固态相变B(09)答案

合集下载

固态相变B09答案

固态相变B09答案

一.填空题(每空1分,共10分)1、在钢的各种组织中,奥氏体的比容最小(选填大还是小)。

可利用这一点调整残余奥氏体的量,以达到减少(选填减少还是增大)淬火工件体积变化的目的。

2、化学热处理的基本过程是——分解————、、———吸收———、————扩散————。

2、钢的淬透性主要取决于——临界淬火冷却速度———,钢的淬硬性主要取决于————含碳量—。

3、贝氏体主要有_上贝氏体__和__下贝氏体__两种,其中 _下_贝氏体强韧性好。

二.单项选择题(每题2分,共20分,将答案填入下表)A.氧化B.脱碳C.过热D.过烧2、防止或减小高温回火脆性的较为行之有效的方法是()A.回火后缓冷B.回火后空冷C.回火后水冷或油冷D.回火后保温3、下列对珠光体团的描述中正确的是:()A.珠光体团就是铁素体和渗碳体的混合物B.珠光体团就是由一层(片)铁素体和一层(片)渗碳体所组成的区域C.一个奥氏体晶粒所占区域转变成珠光体后。

就称为珠光体团D.珠光体中由层(片)方向大致相同的区域称为珠光体团4、某钢的A C3为780℃,如在820℃保温并随炉冷却。

此工艺最有可能属于A.完全退火B.再结晶退火C.扩散退火D.球化退火5、对奥氏体实际晶粒度的描述中不正确的是:()A.某一热处理加热条件下所得到的晶粒尺寸B.奥氏体实际晶粒度比起始晶粒度大C.加热温度越高实际晶粒度也越大D.奥氏体实际晶粒度与本质晶粒度无关6、在A1温度以下发生的P转变,奥氏体与铁素体界面上的碳浓度___奥氏体与渗碳体界面上碳浓度,引起奥氏体中的碳的扩散。

A.低于B.高于C.等于D.小于等于7、在A1下,_____的过冷奥氏体最稳定。

A.亚共析钢B.共析钢C.过共析钢8、贝氏体转变时,由于温度较高,会存在____的扩散。

A.铁原子B.碳原子C.铁和碳原子D.合金元素9、某些钢淬火后在500~650℃回火后硬度又增加的现象称为____ 。

A.二次硬化B.回火抗性C.二次淬火D.孪晶马氏体反稳定化10、铝合金Al—Cu在一般情况下,其时效次序为____。

第九章固相相变习题与解答1、何谓一级相变?何谓二级相变?各

第九章固相相变习题与解答1、何谓一级相变?何谓二级相变?各

第九章固相相变习题与解答1、何谓一级相变?何谓二级相变?各有何特征?解:一级相变:体系由一相变为另一相时,如两相的化学势相等但化学势的一级偏微商(一级导数)不相等的相变称为一级相变。

其特点是:有相变潜热,并伴随有体积改变。

二级相变:相变时两相化学势相等,其一级偏微熵也相等,而二级偏微熵不等。

其特点是:无相变潜热,无体积的不连续性,只有Cp、α、β的不连续有居里点或λ点2、何谓马氏体相变?马氏体相变有何特点?解:马氏体相变是固态相变的基本形式之一,转变的本质是以晶格畸变为主、无成分变化、无扩散的位移型相变,是晶体及其迅速的剪切畸变。

其特点是:(1)相变无特定的温度点;(2)转变动力学速率可高达声速;(3)具有鲜明的结晶学特点。

3、简述相变亚稳区的特点及稳区形成的原因?解:特点:(1)亚稳区处于不平衡状态;(2)在亚稳区要产生新相必须过冷;(3)当加入杂质,可在亚稳区形成新相,此时亚稳区缩小。

原因:(1)气相转变液相时:以微小液滴出现,液滴很小,其饱和蒸汽压>>平面态蒸汽压,在相平衡温度下,这些微粒还未达到饱和而重新蒸发。

(2)液相转变固相时:以微小晶粒出现,也由于颗粒很小,其溶解度>>平面溶解度,在相平衡温度下,微粒重新溶解。

4、相变的驱动力是什么?解:相变过程的推动力应为过冷度、过饱和浓度或过饱和蒸汽压。

5、当一种纯液体过冷到平衡凝固温度(T0)以下时,固相与液相间的自由焓差越来越负。

试证明在温度T0附近随温度变化的关系近似地为:,式中∆H V <0为凝固潜热。

解:由得:在平衡温度时,则在时,,得证。

6、在纯液体平衡凝固温度T0以下,临界相变势垒随温度下降而减小,于是有一个使热起伏活化因子exp为极大值的温度。

试证明当T=T0/3时,exp有极大植。

(提示:利用表达式)解:由将代入则令则即求y的极值,当时,即此时y有极大值。

故当时,exp()有极大值。

7、为什么在成核一生长机理相变中,要有一点过冷或过热才能发生相变?什么情况下需过冷,什么情况下需过热?解:由热力学公式平衡时得:相变平衡温度;:相变热温度T时,系统处于不平衡状态,则,要使相变自发进行,须使,则,即必须使,才能发生相变。

