武汉市2017年九年级四月调考数学试卷以及答案

合集下载

武汉市2017年中考数学试卷参考答案

武汉市2017年中考数学试卷参考答案

2
又∵AB=AC ∴AO 平分∠BAC (2)方法 1:如图,过点 D 作 DK⊥AO 于 K. ∵由(1)知 AO⊥BC,OB=OC,BC=6
∴ BH=CH= 1 BC=3,∠COH= 1 ∠BOC,
2
2
∵∠BAC= 1 ∠BOC,∴∠COH=∠BAC 2
在 Rt△COH 中,∠OHC=90°,sin∠COH= HC CO


x x
2 5x 5<0
6>0


xx< <5-1或x>6∴
x<-1或 x<5

x>6 x<5
∴此时x<-1

x x
2 5x 5>0
6<0

x>1<5 x<6∴x>1<5x<6
解得:
5<x<6
综上,原不等式的解集是: x<-1或5<x<6
由 6 >x得, 6 x>0
x5
x5
y
y = x2 5∙x 6
∴ 6 x2 5x >0 ∴ x2 5x 6<0
x5
x5

x2 5x x 5<0
6>0


x x
2 5x 5>0
6<0
-1 O
6
x
结合抛物线 y=x2 5x 6 的图象可知
解法 2:图像法,将反比例函数 y 6 向右平移 5 个单位. x
23、.解:(1)∵∠ADC=90°,∠EDC+∠ADC=180°, ∴∠EDC=90°,又∠ABC=90°, ∴∠EDC=∠ABC,又∠E 为公共角, ∴△EDC∽∠EBA,
B C
∴EEDB=EECA,∴ED²EA=EC²EB. (2)过 C 作 CF⊥AD 于 F,过 A 作 AG⊥EB 交 EB 延长线于 G.

湖北省武汉市2017年中考数学真题试题(含扫描答案)

湖北省武汉市2017年中考数学真题试题(含扫描答案)

2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( )A .6B .-6C .18D .-182.若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( ) A .x 2+2 B .x 2+3x +2 C .x 2+3x +3 D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23B .23C .3D .3210.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+-+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD=2CE,则DE的长为___________16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x-3=2(x-1)18.(本题8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD 与AB之间的关系,并证明你的结论19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数分布扇形图___________②在统计表中,b=___________,c=___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数xk y =的图象相交于A (-3,a )和B 两点 (1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >-56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB (2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE(3) 如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值。

湖北省武汉市2017年中考数学真题试题(含扫描答案)

湖北省武汉市2017年中考数学真题试题(含扫描答案)

2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( ) A .6 B .-6 C .18 D .-182.若代数式41−a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23 B .23 C .3 D .32 10.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+−+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为___________16.已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x -3=2(x -1)18.(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论19.(本题8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数分布扇形图 部门 员工人数 每人所创的年利润/万元A 5 10 Bb 8 C c5 (1) ① 在扇形图中,C 部门所对应的圆心角的度数为___________② 在统计表中,b =___________,c =___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数x k y =的图象相交于A (-3,a )和B 两点(1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >−56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB(2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE (3) 如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值。

勤学早·2017年武汉市四月调考数学模拟试卷(1)-(1)

勤学早·2017年武汉市四月调考数学模拟试卷(1)-(1)

勤学早·2017年武汉市四月调考数学模拟试卷(1)一、选择题(共10小题,每小题3分,共30分) 1.9的值是( ) A .3B .-3C .±3D .32.若代数式21x 在实数范围内有意义,则x 的取值范围是( ) A .x <2B .x ≠2C .x >2D .x =23.下列计算结果是a 6的是( )A .a 2·a 3B .a 2+a 4C .a 9-a 3D .(a 3)24.不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球.从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x -2)2的结果是( )A .x 2-4x +4B .x 2-4C .x 2+4x +4D .x 2-2x +4 6.已知点A (2,a )与点B (b ,3)关于坐标原点对称,则实数a 、b 的值是( ) A .a =-3,b =2B .a =3,b =2C .a =-3,b =-2D .a =3,b =-27.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是( )8.九年级某班40位同学的年龄如下表所示:年龄(岁)13 14 15 16 人数316192 则该班40名同学年龄的众数和中位数分别是( )A .19、15B .15、14.5C .19、14.5D .15、159.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n 个图案中有2017个白色纸片,则n 的值为( )A .671B .672C .673D .67410.已知二次函数y =ax 2+bx +c ,函数y 与自变量x 的部分对应值如下表:x …… -1 0 2 3 4 …… y……105225……若A (m ,y 1)、B (m -1,y 2)两点都在函数的图象上,则当m 满足( )时,y 1<y 2 A .m ≤2B .m ≥3C .m <25 D .m >25二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算8+(-5)的结果为____________ 12.化简:xx x 11-+=___________ 13.甲盒子中有编号为1、2的2个白色兵乓球,乙盒子中有编号为4、5的2个黄色兵乓球.现分别从每个盒子中随机地取出1个兵乓球,则取出兵乓球的标号之和大于6个概率为___________ 14.如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,把四边形ABCD 沿EF 翻折,得到四边形GFEH ,A 的对应点为G ,B 的对应点为H .若∠B =50°,EH ∥CD ,则∠AFE 的度数是_________15.如图,△ABC 中,∠ABC =45°,∠C =30°,AD ⊥AC 交BC 于D ,以AD 为边作正方形ADEF ,F 在AC 边上,则CFBD的值为___________ 16.如图,AB 为⊙O 的直径,C 为半圆的中点,D 为弧AC 上一动点,延长DC 至E ,使CE =CD .若AB =24,当点D 从点A 运动到点C 时,线段BE 扫过的面积为___________ 三、解答题(共8题,共72分)17.(本题8分)解方程:3x +2=5(x -2)18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB =DE ,BE =CF ,求证:AC =DF19.(本题8分)学习完统计知识后,某学生就本班同学的上学方式进行调查统计,他通过收集数据后绘制的两幅不完整的统计图如下图所示,请你根据图中提供的信息解答下列问题: (1) 该班有___________名学生,其中步行的有___________人;在扇形统计图中“骑自行车”所对应扇形的圆心角大小是___________(2) 根据以上统计分析,估计该校2000名学生中骑车的人数大约是多少?20.(本题8分)某商店购买60件A 商品和30件B 商品共用了1080元,购买50件A 商品和20件B 商品共用了880元(1) A 、B 两种商品的单价分别是多少元?(2) 已知该商品购买B 商品的件数比购买A 商品的件数的2倍少4件,设购买A 商品的件数为x 件,该商品购买A 、B 两种商品的总费用为y 元 ① 求y 关于x 的函数关系式② 若该商品购买的A 、B 两种商品的总费用不超过296元,那么购买A 商品的件数最多只能买多少件?21.(本题8分)在△P AE 中,∠P AE =90°,点O 在边AE 上,以OA 为半径的⊙O 交AE 于B ,OP 平分∠APE(1) 求证:PE 是⊙O 的切线 (2) 设⊙O 与PE 相切于点C ,若43EC EB ,连接PB ,求tan ∠APB 的值22.(本题10分)已知反比例函数xy 6=(1) 若该反比例函数的图象与直线y =-x +b 相交于A 、B 两点,若A (3,2),求点B 的坐标 (2) 如图,反比例函数xy 6=(1≤x ≤6)的图象记为曲线C 1,将C 1沿y 轴翻折,得到曲线C 2 ① 请在图中画出曲线C 1、C 2② 若直线y =-x +b 与C 1、C 2一共只有两个公共点,直接写出b 的取值范围23.(本题10分)在等边△ABC 中,D 为AB 上一点,连接CD ,E 为CD 上一点,∠BED =60° (1) 延长BE 交AC 于F ,求证:AD =CF (2) 若32=BD AD ,连接AE 、BE ,求BE AE 的值 (3) 若E 为CD 的中点,直接写出BDAD的值24.(本题12分)抛物线y=mx2-4mx+3与x轴的交点为A(1,0)、B,与y轴交于点C(1) 求抛物线的解析式(2)P为抛物线第一象限上的一点,若∠P AB=2∠ACO,求点P的坐标(3)M为抛物线在点B右侧上的一点,M与N两点关于抛物线的对称轴对称,AN、AM交y轴于E、D,求OE-OD的值。

