解一元一次方程课件优质课件PPT
合集下载
《一元一次方程》PPT教学课文课件
巩固练习
练习
六
根据下列问题,设未知数,列出方程:
1 环形跑道一周长 400 m,沿跑道跑多少周,可以跑 3 000 m?
2 甲种铅笔每支 0.3 元,乙种铅笔每支 0.6 元,用 9 元钱买了两
种铅笔共 20 支,两种铅笔各买了多少支?
巩固练习
练习
六
1 环形跑道一周长 400 m,沿跑道跑多少周,可以跑 3 000 m?
引例
问题
一辆客车和一辆卡车同时从 A 地出发沿同一公路同方向行驶,客车的行
驶速度是 70 km/h,卡车的行驶速度是 60 km/h,客车比卡车早 1 h 经过 B 地.
A,B 两地间的路程是多少?
问题
一辆客车和一辆卡车同时从 A 地出发沿同一公路同方向行驶,客车的行
驶速度是 70 km/h,卡车的行驶速度是 60 km/h,客车比卡车早 1 h 经过 B 地.
+ =5
2 + 5
=6
6 2 + 5 + 1 = 0
3、一元一次方程
只含一个未知数(元),未知数的次数都是1,等号两边都
是整式,这样的方程叫做一元一次方程.
特点:
①只有一个未知数.
②未知数的次数都是1
③等号两边都是整式(分母中不含未知数)
④含未知数的项的系数不为0.
练习
三
判断下列式子是否为一元一次方程?
计算机的使用时间达到规定的检修时间2450 h?
1、什么是方程?
2、什么是等式?
1、方程-----含有未知数的等式
2、等式-----含有“=”的式子(左右式子要相等)
等号两边分别叫等式左边和等式右边
练习
课件《一元一次方程》优质课堂课件_人教版1
一件工作,甲单独做10天完成,乙单独做8天完成,
某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生
产多少零件?
第三章 一元一次方程 第12课 一元一次方程与实际问题(6)
一项工程甲单独做需要10天,乙单独做需要12天, 一件工作,甲单独做10天完成,乙单独做8天完成,
产多少零件?
第12课 一元一次方程与实际问题(6)
C
组
4. 一丙乙项单参工 独 与程 做 工甲 需 作单 要 ,独问15做还天需需.甲要几、天10丙完天先成,做?乙3单天独后做,需甲要因1事2离天去,, 一一一一某产一第一 一一一甲一一一 甲某产第 一一一一一一两某产第第两一第一第一项项件件工多项1件项件项、项件件、工多1件件次件项件根工多三三人件三次1项222工 工 工 工 厂 少 工 工工 工 工 丙 工 工 工丙 厂 少 工 工 停 工 工 工 同 厂 少 章 章 合 工 章 停 工课课 课程程作作计零程作 程作程先程作作 先计零作作电作程作样计零作作电程一一一一一一甲甲,,划件甲, 甲,甲做甲,, 做划件,,,,甲,长划件几,,甲元元元元元 元单单甲甲2?单甲 单甲单3单甲甲 32?甲甲同甲单甲的2?天甲同单666一一一天天一一 一独独单单独单 独单独独单单 单单时单独单蜡完单时独小小小次次次后后次次 次做做独独做独 做独做做独独 独独点独做独烛成独点做时时时方方方,,方方 方需需做做需做 需做需需做做 做做燃做需做,?做燃需生生生程程程甲甲程程 程要要要要要要两要粗两要11111111111产产产00000000000因因与与 与根的根11111111天天天 天天天 天天天天天一一一00000000事事实实 实蜡可蜡天天完完天完 天完天天完完 完完完天完完天批批批离离际际 际烛燃烛,,成成,成 ,成,,成成 成成成,成成,零零零去去问问 问,,4乙乙,,乙, 乙,乙乙,, ,,,乙,,乙件件件小,,题题 题来来单单乙乙单乙 单乙单单乙乙 乙乙乙单乙乙单,,,时(( (电电独独单单独单 独单独独单单 单单单独单单独后后后,666同同做做独独做独 做独做做独独 独独独做独独做因因因)) )细时时需需做做需做 需做需需做做 做做做需做做需每每每的吹吹要要要要要要要要小小小88888888888可天天天 天天天 天天天天天灭灭时时时11111111燃22完完2完 2完22完完 完完完2完完2,,多多多天天天天天天天天3成成成成成成成成成成成发发生生生小,,,,,,,,,,, ,,, ,,,,,现现产产产时粗粗55.5件件件蜡蜡,,,烛烛用用用是是222细细444小小小蜡蜡时时时烛烛,,,的的不不不两两但但但倍倍完完完长长成成成,,了了了求求任任任这这务务务次次,,,停停而而而电电且且且时时还还还间间比 比 比.. 原原原计计计划划划多多多生生生产产产了了了666000件件件,,,问问问原原原计计计划划划生生生
某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生
产多少零件?
