固态相变原理考试试题+答案
《金属固态相变原理》考试试卷(B卷)(word文档良心出品)
贵州大学2014—2015学年第一学期《金属固态相变原理》考试试卷(B卷)班级姓名学号题号一二三四五总得分评卷人审核人得分一、名词解释(每题3分,共15分)1、同素异构转变:2、回火抗力:3、本质晶粒度:4、奥氏体稳定化:5、化学热处理:二、填空题(每空1分,共15分)1、奥氏体是溶于中所形成的固溶体。
2、共析钢淬火后在回火过程中,由于组织发生了变化,钢的也随之发生改变。
其基本趋势是随回火温度升高,钢的和下降,和提高。
3、正火的冷却速度比退火,故正火的组织比较,它的强、硬度比退火。
4、淬火钢的回火,本质上是分解以及析出、聚集长大的过程。
广义的回火概念应当是指将淬火后合金固溶体加热到低于相变临界点温度,保温一段时间后再冷却到室温的工艺方法。
回火转变是典型的型转变。
三、判断题(每题3分,共12分)1、珠光体形成时一般在奥氏体晶内形核。
2、钢中的合金元素和碳一样,在贝氏体转变时会发生重新分布。
3、共析钢和过共析钢的连续冷却转变中无贝氏体转变区。
4、等温淬火后的组织不需要再进行回火。
四、论述题(共34分)1、若按所有的八面体间隙位置均填满碳原子计算,单位晶胞中应含20%的碳原子,但实际上碳在 -Fe中的最大溶解度仅为2.11%,为什么?(6分)●试分析马氏体转变与贝氏体转变有哪些主要异同点?(8分)●简述片状珠光体的形成机理。
(10分)●淬火的目的是什么?亚共析钢和过共析钢的淬火加热温度应如何选择?试从获得的组织及性能等方面加以说明。
(10分)五、分析题(每题12分,共24分)1、高速钢(高碳高合金工具钢)有时采用分级淬火法,即工件从分级浴槽中取出后常常置于于空气中冷却,但如果当工件尚处于100~200℃时使用水清洗,将会发生什么问题?为什么?2、试分析φ10mm的45钢(退火状态),经下列温度加热并水冷后所获得的组织:①700℃②760℃③840℃贵州大学2014—2015学年第一学期《金属固态相变原理》考试试卷(B卷)答案一、名词解释(每题3分,共15分)1、同素异构转变:纯金属(1分)在温度和压力变化(1分)时,由某一种晶体结构转变为另一种晶体结构(1分)的过程。
金属固态相变原理知到章节答案智慧树2023年山东科技大学
金属固态相变原理知到章节测试答案智慧树2023年最新山东科技大学绪论单元测试1.材料科学与工程研究的四要素是:()参考答案:合成制备工艺;材料固有性能;材料使用性能;成分、组织和结构第一章测试1.按平衡状态图分类,以下哪种转变不是平衡转变:()参考答案:伪共析转变2.新相与母相相界面上的界面能:()参考答案:非共格界面能最高3.扩散性相变的基本特点:()参考答案:新相与母相成分不同4.金属固态相变主要采用的形核方式是均匀形核。
()参考答案:错5.相变动力学主要是讨论相变的(),即描述恒温条件下相变量与时间的关系。
参考答案:速率第二章测试1.过共析钢室温下组织为:()。
参考答案:珠光体+渗碳体2.钢中C含量增加提高奥氏体形成速度的主要原因有:()参考答案:增加了F/渗碳体的相界面,从而增多了奥氏体的形核位置。
;碳化物越多,珠光体片层间距减小,使奥氏体形成时C原子扩散距离减小。
;C在奥氏体中扩散系数增加,导致奥氏体长大速度增大。
3.α/Fe3C界面处,C原子浓度相差很大,有利于获得奥氏体晶核所需的C原子浓度:()参考答案:对4.奥氏体形成时溶解渗碳体的速度始终大于溶解铁素体的速度:()参考答案:错5.由Fe-C相图,奥氏体在高温下才是稳定相,欲测晶粒度,需将高温状态奥氏体轮廓的痕迹在室温下显示出来。
下列哪项不是常用的方法:()参考答案:双喷法第三章测试1.实际热处理工艺中,通常亚共析钢随碳含量上升, C曲线:()。
参考答案:右移2.影响C曲线位置的因素不包括:()。
参考答案:温度3.下列各元素溶入到奥氏体中可使曲线右移,其中错误的是:()。
参考答案:Co4.相变临界点以下,共析钢的奥氏体()。
参考答案:最稳定5.亚(过)共析钢的TTT曲线左上方有一条()。
参考答案:先共析转变线6.共析钢在过冷奥氏体连续冷却转变产物中,不会出现的组织是:()的TTT曲线左上方有一条()。
参考答案:马氏体第四章测试1.亚共析钢珠光体形核时的领先相是:()参考答案:铁素体2.片状珠光体的形成机制有:()参考答案:交替形核长大机制;分枝形成机制3.强度相同时,片状珠光体的疲劳极限好于球状珠光体。
固态相变考试题.doc
一、名称解释(10分,每题2分)1.冋火马氏体答:淬火钢在低温回火吋得到的组织。
2.回火脆性答:随冋火温度升高,一般是钢的强度、硬度降低,塑性升高,但冲击韧性不一定总是随回火温度升高而升高,有些钢在某些温度回火时,軔性反而显著下降的现象。
3.组织遗传答:合金钢构件在热处理吋,常出现由于锻压、轧制、铸造、焊接等工艺而形成的原始有序粗晶组织。
这些非平衡的粗品有序组织(马氏体、贝氏体、魏氏组织等)在一定加热条件下所形成的奥氏体晶粒继承或恢复原始粗大晶粒的现象,称为组织遗传。
4.时效答:过饱和的固溶体在室温放賈或加热到一定温度下保持一段时间,使得溶质原子在同溶体点阵中的一定区域内析山、聚集、形成新相,引起合金的组织和性能的变化称为吋效。
5.形状记忆效应答:将某些金属材料进行变形后加热到某一特定温度以上时,能自动回复到原來的形状的效应。
6.二次硬化现象当M中K形成元素含量足够多时,500° C以上回火会析出合金碳化物,细小的弥散分布的合金K将使己经因回火温度升高而下降的硬度重新升高,故称二次硬化。
7.晶粒度设n为放大10()倍时每645mm2(lin2)而积P、j的晶粒数,则下式屮的N被用来表示晶粒大小的级别,被称为晶粒度。
N=2N-1二、填空:(20分,每空0.5分)1.马氏体转变时K-S关系是指{110} a ’| {111} y (晶面关系),< 111 > u ’ |< 110〉y (晶向关系)o2.奥氏体是碳溶于丫一Fe固溶体,碳原子位于八面体屮心位置,钢中马氏体是碳溶于a 一Fe 过饱和固溶体,具有体心正方点阵点阵。
3.固相界面根据其共格性有选搔,半共格,非共格,其巾非共格界面的弹性应变能最小。
4.M回火加热时,回火转变过程依次为M屮碳原子的偏聚和聚集,M的分解,残余A分解,碳化物类型变化,a相回复与PJ•结晶。
