确的是( D ) A. 一次函数不一定是正比例函数 B. 不是一次函数就一定不是正比例函数 C. 正比例函数是特殊的一次函数 D.不是正比例函数就一定不是一次函数
举一反三
3. 下列问题中,成正比例函数关系的是( C ) A.人的身高与体重 B.正方形的面积与它的边长 C.买同一种练习本所需的钱数和所买的本数 D.从甲地到乙地,所用的时间与行驶的速度
典例精析
【例4】函数y=(2-a)x+b-1是正比例函数的条件是( C )
第四章 一次函数
2 一次函数与正比例函数
目录
01 本课目标 02 课堂演练
本课目标 1.掌握一次函数和正比例函数的概念,能举例说明什么是一次函 数、正比例函数.
2.能根据所给的条件写出一次函数的表达式.
知识重点 知识点一:一次函数的概念 若两个变量x,y间的对应关系可以表示成__y_=_k_x_+_b__(k,b为常数, k≠0)的情势,则称y是x的一次函数.
对点范例 1.下列函数:①y=7x;②y=πx;③y=x2;④y= 其中是一次函数的有__①__②__⑤___(数的概念 若两个变量x,y间的对应关系可以表示成___y_=_k_x___(k为常数, k≠0)的情势,则称y是x的正比例函数.
对点范例
A.①⑤
B.①④⑤
C.②⑤
D.②④⑤
③y=-2x2;④ A)
思路点拨:牢记一次函数的定义是解题的关键.
举一反三
2. 若y=(k-2)xk2-3+4是关于x的一次函数,则k的值为( B )
A. 2
B. -2
C. 2或-2
D.不能确定
典例精析 【例3】下列说法不正确的是( D ) A. 一次函数不一定是正比例函数 B. 不是一次函数就一定不是正比例函数 C. 正比例函数是特殊的一次函数 D.不是正比例函数就一定不是一次函数
4.2 一次函数与正比例函数 北师大版数学八年级上册知识考点梳理课件

重
难
题
型
突
破
思路点拨
返回目录
4.2 一次函数与正比例函数
返回目录
解题通法 根据正比例函数的定义确定字母的值时 ,
重
难
题 需使比例系数和自变量的指数同时符合条件.
型
突
破
清
单
解 入 28 元,如果超额生产一个零件,增加收入 1.5元. 写
读 出该工人在超额完成的情况下一天的收入 y(元)与他生产
的零件个数 x(个)的函数关系式:______________.
[答案] y=1.5x-2
4.2 一次函数与正比例函数
返回目录
重 ■题型 应用函数的定义确定字母的值
难
−
4.2 一次函数与正比例函数
● 考点清单解读
● 重难题型突破
4.2 一次函数与正比例函数
考
点
清
单
解
读
返回目录
■考点一 一次函数与正比例函数的定义
若两个变量 x,y 间的对应关系可以表示成
定义
y=kx+b(k,b 为常数,k≠0) 的形式, 则称 y
是 x 的一次函数.特别地,当 b=0 时,称 y 是 x
是不是不为 0.
4.2 一次函数与正比例函数
返回目录
下列函数 :①y = -2x + 1,②y= ,③y=
单
解 (x-3),④y=2x2+1中,一次函数有 _____ 个,正比例函
读
数有 ______ 个.
4.2 一次函数与正比例函数
考
点
清
单
解
读
[解题思路]
[答案] 3 1
难
题
型
突
破
思路点拨
返回目录
4.2 一次函数与正比例函数
返回目录
解题通法 根据正比例函数的定义确定字母的值时 ,
重
难
题 需使比例系数和自变量的指数同时符合条件.
型
突
破
清
单
解 入 28 元,如果超额生产一个零件,增加收入 1.5元. 写
读 出该工人在超额完成的情况下一天的收入 y(元)与他生产
的零件个数 x(个)的函数关系式:______________.