第三章 一元一次方程 第12课 一元一次方程与实际问题(6)
一项工程甲单独做需要10天,乙单独做需要12天, 一件工作,甲单独做10天完成,乙单独做8天完成,
产多少零件?
第12课 一元一次方程与实际问题(6)
C
组
4. 一丙乙项单参工 独 与程 做 工甲 需 作单 要 ,独问15做还天需需.甲要几、天10丙完天先成,做?乙3单天独后做,需甲要因1事2离天去,, 一一一一某产一第一 一一一甲一一一 甲某产第 一一一一一一两某产第第两一第一第一项项件件工多项1件项件项、项件件、工多1件件次件项件根工多三三人件三次1项222工 工 工 工 厂 少 工 工工 工 工 丙 工 工 工丙 厂 少 工 工 停 工 工 工 同 厂 少 章 章 合 工 章 停 工课课 课程程作作计零程作 程作程先程作作 先计零作作电作程作样计零作作电程一一一一一一甲甲,,划件甲, 甲,甲做甲,, 做划件,,,,甲,长划件几,,甲元元元元元 元单单甲甲2?单甲 单甲单3单甲甲 32?甲甲同甲单甲的2?天甲同单666一一一天天一一 一独独单单独单 独单独独单单 单单时单独单蜡完单时独小小小次次次后后次次 次做做独独做独 做独做做独独 独独点独做独烛成独点做时时时方方方,,方方 方需需做做需做 需做需需做做 做做燃做需做,?做燃需生生生程程程甲甲程程 程要要要要要要两要粗两要11111111111产产产00000000000因因与与 与根的根11111111天天天 天天天 天天天天天一一一00000000事事实实 实蜡可蜡天天完完天完 天完天天完完 完完完天完完天批批批离离际际 际烛燃烛,,成成,成 ,成,,成成 成成成,成成,零零零去去问问 问,,4乙乙,,乙, 乙,乙乙,, ,,,乙,,乙件件件小,,题题 题来来单单乙乙单乙 单乙单单乙乙 乙乙乙单乙乙单,,,时(( (电电独独单单独单 独单独独单单 单单单独单单独后后后,666同同做做独独做独 做独做做独独 独独独做独独做因因因)) )细时时需需做做需做 需做需需做做 做做做需做做需每每每的吹吹要要要要要要要要小小小88888888888可天天天 天天天 天天天天天灭灭时时时11111111燃22完完2完 2完22完完 完完完2完完2,,多多多天天天天天天天天3成成成成成成成成成成成发发生生生小,,,,,,,,,,, ,,, ,,,,,现现产产产时粗粗55.5件件件蜡蜡,,,烛烛用用用是是222细细444小小小蜡蜡时时时烛烛,,,的的不不不两两但但但倍倍完完完长长成成成,,了了了求求任任任这这务务务次次,,,停停而而而电电且且且时时还还还间间比 比 比.. 原原原计计计划划划多多多生生生产产产了了了666000件件件,,,问问问原原原计计计划划划生生生
解一元一次方程课件(共20张PPT)人教版初中数学七年级上册
x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得
课件《一元一次方程》优秀PPT课件 _人教版6
典型例题
例3.解方程 9-3x=-5x+5. 解:移项,得 5x-3x=-9+5.
合并同类项,得 2x=-4. 系数化为1,得 x=-2.
随堂练习
1.下列解方程 2(x 15) 3 5(x 7) 时, 去括号正确的是( C ).
A. 2x 15 3 5x 35 B. 2x 30 3 5x 7 C. 2x 30 3 5x 35
解:去括号: 4x+2+x=17.
移项:
4x+x=17-2.
合并同类项: 5x=15.
方程两边同除以5: x=3.
典型例题
例2 解方程-2(x-1)=4. 解法一:去括号: -2x+2=4. 移项: -2x=4-2. 合并同类项: -2x=2. 方程两边同除以5: x=-1. 解法二:方程两边同除以-2,得x-1=-2. 移项: x=-2+1,即x=-1.
随堂练习
3.甲、乙两人登一座山,甲每分登高10米,并且先出发30分, 乙每分登高15米,两人同时登上山顶.甲用多少时间登山?这座山 有多高?
随堂练习
解:设甲用x分登山. 列方程:10x=15(x-30). 去括号: 10x=15x-450. 移项: 10x-15x=-450. 合并: -5x=-450. 系数化为1: x=90. 把x=90代入10x=900. 答:甲用90分登山,这座山高为900米.