5.由淬火吋造成的三类内应力在回火吋,随着回火温度的升高,三类应力消失或减小的顺序和原因为••笫H类应力,原因是M分解,造成碳原子析出;第X类应力,原因是碳化物的析出;第二类应力,原因是a相再结晶o6.时效硬化机制有内应变强化,切过颗粒强化,绕过析出相(Orowan机制)。
相变理论试题及答案
相变理论试题及答案一、单项选择题(每题2分,共10分)1. 物质从固态直接变为气态的过程称为:A. 蒸发B. 升华C. 凝固D. 液化答案:B2. 下列哪种物质在常温下为气态?A. 水B. 铁C. 氧气D. 铜答案:C3. 物质从液态变为固态的过程称为:A. 蒸发B. 凝固C. 沸腾D. 升华答案:B4. 物质从气态直接变为固态的过程称为:A. 蒸发B. 升华C. 凝固答案:B5. 物质从固态变为液态的过程称为:A. 蒸发B. 熔化C. 沸腾D. 升华答案:B二、填空题(每空1分,共10分)1. 物质从液态变为气态的过程称为________。
答案:蒸发2. 物质从固态变为液态的过程称为________。
答案:熔化3. 物质从气态变为液态的过程称为________。
答案:液化4. 物质从液态变为固态的过程称为________。
答案:凝固5. 物质从固态直接变为气态的过程称为________。
答案:升华三、简答题(每题5分,共20分)1. 请简述相变过程中的潜热是什么?答案:潜热是指在相变过程中,物质吸收或释放的热量,而温度保持2. 为什么水在0℃时会结冰?答案:水在0℃时结冰是因为在这个温度下,水分子的运动能量不足以抵抗分子间的吸引力,导致水分子排列成固态结构。
3. 请解释为什么在高压下,水的沸点会升高?答案:在高压下,水的沸点升高是因为压力的增加使得水分子间的距离减小,需要更多的能量才能使水分子从液态变为气态。
4. 为什么干冰(固态二氧化碳)在室温下会直接升华?答案:干冰在室温下直接升华是因为固态二氧化碳的分子间作用力较弱,且其升华点低于室温,使得干冰分子在室温下就能获得足够的能量直接从固态变为气态。
四、计算题(每题10分,共20分)1. 假设有1千克的水从0℃加热到100℃,然后完全蒸发。
已知水的比热容为4.18 J/(g·℃),汽化热为40.7 kJ/mol,水的摩尔质量为18 g/mol。
金属固态相变原理习题及解答
第二章1、钢中奥氏体的点阵结构,碳原子可能存在的部位及其在单胞中的最大含量。
奥氏体是碳在γ-Fe中的固溶体,碳原子在γ-Fe点阵中处于Fe原子组成的八面体间隙中心位置,即面心立方晶胞的中心或棱边中点。
八面体间隙:4个2、以共析碳钢为例说明奥氏体的形成过程,并讨论为什么奥氏体全部形成后还会有部分渗碳体未溶解?奥氏体的形成是由四个基本过程所组成:形核、长大、剩余碳化物的溶解和成分均匀化。
按相平衡理论,从Fe-Fe3C相图可以看出,在高于AC1温度,刚刚形成的奥氏体,靠近Cem 的C浓度高于共析成分较少,而靠近F处的C浓度低于共析成分较多(即ES线的斜率较大,GS线的斜率较小)。
所以,在奥氏体刚刚形成时,即F全部消失时,奥氏体的平均C浓度低于共析成分,这就进一步说明,共析钢的P刚刚形成的A的平均碳含量降低,低于共析成分,必然有部分碳化物残留,只有继续加热保温,残留碳化物才能逐渐溶解。
3、合金元素对奥氏体形成的四个阶段有何影响。
钢中添加合金元素并不影响珠光体向奥氏体的转变机制,但影响碳化物的稳定性及碳原子在奥氏体中的扩散系数。
另一方面,多数合金元素在碳化物和基体相中的分布是不均匀的,故合金元素将影响奥氏体的形核与长大、剩余碳化物的溶解、奥氏体成分均匀化的速度。
①通过对碳扩散速度影响奥氏体的形成速度。
②通过改变碳化物稳定性影响奥氏体的形成速度。
③对临界点的影响:Ni、Mn、Cu等降低A1温度;Cr、Mo、Ti、Si、Al、W、V 等升高A1温度。
④通过对原始组织的影响进而影响奥氏体的形成速度:Ni、Mn等往往使珠光体细化,有利于奥氏体的形成。
在其它条件相同的情况下,合金元素在奥氏体中的扩散速度比碳在奥氏体中的扩散速度小100-10000倍。
此外,碳化物形成元素还会减小碳在奥氏体中的扩散速度,这将降低碳的均匀化速度,因此,合金钢均匀化所需时间常常比碳钢长得多。
4、钢在连续加热时珠光体奥氏体转变有何特点。
○1在一定的加热速度围,临界点随加热速度增大而升高。
固态相变试卷(2000)
固态相变试卷一、选择题(单项选择) 每题2分,共30分1、在A,B 两组元组成的置换固溶体中,若r a >r b ,两组元的热力学因子F A 1+⎧⎨⎩⎫⎬⎭d d X A A ln ln γ和 F B 1+⎧⎨⎩⎫⎬⎭d d X BB ln ln γ之间的关系是: A) F A >F BB) F A <F B C) F A =F B D) 无确定的数量关系2、晶界作为高扩散率通道的作用和A) 温度有关,温度越高晶界作用越明显B) 温度有关,温度越高晶界作用越不明显C) 溶质浓度有关,浓度越高晶界作用越明显D) 溶质浓度有关,浓度越高晶界作用越不明显3、小角度扭转晶界和倾转晶界的区别是A) 倾转晶界的转动轴和晶面垂直,扭转晶界转动轴和晶面平行B) 倾转晶界由两组螺位错交叉组成,扭转晶界由一组刃位错组成C) 倾转晶界由混合位错组成,扭转晶界由一组刃位错组成D) 倾转晶界由一组平行刃位错组成,扭转晶界由一组交错的螺位错组成4、多晶体中每段晶界上必须作用有大小等于F r =∂∂θr的扭距项,才能维持晶界不动。
那么多晶体平衡时,不同晶界的扭矩项是靠A) 晶界热激活提供 B) 晶界的相互作用提供C) 晶界上的第二相提供 D) 晶界上的杂质原子提供5、再结晶的驱动力和晶粒长大的驱动力A) 相同,因为是同一过程的两个阶段B) 相同,因为它们的驱动力都是减少系统界面能C) 不同,因为再结晶驱动力是消除晶粒中的应变能,而晶粒长大是减少界面能D) 不同,因为再结晶的驱动力是减少晶粒的界面能,而晶粒长大是减少体积自由能6、若α+β两相合金中,α和β之间是K-S 位相关系,则α/β相界是A) 完全共格界面 B) 由小台阶组成的复杂半共格界面C) 由小台阶组成的非共格界面 D) 平直的半共格界面7、Al-Ag 系中GP 区是球状,而Al-Cu 系中GP 区是层状,这是因为A) Al-Ag 系中GP 区错配度δ为正值, Al-Cu 系中GP 区错配度δ为负值B) Al-Ag 系中GP 区错配度δ<5%, Al-Cu 系中GP 区错配度δ>5%C) Al-Ag 系中GP 区错配度δ>1%, Al-Cu 系中GP 区错配度δ<1%D) Al-Ag 系中GP 区错配度δ>5%, Al-Cu 系中GP 区错配度δ<7%8、滑动界面和非滑动界面的主要区别是A) 