固态相变原理考试试题+答案

固态相变原理考试试题+答案

固态相变原理考试试题一、(20分)1、试对固态相变地相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.(2)应变能①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格界面次之,非共格界面最小.②比容差引起地应变能(体积应变能):和新相地形状有关,,球状由于比容差引起地应变能最大,针状次之,片状最小.2、分析晶体缺陷对固态相变中新相形核地作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能.③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.④位错是快速扩散地通道.⑤位错分解为不全位错和层错,有利于形核.Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解地条件只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中地变化轨迹化学拐点:当G”=0时.即为调幅分解地化学拐点;共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.3、请说明调幅分解与形核长大型相变地区别调幅分解与形核长大型相变地区别调幅分解形核长大型变形成分连续变化,最后达到平衡始终保持平衡,不随时间变化相界面开始无明显相界面,最后才变明显始终都有明显地相界面组织形态两相大小分布规则,组织均匀,不呈球状大小不一,分布混乱,常呈球状,组织均匀性差结构结构与母相一致,成分与母相不同结构、成分均不同三、(20分)1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理(1)实验基础1 / 32 /3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);④在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).(2)基本原理在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只改变形状,通过滑移、孪生形成无畸变面.③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地平面.用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.2、阐明马氏体相变热力学地基本设想和表达式地意义答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温度,,为T<T 0时,产生核胚地温度.③ M G α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).四、(20分)1、试解释沉淀相粒子地粗化机理由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)①当时,r=r ,rt ∂∂=0粒子不长大;②当时,r <r ,rt ∂∂<0小粒子溶解;③当时,r>r ,rt ∂∂>0粒子长大;④当时,r=2r ,rt ∂∂最大,长大最快;⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使rt ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.五、(20分)已知新相地长大速度为:1、 试分析过冷度对长大速度地影响过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,2、 求生长激活能过冷度很大时,exp(-∆gv/kT)→0,公式转化为0e x p ()Q kT μλν=-3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常数N 0,得生长激活能.。

固态相变习题

固态相变习题

固态相变习题第一章自测题试卷1、固态相变是固态金属(包括金属与合金)在()和()改变时,()的变化。

2、相的定义为()。

3、新相与母相界面原子排列方式有三种类型,分别为()、()、(),其中()界面能最低,()应变能最低。

4、固态相变的阻力为()及()。

5、平衡相变分为()、()、()、()、()。

6、非平衡相变分为()、()、()、()、()。

7、固态相变的分类,按热力学分类:()、();按原子迁动方式不同分类:()、();按生长方式分类()、()。

8、在体积相同时,新相呈()体积应变能最小。

A.碟状(盘片状) B.针状 C.球状9、简述固态相变的非均匀形核。

10、简述固态相变的基本特点。

第二章自测题试卷1、分析物相类型的手段有()、()、()。

2、组织观测手段有()、()、()。

3、相变过程的研究方法包括()、()、()。

4、阿贝成像原理为()。

5、物相分析的共同原理为()。

6、扫描电镜的工作原理简单概括为:()。

7、透射电子显微镜的衬度像分为()、()、()。

第三章自测题试卷1. 根据扩散观点,奥氏体晶核的形成必须依靠系统内的():A.能量起伏、浓度起伏、结构起伏B. 相起伏、浓度起伏、结构起伏C.能量起伏、价键起伏、相起伏D. 浓度起伏、价键起伏、结构起伏2. 奥氏体所具有的性能包括:()A.高强度、顺磁性、密度高、导热性差;B.高塑性、顺磁性、密度高、导热性差;C.较好热强性、高塑性、顺磁性、线膨胀系数大;D.较好热强性、高塑性、铁磁性、线膨胀系数大。

3. 影响奥氏体转变的影响因素包括()、()、()、()。

4.控制奥氏体晶粒大小的措施有:(),(),(),()。

5.奥氏体是Fe-C合金中的一种重要的相,一般是指(),碳原子位于()。

6. 绘图说明共析钢奥氏体的形成过程。

7. 奥氏体易于在铁素体和渗碳体的相界面处成核的原因是什么?8. 简述连续加热时奥氏体转变的特点。

9. 说明组织遗传的定义和控制方法。

(完整版)固态相变原理考试试题+答案

(完整版)固态相变原理考试试题+答案

固态相变原理考试试题一、(20分)1、试对固态相变地相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.(2)应变能①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格界面次之,非共格界面最小.②比容差引起地应变能(体积应变能):和新相地形状有关,,球状由于比容差引起地应变能最大,针状次之,片状最小.2、分析晶体缺陷对固态相变中新相形核地作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能.③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.④位错是快速扩散地通道.⑤位错分解为不全位错和层错,有利于形核.Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解地条件只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中地变化轨迹化学拐点:当G”=0时.即为调幅分解地化学拐点;共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.3、请说明调幅分解与形核长大型相变地区别1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理(1)实验基础1 / 32 /3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);④ 在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).(2)基本原理在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只改变形状,通过滑移、孪生形成无畸变面.③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地平面.用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.2、阐明马氏体相变热力学地基本设想和表达式地意义答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温度,,为T<T 0时,产生核胚地温度.③ MG α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).四、(20分)1、试解释沉淀相粒子地粗化机理由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)①当时,r=r ,rt ∂∂=0粒子不长大;②当时,r <r ,r t ∂∂<0小粒子溶解;③当时,r>r ,r t ∂∂>0粒子长大;④当时,r=2r ,r t ∂∂最大,长大最快;⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使rt ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.五、(20分)已知新相地长大速度为:1、 试分析过冷度对长大速度地影响过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,2、 求生长激活能过冷度很大时,exp(-∆gv/kT)→0,公式转化为0exp()Q kT μλν=-3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常数N 0,得生长激活能.。