湖北省武汉市2017年中考数学真题试题(含扫描答案)[真题]

湖北省武汉市2017年中考数学真题试题(含扫描答案)[真题]

个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )
A.4
B.5
C.6
D.7
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)
11.计算 2 ×3+(- 4)的结果为___________
12.计算 x − 1 的结果为___________ x +1 x +1
21.(本题 8 分)如图,△ABC 内接于⊙O,AB=AC,CO 的延长线交 AB 于点 D (1) 求证:AO 平分∠BAC
(2) 若 BC=6,sin∠BAC= 3 ,求 AC 和 CD 的长
5
22.(本题 10 分)如图,直线 y=2x+4 与反比例函数 y = k 的图象相交于 A(-3,a)和 B
13.如图,在□ABCD 中,∠D=100°,∠DAB 的平分线 AE 交 DC 于点 E,连接 BE.若 AE= AB,则∠EBC 的度数为___________ 14.一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它们除颜色外完全相同.随 机摸出两个小球, 摸出两个颜色相同的小球的概率为___________ 15.如图,在△ABC 中,AB=AC= 2 3 ,∠BAC=120°,点 D、E 都在边 BC 上,∠DAE=60°.若 BD=2CE,则 DE 的长为___________
运动,速度为每秒 2 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度
为每秒 1 个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时,QM=2PM,直 接写出 t 的值
C.1.70、1.75
D.1.70、
1.70
5.计算(x+1)(x+2)的结果为( )