复习巩固
3.(1)一元一次方程的解法我们学了哪几步? 移项,合并同类项,系数化为1.
(2)合并同类项及移项的依据是什么? 等式的性质.
(3)“移项”要注意什么? 移项要注意变号.
探究新知
小明家来客人了,爸爸给了小明20元钱,让他买1听果奶和4听
可乐.从商店回来后,小明交给爸爸3元钱.如果我们知道1听可乐
《解一元一次方程》PPT课件 人教版七年级数学上册【2024年秋】
得2x+8=3x-12.解得x=20.
答:这个班共有20名小朋友
课堂小结
1.移项的概念:把等式一边的某项变号后移到另一边,叫作移项.
2.移项的作用:使含未知数的项与常数项分别位于方程左、右
两边,使方程更接近于x=m的形式.
3.移项法则:移项要变号.
4.解一元一次方程的步骤:移项、合并同类项、系数化成1.
1
x+ x=19,解这个方程就可以求出“它”了.
18
探究新知
学生活动一 【一起探究】
问题:某校三年共购买计算机140台,去年购买数量
是前年的2倍,今年购买数量又是去年的2倍.前年这
个学校购买了多少台计算机?
探究新知
方法一:设前年这个学校购买了计算机x台,则去年
购买计算机 2x台,今年购买计算机4x台.
过的一元一次方程在结构上有什么不同?
(2)怎样才能将它转化为x=a(常数)的形式呢?
(3)将方程3x+20=4x-25转化为x=a的形式的依据是
什么?
探究新知
思考:(1)怎样解这个方程?方程3x+20=4x-25与前面学
过的一元一次方程在结构上有什么不同?
解:(1)把方程转化为x=m(常数)的形式,方程
第五章 一元一次方程
5.2 解一元一次方程
第2课时 利用移项解一元一次方程
学习目标
1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作
用及应用价值,培养学生的模型意识.
2.通过经历“移项”这一解方程步骤的得出过程,掌握“ax+b=cx+
d”型方程的解法,培养学生的化归思想,提高学生的运算能力。
对于x+2x+4x=140这个方程
答:这个班共有20名小朋友
课堂小结
1.移项的概念:把等式一边的某项变号后移到另一边,叫作移项.
2.移项的作用:使含未知数的项与常数项分别位于方程左、右
两边,使方程更接近于x=m的形式.
3.移项法则:移项要变号.
4.解一元一次方程的步骤:移项、合并同类项、系数化成1.
1
x+ x=19,解这个方程就可以求出“它”了.
18
探究新知
学生活动一 【一起探究】
问题:某校三年共购买计算机140台,去年购买数量
是前年的2倍,今年购买数量又是去年的2倍.前年这
个学校购买了多少台计算机?
探究新知
方法一:设前年这个学校购买了计算机x台,则去年
购买计算机 2x台,今年购买计算机4x台.
过的一元一次方程在结构上有什么不同?
(2)怎样才能将它转化为x=a(常数)的形式呢?
(3)将方程3x+20=4x-25转化为x=a的形式的依据是
什么?
探究新知
思考:(1)怎样解这个方程?方程3x+20=4x-25与前面学
过的一元一次方程在结构上有什么不同?
解:(1)把方程转化为x=m(常数)的形式,方程
第五章 一元一次方程
5.2 解一元一次方程
第2课时 利用移项解一元一次方程
学习目标
1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作
用及应用价值,培养学生的模型意识.
2.通过经历“移项”这一解方程步骤的得出过程,掌握“ax+b=cx+
d”型方程的解法,培养学生的化归思想,提高学生的运算能力。
对于x+2x+4x=140这个方程
《解一元一次方程》一元一次方程PPT课件(第5课时利用去分母解一元一次方程)
巩固练习
5.解下列方程:
(1) x-5 1= 3x;
解:去分母,得3(x-1)=5x. 去括号,得3x-3=5x. 移项,得3x-5x=3.
合并同类项,得-2x=3.
系数化为1,得x=-
3 2
巩固练习
(2)
x-3 2
−
4x+3 5
=1;
解:去分母,得5(x-3)-2(4x+1)=10.
去括号,得5x-15-8x-2=10.
A. 1-( x − 1 )=1
B. 2-3( x − 1 )=6
C. 2-3( x − 1 )=1
D. 3-2( x − 1 )=6
巩固练习
3.解方程x+2 1 + x+3 4= 65,为了去分母应将方程两边同乘 (A )
A. 30
B. 15
C. 10 D. 6
4.将方程2t-3 5 - 3-5 2t= 3去分母后所得的结果是 5(2t-5)-3(3-2t)=45 。
课堂小结
1.去分母的依据和作用. 2.解一元一次方程的步骤: 去分母、去括号、移项、合并同类项、系数化为1等. 3.分母是小数时,如何解决?——分数的基本性质. 4.具体方程具体对待,灵活选取步骤.