滑动界面两侧两相结构相同,非滑动界面两侧两相结构不同B) 滑动界面两侧两相成分相同,滑动界面两侧两相成分不同C) 滑动界面上位错可沿界面运动,非滑动界面上位错不可沿界面运动D) 滑动界面一侧的位错可沿和界面相交的滑移面运动至界面另一侧,而非滑动界面上的位错只能沿界面运动9、珠光体的生长速率和最小层间距A) 都和∆T有关,随∆T增加生长速率减小,最小层间距增大B) 都和∆T无关C) 都和∆T有关,随∆T增加生长速率增大,最小层间距减小D) 都和∆T有关,随∆T增加生长速率和最小层间距都增大10、若以界面迁移将相变分类,则A) 马氏体相变是扩散控制长大B) 珠光体转变是界面控制长大C) 有序化转变是扩散控制长大D) 块状转变(massive)是界面控制长大11、形核驱动力和相变驱动力之间的关系是A) 形核驱动力大于相变驱动力B)形核驱动力小于相变驱动力C) 均匀形核驱动力小于相变驱动力,非均匀形核驱动力大于相变驱动力D) 均匀形核驱动力大于相变驱动力,非均匀形核驱动力小于相变驱动力12、在fcc晶体中,hcp沉淀容易在层错上形核是因为A) 层错形核的|∆Gd|大B) 层错形核的|∆Gv|大C) 层错形核的|∆Gs|小D) 层错形核的γ(界面能)小13、属于均匀形核的相变过程有A) GP区沉淀B) 马氏体相变C) 块状转变D) 无序有序转变14、位错在马氏体相变中的作用是A) 提高形核驱动力B) 降低形核势垒C) 减少马氏体/奥氏体界面能D) 降低应变能15、在Cu-Zn系中,某一成分的合金,在高温时平衡组织是单一β相,室温平衡组织是单一α相,设在冷却过程中α从β中脱溶的驱动力为∆G p,发生块状沉淀的驱动力是∆G m1发生马氏体转变的驱动力是∆G m2,则这三者之间的关系是A) ∆G p <∆G m2 <∆G m1 B) ∆G p <∆G m1 <∆G m2C) ∆G m1 <∆G m2 <∆G p D) ∆G m2 <∆G p <∆G m1二、什么是Kerkendall效应?它说明了置换合金扩散时发生的什么现象?为什么有这种现象发生(可以用图解说明)?若用高碳钢和工业纯铁组成一对扩散偶,是否会发生Kerkendall 效应?为什么?(15分)三、界面控制长大和扩散控制长大有何区别?脱溶沉淀相变是否一定属于扩散控制长大?为什么?块状相变属于哪种类型长大?为什么?(10分)四、说明为什么面心立方晶体中,在一组密排面的每一个面上都有一个Shockley不完全位错扫过,就可能形成原晶体的孪晶?(10分)五、什么是调幅分解,它与共析分解和胞状沉淀有和异同?调幅分解时,系统的自由能变化受哪些因素的影响?为什么调幅波波长λ有极小值?推导λ的极小值的表达式。
(完整版)固态相变原理考试试题+答案
固态相变原理考试试题一、(20分)1、试对固态相变地相变阻力进行分析固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.(2)应变能①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格界面次之,非共格界面最小.②比容差引起地应变能(体积应变能):和新相地形状有关,,球状由于比容差引起地应变能最大,针状次之,片状最小.2、分析晶体缺陷对固态相变中新相形核地作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能.③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.④位错是快速扩散地通道.⑤位错分解为不全位错和层错,有利于形核.Aaromon总结:刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20分)已知调幅分解1、试分析发生调幅分解地条件只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度——成分坐标中地变化轨迹化学拐点:当G”=0时.即为调幅分解地化学拐点;共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.3、请说明调幅分解与形核长大型相变地区别1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理(1)实验基础1 / 32 /3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);④ 在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).(2)基本原理在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只改变形状,通过滑移、孪生形成无畸变面.③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地平面.用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.2、阐明马氏体相变热力学地基本设想和表达式地意义答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温度,,为T<T 0时,产生核胚地温度.③ MG α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).四、(20分)1、试解释沉淀相粒子地粗化机理由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)①当时,r=r ,rt ∂∂=0粒子不长大;②当时,r <r ,r t ∂∂<0小粒子溶解;③当时,r>r ,r t ∂∂>0粒子长大;④当时,r=2r ,r t ∂∂最大,长大最快;⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使rt ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.五、(20分)已知新相地长大速度为:1、 试分析过冷度对长大速度地影响过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,2、 求生长激活能过冷度很大时,exp(-∆gv/kT)→0,公式转化为0exp()Q kT μλν=-3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常数N 0,得生长激活能.。