湖北省武汉市2017届九年级四月调考数学模拟试卷2

湖北省武汉市2017届九年级四月调考数学模拟试卷2

湖北省武汉市2017届九年级四月调考数学模拟试卷2一、选择题(共10小题,每小题3分,共30分)1.4的值是( )A .2B .-2C .±2D .42.若代数式31 x 在实数范围内有意义,则x 的取值范围是( ) A .x <-3B .x >-3C .x ≠-3D .x =-3 3.下列计算结果是a 5的是( )A .a 6÷aB .(a 3)2C .a 5·aD .3a +2a 4.下列说法正确的是( )A .打开电视,正在播放新闻节目是必然事件B .抛一枚硬币,正面朝上的概率为21,表示每抛两次就有一次正面朝上 C .抛一枚均匀的正方体骰子,朝上的点数是3的概率为61 D .任意画一个三角形,它的内角和等于360°5.运用乘法公式计算(x +3)(x -3)的结果是( )A .x 2+9B .x 2-6x +9C .x 2-9D .x 2+6x +9 6.将点A (-2,1)向右平移3个单位,再向下平移2个单位后,得到点B ,则点B 的坐标为( ) A .(-5,-1) B .(1,3) C .(-5,3)D .(1,-1) 7.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的主视图是( )8.某小组5名同学在一周内参加劳动的时间如下表所示,关于“劳动时间”的这组数据,以下列说法正确的是( )A .中位数是4B .众数是4.5C .极差是1D .平均数是3.759.如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+nD .y =2n +n +110.已知二次函数y =x 2+bx +c ,当x ≤1时,总有y ≥0;当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )A .0≤c ≤3B .c ≥3C .1≤c ≤3D .c ≤3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:6-(-3)的结果为___________12.计算:aa a +++112=___________ 13.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取1个球,则取到的是白球的概率为___________14.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,连接DF ,且∠CDF =24°,则∠DAB 的度数是___________15.如图,在△ABC 中,∠ABC =60°,23=BC AB ,D 为△ABC 外一点,连接AD 、CD .若∠ADC =30°,AC =AD ,则ABBD 的值为___________ 16.如图,△ABC 中,∠ABC =90°,AB =BC =4,D 为BC 边上一动点,点O 是正方形ADEF 的中心.当点D 沿BC 边从点B 运动到点C 时,点O 运动的路径长为___________三、解答题(共8题,共72分)17.(本题8分)解方程:2x -4=3(2x +2)18.(本题8分)如图,△ABC 和△EFD 分别在线段AE 的两侧,点C 、D 在线段AE 上,AC =DE ,AB ∥EF ,BC ∥DF ,求证:BC =FD19.(本题8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工平时成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1) 写出本次调查共抽取的职工数为__________(2) 若将得分转化为等级,规定:得分低于100分评为“D ”,100~130分评为“C ”,130~145分评为“B ”,145~160分评为“A ”,那么该年级1500名考生中,考试成绩评为“B ”的人员大约有多少名?20.(本题8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品,小红与小明去文化商店购买甲乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元(1) 求甲、乙两种笔记本的单价各是多少元?(2) 若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案21.(本题8分)如图,BC 为⊙O 的直径,AB 为⊙O 的弦,D 为弧BC 的中点,CE ⊥AD 于E ,AD 交BC 于点F ,tanB =21 (1) 求证:DE =2AE(2) 求sin ∠BFD 的值22.(本题10分)如图1,反比例函数x k y =的图象经过点A (-1,4),直线y =-x +b (b ≠0)与双曲线xk y =在第二、四象限分别相交于P 、Q 两点,与x 轴、y 轴分别相交于C 、D 两点 (1) 当b =-3时,求P 点坐标(2) 连接OQ ,存在实数b ,使得S △ODQ =S △OCD ,请求出b 的值(3) 如图2,当b =-3时,直线y =a (a >0)与直线PQ 交于点M ,与双曲线交于点N (不同于M ).若PM =PN ,则a 的值是____________(直接写出结果)23.(本题10分)在△ABC 中,AB =AC ,CD ⊥AB 于D ,E 为AC 上一点,EF ⊥BC 于F ,交CD 于G(1) 如图1,若∠BAC =120°,求证:CG =3EG(2) 如图2,点E 为AC 的中点.若BF =26,CG =5,求DG 的长(3) 如图3,若EG =2CF ,直接写出ABAD 的值24.(本题12分)已知抛物线y =21x 2+2mx -4m -2(m ≥0)与x 轴交于A 、B 两点,A 点在B 点的左边,与y 轴交于点C(1) 当AB =6时,求点C 的坐标(2) 抛物线上有两点M (-1,a )、N (4,b ),若△AMN 的面积为17.5,求m 的值(3) 在抛物线第一象限上有一点G ,连接AG 、GB 并延长分别交y 轴于F 、E .若∠AFO =∠EBO ,求证:点G 总在一条定直线上。

湖北省武汉市2017年中考数学真题试题(含扫描答案)

湖北省武汉市2017年中考数学真题试题(含扫描答案)

2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( )A .6B .-6C .18D .-182.若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( ) A .x 2+2 B .x 2+3x +2 C .x 2+3x +3 D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23B .23C .3D .3210.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+-+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD=2CE,则DE的长为___________16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x-3=2(x-1)18.(本题8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD 与AB之间的关系,并证明你的结论19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数分布扇形图___________②在统计表中,b=___________,c=___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数xk y =的图象相交于A (-3,a )和B 两点 (1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >-56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB (2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE(3) 如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值。

湖北省武汉市2017年中考数学真题试题(含扫描答案)

湖北省武汉市2017年中考数学真题试题(含扫描答案)

2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( ) A .6 B .-6 C .18 D .-182.若代数式41−a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23 B .23 C .3 D .32 10.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+−+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为___________16.已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x -3=2(x -1)18.(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论19.(本题8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表 各部门人数分布扇形图 部门 员工人数 每人所创的年利润/万元A 5 10 Bb 8 C c5 (1) ① 在扇形图中,C 部门所对应的圆心角的度数为___________② 在统计表中,b =___________,c =___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数x k y =的图象相交于A (-3,a )和B 两点(1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >−56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB(2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE (3) 如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值。

2017年武汉市四调数学答案解析

2017年武汉市四调数学答案解析

( 11. 12. 13. , 14. , 8+( 5)
6

3

18
)
x 1 − x −1 x −1
, 1 , 2 ,
5 9
.
ABCD BCF
,E
AB
, △CBE
CE
△CFE,
AF.
EAF 70 ,
15. 16. )
60
8 3,
D 90 ,
30 ( P
3
30 ) , ,
ABCD, ABC 45 , C
)
5000 ×
78 × 100%=1950( ) 200
20.(
8
) 35 t
,2
3
15.5 t;5
6
(1) (2) 10 , 30 t,
(1)
x
y
.
2 x + 3 y = 15.5 5x + 6 y = 35
x = 4, y = 2.5
4t 2 .5 t
(2)
a

(10 − a)

4a + (10 − a) × 2.5 ≥ 30 ,
E
D M
E
M
D
N
F P N
C
F
C
A E
B D
A
G
B
H
K
M J F C
P
K
N
G
A
B
H
(1) ΔABN ≌ ΔBCM ⇒ ∠PNB = ∠BMC ⇒ ΔBPN (2)
ΔBCM ⇒ BP ⋅ BM = BN ⋅ BC
MG ⊥ AB , NH ⊥ AB , CK ⊥ AB ,

武汉市2017年四月调考22题专项(校考)

武汉市2017年四月调考22题专项(校考)