[答案] y=1.5x-2
4.2 一次函数与正比例函数
返回目录
重 ■题型 应用函数的定义确定字母的值
难
−
4.2 一次函数与正比例函数
● 考点清单解读
● 重难题型突破
4.2 一次函数与正比例函数
考
点
清
单
解
读
返回目录
■考点一 一次函数与正比例函数的定义
若两个变量 x,y 间的对应关系可以表示成
定义
y=kx+b(k,b 为常数,k≠0) 的形式, 则称 y
是 x 的一次函数.特别地,当 b=0 时,称 y 是 x
是不是不为 0.
4.2 一次函数与正比例函数
返回目录
下列函数 :①y = -2x + 1,②y= ,③y=
单
解 (x-3),④y=2x2+1中,一次函数有 _____ 个,正比例函
读
数有 ______ 个.
4.2 一次函数与正比例函数
考
点
清
单
解
读
[解题思路]
[答案] 3 1
北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT精品课件

零.
样
式
2200232/35//45/4
9
•
•
•
• •
例典单1例:精击写析此出处下编列各辑题母中版y与标题x之样间式的三级关二级 单击此处系式,并判断单击此
:•y单是击否此为处编x的辑母一版次文函本样数式?是否为五 四级正比编辑例函数? (1)• 二汽•级三车级 以60km/h的速度匀速级行驶,行母版 驶路程为
击 此 处 编
但m-1• ≠三0•级,四即级 m≠1,
版 文
辑
• 五级
所以m=-1.
本
母
样 式
版
4.若函数y=(m-3)x+m2-9是正比例函数,求m的值. 标
解:根据题意,得m2-9=0,
题
解得m=±3,
样 式
但m-3≠0,即m≠3,
所以m=-3.
2200232/35//45/4
18
•
•
•
• •
样 式
y=60-0.12x
2200232/35//45/4
6
•
•
•
• •
单
单
上单•(1单面)•击y击二=的此级3此+处两0处编.个5辑x编函母版数辑文关母本系样版式式标: 题样五级大两有式四级个家什三级讨么函二级论关数击此处编辑母关一系?系下,式这
击 此 处 编
(2) y=• 三60级-0.12x • 四级
辑
• 五级
本
母
一次 函数
正比例函数的概样式念
版 标
题
函数关系式的确定
样
式
2200232/35//45/4
23
5 kg 时• 三的•级四级长度,并填入下表:
4.2 一次函数与正比例函数(课件)北师大版数学八年级上册

所以y=x+2 1是一次函数,但不是正比例函数.
(3)y=3x2-x(3x-2)
知1-练
解:因为y=3x2-x(3x-2)=2x,k=2,b=0,
所以它是一次函数,也是正比例函数.
(4)
y=-
3 x
因为 y=- 3x中, - 3x不是整式,所以它不是一次函数 .
知1-练
方法点拨:判断函数是否为一次函数的方法 : 先 看函数关系式是否是整式的形式,再 将函数关系式进行恒等变形,然后看 它是否符合一次函数关系式 y=k x+b(k , b 为常数, k ≠ 0)的结构特征 .
为y=kx+b(k,b是常数,k ≠ 0).
特别提醒
知1-讲
◆一次函数y=kx+b(k ≠0) 的结构特征:
(1)k ≠ 0;
(2)自变量x的次数是1;
(3) 常数项b可以是任意实数.
◆函数是一次函数⇔函数关系式为y=kx+b(k,b
是常数,k ≠ 0).
知1-练
例1 下列函数中,哪些是一次函数?哪些又是正比例函数?
2. 一次函数与正比例函数的关系
知1-讲
(1)正比例函数y=kx(k 为常数, k ≠ 0)是一次函数y=kx+
b(k, b 为常数, k ≠ 0)中b=0的特例,即正比例函数
都是一次函数,但一次函数不一定是正比例函数.