固态相变习题(一)
相变原理习题一、选择题1、使TTT曲线左移的因素有___________ 。
A 增加亚共析钢中含碳量B 提高钢中含钨量C 增加钢中含铜量D 使奥氏体产生塑性变形2、能使钢中马氏体转变开始温度(Ms)升高的因素有__________ 。
A 降低含Ni钢中的Ni含量B 降低钢中含碳量C 增大冷却速度D 提高加热温度3、高碳马氏体的形貌特征及亚结构是__________ 。
A 板条状及位错B 凸透镜状及位错C 凸透镜状及孪晶4、加热时Fe3C全部溶入A的温度是__________ 。
A A c1B A c3C A ccm5、上贝氏体贝氏体的强度,韧性下贝氏体。
A 高于优于B 高于不如C 低于优于D 低于不如6、中碳钢淬火后高温回火,可获得优良的综合机械性能。
又称为。
A 固溶处理B 调质C 热稳定化D 时效7、出现了高温回火脆性后,如重新加热到650℃以上,然后快冷至室温,消除脆化。
在脆化消除后,再在450 650℃加热快冷再发生脆化。
A 可可B 可不C 不可可D 不可不8、W18Cr4V在560℃回火后,在冷却过程中在250℃稍作停留,残余奥氏体将不再转变为马氏体,这一过程称为。
A 催化B 相变C 逆转变D 稳定化9.奥氏体核的长大是依靠____的扩散, 奥氏体(A)两侧界面向铁素体(F)及渗碳体(C)推移来进行的.(a)铁原子 (b)碳原子 (c)铁碳原子 (d)溶质原子10.亚共析钢在A C3下加热后的转变产物为___.(a) F (b) A (c) F+A (d) P+F11.提高钢中马氏体转变开始点(Ms)的因素有__________ 。
(a) 降低含Ni钢中的Ni含量 (b) 降低钢中含碳量 (c) 增加冷却速度 (d) 提高奥氏体化温度12.低碳马氏体的形貌特征及亚结构是__________ 。
(a) 板条状及位错 (b) 凸透镜状及位错 (c) 凸透镜状及孪晶13.共析钢在奥氏体的连续冷却转变产物中,不可能出现的组织是__________ 。
固态相变原理考试试题+答案
固态相变原理考试试题+答案固态相变原理考试试题⼀、(20分)1、试对固态相变的相变阻⼒进⾏分析固态相变阻⼒包括界⾯能和应变能,这是由于发⽣相变时形成新界⾯,⽐容不同都需要消耗能量。
界⾯能:是指形成单位⾯积的界⾯时,系统的赫姆霍茨⾃由能的变化值。
与⼤⼩和化学键的数⽬、强度有关。
为表⾯张⼒,为偏摩尔⾃由能,为由于界⾯⾯积改变⽽引起的晶粒内部⾃由能变化(1)共格界⾯的化学键数⽬、强度没有发⽣⼤的变化,σ最⼩;半共格界⾯产⽣错配位错,化学键发⽣变化,σ次之;⾮共格界⾯化学键破坏最厉害,σ最⼤。
(2)应变能①错配度引起的应变能(共格应变能):共格界⾯由错配度引起的应变能最⼤,半共格界⾯次之,⾮共格界⾯最⼩。
②⽐容差引起的应变能(体积应变能):和新相的形状有关,,球状由于⽐容差引起的应变能最⼤,针状次之,⽚状最⼩。
2、分析晶体缺陷对固态相变中新相形核的作⽤固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出⼀供形核需要,使临界形核功下降,故缺陷促进形核。
(1)空位:过饱和空位聚集,崩塌形成位错,能量释放⽽促进形核,空位有利于扩散,有利于形核。
(2)位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界⾯上,变成半共格界⾯,减少应变能。
③位错线附近溶质原⼦易偏聚,形成浓度起伏,利于形核。
④位错是快速扩散的通道。
⑤位错分解为不全位错和层错,有利于形核。
Aaromon总结:刃型位错⽐螺型位错更利于形核;较⼤柏⽒⽮量的位错更容易形核;位错可缠绕,割阶处形核;单独位错⽐亚晶界上位错易于形核;位错影响形核,易在某些惯习⾯上形成。
(3)晶界:晶界上易形核,减⼩晶界⾯积,降低形核界⾯能⼆、(20分)已知调幅分解浓度波动⽅程为:,其中:1、试分析发⽣调幅分解的条件只有当R(λ)>0,振幅才能随时间的增长⽽增加,即发⽣调幅分解,要使R(λ)>0,得G”<0且| G”|>2η2Y+8π2k/λ2令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距⼩,梯度项8π2k/λ2很⼤,R(λ)>0,不能发⽣;λ>λc时,随着波长增加,8π2k/λ2下降,易满⾜| G”|>2η2Y+8π2k/λ2,可忽略梯度项,调幅分解能发⽣。
《固态相变》测试题(2)
22.04.2011
1. 回答 回答3.10题,并说明为什么在 题 并说明为什么在Cu-Si合金中,富硅的κ相(HCP)和富 合金中, 合金中 富硅的κ ) 铜的α 合金中, 铜的α(FCC)之间可以形成完全共格界面,而在 )之间可以形成完全共格界面,而在Fe-C合金中,奥氏 合金中 体(FCC)和铁素体(BCC)之间只可能形成复杂半共格界面。 )和铁素体( )之间只可能形成复杂半共界面。 2. 什么是错配度δ和ε和体积错配度∆?它们之间具有什么关系? 什么是错配度δ 和体积错配度∆ 它们之间具有什么关系? 3. 若忽略基体和脱溶物之间的错配度,回答以下问题: 若忽略基体和脱溶物之间的错配度,回答以下问题: (1)脱溶物的形状和取向关系取决于什么? )脱溶物的形状和取向关系取决于什么? (2)说明在什么情况下基体和脱溶物之间的界面,有些是完全共格界面, )说明在什么情况下基体和脱溶物之间的界面,有些是完全共格界面, 有些是非共格界面,有些却可能是共格/半共格和非共格界面的组合 半共格和非共格界面的组合。 有些是非共格界面,有些却可能是共格 半共格和非共格界面的组合。 (3)说明界面为上述三种情况时,脱溶物将具有什么样的平衡形状,为 )说明界面为上述三种情况时,脱溶物将具有什么样的平衡形状, 什么? 什么? 4. 当存在错配度时,回答以下问题: 当存在错配度时,回答以下问题: (1)脱溶物的形状和取向关系取决于什么? )脱溶物的形状和取向关系取决于什么? (2)回答题 )回答题3.11,并说明为什么? ,并说明为什么? (3)说明为什么球状共格脱溶物在其长大过程倾向于丧失其共格性。 )说明为什么球状共格脱溶物在其长大过程倾向于丧失其共格性。