固态相变复习问答题

固态相变复习问答题

1. 从热力学角度分析固态相变的主要特征并与液固相变进行比较。

答:从热力学角度来说,固态相变与液固相变相比,一些规律是相同的,其共同点是:相变驱动力都是新旧两相之间的自由能差;相变都包含形核与长大两个基本的过程。

而二者在相变特点上的区别在于固态相变的母相为固体,其具有确定形状、有较高切变强度、内部原子按点阵规律排列,并且不同程度地存在着成分不均匀的结构缺陷。

相变以晶体为母相,必然与液固相变相比存在一系列新的特征。

具体变现在以下几方面:(1) 相变驱动力来源于两相自由能之差,差值越大,越有利于转变的进行。

相变阻力大 固态相变与固液相变相比,相变阻力更大是因为多出了一项应变能和扩散更难进行。

(2) 新相晶核与母相之间存在一定的晶体学位向关系;新相的某一晶面和晶向分别与母相的某一晶面、晶向平行。

(3) 惯习现象:新相沿特定的晶向在母相特定晶面上形成( 沿应变能最小的方向和界面能最低的界面 )。

通过降低界面能和应变能而减小相变阻力是惯习现象出现的原因。

(4) 母相晶体缺陷促进相变:固态金属中存在各种晶体缺陷,如位错、空位、晶界和亚晶界等。

母相中存在缺陷,由于缺陷周围有晶格畸变,自由能较高,在此处形成同样大小的晶核比其他区域获得更大的驱动力,新相晶核往往优先在这些缺陷处形成。

母相晶粒越细小,晶界越多,晶内缺陷越多,形核率越高,转变速度越快。

(5) 易出现过渡相:过渡相是一种亚稳定相,其成分和结构介于新相和母相之间。

因为固态相比阻力大,原子扩散困难,尤其是当转变温度较低,新、旧相成分相差较远时,难以形成稳定相。

过渡相是为了克服相变阻力而形成的一种协调性的中间转变产物。

通常是现在母相中形成与母相成分接近的过渡相,然后在一定条件下由过渡相逐渐转变为自由能最低的稳定相。

界面能增加额外弹性应变能:比体积差 扩散困难(新、旧相化学成分不同时)2. 结合综合转变动力学曲线,从进行条件,组织形态特征,精细结构,相变机制,力学性能及其实际应用等方面,对比性的分析钢中的固态相变。

金属学与热处理课后习题答案9

金属学与热处理课后习题答案9

第九章钢的热处理原理9-1 金属固态相变有哪些主要特征?哪些因素构成相变的阻力?答:固体相变主要特征:1、相变阻力大2、新相晶核与母相晶核存在一定的晶体学位向关系。

3、母相中的晶体学缺陷对相变其促进作用。

4、相变过程中易出现过渡相。

相变阻力构成:1、表面能的增加。

2、弹性应变能的增加,这是由于新旧两相的比体积不同,相变时必然发生体积的变化,或者是由于新旧两相相界面的不匹配而引起弹性畸变,都会导致弹性应变能的增加。

3、固态相变温度低,原子扩散更困难,例如固态合金中原子的扩散速度为10-7—10-8cm/d,而液态金属原子的扩散速度为10-7 cm/s。

9-2 何谓奥氏体晶粒度?说明奥氏体晶粒大小对钢的性能影响?答:奥氏体晶粒度:是奥氏体晶粒大小的度量。

当以单位面积内晶粒的个数或每个晶粒的平均面积与平均直径来描述晶粒大小时,可以建立晶粒大小的概念。

通常采用金相显微镜100倍放大倍数下,在645mm2范围内观察到的晶粒个数来确定奥氏体晶粒度的级别。

对钢的性能的影响:奥氏体晶粒小:钢热处理后的组织细小,强度高、塑性好,冲击韧性高。

奥氏体晶粒大:钢热处理后的组织粗大,显著降低钢的冲击韧性,提高钢的韧脆转变温度,增加淬火变形和开裂的倾向。

当晶粒大小不均匀时,还显著降低钢的结构强度,引起应力集中,容易产生脆性断裂。

9-3 试述珠光体形成时钢中碳的扩散情况及片、粒状珠光体的形成过程?答:珠光体形成时碳的扩散:珠光体形成过程中在奥氏体内或晶界上由于渗碳体和铁素体形核,造成其与原奥氏体形成的相界面两侧形成碳的浓度差,从而造成碳在渗碳体和铁素体中进行扩散,简言之,在奥氏体中由于碳的扩散形成富碳区和贫碳区,从而促使渗碳体和铁素体不断地交替形核长大,直至消耗完全部奥氏体。

片状珠光体形成过程:片状珠光体是渗碳体呈片状的珠光体。

首先在奥氏体晶界形成渗碳体晶核,核刚形成时与奥氏体保持共格关系,为减小形核的应变能而呈片状。

渗碳体长大的同时,使其两侧的奥氏体出现贫碳区,从而为铁素体在渗碳体两侧形核创造条件,在渗碳体两侧形成铁素体后,铁素体长大的同时造成其与奥氏体体界面处形成富碳区,这又促使形成新的渗碳体片。

固态相变原理测验试题+答案

固态相变原理测验试题+答案

固态相变原理测验试题+答案--————--———-——---————-——-————--— 作者: —————————————-——-—-——-—-——-—--—— 日期:固态相变原理考试试题一、(20 分) 1、试对固态相变的相变阻力进行分析 固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量。

界面能 :是指形成单位面积的界面时,系统的赫姆霍茨自由能的变化值。

与大小和化学键的数目、强度有关。

为表面张力,为偏摩尔自由能, 为由于界面面积改变而引起的晶粒内部自由能变化 (1) 共格界面的化学键数目、强度没有发生大的变化,σ最小;半共格界面产生错配位错,化学键发生变化,σ次之;非共格界面化学键破坏最厉害,σ最大. (2) 应变能 ① 错配度引起的应变能(共格应变能):共格界面由错配度引起的应变能最大,半共格界面次之,非共格界面最小。

② 比容差引起的应变能(体积应变能):和新相的形状有关,,球状由于比容差引起的应变能最大,针状次之,片状最小。

2、分析晶体缺陷对固态相变中新相形核的作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核。

(1) 空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核。

(2) 位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能。

③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核。

④位错是快速扩散的通道.⑤位错分解为不全位错和层错,有利于形核。

Aaromon 总结:刃型位错比螺型位错更利于形核;较大柏氏矢量的位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20 分) 已知调幅分解浓度波动方程为:1、试分析发生调幅分解的条件,其中:只有当 R(λ)>0,振幅才能随时间的增长而增加,即发生调幅分解,要使 R(λ)>0,得 G”<0 且| G”|>2η2Y+8π2k/λ2 令 R(λ)=0 得 λc—临界波长,则 λ<λc 时,偏聚团间距小,梯度项 8π2k/λ2 很大,R(λ)>0,不能发生;λ>λc 时,随着波长增加,8π2k/λ2 下降,易满足| G”| >2η2Y+8π2k/λ2,可忽略梯度项,调幅分解能发生。