22.(10分)九年级数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤70且x 为整数)天的售价目与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元. (1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于3250元?请直接写出结果.22.(10分)某专卖店引进一种进价为25元的产品,营销时发现:每天的销售量y (件)与销售单价x(元)之间的函数关系如图所示,物价部门规定:该产品的售价不得低于30元且不得高于45元.(1)请直接写出销售该产品每天所获得的销售利润W (元)与销售单价x(元)之间的函数关系式 ;(2)求销售单价定为多少元时,销售该产品每天所获的销售利润最大?最大值是多少?(3)该专卖店结合上述情况,提出了A 、B 两种营销方案.方案A:为了让利顾客,该产品的利润率不得超过28%;方案B:为了满足市场需求,每天的销售量不得少于 110件.请说理比较:哪种方案的最大利润高?22.(本题10分)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月的销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =-10x +500(1) 设李明每月获得利润为w (元),当销售单价为多少时,每月可获得最大利润?(2) 如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3) 根据物价部门规定,这种护眼灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)X (元)y(件)22.(本题10分)如图,东海隧道的截面由抛物线和长方形构成,长方形的长OA为12 m,宽OB为4 m,隧道顶端D到路面的距离为10 m,建立如图所示的直角坐标系(1) 求该抛物线的解析式(2) 一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6 m,宽为4 m,隧道内设双向行车道,问这辆货车能否安全通过(3) 在抛物线型拱璧上需要安装两排警示灯,使它们离地面高度相等,如果灯离地面的高度不超过8.5 m,那么,两排灯的水平距离最小是多少米?23.(10分)(2015•武汉校级二模)如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA距离为1m处达到距水面最大高度2.25m.(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?22.(10分)(2015•冷水江市校级模拟)如图,正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当点M在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当点M运动到什么位置时,Rt△ABM∽Rt△AMN?22.(本题10分)某商场要经营乙种新上市的文具,进价为20元/件,试营销阶段发现:当销售单价是25元时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件(1) 直接写出商场销售这种文具每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式(2) 求销售单价为多少元时,该文具每天的销售利润最大(3) 商场的营销部结合上述情况,提出了A 、B 两种营销方案,方案甲:该文具的销售单价不低于25元且不高于30元;方案乙:每天销售量不少于10件,且每件文具的利润至少为25元,请比较哪种方案的最大利润更高,并说明理由22.(本题10分)某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资50万元用于该产品的广告促销,已知该产品的本地销售量y 1(万台)与本地的广告费用x (万元)之间的函数关系满足y 1=3x (0≤x ≤50);该产品的外地销售量y 2(万台)与外地广告费用t (万元)之间的函数关系可用如图所示的抛物线和线段AB 来表示.其中点A 为抛物线的顶点(1) 结合图象,写出y 2(万台)与外地广告费用t (万元)之间的函数关系式(2) 求该产品的销售总量y (万台)与本地广告费用x (万元)之间的函数关系式(3) 如何安排广告费用才能使销售总量最大?22.(本题10分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程22)1(201x k kx y +-=(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标(1) 当k =2时,求炮弹飞行的最大海拔高度(2) 若炮弹飞行的最大射程为5千米时,求k 的值(3) 炮弹的最大射程为__________千米(直接写出答案)22.(本题10分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,我市某家小型“大学生自主创业”的快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同(1) 求该快递公司投递快递总件数的月平均增长率(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年四月份的快递投递任务?如果不能,请问至少需要增加几名业务员?22.(10分)(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)22.(本题10分)某零售商购进一批单价为16元的玩具,销售一段时间后,为了获得更多利润,商店决定提高售价.调查发现,若售价为20元/件,每周能卖360件;若售价为25元/件,每周能卖210件.假定每周销售的件数y(件)是售价x(元/件)的一次函数(1) 直接写出y与x之间的关系式,直接写出自变量的取值范围(2) 问售价定为多少时,每周获利1800元?(3) 每周能否获利2100元?请说明理由22.(本题满分10分)(2014•青岛)武汉市某工艺品厂设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可以多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该工艺品厂要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)23. (本小题满分10分)武汉东湖水上公园为保护生态,景区准备提高门票价格,来控制游客人数,但又要保证经济收入,已知每张门票价格为30元时,平均每天有游客4000人,经调研知,若每张门票价格每增加10元,平均每游客减少500人,物价部门规定,每张门票不低于30元,不高于80元。

(完整版)2017年武汉市中考数学试卷(含答案

(完整版)2017年武汉市中考数学试卷(含答案

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为( )A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为( )A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2 B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1。

501。

60 1.65 1.70 1.751。

80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1。

70 B.1.65、1.75 C.1.70、1.75 D.1.70、1。

705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2) B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为( )A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部员工人每人所创的年利润门数/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2 B.x6﹣x C.x2•x3D.(x2)3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1。

湖北省武汉市2017年中考数学试卷(附答案解析版)

湖北省武汉市2017年中考数学试卷(附答案解析版)

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【考点】62:分式有意义的条件.【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【考点】A:48:同底数幂的除法;B:35:合并同类项;C:46:同底数幂的乘法;D:47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【考点】4B:多项式乘多项式.【专题】11 :计算题;512:整式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【考点】U3:由三视图判断几何体.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【考点】37:规律型:数字的变化类.【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【考点】MI:三角形的内切圆与内心.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD ⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【考点】KJ:等腰三角形的判定与性质.【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【考点】6B:分式的加减法.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.【考点】KD:全等三角形的判定与性质;KQ:勾股定理;PB:翻折变换(折叠问题);R2:旋转的性质.【分析】将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.【解答】解:将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【考点】HA:抛物线与x轴的交点.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【考点】86:解一元一次方程.【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【考点】KD:全等三角形的判定与性质.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为 108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【考点】VB :扇形统计图;W2:加权平均数.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B ,C 部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元). 【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【专题】12 :应用题.【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【考点】MA:三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴><或<>,结合抛物线y=x2﹣5x﹣6的图象可知,由><得<或><,∴<<或><,∴此时x<﹣1,由<>得,<<>,∴<<>,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【考点】SO:相似形综合题.【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,=6,∵S△CDE∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.∴S四边形ABCD(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【考点】HF:二次函数综合题.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.。