5. 说明什么是滑动型和非滑动型界面。并画图说明如何通过 说明什么是滑动型和非滑动型界面。并画图说明如何通过FCC晶体的 晶体的 ( 111)晶面上肖脱基不全位错的运动 , 使 FCC晶体转变为密排六方 ) 晶面上肖脱基不全位错的运动, 晶体转变为密排六方 晶体。 晶体。 6. 回答以下问题“ 回答以下问题“ (1)什么是非队列和队列型转变? )什么是非队列和队列型转变? (2)回答 )回答3.18题,并给出从母相向界面(溶质原子长程扩散)的溶质原 题 并给出从母相向界面(溶质原子长程扩散) 子流量的表达式。 子流量的表达式。 (3)什么是扩散控制转变、界面控制转变、界面和扩散混合控制转变? )什么是扩散控制转变、界面控制转变、界面和扩散混合控制转变? 说明 ∆µ iB 和 ∆µ α B 的物理意义,并在成分 的物理意义,并在成分——-自由能曲线中标出在上 自由能曲线中标出在上 和µα ∆ B 。 述三种控制情况下的µ iB ∆
固态相变原理测验试题+答案
固态相变原理测验试题+答案--————--———-——---————-——-————--— 作者: —————————————-——-—-——-—-——-—--—— 日期:固态相变原理考试试题一、(20 分) 1、试对固态相变的相变阻力进行分析 固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量。
界面能 :是指形成单位面积的界面时,系统的赫姆霍茨自由能的变化值。
与大小和化学键的数目、强度有关。
为表面张力,为偏摩尔自由能, 为由于界面面积改变而引起的晶粒内部自由能变化 (1) 共格界面的化学键数目、强度没有发生大的变化,σ最小;半共格界面产生错配位错,化学键发生变化,σ次之;非共格界面化学键破坏最厉害,σ最大. (2) 应变能 ① 错配度引起的应变能(共格应变能):共格界面由错配度引起的应变能最大,半共格界面次之,非共格界面最小。
② 比容差引起的应变能(体积应变能):和新相的形状有关,,球状由于比容差引起的应变能最大,针状次之,片状最小。
2、分析晶体缺陷对固态相变中新相形核的作用固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核的形成,缺陷将消失,缺陷的能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核。
(1) 空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核。
(2) 位错:①形成新相,位错线消失,会释放能量,促进形核②位错线不消失,依附在界面上,变成半共格界面,减少应变能。
③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核。
④位错是快速扩散的通道.⑤位错分解为不全位错和层错,有利于形核。
Aaromon 总结:刃型位错比螺型位错更利于形核;较大柏氏矢量的位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能二、(20 分) 已知调幅分解浓度波动方程为:1、试分析发生调幅分解的条件,其中:只有当 R(λ)>0,振幅才能随时间的增长而增加,即发生调幅分解,要使 R(λ)>0,得 G”<0 且| G”|>2η2Y+8π2k/λ2 令 R(λ)=0 得 λc—临界波长,则 λ<λc 时,偏聚团间距小,梯度项 8π2k/λ2 很大,R(λ)>0,不能发生;λ>λc 时,随着波长增加,8π2k/λ2 下降,易满足| G”| >2η2Y+8π2k/λ2,可忽略梯度项,调幅分解能发生。
固态相变试题库及答案
固态相变课程复习思考题2012-5-171.说明金属固态相变的主要分类及其形式2.说明金属固态相变的主要特点3.说明金属固态相变的热力学条件与作用4.说明金属固态相变的晶核长大条件和机制5.说明奥氏体的组织特征和性能6.说明奥氏体的形成机制7.简要说明珠光体的组织特征8.简要说明珠光体的转变体制9.简要说明珠光体转变产物的机械性能10.简要说明马氏体相变的主要特点11.简要说明马氏体相变的形核理论和切边模型12.说明马氏体的机械性能,例如硬度、强度和韧性13.简要说明贝氏体的基本特征和组织形态14.说明恩金贝氏体相变假说15.说明钢中贝氏体的机械性能16.说明钢中贝氏体的组织形态17.分析合金脱溶过程和脱溶物的结构18.分析合金脱溶后的显微组织19.说明合金脱溶时效的性能变化20.说明合金的调幅分解的结构、组织和性能21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子?22.影响珠光体片间距的因素有哪些?23.试述影响珠光体转变力学的因素。
24.试述珠光体转变为什么不能存在领先相25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体26.试述马氏体相变的主要特征及马氏体相变的判据27.试述贝氏体转变与马氏体相变的异同点28.试述贝氏体转变的动力学特点29.试述贝氏体的形核特点30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。
31.试述Al-Cu合金的时效过程,写出析出贯序32.试述脱溶过程出现过渡相的原因33.掌握如下基本概念:固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率1.说明金属固态相变的主要分类及其形式?(1)按热力学分类:①一级相变②二级相变(2)按平衡状态图分类:①平衡相变㈠同素异构转变和多形性转变㈡平衡脱溶沉淀㈢共析相变㈣调幅分解㈤有序化转变②非平衡相变㈠伪共析相变。
㈡马氏体相变。
㈢贝氏体相变。
㈣非平衡脱溶沉淀。
固态相变原理习题集答案
固态相变课程复习思考题2012-5-171.说明金属固态相变的主要分类及其形式2.说明金属固态相变的主要特点3.说明金属固态相变的热力学条件与作用4.说明金属固态相变的晶核长大条件和机制5.说明奥氏体的组织特征和性能6.说明奥氏体的形成机制7.简要说明珠光体的组织特征8.简要说明珠光体的转变体制9.简要说明珠光体转变产物的机械性能10.简要说明马氏体相变的主要特点11.简要说明马氏体相变的形核理论和切边模型12.说明马氏体的机械性能,例如硬度、强度和韧性13.简要说明贝氏体的基本特征和组织形态14.说明恩金贝氏体相变假说15.说明钢中贝氏体的机械性能16.说明钢中贝氏体的组织形态17.分析合金脱溶过程和脱溶物的结构18.分析合金脱溶后的显微组织19.说明合金脱溶时效的性能变化20.说明合金的调幅分解的结构、组织和性能21.试计算碳含量为2.11%(质量分数)奥氏体中,平均几个晶胞有一个碳原子?22.影响珠光体片间距的因素有哪些?23.试述影响珠光体转变力学的因素。