固态相变试题库及答案

固态相变试题库及答案

固态相变课程复习思考题2012-5-171.说明金属固态相变的主要分类及其形式2.说明金属固态相变的主要特点3.说明金属固态相变的热力学条件与作用4.说明金属固态相变的晶核长大条件和机制5.说明奥氏体的组织特征和性能6.说明奥氏体的形成机制7.简要说明珠光体的组织特征8.简要说明珠光体的转变体制9.简要说明珠光体转变产物的机械性能10.简要说明马氏体相变的主要特点11.简要说明马氏体相变的形核理论和切边模型12.说明马氏体的机械性能,例如硬度、强度和韧性13.简要说明贝氏体的基本特征和组织形态14.说明恩金贝氏体相变假说15.说明钢中贝氏体的机械性能16.说明钢中贝氏体的组织形态17.分析合金脱溶过程和脱溶物的结构18.分析合金脱溶后的显微组织19.说明合金脱溶时效的性能变化20.说明合金的调幅分解的结构、组织和性能21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子?22.影响珠光体片间距的因素有哪些?23.试述影响珠光体转变力学的因素。

24.试述珠光体转变为什么不能存在领先相25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体26.试述马氏体相变的主要特征及马氏体相变的判据27.试述贝氏体转变与马氏体相变的异同点28.试述贝氏体转变的动力学特点29.试述贝氏体的形核特点30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。

31.试述Al-Cu合金的时效过程,写出析出贯序32.试述脱溶过程出现过渡相的原因33.掌握如下基本概念:固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率1.说明金属固态相变的主要分类及其形式?(1)按热力学分类:①一级相变②二级相变(2)按平衡状态图分类:①平衡相变㈠同素异构转变和多形性转变㈡平衡脱溶沉淀㈢共析相变㈣调幅分解㈤有序化转变②非平衡相变㈠伪共析相变。

㈡马氏体相变。

㈢贝氏体相变。

㈣非平衡脱溶沉淀。

固态相变_(考试必备)

固态相变_(考试必备)

固态相变:金属和陶瓷等固态材料在温度和压力改变时,其内部组织或结构会发生变化,即发生从一种状态到另一种相态的转变,这种转变称之为固态相变。

固态相变的阻力有哪些:金属固态相变时的相变阻力应包括界面能和弹性应变能两项。

当界面共格时,可以降低界面能,但使弹性应变能增大。

当界面不共格时,盘(片)状新相的弹性应变能最低,但界面能较高;而球状新相的界面能最低,但弹性应变能却最大。

为什么固态相变中出现过渡相?晶体缺陷对固态相变形核有什么影响?1.当稳定的新相与母相的晶体结构差异较大时,母相往往不直接转变为自由能最低的稳定新相,而是先形成晶体结构或成分与母相比较接近,自由能比母相稍低些的亚稳定的过渡相。

此时,过渡相往往具有界面能较低的共格界面或半共格界面,以降低形核功,使形核容易进行。

2.晶体缺陷是能量起伏、结构起伏和成分起伏最大的区域,在这些区域形核时,原子扩散激活能低,扩散速度快,相变应力容易被松弛。

在固态相变中,从能量的观点来看,均匀形核的形核功最大,空位形核次之,位错形核更次之,晶界非均匀形核的形核功最小。

为什么新相形成的时候,常常呈薄片状或针状?如果新相呈球状,新相与母相之间是否存在位相关系?①金属固态相变时,因新相与母相恶比容不同,可能发生体积变化,但由于受到周围母相的约束,新相不能自由膨胀产生弹性应变能。

而片状或针状的弹性应变能最小,所以新相形成时常常呈片状或针状 ②存在位相关系。

许多情况下,金属固态相变时,新相与母相之间往往存在一定的位相关系,且新相呈球状时与母相的弹性应变能最大,是由新、母相的比容不同或两相界面共格或半共格关系造成的,所以必然存在一定的位相关系。

TTT 曲线的建立:将不同温度下的等温转变开始时间和终了时间以及某些特定的转变量所对应的时间绘制在温度—时间半对数坐标系中,并将不同温度下的转变开始点和转变终了点以及转变50%点分别连接成曲线,则可得到过冷奥氏体等温转变图,即TTT 曲线。

北科大《固态转变》研究生课程考题历年整理及部分答案

北科大《固态转变》研究生课程考题历年整理及部分答案

北科⼤《固态转变》研究⽣课程考题历年整理及部分答案北科⼤《固态转变》研究⽣课程考题历年整理及部分答案1.从⾃由能成分曲线,相界⾯,原⼦扩散⽅式,新相的成分和结构状态,驱动⼒,形核的⽅式,显微组织区分调幅分解和形核长⼤型相变。