当堂训练
1.在解方程x-3 1 +x= 3x+2 1时,方程两边同时乘以6, 去分母后,正确的是( B ) A. 2x-1 +6x=3( 3x+1 ) B. 2(x-1 )+6x=3( 3x+1 ) C. 2(x-1 )+x=3( 3x+1 ) D. (x-1 )+x=3( x+1 )
系数化为1,得 x=230.
因此,王家庄距翠湖的路程为230km.
探究新知
学生活动一 【一起探究】
解方程:3x 1 2 3x 2 2x 3
《解方程》一元一次方程PPT课件 (共11张PPT)
作业:
课本习题5.3.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
他正为选哪一种方式犹豫呢!你能帮助 他作个选择吗? 你会吗??? (1)一个月内通话200分和300分, 按两种计费方式各需交多少元? 通话200分,按两种计费方式各需交费: 50+0.40×200=130(元) 0.60×200=120(元)
(2)对于某个通话时间,两种计费方式的收 费会一样吗?
本节课你有什么感受和收获?
小结
内容:引导学生结合本课时的内容,归纳总结解 一元一次方程的“移项法则”及此过程中的注意事 项。 目的:让学生及时归纳那总结所学知识,及时反思, 因为反思是进步的关键因素。 实际效果: 学生不仅会对课上的知识点进行梳理总结,而 且还会对课上感悟到的数学思想 ----- “转化的思 想方法”准确地应用到以后的数学学习中。 学生在合作学习中感受到伙伴优于自己的学习热情, 学习策略,他们会互相借鉴,取长补短,共同进步的。
第五章 一元一次方程
解方程
回顾
解方程: 5x-2=8
方程两边都加上2,得 5x -2 +2=8+2 即: 观察知 5x=10
-2 =8 5x-2
5x=8+2 +2
移项法则:把方程中的某一项,改变符号后,从 方程的一边移到另一边,这种变形叫做移项.
移项变号
注 意
例1、解方程:
(1)2x+6=1 (2)3x+3=2x&收费 (50+0.4t)元,用“神州行”要收费0.6t元, 如果两种计费方式的收费一样,则
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/02/02
2
方程:2x-3=5; 44x+64=328; 3+x=(45+x) ; y-5=2y+l ……
大家观察这些方程,它们有什么共同特征?
只含有一个未知数, 并且含有未知数的式子都是整式, 未知数的次数是l,
这样的方程叫做一元一次方程。
例1.判断下列哪些是一元一次方程
0.5x=3; 3x-2 ; x12x1
2021/02/02
8
Thank you
感谢聆听 批评指导
汇报人:XXX 汇报日期:20XX年XX月XX日
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!2021/Fra bibliotek2/029
练习: 3(x-3)-2(2x+1)=6
2021/02/02
P9
2(1) 5
例 2 、解x 方 32 程 x1 :1 先做做看
23
想一想还有其他方法吗? 能否把方程变形成没有分母的一元一次方程,这样, 我们就可以用已学过的方法解它了。
比较一下:哪种方法更简单方便?
例3、x为何值时,代数式 x 3 的值比 2 x 1 的值大1?
2
3
练习:P 10 1
2021/02/02
6
想一想:解一元一次方程的步骤有哪些?
解一元一次方程的一般步骤:
一般要通过去分母、去括号、移项、 合并同类项,未知数的系数化为1等步 骤,把一个一元一次方程“转化”成 x=a的形式。
各步骤有哪些要注意的地方?
2021/02/02
7
作业:
P12 习题6.2.2 1、2 P9 2(2) 新课标 P7~8
5x2-3x+1=0 ;
32 2x+y=l-3y ;
1
=5
x 1
一、复习提问 1.去括号法则是什么?
2、“移项”要注意什么? 3、等式的性质2是什么?
2021/02/02
4
例1、解方程 (1) -2(x-1) =4
(法2)两边同时除以—2得: x-1=—2
议一议:说说两种解法的区别
(2) 3(x-2)+1=x-(2x-1)
课前小测
P7 习题6.2.1 1 (1)(2)(3)(4)
(5) 使等式 3x = x + 3 成立的x的值是 ( )
A. x = - 2
B. x =3/2
C. x = ¾
D. x = - 3/2
(6)由4x= - 2x + 1 可得出4x +
=1.
(7)由方程 – 2x = 4,两边同时乘以 , 得 x = - 2.