24.试述珠光体转变为什么不能存在领先相25.过冷奥氏体在什么条件下形成片状珠光体,什么条件下形成粒状珠光体26.试述马氏体相变的主要特征及马氏体相变的判据27.试述贝氏体转变与马氏体相变的异同点28.试述贝氏体转变的动力学特点29.试述贝氏体的形核特点30.熟悉如下概念:时效、脱溶、连续脱溶、不连续脱溶。
31.试述Al-Cu合金的时效过程,写出析出贯序32.试述脱溶过程出现过渡相的原因33.掌握如下基本概念:固态相变、平衡转变、共析相变、平衡脱溶、扩散性相变、无扩散型相变、均匀形核、形核率1.说明金属固态相变的主要分类及其形式?(1)按热力学分类:①一级相变②二级相变(2)按平衡状态图分类:①平衡相变㈠同素异构转变和多形性转变㈡平衡脱溶沉淀㈢共析相变㈣调幅分解㈤有序化转变②非平衡相变㈠伪共析相变。
㈡马氏体相变。
㈢贝氏体相变。
㈣非平衡脱溶沉淀。
金属固态相变原理试题A卷附答案
金属固态相变原理试题A卷附答案贵州大学2014—2015学年第一学期《金属固态相变原理》考试试卷(A卷)班级姓名学号一、名词解释(每题3分,共15分)1、共格界面:2、回火脆性:3、起始晶粒度:4、淬透性:5、时效:二、填空题(每空1分,共15分)1、共析钢淬火后回火,根据回火温度可分为回火、回火、回火,分别得到、和组织。
2、调质处理的钢与正火钢相比,不仅强度较高而且、也高于正火钢,这是由于调质处理后钢中渗碳体呈,而正火后的渗碳体呈。
3、化学热处理通常可分为、、三个基本过程。
4、淬火冷却时产生的组织应力是由于工件的和发生马氏体转变的不同时性而造成的内应力。
三、判断题(每题3分,共12分)1、低碳马氏体可以在淬火状态下使用。
2、正火的冷却速度比退火稍慢,故正火钢的组织比较粗大,它的强度、硬度比退火低。
3、淬透性是钢材的固有属性,它取决于钢的淬火冷速的大小。
4、本质细晶粒钢加热后的实际晶粒一定比本质粗晶粒钢小。
四、论述题(共34分)1、试分析下贝氏体中碳化物排布规律的形成原因。
(10分)2、马氏体转变为什么需要深度过冷?(6分)3、根据奥氏体形成规律讨论细化奥氏体晶粒的途径。
(8分)4、试分析珠光体转变与贝氏体转变有哪些主要异同点?(10分)五、分析题(每题12分,共24分)1、有一批丝锥原定有T12钢制造,要求硬度为HRC60~64,但材料中混入了少量的35钢,问混入的35钢仍按T12钢的工艺进行淬火处理,这些35钢制成的丝锥能否达到性能要求?为什么?2、T8钢的过冷奥氏体等温转变C曲线如图所示,若使该钢的过冷奥氏体在620℃进行等温转变,并经不同时间的保温后,按图示1、2、3、4线的方式冷却至室温,试分析:①这四种冷却方式分别得到什么组织?②哪种冷却方式所得到的组织硬度最高?那种结果最低?为什么?贵州大学2014—2015学年第一学期《金属固态相变原理》考试试卷(A卷)答案一、名词解释(每题3分,共15分)1、共格界面:当界面上的原子所占位置恰好是两相点阵的共有位置(1分),两相在界面上的原子可以一对一相互匹配,这种界面叫做共格界面(2分)。
固态相变习题与参考解答
固态相变习题与参考解答1、解释下列名词:自扩散:是在纯金属中的原子或固溶体中的溶质原子由一个平衡位置迁移到另一个平衡位置的单纯由热运动引起的扩散现象。
化学扩散:间隙扩散:间隙扩散是扩散原子在点阵的间隙位置之间跳迁而导致的扩散。
间隙固溶体中溶质原子半径较小,间隙位置数目较多,易发生间隙扩散。
置换扩散:置换扩散以原子跳动到邻近空位的方式进行,因此认为置换扩散也应该是通过单独跳动机制进行的。
它与间隙扩散的区别在于跳动是通过空位进行的,即扩散机制是一种空位扩散机制。
互扩散:是溶质原子和溶剂原子同时存在迁移的扩散。
严格来讲,大部分合金系统的原子扩散都是互扩散。
晶界扩散:熔化的钎料原子沿着母材金属的结晶晶界的扩散现象。
晶界扩散所需要的激活能比体扩散小,因此,在温度较低时,往往只有晶界扩散发生。
而且,越是晶界多的金属,越易于焊接,焊接的机械强度也就越高。
上坡扩散:原子扩散的驱动力是化学位。
在一般情况下,总是从浓度高处向浓度低处扩散,这叫顺扩散,但有时也会发生从浓度低处向浓度高处扩散的现象,成为逆扩散,即上坡扩散。
2、什么叫原子扩散和反应扩散 ?原子扩散是一种原子在某金属基体点阵中移动的扩散。
在扩散过程中并不产生新相,也称为固溶体扩散。
扩散物质在溶剂中的最大浓度不超过固溶体在扩散温度下的极限浓度,原子扩散有自扩散,异扩散和互扩散三类。
扩散过程不仅会导致固溶体的形成和固溶体成分的改变,而且还会导致相的多形性转变或化合物的形成。
这种通过扩散而形成新相的现象称为反应扩散,也叫相变扩散。
3、什么叫界面控制和扩散控制?试述扩散的台阶机制 ?[简要解答] 生长速度基本上与原子的扩散速率无关,这样的生长过程称为界面控制。
相的生长或溶解为原子扩散速率所控制的扩散过程称为扩散控制。
如图,α相和β相共格,在DE、FG处,由于是共格关系,原子不易停留,界面活动性低,而在台阶的端面CD、EF处,缺陷比较多,原子比较容易吸附。
因此,α相的生长是界面间接移动。
固态相变习题学习资料
固态相变习题学习资料固态相变习题第一章自测题试卷1、固态相变是固态金属(包括金属与合金)在()和()改变时,()的变化。
2、相的定义为()。
3、新相与母相界面原子排列方式有三种类型,分别为()、()、(),其中()界面能最低,()应变能最低。
4、固态相变的阻力为()及()。
5、平衡相变分为()、()、()、()、()。
6、非平衡相变分为()、()、()、()、()。
7、固态相变的分类,按热力学分类:()、();按原子迁动方式不同分类:()、();按生长方式分类()、()。
8、在体积相同时,新相呈()体积应变能最小。
A.碟状(盘片状) B.针状 C.球状9、简述固态相变的非均匀形核。
10、简述固态相变的基本特点。
第二章自测题试卷1、分析物相类型的手段有()、()、()。
2、组织观测手段有()、()、()。
3、相变过程的研究方法包括()、()、()。
4、阿贝成像原理为()。
5、物相分析的共同原理为()。
6、扫描电镜的工作原理简单概括为:()。