2.什么是第⼀类相变,什么是第⼆类相变,并举例?分类标志:热⼒学势及其导数的连续性。

⾃由能和内能都是热⼒学函数,它们的第⼀阶导数是压⼒(或体积)和熵(或温度)等,⽽第⼆阶导数是⽐热、膨胀率、压缩率和磁化率等。

第⼀类相变(⼀级相变):凡是热⼒学势本⾝连续,⽽第⼀阶导数不连续的状态突变,称为第⼀类相变。

第⼀阶导数不连续,表⽰相变伴随着明显的体积变化和热量的吸放(潜热)。

普通的⽓液相变、液固相变、⾦属和合⾦的多数固态相变、在外磁场中的超导转变,属于第⼀类相变。

第⼆类相变(⼆级相变):热⼒学势和它的第⼀阶导数连续变化,⽽第⼆阶导数不连续的情形,称为第⼆类相变。

这时没有体积变化和潜热,但膨胀率、压缩率和⽐热等物理量随温度的变化曲线上出现跃变或⽆穷的尖峰。

超流、没有外磁场的超导转变、⽓液临界点、磁相变、合⾦中部分有序-⽆序相变,属于第⼆类相变。

习惯上把第⼆类以上的⾼阶相变,通称为连续相变或临界现象。

玻⾊-爱因斯坦凝结现象是三级相变。

按相变⽅式分类:形核长⼤型相变、连续型相变……<材基P595>按原⼦迁移特征分类:扩散型相变、⽆扩散型相变相似问题:相变的分类有哪些,其分类标准是什么?3.下图哪个是第⼀类相变,哪个是第⼆类相变,并说明理由?从热⼒学函数的性质看,第⼀类相变点不是奇异点(singularity),它只是对应两个相的函数的交点。

交点两侧每个相都可能存在,通常能量较低的的那个得以实现。

这是出现“过冷”或“过热”的亚稳态以及两相共存的原因。

第⼆类相变则对应热⼒学函数的奇异点,它的奇异性质⽬前并不完全清楚。

在相变点每侧只有⼀个相能够存在,因此不容许“过冷”和“过热”和两相共存。

《材料科学基础》真题强化教程(第12讲固态相变)

《材料科学基础》真题强化教程(第12讲固态相变)

一、固态转变基本类型由于金属(合金)的结构和组织在固态下可以进行多种多样的形势转变,因此具有性能方面的多变性。

包括同素异形转变、脱溶、有序化转变等等,甚至回复、再结晶也属于固态转变。

分类:①扩散型相变;②非扩散型相变(切变型);③过渡型相变。

例1(名词解释):调幅分解例2(名词解释):一级相变、二级相变二、固态相变一般特点固态相变大多数为形核和生长的方式,由于此过程是在固态中进行,原子扩散速率甚低,且因新、旧相的比体积不同,其形核和生长不仅有界面能,还有因比体积差而产生的应变能,故固态相变往往不能达到平衡状态,而是通过非平衡转变形成亚稳相,且因形成时条件的不同,可能有不同的过渡相。

固态相变形成的亚稳相类型有多种,如固溶体脱溶产物、马氏体和贝氏体等。

固态相变要走转变阻力小、做功少的道路。

考点1:固态转变驱动力新旧两相自由能之差;阻力:新旧两相产生相界面引起界面自由能升高;新旧两相间因为比容不同导致的畸变能。

例:固态相变中,应变能产生的原因分析。

考点2:形核特点①非均匀形核;②核心的取向关系;③共格界面与半共格界面。

考点3:成长特点①惯习现象;②共格成长与非共格成长;③存在脱溶贯序。

例1(名词解释)惯习现象例2(名词解释):脱溶贯序考点4:新生组织形态应变能主导时优先形成饼状、圆片状;其次是针状;最后是球状。

界面能主导时,优先形成球状、其次是针状、最后是片状。

P.S. 脱溶基本完成后,新相、母相基本达到平衡浓度、再延长时间或者提高温度会发生新相聚集长大和形貌转化。

界面能主导:小粒子溶解、大粒子生长,半径越来越大,Δp=2σ/r (压应力)变小,脱溶相变稳定,向球形转变,脱溶相弯处向平处扩散;应变能主导:球状→立方状→棒状片状→编织组织。

例1:例题根据如图所示的析出物能够得到何种结论?例2:固态相变与液—固相变在形核、长大规律方面有何特点?分析这些特点对所形成的组织会产生什么影响?考点5:过渡相所谓过渡相是指成分或结构或两者都处于新旧相之间的一种亚稳态相。

固态相变原理习题集答案

固态相变原理习题集答案

固态相变课程复习思考题2012-5-171.说明金属固态相变的主要分类及其形式2.说明金属固态相变的主要特点3.说明金属固态相变的热力学条件与作用4.说明金属固态相变的晶核长大条件和机制5.说明奥氏体的组织特征和性能6.说明奥氏体的形成机制7.简要说明珠光体的组织特征8.简要说明珠光体的转变体制9.简要说明珠光体转变产物的机械性能10.简要说明马氏体相变的主要特点11.简要说明马氏体相变的形核理论和切边模型12.说明马氏体的机械性能,例如硬度、强度和韧性13.简要说明贝氏体的基本特征和组织形态14.说明恩金贝氏体相变假说15.说明钢中贝氏体的机械性能16.说明钢中贝氏体的组织形态17.分析合金脱溶过程和脱溶物的结构18.分析合金脱溶后的显微组织19.说明合金脱溶时效的性能变化20.说明合金的调幅分解的结构、组织和性能21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子?22.影响珠光体片间距的因素有哪些?23.试述影响珠光体转变力学的因素。

24.试述珠光体转变为什么不能存在领先相25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体26.试述马氏体相变的主要特征及马氏体相变的判据27.试述贝氏体转变与马氏体相变的异同点28.试述贝氏体转变的动力学特点29.试述贝氏体的形核特点30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。

31.试述Al-Cu合金的时效过程,写出析出贯序32.试述脱溶过程出现过渡相的原因33.掌握如下基本概念:固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率1.说明金属固态相变的主要分类及其形式?(1)按热力学分类:①一级相变②二级相变(2)按平衡状态图分类:①平衡相变㈠同素异构转变和多形性转变㈡平衡脱溶沉淀㈢共析相变㈣调幅分解㈤有序化转变②非平衡相变㈠伪共析相变。