(完整)2017武汉中考数学试卷及答案(精校版),推荐文档

(完整)2017武汉中考数学试卷及答案(精校版),推荐文档

第 1 页 / 共 10 页36 3 2017 年武汉市初中毕业生考试数学试卷一、选择题(共 10 小题,每小题 3 分,共 30 分) 1. 计算 的结果为( ) A .6 B .-6 C .18 D .-182.若代数式 1a - 4在实数范围内有意义,则实数 a 的取值范围为( )A .a =4B .a >4C .a <4D .a ≠4 3.下列计算的结果是 x 5 的为( ) A .x 10÷x 2 B .x 6-x C .x 2·x 3 D .(x 2)3 4.在一次中学生田径运动会上,参加男子跳高的 15 名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别为( ) A .1.65、1.70 B .1.65、1.75 C .1.70、1.75 D .1.70、1.70 5.计算(x +1)(x +2)的结果为( ) A .x 2+2 B .x 2+3x +2 C .x 2+3x +3 D .x 2+2x +2 6.点 A (-3,2)关于 y 轴对称的点的坐标为( ) A .(3,-2) B .(3,2) C .(-3,-2) D .(2,-3) 7. 某物体的主视图如图所示,则该物体可能为( )A. B. C. D. 8. 按照一定规律排列的 n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为 768,则 n 为( ) A .9 B .10 C .11 D .12 9. 已知一个三角形的三边长分别为 5、7、8,则其内切圆的半径为( )A. 3 2B. 3 2C. D . 2 10. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( ) A .4 B .5 C .6 D .7二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分) 11.计算 2×3+(-4)的结果为x 2 112. 计算 x + 1 - x + 1的结果为13. 如图,在 ABCD 中,∠D =100°,∠DAB 的平分线 AE 交 DC 于点 E ,连接 BE .若 AE =AB ,则∠EBC 的度数为 14. 一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 15. 如图,在△ABC 中,AB =AC = 2 BD =2CE ,则 DE 的长为,∠BAC =120°,点 D 、E 都在边 BC 上,∠DAE =60°.若 3 3第 2 页 / 共 10 页16. 已知关于 x 的二次函数 y =ax 2+(a 2-1)x -a 的图象与 x 轴的一个交点的坐标为(m ,0).若 2<m <3,则 a 的取值范围是三、解答题(共 8 题,共 72 分)17.(本题 8 分)解方程:4x -3=2(x -1)18.(本题 8 分)如图,点 C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出 CD 与 AB 之间的关系,并证明你的结论19.(本题 8 分)某公司共有 A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图部门 员工人数 每人所创的年利润/万元A 5 10B b 8C c 5 (1) ① 在扇形图中,C 部门所对应的圆心角的度数为② 在统计表中,b = ,c = (2) 求这个公司平均每人所创年利润20.(本题 8 分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共 20 件.其中甲种奖品每件40 元,乙种奖品每件30 元(1)如果购买甲、乙两种奖品共花费了650 元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2 倍,总花费不超过680 元,求该公司有哪几种不同的购买方案?21.(本题8 分)如图,△ABC 内接于⊙O,AB=AC,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC 3(2)若BC=6,sin∠BAC=,求AC 和CD 的长522.(本题10 分)如图,直线y=2x+4 与反比例函数yk的图象相交于A(-3,a)和 B 两点x第3 页 / 共 10 页(1)求k 的值(2)直线y=m(m>0)与直线AB 相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值6(3)直接写出不等式>x 的解集x - 5第4 页 / 共 10 页23.(本题10 分)已知四边形ABCD 的一组对边AD、BC 的延长线交于点E(1)如图1,若∠ABC=∠ADC=90°,求证:3 ED·EA=EC·EB(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的5面积(3)(3)3CD=5,CF=ED=n 如图3,另一组对边AB、DC 的延长线相交于点F.若cos∠ABC=cos∠ADC=,5,直接写出AD 的长(用含n 的式子表示)第5 页 / 共 10 页第 6 页 / 共 10 页2 24.(本题 12 分)已知点 A (-1,1)、B (4,6)在抛物线 y =ax 2+bx 上 (1) 求抛物线的解析式(2) 如图 1,点 F 的坐标为(0,m )(m >2),直线 AF 交抛物线于另一点 G ,过点 G 作 x 轴的垂线,垂足为 H . 设抛物线与 x 轴的正半轴交于点 E ,连接 FH 、AE ,求证:FH ∥AE (3) 如图 2,直线 AB 分别交 x 轴、y 轴于 C 、D 两点.点 P 从点 C 出发,沿射线 CD 方向匀速运动,速度为每秒 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为每秒 1 个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时,QM =2PM ,直接写出 t 的值第 7 页 / 共 10 页3 3 3 3 3 HA2017 年武汉中考数学参考答案与解析1 2 3 4 5 6 7 8 9 10 ADCCBBABCD提示:9.利用面积法做题,先作高求出一般三角形的面积,再求内切圆半径.过 B 作 BD ⊥AC 于 D ,设 AD =x , 52 - x 2 = 72 - (8 - x )2 ,解得 x = 5 , BD = 53 ,2r = 2S 2 8 ⨯ 5 3= 2 = a + b + c 5 + 7 + 810. 