7、透射电子显微镜的衬度像分为()、()、()。
第三章自测题试卷1. 根据扩散观点,奥氏体晶核的形成必须依靠系统内的():A.能量起伏、浓度起伏、结构起伏B. 相起伏、浓度起伏、结构起伏C.能量起伏、价键起伏、相起伏D. 浓度起伏、价键起伏、结构起伏2. 奥氏体所具有的性能包括:()A.高强度、顺磁性、密度高、导热性差;B.高塑性、顺磁性、密度高、导热性差;C.较好热强性、高塑性、顺磁性、线膨胀系数大;D.较好热强性、高塑性、铁磁性、线膨胀系数大。
3. 影响奥氏体转变的影响因素包括()、()、()、()。
4.控制奥氏体晶粒大小的措施有:(),(),(),()。
5.奥氏体是Fe-C合金中的一种重要的相,一般是指(),碳原子位于()。
6. 绘图说明共析钢奥氏体的形成过程。
7. 奥氏体易于在铁素体和渗碳体的相界面处成核的原因是什么?8. 简述连续加热时奥氏体转变的特点。
固态相变复习答案
固态相变复习答案第一章从铁碳合金相图中知道,碳素钢在加热和冷却过程中,经过PSK(A1)线,发生珠光体向奥氏体的相互转变,经过GS(A3)线,发生铁素体向奥氏体的相互转变,经过ES (Acm)线,发生渗碳体向奥氏体的转变。
所以任一含碳量的碳素钢,其在缓慢加热和冷却过程中固态组织转变的临界点,就是依据A1、A3和Acm线确定。
共析钢仅有一个临界点A1,亚共析钢有两个临界点A1和A3点,过共析钢也有两个临界点A1和Acm点。
A1、A3和Acm均为平衡临界点,实际转变过程不可能在平衡临界点进行,为示区别,将加热转变点以C表示,冷却转变点以r表示。
% d% a% @, g. u2 i5 `, a' P; }开始转变AC1――加热时 P A 温度: {8 M p5 }8 y! C/ ~开始转变Ar1――冷却时 A P 温度8 a# Q- s\) {2 N1 Y/ i/ f' Q9 j& g# S# U2 f全部转变AC3――加热时 F A 终了温度开始析出Ar3――冷却时 A F 温度& U% [* g3 b* J( U' ?\ 全部溶入6 o* [% \\+ {' \\ Q( b# h# c ACcm――加热时Fe3CⅡ A 终了温度开始析出Arcm――冷却时 A Fe3CⅡ 温度第二章奥氏体形成一・奥氏体的形成可以分四个阶段;1,奥氏体的形核2,晶核向铁素体和渗碳体俩个方向长大 3,剩余碳化物溶解 4,奥氏体成分均匀化二・影响奥氏体晶粒大小因素答;(1)加热温度的影响(3)原始组织的影响(2)含碳量的影响(4)合金元素的影响三・什么是奥氏体的起始晶粒度,本质晶粒度和实际晶粒度,各有何意义?答;(1)起始晶粒度:奥氏体晶粒边界刚刚相互接触时奥氏体晶粒的大小为起始晶粒度。
(2)本质晶粒度:一定条件下奥氏体晶粒长大的倾向(规定条件下,A晶粒的大小) 。
(3)实际晶粒度:在具体的热处理工艺下获得的奥氏体晶粒的大小称为实际晶粒度。
材料科学基础《相变原理答案》
3 试述马氏体转变的主要特点。 (1)切变共格和表面浮凸现象 (2)马氏体转变的无扩散性 无成分变化,仅有晶格改组 原子集体运动,原来相邻的原子转变后依然相邻,相对位移不超过一个原子间距 在相当低的温度范围内进行,转变速度极快 (3)具有一定的位向关系和惯习面 (4)马氏体转变是在一个温度范围内完成的 (5)马氏体转变的可逆性 综合:以切变共格形式进行、相变的无扩散性 4 试述钢中板条状马氏体和片状马氏体的形貌特征和亚结构并说明它们的性能差异。 形貌特征: 板条状马氏体: 板条体常自奥氏体晶界向晶内平行排列成群, 一个奥氏体晶粒内包含几个板 条群,板条体之间为小晶界,板条群之间为大晶界。 片状马氏体:凸透镜片状中间较厚,初生者较厚较长,横贯奥氏体晶粒,次生者尺寸较小。 在初生片与奥氏体晶界之间,片间交角较大,互相撞击,形成显微裂纹。有明显中脊。 亚结构:板条状:位错网络(缠结) ,有时亦可见到少量细小孪晶。片状:孪晶。 性能差异:低碳的位错型(板条状)马氏体具有相当高的强度和良好的韧性,高碳的孪晶型 (片状)马氏体具有高的强度,但韧性很差。位错型(板条状)马氏体还具有脆性转折温度 低,缺口敏感性低等优点。 5 Ms 点的定义和物理意义。 Ms 点为奥氏体和马氏体的两相自由能之差达到相变所需的最小驱动力值的温度。Ms 点和 T0 的差值表示了相变的化学驱动力的大小。 6 试述影响 Ms 点的主要因素。 (1)化学成分的影响 钢中碳含量增加,Ms 点下降,转变温度区间范围扩大。 合金元素使 Ms 点下降,Al 和 Co 例外使 Ms 点上升。 (2)形变和应力的影响 Ms 点以上、Md 点以下,塑性形变诱发马氏体相变;Ms-Mf 之间形变促进马氏体转变,马 氏体转变量增加。 弹性应力的影响: 马氏体转变产生体积膨胀, 多向亚应力阻止马氏体形成, 拉应力和单向压应力有利于马氏体的形成,使 Ms 点升高。 (3)奥氏体化条件的影响 加热温度和时间增加有利于碳和合金元素进一步溶入奥氏体中,使 Ms 点下降;在完全奥氏 体化的条件下,加热温度的提高和时间的延长是奥氏体晶粒长大,缺陷减少,Ms 点有所提 高;在奥氏体成分一定的情况下,晶粒细化,奥氏体强度提高,转变切变阻力增大,Ms 点 下降。 (4)淬火速度的影响 高速淬火时,Ms 点随淬火冷却速度增大而提高(抑制 C 原子气团的形成) (5)磁场的影响 加磁场只使 Ms 点提高,对 Ms 点以下的转变行为并无影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固态相变原理考试试题
一、(20分)
1、试对固态相变地相变阻力进行分析
固态相变阻力包括界面能和应变能,这是由于发生相变时形成新界面,比容不同都需要消耗能量.
(1)界面能:是指形成单位面积地界面时,系统地赫姆霍茨自由能地变化值.与大小和化学键地数目、强度有关.共格界面地化学键数目、强度没有发生大地变化,最小;半共格界面产生错配位错,化学键发生变化,次之;非共格界面化学键破坏最厉害,最大.
(2)应变能
①错配度引起地应变能(共格应变能):共格界面由错配度引起地应变能最大,半共格
界面次之,非共格界面最小.
②比容差引起地应变能(体积应变能):和新相地形状有关,,
球状由于比容差引起地应变能最大,针状次之,片状最小.
2、分析晶体缺陷对固态相变中新相形核地作用
固相中存在各种晶体缺陷,如空位、位错、层错、晶界等,如果在晶体缺陷处形核,随着核地形成,缺陷将消失,缺陷地能量将给出一供形核需要,使临界形核功下降,故缺陷促进形核.