㈡马氏体相变。

㈢贝氏体相变。

㈣非平衡脱溶沉淀。

固态相变习题与参考解答

固态相变习题与参考解答

固态相变习题与参考解答1、解释下列名词:自扩散:是在纯金属中的原子或固溶体中的溶质原子由一个平衡位置迁移到另一个平衡位置的单纯由热运动引起的扩散现象。

化学扩散:间隙扩散:间隙扩散是扩散原子在点阵的间隙位置之间跳迁而导致的扩散。

间隙固溶体中溶质原子半径较小,间隙位置数目较多,易发生间隙扩散。

置换扩散:置换扩散以原子跳动到邻近空位的方式进行,因此认为置换扩散也应该是通过单独跳动机制进行的。

它与间隙扩散的区别在于跳动是通过空位进行的,即扩散机制是一种空位扩散机制。

互扩散:是溶质原子和溶剂原子同时存在迁移的扩散。

严格来讲,大部分合金系统的原子扩散都是互扩散。

晶界扩散:熔化的钎料原子沿着母材金属的结晶晶界的扩散现象。

晶界扩散所需要的激活能比体扩散小,因此,在温度较低时,往往只有晶界扩散发生。

而且,越是晶界多的金属,越易于焊接,焊接的机械强度也就越高。

上坡扩散:原子扩散的驱动力是化学位。

在一般情况下,总是从浓度高处向浓度低处扩散,这叫顺扩散,但有时也会发生从浓度低处向浓度高处扩散的现象,成为逆扩散,即上坡扩散。

2、什么叫原子扩散和反应扩散 ?原子扩散是一种原子在某金属基体点阵中移动的扩散。

在扩散过程中并不产生新相,也称为固溶体扩散。

扩散物质在溶剂中的最大浓度不超过固溶体在扩散温度下的极限浓度,原子扩散有自扩散,异扩散和互扩散三类。

扩散过程不仅会导致固溶体的形成和固溶体成分的改变,而且还会导致相的多形性转变或化合物的形成。

这种通过扩散而形成新相的现象称为反应扩散,也叫相变扩散。

3、什么叫界面控制和扩散控制?试述扩散的台阶机制 ?[简要解答] 生长速度基本上与原子的扩散速率无关,这样的生长过程称为界面控制。

相的生长或溶解为原子扩散速率所控制的扩散过程称为扩散控制。

如图,α相和β相共格,在DE、FG处,由于是共格关系,原子不易停留,界面活动性低,而在台阶的端面CD、EF处,缺陷比较多,原子比较容易吸附。

因此,α相的生长是界面间接移动。

铸铁的固态相变参考答案资料

铸铁的固态相变参考答案资料


Si Co Ni使ΔTˊ增大,促进gr化过程.
• Cr Mo V使ΔTˊ下降阻碍gr化过程.
• 4:合金元素的石墨化能力:

ΔP=PM-PS
表示铁液按照渗碳体共晶和石墨共晶方式的凝固分配比.
• 二、影响一次结晶过程中结晶相的形核过程和晶体生长
方式.
1:对初生奥氏体结构的影响RE(Ce La)
• 1:对初生奥氏体结构的影响RE(Ce La) §1-4 合金元素对铸铁结晶过程的影响
• 2:形貌:片层.
• 形核:以高碳相作为先共析相(领先相).
• 长大:共生生长.
• 到底进行哪一种转变是由下面两个因素决定的:
• A:过冷度.
B:化学成分
• 如Si促进r分解,促进r→α+gr转变.
• 3:过冷奥氏体的中温和低温转变:
• 250-450℃ 贝氏体转变.
• 350-450℃ B上
• 260-350℃ B下
导热性好:gr导热好与铁比,大约为2到3倍。
• 二:金相组织特点:
• 1 基体: P, F P+F(注中).
• 2 石墨: 片状, 长度8级(1-8)
• 类型A-片状、B-蔷薇状(菊花)、C-块片状、 D-晶间点状、
• E-晶间网状、F-星状。
• 3 少量非金属夹杂物:

五大元素之间形成.
• Fe – FeS – Fe3C. Fe3P – Fe3C – Fe.
三、在奥氏体碳的脱溶过程中,影响二次高碳相形成.
• 使r枝晶轴次增加――细化. 使r枝晶轴次增加――细化.
2%、 S < 0. S:结晶前沿形成低熔点偏析层.
• 2:对石墨共晶结构的影响: 决定铸铁石墨和基体的主要因素.

第八章 固态相变

第八章  固态相变

{111}∥{110}M ;<211>∥<011> M
Nishiyama
Greninger和Troiaon精确测量了Fe-0.8%C-22%Ni合金的奥 氏体单晶中的马氏体位向关系,发现K-S关系中的平行晶 面和平行晶向之间实际上略有偏差。得到G-T关系
{111}∥{110}M 差1° <110>∥<111> M差2 °
2.不连续脱熔 非连续脱溶也称为胞状脱溶。脱溶物中的α相和母相 α之间的浓度不连续而被称为非连续脱溶。 若α0表示原始相(母相),α1为脱溶区中的α相,β为脱
溶相。
非连续脱溶表示为:
01
相界面不但发生成分突变,且取向也发 生改变
第二十九页,编辑于星期五:十八点 十一分。
非连续脱溶与共析转变(以钢为例)的区别:
共析转变形成的(珠光体中)的两相与母相在结构和成分上 完全不同。 非连续脱溶得到的胞状组织中的两相其中必有一相的结构与 母相相同,只是溶质原子的浓度不同于母相。
非连续脱溶与连续脱溶的主要区别:
连续脱溶属于长程扩散,非连续脱溶属于短程扩散。 非连续脱溶的产物主要集中于晶界上,并形成胞状物;连 续脱溶的产物主要集中于晶粒内部,较为均匀。
第二十三页,编辑于星期五:十八点 十一分。
若形核率随时间增加,则取n〉4;若形核 率随时间而减少,则取3~4
第二十四页,编辑于星期五:十八点 十一分。
第四节 扩散型相变示例
扩散型相变种类:
脱熔转变、先共析转变、共析转变、块状转变、有序转 变和调幅分解等。 一、脱溶转变
脱溶:从过饱和固溶体中析出一个成分不同的新相火形成 溶质原子富集的亚稳区过渡相的过程称为脱溶或沉淀。 条件:凡是有固溶度变化的相图。 从单相区进入两相区时都会发生脱溶