共 7 种情况,如图所示二、填空题11.212. x -113. 30︒14. 2515. 3 - 316. -3 < a < -2 或1 < a < 13 2提示:15.方法一,向左边旋转,令 EC =x ,BD =2x ,( 3x )2+ (3 x )2 = (6 - 3x )22x = 3 ± 3(6 - 3x > 0,舍正), DE = 6 - 3x = 3 - 3方法二,向右边旋转∠HCE =60°,令 EC =x ,HC =2x ,所以∠CEH =90°, EH = 3x =DE ,所以 3x + x =6,x =3- ,DE =6-3x =3 -3A16. 方法一:由题意可知,x =m 时y =0am 2 + (a 2 - 1)m - a = 0 (am - 1)(m + a ) = 0m = 1, m = -a 1a 21 < a < 1①2 < m 1 <3 得 3 2 ② 2 < m 2 < 3 得-3 < a < -2H3 BCD A+ ( - )≤ ⎨ 方法二:由题意可知,x =2 对应的函数值与 x =3 对应的函数值异号(此时必有∆ ≥ 0 )当 x =2 时, y = 4a + 2(a 2 - 1) - a = 2a 2 + 3a - 2 当 x =3 时, y = 9a + 3(a 2 - 1) - a = 3a 2 + 8a - 3 (2a 2 + 3a - 2)(3a 2 + 8a - 3) < 0 (2a - 1)(a + 2)(3a - 1)(a + 3) < 03 2三、解答题17. x = 1218. CD =AB 且 CD ∥AB (提示:线段的关系包括数量关系和位置关系) 19. (1)①108°;②b =9,c =6(2) 5 ⨯10+9 ⨯ 8+6 ⨯ 5 =7.6 万元2020. 解:(1)设甲产品购买 x 件,乙产品购买 y 件,⎧ x + y = 20 由题意可得: ⎨40x + 30 y = 650 ⎧ x = 5 解得⎨ y = 15 ⎩ ⎩所以,甲产品购买 5 件,乙产品购买 15 件 (2)设甲奖品购买a 件,乙奖品购买(20 - a )件,⎧20 - a ≤ 2a 由题意可得 ⎨ ⎩40a 30 20 a 650 解得20 3 ≤ a ≤ 8 a 为正整数∴ a = 7或8 ,共有 2 种方案 方案一:甲奖品购买 7 件,乙奖品购买 13 件; 方案二:甲奖品购买 8 件,乙奖品购买 12 件.21. 解:(1)如图 1,连接 AO .在△ABO 和△ACO 中, ⎧ AB = AC ⎪AO = AO ⎩BO = CO△ABO ≌△ACO (SSS )∴∠BAO =∠CAO ∴AO 平分∠BAC(2)如图 2,延长 AO 交 BC 于点 H .AB =AC ,∠BAO =∠CAO ∴AH ⊥BC ∴BH =CH =12 BC =3∠BOH =2∠BAO =∠BAC ∴sin ∠BOH = sin ∠BAC = 35∴BH =3,BO =5,OH =4第 8 页 / 共 10 页O第 9 页 / 共 10 页92 + 32 3 3 3 在 Rt △ABH 中, AB = ∴AC =AB = 3 = = 3 延长 CD 交 O 于点 P ,连接 PB ,PC 为直径,∴∠PBC =90° ∴PB ∥OH∴PB =2OH =8 ∴△AOD ∽△BPD , DO = AO = 5PD PB 8∴DO = 5 PO = 25 , CD =CO +DO = 9013 13 13 22. 解:(1)将点 A (-3, a )代入 y = 2x + 4 中得a = -6 + 4∴ a = -2将点 A (-3, -2)代入 y = k中x得k = 6 ∴ k 的值为 6(2) 将 y = m 代入 y = 2x + 4 中得 x = m - 4 将 y = m 代入 y = k 中得 x = 6 2 ∴ M ( m - 4 , m )2 x mN ( 6 , m ) m①当点 M 在点 N 右侧时 m - 4 - 6 = 4 解得m = 6 + 4 , m = 6 - 4 (舍) 2 m1 1 ②当点 M 在点 N 左侧时 6 - m - 4 = 4 解得m =2 , m = -1 (舍) m 23 4 综上所述, m 的值为6 + 4 或 2 (3) x < -1 或5 < x < 623. 解 :(1) ∠E =∠E ,∠EDC =∠B =90°∴△EDC ∽△EBA ∴ ED = EC EB EA∴ EA ⋅ ED = EB ⋅ EC(2)过点 C 作 CH ⊥AE 于点 H在 Rt △CDH 中,cos ∠ADC = 3,CD =55∴CH =4S ∆CDE= 1 ED ⋅ CH = 6 2∴ED =3 过点 A 作 AG ⊥EB 交 EB 的延长线于点 G ∠ABC =120°,∴∠ABG =60°,AB =12 ∴在 Rt △ABG 中,BG =6,AG = 6 3 ∠AGE =∠CHE =90°,∠E =∠E ∴△EHC ∽△EGAAH 2 + BH 2 10 10BCE DAGB CED HAy N 1M 1BM 2 N 2O xA第 10 页 / 共 10 页4 6 3 BMP DA C OQG PMFAQO E GF P A MQ OE ⎨⎨ ⎨ 2 2 ∴ CH = EH∴ = 6 ∴ EG = 9 AG EG EG∴ EB = EG - BG = 9 3 - 6S 四边形ABCD = S △ABE - S (3) AD = 25 + 5n6+nECD = 75 - 18 324. 解:(1)将点 A (-1,1)和点 B (4, 6)代入 y = ax 2 + bx 中⎧ 1 ⎧1 = a - b 得 ⎩6 = 16a + 4ba = 解得: ⎪b = - 1 ⎩ 2 ∴该抛物线的解析式为 y = 1 x 2 - 1x2 2(2) 过点 A 作 AN ⊥ x 轴于点 N设 AF 的解析式为 y = kx + m (k ≠ 0)∴ 1 = -k + m ∴ k = m - 1∴AF 的解析式为 y = (m - 1)x + m⎧ y = 1 x 2 - 1 x 联立⎪2 2⎩ y = (m - 1)x + m 解得 x 1 = -1 , x 2 = 2m ∴ x G = x H = 2m∴在 Rt △FOH 中OF = m , OH = 2m 在 Rt △ANE 中 AN = 1 , NE = 2 ∴ OF = AN = 1 OH NE 2 ∴ Rt △∽O △H Rt ANE ∴ ∠FHO = ∠AEN ∴ FH ∥AE13 + 89 或13 - 89 或15 + 113 或15 - 113(3) t 的值为 2 6 6yyyyxxxx3KB MD P ACO HQyGF AN OEHx“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2017武汉市初三数学元调试卷及答案