(1)空位:过饱和空位聚集,崩塌形成位错,能量释放而促进形核,空位有利于扩散,有利于形核.
(2)位错:
①形成新相,位错线消失,会释放能量,促进形核
②位错线不消失,依附在界面上,变成半共格界面,减少应变能.
③位错线附近溶质原子易偏聚,形成浓度起伏,利于形核.
④位错是快速扩散地通道.
⑤位错分解为不全位错和层错,有利于形核.
Aaromon总结:
刃型位错比螺型位错更利于形核;较大柏氏矢量地位错更容易形核;位错可缠绕,割阶处形核;单独位错比亚晶界上位错易于形核;位错影响形核,易在某些惯习面上形成.
(3)晶界:晶界上易形核,减小晶界面积,降低形核界面能
二、(20分)
已知调幅分解
1、试分析发生调幅分解地条件
只有当R(λ)>0,振幅才能随时间地增长而增加,即发生调幅分解,要使R(λ)>0,得且. 令R(λ)=0得λc—临界波长,则λ<λc时,偏聚团间距小,梯度项很大,R(λ)>0,不能发生;λ>λc时,随着波长增加,下降,易满足,可忽略梯度项,调幅分解能发生.
2、说明调幅分解地化学拐点和共格拐点,并画出化学拐点、共格拐点和平衡成分点在温度
——成分坐标中地变化轨迹
化学拐点:当G”=0时.即为调幅分解地化学拐点;
共格拐点:当G”+2η2Y=0时为共格拐点,与化学拐点相比共格拐点地浓度范围变窄了,温度范围也降低了.
3、请说明调幅分解与形核长大型相变地区别
调幅分解与形核长大型相变地区别
调幅分解形核长大型变形
成分连续变化,最后达到平衡始终保持平衡,不随时间变化
相界面开始无明显相界面,最后才变明显始终都有明显地相界面
组织形
态两相大小分布规则,组织均匀,不呈球
状
大小不一,分布混乱,常呈球状,组织均匀性
差
结构结构与母相一致,成分与母相不同结构、成分均不同
三、(20分)
1、阐明建立马氏体相变晶体学表象理论地实验基础和基本原理
(1)实验基础
1 / 3
2 /
3 ① 在宏观范围内,惯习面是不应变面(不转变、不畸变);
② 在宏观范围内,马氏体中地形状变形是一个不变平面应变;
③ 惯习面位向有一定地分散度(指不同片、不同成分地马氏体);
④
在微观范围内,马氏体地变形不均匀,内部结构不均匀,有亚结构存在(片状马氏体为孪晶,板条马氏体为位错).
(2)基本原理
在实验基础上,提出了马氏体晶体学表象理论,指出马氏体相变时所发生地整个宏观应变应是下面三种应变地综合:
① 发生点阵应变(Bain 应变),形成马氏体新相地点阵结构.但是Bain 应变不存在
不变平面,不变长度地矢量是在圆锥上,所以要进行点阵不变切变.
② 简单切边,点阵不变非均匀切变,在马氏体内发生微区域变形,不改变点阵类型,只
改变形状,通过滑移、孪生形成无畸变面.
③ 刚体转动,①②得到地无畸变地平面转回到原来地位置去,得到不畸变、不转动地
平面.
用W-R-L 理论来表示:P 1=RPB,P 1为不变平面应变地形状变形,B 为Bain 应变、用
主轴应变来表示,R 为刚体转动、可以用矩阵来表示,P 为简单应变.
2、阐明马氏体相变热力学地基本设想和表达式地意义
答:基本设想:马氏体相变先在奥氏体中形成同成分地体心核胚,然后体心核胚再转变为马氏体M.
所以马氏体相变自由能表达式为:M M G G G γγαα→→→∆=∆+∆,式中:
① M G γ→∆表示奥氏体转变为马氏体地自由能差.,此时温度为Ms 温度.
② G γα→∆表示母相中形成同成分地体心核胚时地自由能变化,定义为T 0温度γ与α地平衡温
度,,为T<T 0时,产生核胚地温度.
③ M G α→∆表示体心核胚转变为马氏体M 而引起地自由能变化.消耗于以下几个方面:切变能(进
行不变平面切变、改变晶体结构和形状地能量);协作形变能(周围地奥氏体产生形变地能量);膨胀应变能(由于比容变化而致);存储能(形成位错地应变能、形成孪晶地界面能);其他(表面能、缺陷能、能量场地影响等).
四、(20分)
1、试解释沉淀相粒子地粗化机理
由Gibbs-Thompson 定理知,在半径为r 地沉淀相周围界面处母相成分表达式: 2()()(1)m V C r C RTr αασ=∞-当沉淀相越小,其中每个原子分到地界面能越多,因此化学势越高,
与它处于平衡地母相中地溶质原子浓度越高. 即:C (r 2)> C(r 1) .由此可见在大粒子r 1和小粒子r 2之间地基体中存在浓度梯度,因此必然有一个扩散流,在浓度梯度地作用下,大粒子通过吸收基体中地溶质而不断长大,小粒子则要不断溶解、收缩,放出溶质原子来维持这个扩散流.所以出现了大粒子长大、小粒子溶解地现象. 需要画图辅助说明!
2、根据沉淀相粒子粗化公式:,分析粒子地生长规律(奥斯瓦尔德熟化)
①当时,r=r ,r
t ∂∂=0粒子不长大;②当时,r <r ,r
t ∂∂<0小粒子溶解;③当时,r>r ,r
t ∂∂>0粒子长大;
④当时,r=2r ,r
t ∂∂最大,长大最快;
⑤长大过程中,小粒子溶解,大粒子长大,粒子总数减小,r 增加,更容易满足②,小粒子溶解更快;⑥温度T 升高,扩散系数D 增大,使r
t ∂∂增大.所以当温度升高,大粒子长大更快, 小粒子溶解更快.
五、(20分)
已知新相地长大速度为:
1、 试分析过冷度对长大速度地影响
过冷度很小,∆gv 很小,∆gv 随过冷度地增加而增加,∆gv 越小长大速率越大,表明:长大速度u 与过冷度或者成正比,也就是当T 下降,过冷度增大,上升,长大速度u 增大.
(1) 过冷度很很大,∆gv/kT 很大,exp(-∆gv/kT)→0,此时,温度越高长大速率越大,
2、 求生长激活能
过冷度很大时,exp(-∆gv/kT)→0,公式转化为
0e x p ()
Q kT μλν=-
3 / 3 两边取对数,0exp()Q kT μλν=-则(ln )
(1/)d Q K d T μ=-则为单个原子地扩散激活能,再乘以阿伏加德罗常
数N 0,得生长激活能.。