固态相变原理考试试题 答案

固态相变原理考试试题 答案

固态相变原理考试试题一、(20分)1、试对固态相变的相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量。

(1)界面能:是指形成单位面积的界面时,系统的赫姆霍茨自由能的变化值。

与大小和化学键的数目、强度有关。

共格界面的化学键数目、强度没有发生大的变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大。

(2)应变能①错配度引起的应变能(共格应变能):共格界面由错配度引起的应变能最大,半共格界面次之,非共格界面最小。

②比容差引起的应变能(体积应变能):和新相的形状有关,,球状由于比容差引起的应变能最大,针状次之,片状最小。

2、分析晶体缺陷对固态相变中新相形核的作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核。

(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核。

(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能。

③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核。

④位错是快速扩散的通道。

⑤位错分解为不全位错和层错,有利于形核。

Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量的位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成。

(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解的条件只有当R(λ)>0,振幅才能随时间的增长而增加,即发生调幅分解,要使R(λ)>0,得且。

令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生。

固态相变复习答案

固态相变复习答案

固态相变复习答案第一章从铁碳合金相图中知道,碳素钢在加热和冷却过程中,经过PSK(A1)线,发生珠光体向奥氏体的相互转变,经过GS(A3)线,发生铁素体向奥氏体的相互转变,经过ES (Acm)线,发生渗碳体向奥氏体的转变。

所以任一含碳量的碳素钢,其在缓慢加热和冷却过程中固态组织转变的临界点,就是依据A1、A3和Acm线确定。

共析钢仅有一个临界点A1,亚共析钢有两个临界点A1和A3点,过共析钢也有两个临界点A1和Acm点。

A1、A3和Acm均为平衡临界点,实际转变过程不可能在平衡临界点进行,为示区别,将加热转变点以C表示,冷却转变点以r表示。

% d% a% @, g. u2 i5 `, a' P; }开始转变AC1――加热时 P A 温度: {8 M p5 }8 y! C/ ~开始转变Ar1――冷却时 A P 温度8 a# Q- s\) {2 N1 Y/ i/ f' Q9 j& g# S# U2 f全部转变AC3――加热时 F A 终了温度开始析出Ar3――冷却时 A F 温度& U% [* g3 b* J( U' ?\ 全部溶入6 o* [% \\+ {' \\ Q( b# h# c ACcm――加热时Fe3CⅡ A 终了温度开始析出Arcm――冷却时 A Fe3CⅡ 温度第二章奥氏体形成一・奥氏体的形成可以分四个阶段;1,奥氏体的形核2,晶核向铁素体和渗碳体俩个方向长大 3,剩余碳化物溶解 4,奥氏体成分均匀化二・影响奥氏体晶粒大小因素答;(1)加热温度的影响(3)原始组织的影响(2)含碳量的影响(4)合金元素的影响三・什么是奥氏体的起始晶粒度,本质晶粒度和实际晶粒度,各有何意义?答;(1)起始晶粒度:奥氏体晶粒边界刚刚相互接触时奥氏体晶粒的大小为起始晶粒度。

(2)本质晶粒度:一定条件下奥氏体晶粒长大的倾向(规定条件下,A晶粒的大小) 。

(3)实际晶粒度:在具体的热处理工艺下获得的奥氏体晶粒的大小称为实际晶粒度。

天津大学2008~2009学年第二学期期末考试试卷《合金固态相变》B

天津大学2008~2009学年第二学期期末考试试卷《合金固态相变》B

天津大学2008~2009学年第二学期期末考试试卷《合金固态相变》B天津大学2022年~2022年学年第二学期期末考试试卷《合金固态相变》B卷答案一、名称解释(10分,每题2分)1. 回火马氏体:淬火钢在低温回火时得到的组织。

2. 回火脆性:随回火温度升高,一般是钢的强度、硬度降低,塑性升高,但冲击韧性不一定总是随回火温度升高而升高,有些钢在某些温度回火时,韧性反而显著下降的现象。

3. 二次硬化现象:当M中K形成元素含量足够多时,500°C 以上回火会析出合金碳化物,细小的弥散分布的合金K将使已经因回火温度升高而下降的硬度重新升高,故称二次硬化。

4. 晶粒度:设n为放大100倍时每645mm2(lin2)面积内的晶粒数,则下式中的N被用来表示晶粒大小的级别,被称为晶粒度。

N=2N-15. 形状记忆效应:将某些金属材料进行变形后加热到某一特定温度以上时,能自动恢复原来形状的效应。

二、填空:(20分,每空0.5分)1. M转变的切变模型有Bain模型,K-S模型,G-T模型。

2.奥氏体转变的四个阶段是A形核,A长大,渗碳体溶解,A均匀化。

3.固相界面根据其共格性有共格界面,半共格界面,非共格界面,其中非共格界面的弹性应变能最小。

4.A转变时,转变温度与临界点A1之差称为过热度,它随加热速度的增大而增大。

5.奥氏体是碳溶于γ-铁固溶体,碳原子位于八面体中心位置,钢中马氏体是碳在α铁中的过饱和固溶体,具有体心立方点阵6.影响钢的Ms点的最主要因素是碳含量,Ms随碳含量升高而降低。

7.一般退火采取的冷却方式为炉冷,正火的冷却方式为空冷,正火后强度略高于于退火后的强度,组织更细小。

8.M回火加热时,回火转变过程依次为M中碳原子的偏聚和聚集,M的分解,残余A分解,碳化物类型变化,a 相回复与再结晶。

9.时效硬化机制有内应变强化,切过颗粒强化,绕过析出相(Orowan机制)。

10.高碳钢为了改善其切削加工性能,淬火后进行高温回火,工业中也称为派登处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.填空题(每空1分,共10分)
1、在钢的各种组织中,奥氏体的比容最小(选填大还是小)。