(2)若已知y与x成正比例,则可设函数关系式为y=kx
(k ≠ 0);若已知y是x的一次函数,则可设函数关系式
知2-练
(3)一棵树现在高 50 cm,每个月长高 2 cm, x 个月 后这棵树的高度为 y( cm) .
解:由题意,得 y=2x+50, 所以 y 是 x 的一次函数,但不是 x 的正比例函数 .
(3)y=3x2-x(3x-2)
知1-练
解:因为y=3x2-x(3x-2)=2x,k=2,b=0,
所以它是一次函数,也是正比例函数.
(4)
y=-
3 x
因为 y=- 3x中, - 3x不是整式,所以它不是一次函数 .
知1-练
方法点拨:判断函数是否为一次函数的方法 : 先 看函数关系式是否是整式的形式,再 将函数关系式进行恒等变形,然后看 它是否符合一次函数关系式 y=k x+b(k , b 为常数, k ≠ 0)的结构特征 .
为y=kx+b(k,b是常数,k ≠ 0).
特别提醒
知1-讲
◆一次函数y=kx+b(k ≠0) 的结构特征:
(1)k ≠ 0;
(2)自变量x的次数是1;
(3) 常数项b可以是任意实数.
◆函数是一次函数⇔函数关系式为y=kx+b(k,b
是常数,k ≠ 0).
知1-练
例1 下列函数中,哪些是一次函数?哪些又是正比例函数?
2. 一次函数与正比例函数的关系
知1-讲
(1)正比例函数y=kx(k 为常数, k ≠ 0)是一次函数y=kx+
b(k, b 为常数, k ≠ 0)中b=0的特例,即正比例函数
都是一次函数,但一次函数不一定是正比例函数.
(2)若已知y与x成正比例,则可设函数关系式为y=kx
(k ≠ 0);若已知y是x的一次函数,则可设函数关系式
知2-练
(3)一棵树现在高 50 cm,每个月长高 2 cm, x 个月 后这棵树的高度为 y( cm) .
解:由题意,得 y=2x+50, 所以 y 是 x 的一次函数,但不是 x 的正比例函数 .
北师大版数学八年级上册一次函数与正比例函数课件

特别地,当b=0时,称y是x的正比例函数.
正比例函数
关系式为:y=kx (k为常数,k≠0)
练习 以下函数:一次函数有哪些?正比例
函数有哪些?
(1) y 2x2 x 1
(3) y 1 x
(5)s 2t
(7) y x2 (x2 x 1)
(2) y 2 r
(4) y 1 3 x 4
(6) y x 1 5
(1)都是含有两个变量x,y的等式.其中
左边是因变量y,右边是自变量x; (2)自变量x的系数都不为0; (3)自变量和因变量的次数都是一次的.
若两个变量 x,y间的对应关系可以表示成
y=kx+b(k, b为常数,k≠0)的情势,则称y是x
的一次函数.
一次函数
关系式为:y=kx+b (k,b为常数,k≠0)
(8) y kx
练习
若y=(m-2)x+ m2 - 4是关于x的正比例函数,
则m为
;若它是关于x的一次函数,
则m为
.
练习
如图,甲乙两地相距100km,现在有一列火车从乙地 出发,以80km/h的速度向丙地行驶;设x(h)表示火车 行驶的时间,y(km)表示火车与甲地的距离,s(km)表 示火车距乙地的距离. (1)写出s与x之间的关系式,并判断s是否是x的一次 函数?是否为正比பைடு நூலகம்函数?
第四章 一次函数
4.2 一次函数与正比例函数
温故知新
什么叫函数?函数的表达方式有哪些?
在某个变化过程中,有两个变量x 和y,对 于变量x的每一个值,变量y都有唯一的值与 它对应,那么我们称y是x的函数,其中x是自 变量,y是因变量. 函数有图象、表格、关系式三种表达方式.