2017武汉市初三数学元调试卷及答案
所以 x=10. 答:该公司每个周期产销 10 件商品时,利润达到 220 元;………………………………6 分
(3)设每个周期的产销利润为 y 元.则 y=(35-110x)·x-(110 x2+3x+80)=﹣15 x2+32x-80=﹣15 (x-80)2+1200,
因为﹣15 <0,所以,当 x=80 时,函数有最大值 1200. 答:当每个周期产销 80 件商品时,产销利润最大,最大值为 1200 元.………………10 分
C.点 C 和点 D.
D.点 D 和点 A.
A.两实数根的和为-8.
B.两实数根的积为 17.
C.有两个相等的实数根.
D.没有实数根.
7.抛物线 y=-(x-2)2 向右平移 2 个单位得到的抛物线的解析式为
A.y=-x2.
B.y=-(x-4)2. C.y=-(x-2)2+2. D.y=-(x-2)2-2.
∴CE=136 .……………………………………………8 分
22.解:(1)C=110 x2+3x+80;………………………………………………3 分
(2)依题意,得 (35-110x)·x-(110 x2+3x+80)=220; 解之,得
x1=10,x2=150, 因为每个周期产销商品件数控制在 100 以内,
21.(1)过点 D 作 DF⊥BC 于点 F. ∵∠BAD=90°,BD 平分∠ABC, ∴AD=DF. ∵AD 是⊙D 的半径,DF⊥BC, ∴BC 是⊙D 的切线;………………………………………………4 分
(2)∵∠BAC=90°.∴AB 与⊙D 相切, ∵BC 是⊙D 的切线, ∴AB=FB. ∵AB=5,BC=13, ∴CF=8,AC=12. 在 Rt△DFC 中, 设 DF=DE=r,则 r2+64=(12-r)2, r=130 .

(完整版)2017年武汉市中考数学试卷及答案,推荐文档

(完整版)2017年武汉市中考数学试卷及答案,推荐文档

)36 3 2017 年武汉市初中毕业生考试数学试卷考试时间:2017 年 6 月 20 日 14:30~16:30 一、选择题(共 10 小题,每小题 3 分,共 30 分)1. 计算 的结果为()A .6B .-6C .18D .-18 12. 若代数式a - 4在实数范围内有意义,则实数 a 的取值范围为() A .a =4 B .a >4C .a <4D .a ≠43. 下列计算的结果是 x 5 的为()A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34. 在一次中学生田径运动会上,参加男子跳高的 15 名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数232 341 则这些运动员成绩的中位数、众数分别为()A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.70 5.计算(x +1)(x +2)的结果为()A .x 2+2B .x 2+3 x +2C .x 2+3x +3D .x 2+2x +2 6. 点 A (-3,2)关于 y 轴对称的点的坐标为()A .( 3,-2)B .(3,2)C .(-3,-2 )D .(2,-3)7. 某物体的主视图如图所示,则该物体可能为() 8. 按照一定规律排列的 n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则 n 为( )A .9B .10C .11D .12 9. 已知一个三角形的三边长分别为 5、7、8,则其内切圆的半径为()A . 32 B . 32C .D . 2 10. 如图,在 Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( A .4 B .5 C .6 D .7二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)11.计算 2 ×3+(- 4)的结果为12. 计 算 x - x +1 1 x +1的结果为13. 如图,在□ABCD 中,∠D =100°,∠DAB 的平分线 AE 交 DC 于点 E ,连接 BE .若AE =AB ,则∠EBC 的度数为14. 一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它们除颜色外完全相33同.随机摸出两个小球, 摸出两个颜色相同的小球的概率为15. 如图,在△ABC 中,AB =AC = 2 ,∠BAC =120°,点 D 、E 都在边 BC 上,∠DAE =60°.若 BD =2CE ,则 DE 的长为16. 已知关于 x 的二次函数 y =ax 2+(a 2-1)x -a 的图象与 x 轴的一个交点的坐标为(m ,0).若2<m <3,则 a 的取值范围是三 、 解 答 题 ( 共 8 题 , 共 72 分 ) 17.(本题 8 分)解方程:4x -3=2(x -1)18.(本题 8 分)如图,点 C 、F 、E 、B 在一条直线上,∠CFD =∠BEA , CE =BF ,DF =AE ,写出 CD 与 AB 之间的关系,并证明你的结论19.(本题 8 分)某公司共有 A 、B 、C 三个部门, 根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图 各部门人数及每人所创年利润统计表 各部门人数分布扇形图(1) ① 在扇形图中,C 部门所对应的圆心角的度数为② 在统计表中,b = ,c = (2) 求这个公司平均每人所创年利润部门 员工人数 每人所创的年利润/万元 A 5 10 Bb8C c 520.(本题8 分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20 件.其中甲种奖品每件40 元,乙种奖品每件30 元(1)如果购买甲、乙两种奖品共花费了650 元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2 倍,总花费不超过680 元,求该公司有哪几种不同的购买方案?21.(本题8 分)如图,△ABC 内接于⊙O,AB=AC,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC(2)若BC=6,sin∠BAC=3,求AC 和CD 的长522.(本题10 分)如图,直线y=2x+4 与反比例函数y =k的图象相交于A(-3,a)和 B 两点x(1)求k 的值(2)直线y=m(m>0)与直线AB 相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值(3)直接写出不等式6x - 5>x 的解集2 23.(本题 10 分)已知四边形 ABCD 的一组对边 AD 、BC 的延长线交于点 E(1) 如图 1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB(2 ) 如图 2,若∠ABC =120°,cos ∠ADC =形 AB CD 的面积 3,CD =5,AB =12,△CDE 的面积为 6,求四边5(3)如图 3,另一组对边 AB 、DC 的延长线相交于点 F .若cos ∠ABC =cos ∠ADC = 3,CD =5,CF =ED =n ,直接写出 AD 的长(用含 n 的式子表示)524.(本题 12 分)已知点 A (-1,1)、B (4,6)在抛物线 y =ax 2+bx 上 (1) 求抛物线的解析式 (2)如图 1, 点 F 的坐标为(0,m )(m >2),直线 AF 交抛物线于另一点 G ,过点 G 作 x 轴的垂线,垂足为 H .设抛物线与 x 轴的正半轴交于点 E ,连接 FH 、AE ,求证:FH ∥AE(3) 如图 2,直线 AB 分别交 x 轴、y 轴于 C 、D 两点.点 P 从点 C 出发,沿射线 CD 方向匀速运动,速度为每秒 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为 每秒 1 个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时,QM =2PM ,直接写出 t 的值“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市2017年九年级四月调考数学试卷以及答案
一、选择题(共10小题,每小题3分,共30分)
1.计算16的结果为( )
A .2
B .-4
C .4
D .8
2.若代数式
21+x 在实数范围内有意义, 则实数x 的取值范围是( ) A .x =-2
B .x >-2
C .x ≠0
D .x ≠-2 3.下列计算的结果为x 8的是( ) A .x ·x 7
B .x 16-x 2
C .x 16÷x 2
D .(x 4)4 4.事件A :射击运动员射击一次,刚好射中靶心;事件B :连续掷两次硬币,都是正面朝上,则
( ) A .事件A 和事件B 都是必然事件
B .事件A 是随机事件,事件B 是不可能事件
C .事件A 是必然事件,事件B 是随机事件
D .事件A 和事件B 都是随机事件
5.运用乘法公式计算(a +3)(a -3)的结果是( )
A .a 2-6a +9
B .a 2+9
C .a 2-9
D .a 2-6a -9 6.点A (-1,4)关于x 轴对称的点的坐标为( ) A .(1,4) B .(-1,-4) C .(1,-4)
D .(4,-1) 7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的左视图为( )
8成绩/m
1.50 1.60 1.65 1.70 1.75 1.80 人数
2 3 2 3 4 1 根据表中信息可以判断这些运动员成绩的中位数、众数分别为( ) A .1.70、1.75 B .1.70、1.80 C .1.65、1.75 D .1.65、1.80
9.在5×5的正方形网格中,每个小正方形的边长为1,用四边形覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m ,水平部分的线段的长度之和记作n ,则m -n =( )
A .0
B .0.5
C .-0.5
D .0.75 10.已知关于x 的二次函数y =(x -h )2+3,当1≤x ≤3时,函数有最小值2h ,则h 的值为( ) A .23 B .23或2 C .23或6 D .2、
23或6 二、填空题(本大题共6个小题,每小题3分,共18分)
11.计算:8+(-5)的结果为___________
12.计算1
11---x x x 的结果为___________ 13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球
然后放回,再随机取出一个小球,则两次取出的小球颜色相同的概率为___________
14.如图,在矩形ABCD中,E为边AB的中点,将△CBE沿CE翻折得到△CFE,连接AF.若∠EAF=70°,那么∠BCF=___________度
8,则它的内切圆的半径为___________
15.有一个内角为60°的菱形的面积是3
16.已知四边形ABCD,∠ABC=45°,∠C=∠D=90°,含30°角(∠P=30°)的直角三角板PMN (如图)在图中平移,直角边MN⊥BC,顶点M、N分别在边AD、BC上,延长NM到点Q,使QM=PB.若BC=10,CD=3,则当点M从点A平移到点D的过程中,点Q的运动路径长为___________
三、解答题(共8题,共72分)
17.(本题8分)解方程:6x+1=3(x+1)+4
18.(本题8分)如图,A、D、B、E四点顺次在同一条直线上,AC=DF,BC=EF,∠C=∠F,求证:AD=BE
19.(本题8分)为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题
(1) 在这次抽样调查中,一共抽取了___________名学生
(2) 请把条形统计图补充完整
(3) 请估计该地区九年级学生体育成绩为B的人数
20.(本题8分)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5 t ;5辆大货车与6辆小货车一次可以运货35 t
(1) 每辆大货车和每辆小货车一次各可以运货多少?
(2) 现在租用这两种火车共10辆,要求一次运输货物不低于30 t ,则大货车至少租几辆?
21.(本题8分)如图,□ABCD 的边AD 与经过A 、B 、C 三点的⊙O 相切
(1) 求证:弧AB =弧AC
(2) 如图2,延长DC 交⊙O 于点E ,连接BE ,sin ∠E =13
12,求tan ∠D 的值
22.(本题10分)直线x y 23=与双曲线x k y =的交点A 的横坐标为2 (1) 求k 的值
(2) 如图,过点P (m ,3)(m >0)作x 轴的垂线交双曲线x
k y =
(x >0)于点M ,交直线OA 于点N
① 连接OM ,当OA =OM 时,直接写出PN -PM 的值
② 试比较PM 与PN 的大小,并证明你的结论
23.(本题10分)在正六边形ABCDEF 中,N 、M 为边上的点,BM 、AN 相交于点P
(1) 如图1,若点N 在边BC 上,点M 在边DC 上,BN =CM ,求证:BP ·BM =BN ·BC
(2) 如图2,若N 为边DC 的中点,M 在边ED 上,AM ∥BN ,求DE
ME 的值 (3) 如图3,若N 、M 分别为边BC 、EF 的中点,正六边形ABCDEF 的边长为2,请直接写出AP 的长
24.(本题12分)在平面直角坐标系中,抛物线22
1x y 经过点A (x 1,y 1)、C (x 2,y 2),其中x 1、x 2是方程x 2-2x -8的两根,且x 1<x 2,过点A 的直线l 与抛物线只有一个公共点
(1) 求A 、C 两点的坐标
(2) 求直线l 的解析式
(3) 如图2,点B 是线段AC 上的动点,若过点B 作y 轴的平行线BE 与直线l 相交于点E ,与抛物线相交于点D ,过点E 作DC 的平行线EF 与直线AC 相交于点F ,求BF 的长。

相关文档
最新文档