可利用这一
点调整残余奥氏体的量,以达到减少(选填减少还是增大)淬火工件体积变化的目的。

2、化学热处理的基本过程是——分解————、、———吸收———、————扩散————。

2、钢的淬透性主要取决于——临界淬火冷却速度———,钢的淬硬性主要取决于————含碳量—。

3、贝氏体主要有_上贝氏体__和__下贝氏体__两种,其中 _下_贝氏体强韧性好。

二.单项选择题(每题2分,共20分,将答案填入下表)
A.氧化
B.脱碳
C.过热
D.过烧
2、防止或减小高温回火脆性的较为行之有效的方法是()
A.回火后缓冷
B.回火后空冷
C.回火后水冷或油冷
D.回火后保温
3、下列对珠光体团的描述中正确的是:()
A.珠光体团就是铁素体和渗碳体的混合物
B.珠光体团就是由一层(片)铁素体和一层(片)渗碳体所组成的区域
C.一个奥氏体晶粒所占区域转变成珠光体后。

就称为珠光体团
D.珠光体中由层(片)方向大致相同的区域称为珠光体团
4、某钢的A C3为780℃,如在820℃保温并随炉冷却。

此工艺最有可能属于
A.完全退火B.再结晶退火
C.扩散退火D.球化退火
5、对奥氏体实际晶粒度的描述中不正确的是:()
A.某一热处理加热条件下所得到的晶粒尺寸
B.奥氏体实际晶粒度比起始晶粒度大
C.加热温度越高实际晶粒度也越大
D.奥氏体实际晶粒度与本质晶粒度无关
6、在A1温度以下发生的P转变,奥氏体与铁素体界面上的碳浓度___奥氏体与渗碳体界面上碳浓度,引起奥氏体中的碳的扩散。

A.低于
B.高于
C.等于
D.小于等于
7、在A1下,_____的过冷奥氏体最稳定。

A.亚共析钢
B.共析钢
C.过共析钢
8、贝氏体转变时,由于温度较高,会存在____的扩散。

A.铁原子
B.碳原子
C.铁和碳原子
D.合金元素
9、某些钢淬火后在500~650℃回火后硬度又增加的现象称为____ 。

A.二次硬化
B.回火抗性
C.二次淬火
D.孪晶马氏体反稳定化
10、铝合金Al—Cu在一般情况下,其时效次序为____。

A. G.P.区→θ→θ′→θ″
B. G.P.区→θ″→θ′→θ
C. θ→θ′→θ″→G.P.区
三.问答题:(每题10分,共40分)
1、金属固态相变有哪些主要特征?
(1)新相和母相间存在不同的界面(相界面特殊),按结构特点可分为:共格界面、半共格界面、非共格界面。

(2)新相晶核与母相间有一定的位向关系、存在惯习面
(3)产生应变能,相变阻力大
(4)易出现过渡相,以降低形核功.
(5)母相中晶体缺陷起促进作用,可提供相变驱动力。

(6)固相中扩散速度慢,因此相变速度主要受扩散影响
2、分析马氏体具有高强度和高硬度的本质原因。

马氏体的强化机制为:相变强化、固溶强化、时效强化、孪晶强化、细晶强化。

3、回火工艺可以分为哪三种?分别得到什么组织?具有怎样的性能?
低温回火,得到回火马氏体,硬度高,适用于耐磨件
中温回火,得到回火屈氏体,弹性极限高,适用于弹簧
高温回火,得到回火索氏体,综合力学性能好
4、下图为35CrMo钢(含碳0.35%)的CCT图,说明按(a)、(b)、(c)、(d)各冷却曲线冷却后获得的室温组织,并比较它们的硬度的相对大小。

d
a b c
a、M1+Ar1 2分
b、B+M+Ar 2分
c、F+B+M+Ar 2分
d、F(40%)+P(60%) 2分
硬度a>b>c>d 一个0.5分2分
四、某丝锥采用CrWMn(含碳1%)制作,其工艺路线如下:
下料→ 锻造→ 热处理1 → 热处理2 →切削加工→热处理3 →热处理4 → 精加工
请分别说明上述工艺路线中的热处理1234分别进行的是何种热处理工艺?写出各项热处理的目的及各项热处理工艺完成后的组织?(12分)
正火1分消除网状碳化物,细化晶粒1分P+少量Fe3C 1分
球化退火1分降低硬度,便于切削,为淬火做组织准备1 P球1分
淬火1分获得马氏体,提高硬度耐磨性1分,M+Fe3C+Ar 1分
低温回火1分消除残余应力,提高塑韧性1分,M回+Fe3C+Ar 1分
五、某工厂生产车床齿轮,要求齿面有较好的硬度与耐磨性,心部有较好的塑韧性。

原图纸设计用40Cr(含碳0.4%)钢制造,因材料缺乏,工厂决定改用20Cr(含碳0.2%)钢生产,试说明:(共9分)
(1)原40Cr钢为满足齿轮性能要求,应如何安排热处理工艺?
淬火+高温回火→表面淬火→低温回火 4.5分
(2)改用20Cr钢后,该如何安排热处理工艺,是否需改变?
需改变
渗碳→淬火→低温回火 4.5分
六、请确定下列零件的热处理方法(9分)(写出工艺名称即可)
①45钢(含碳0.45%)锻造的大型轻载齿轮的最终热处理,力学性能要求不高;
正火
②锻造过热的55钢(含碳0.55%)毛坯,要求细化组织;
再结晶退火
③60Si2Mn钢弹簧,要求高的弹性极限;
淬火+中温回火。

相关文档
最新文档