八年级数学北师大版上册课件:第4章 2.一次函数与正比例函数(共14张PPT)

11.某人购进一批苹果,到集贸市场零售,已知卖出的苹果的数量 x 与售价 y
之间的关系如下表:
数量 x(千克) 1
2
3
4
5
6
售价 y(元) 2+0.1 4+0.2 6+0.3 8+0.4 10+0.5 12+0.6
则 y 与 x 的函数关系是 y=2.1x .
13.“黄金 1 号”玉米种子的价格为 5 元/ kg.如果一次购买 2 kg 以上的种子,
【思路分析】由题意可知,y 甲=25×购买毛笔的支数+5×(购买书法练习本 数-购买毛笔的支数).y 乙=(25×购买毛笔的支数+5×购买的书法练习 本)×90%.
【规范解答】(1)y 甲=25×10+5(x-10)=250+5x-50=5x+200.y 乙=(25×10 +5x)×90%=225+4.5x.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/142021/9/14Tuesday, September 14, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/142021/9/142021/9/149/14/2021 5:42:43 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/142021/9/142021/9/14Sep-2114-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/142021/9/142021/9/14Tuesday, September 14, 2021
5x,0≤x≤2
4x+2,x>2 . (3)∵30>10,∴小张一次购买种子的数量超过 2 kg,∴30=4x+2,解得 x= 7.答:小张购买了 7 k两种手机上网计费方式:方式 A 以每分钟 0.1 元的价格按上网时间收费;方式 B 收取 20 元的月租费,然后以每分钟 0.06 元的价格按上网时间计费,设顾客小张一个月上网的时间共有 x 分钟,上网 费用为 y 元. (1)分别写出小张按 A、B 两种方式计费时的上网费用 y(元)与上网时间 x(分钟) 之间的函数关系式,并指明分别属于哪种函数类型; (2)小张估计自己一个月的上网时间约为 2 小时,他应选用哪种上网计费方 式? (3)当一个月内上网时间为多少分钟时,使用两种计费方式的费用相同? (4)小李给自己预设手机上网费用为 80 元,他应选择哪种方式?
北师大版八年级数学上册第四章一次函数一次函数与正比例函数课件

5. 小李购进一批香蕉,到集贸市场零售,已知卖出的香蕉重量x与收入y的关 系如下表所示:
(1)求y与x的函数关系式,并指出y是不是x的一次函数; (2)求当卖出的香蕉重量是2.5千克时的收入. (1)y=2x+0 1x=2 1x,这个函数是一次函数. (2)当x=2 5时,y=2.1×2.5=5.25(元).
; (3)矩形的周长为30 cm,其面积y(cm2)与一条边长x(cm)之间的关系: y=-x2+15x,y不是x的一次函数,也不是x的正比例函数 ;
(4)某水果店里香蕉的单价为4.5元/千克,小王去该水果店购买香蕉需要付出的 钱款总额y(元)与购买香蕉的质量x(千克)之间的关系:
y=4.5x,y是x的一次函数,也是x的正比例函数 . 8. 容积为800 L的水池内已经蓄水200 L,若每分钟注入的水量是15 L,设池内 的水量为Q L,蓄水时间为t min. (1)写出Q(L)与t(min)之间的函数关系式; (2)注水多长时间可以把水池注满? (3)当注水时间为0 3 h时,池内水量是多少? (1)Q=15t+200. (2)当Q=800时,15t+200=800,所以t=40.即注水40 min可以把水池注满. (3)t=0.3 h=18 min,所以Q=15×18+200=470(L).
ห้องสมุดไป่ตู้
D B
A C -1
【提升训练】 7. 写出下列各题中y与x之间的关系式,y是x的一次函数吗?是正比例函数吗? (1)一辆汽车以60 km/h的速度匀速行驶,行驶路程y(km)与时间x(h)之间的关 系:y=60x,y是x的一次函数,也是x的正比例函数 ; (2)某辆汽车油箱中原有汽油100 L,汽车每行驶50 km耗油9 L,油箱剩余油量 y(L)与汽车行驶路程x(km)之间的关系: