数据结构实验4 队列的表示与操作
数据结构实验报告(C语言)(强力推荐)
数据结构实验实验内容和目的:掌握几种基本的数据结构:集合、线性结构、树形结构等在求解实际问题中的应用,以及培养书写规范文档的技巧。
学习基本的查找和排序技术。
让我们在实际上机中具有编制相当规模的程序的能力。
养成一种良好的程序设计风格。
实验教材:数据结构题集(C语言版)清华大学出版社2007年实验项目:实验一、栈和循环队列㈠、实验内容:①栈掌握栈的特点(先进后出FILO)及基本操作,如入栈、出栈等,栈的顺序存储结构和链式存储结构,以便在实际问题背景下灵活应用。
本程序采用的是链栈结构,具有初始化一个栈、PUSH、POP、显示所有栈里的元素四个功能。
②循环队列掌握队列的特点(先进先出FIFO)及基本操作,如入队、出队等,学会循环队列的实现,以便在实际问题背景下灵活运用。
本程序具有初始化一个队列、入队、出队、显示队列的所有元素、队列长度五个功能。
㈡、实验代码①栈程序代码:#include <stdio.h>#include <malloc.h>#define Stack_Size 6#define ERROR 0#define OK 1typedef int SElemType;typedef struct SNode{SElemType data;struct SNode *next;}SNode,*LinkStack;int CreatTwo(LinkStack &head,int n){int i;SNode *p;head=(LinkStack)malloc(sizeof(SNode));head->next=NULL;printf("请输入数据(数字):\n");for(i=n;i>0;--i){p=(SNode *)malloc(sizeof(SNode));scanf("%d",&p->data);p->next=head->next;head->next=p;}return 1;}int menu_select(){int sn;for(;;){scanf("%d",&sn);if(sn<1||sn>6)printf("\n\t输入错误,请重新输入\n");elsebreak;}return sn;}int Push(LinkStack &top,SElemType e){SNode *q;q=(LinkStack)malloc(sizeof(SNode));if(!q){printf("溢出!\n");return(ERROR);}q->data=e;q->next=top->next;top->next=q;return(OK);}int Pop(LinkStack &top,SElemType &e){SNode *q;if(!top->next){printf("error!\n");return(ERROR);}e=top->next->data;q=top->next;top->next=q->next;free(q);return(OK);}void main(){ int e;LinkStack top;printf("1.初始化一个栈;\n2.PUSH;\n3.POP;\n4.显示所有栈里的元素;\n5.结束;\n");while(1){switch(menu_select()){case 1:if(CreatTwo(top,Stack_Size))printf("Success!\n");break; case 2:printf("Push:\n");scanf("%d",&e);if(Push(top,e))printf("Success!\n");break;case 3:if(Pop(top,e))printf("Success!\n");printf("%d\n",e);break;case 4:LinkStack p;printf("所有栈里的元素:\n");p=top;while(p->next){p=p->next;printf("%7d",p->data);}printf("\n");break;case 5:return;}}}运行结果:②循环队列程序代码:#include<stdlib.h>#include<stdio.h>#define OVERFLOW -1#define OK 1#define ERROR 0#define MAXSIZE 100typedef struct{int *elem;//队列存储空间int front;int rear;}SqQueue;//判断选择是否正确int menu_select(){int sn;for(;;){scanf("%d",&sn);if(sn<1||sn>6)printf("\n\t输入错误,请重新输入\n");elsebreak;}return sn;}//参数(传出)SqQueue &Q,循环队列(空)int InitQueue(SqQueue &Q){Q.elem=(int *)malloc(MAXSIZE*sizeof(int));if(!Q.elem)exit(OVERFLOW);Q.front=Q.rear=-1;for(int i=0;i<MAXSIZE;i++)Q.elem[i]=-1;return OK;}//返回Q的元素个数int QueueLength(SqQueue Q){return (Q.rear-Q.front+MAXSIZE)%MAXSIZE;}//显示队列的元素void Display(SqQueue Q){for(int i=0;i<=QueueLength(Q);i++)if(Q.elem[i]!=-1)printf("%d ",Q.elem[i]);printf("\n");}//入队int EnQueue(SqQueue &Q,int e){Q.rear=(Q.rear+1)%MAXSIZE;if(Q.rear==Q.front)return ERROR;Q.elem[Q.rear]=e;return OK;}//出队int DeQueue(SqQueue &Q,int &e){if(Q.front==Q.rear)return ERROR;e=Q.elem[Q.front+1];Q.elem[Q.front+1]=-1;Q.front=(Q.front+1)%MAXSIZE;return OK;}void main(){SqQueue Q;InitQueue(Q);int elem,e;printf("请输入队列元素(以0结束):\n");scanf("%d",&elem);while(elem!=0){EnQueue(Q,elem);scanf("%d",&elem);}printf("队列为:\n");Display(Q);printf("1.初始化一个队列;\n2.入队;\n3.出队;\n4.显示队列的所有元素;\n5.队列长度:\n6.结束;\n");while(1){switch(menu_select()){case 1:printf("请输入队列元素(以0结束):\n");scanf("%d",&elem);while(elem!=0){EnQueue(Q,elem);scanf("%d",&elem);}printf("队列为:\n");Display(Q);fflush(stdin);break;case 2:scanf("%d",&elem);EnQueue(Q,elem);printf("队列为:\n");Display(Q);fflush(stdin);break;case 3:DeQueue(Q,elem);printf("队列为:\n");Display(Q);break;case 4:printf("\n队列的所有元素:\n");Display(Q);break;case 5:printf("%d\n",QueueLength(Q));break;case 6:return;}}}运行结果:实验二、数组㈠、实验内容:数组一般不做插入或删除操作,也就是说,一旦建立了数组,则结构中的数据元素个数和元素之间的关系就不再发生变动。
数据结构上机操作实验报告
实验一单链表的基本操作(必做)一、实验目的1.掌握单链表的存储、初始化、插入、删除等操作的程序实现。
2.加深对单链表基本概念,基本理论及相应算法的掌握与理解。
3.了解链表的处理方式,学习体会简单的单链表程序实现相关知识。
二、实验内容1.建立一个链表、设计链表的基本操作实现算法、输出一个链表表,调试并输出结果。
2.编写一个程序实现如下功能:让计算机产生出50个0~9之间的随机数并依次保存到单链表中;输出遍历单链表;从单链表中删除与给定值相等的所有结点;输出遍历单链表;输出单链表长度,调试并输出结果。
三、实验步骤1.定义一个链表结构体。
2.利用插入功能插入一个结点。
3.利用删除功能删除一个结点。
四、程序运行测试1.利用插入功能插入一个结点。
2.利用删除功能删除一个结点。
五、实验报告要求1.绘制链表操作实现的流程图。
2.详细给出程序运行测试结果(包括测试数据和测试结果)。
3.选试验步骤2-3中的任意一个,给出程序的详细注释。
4.参考程序中某一部分功能的改进(选做)5.实验心得与体会6.附录,实验用源程序六、参考源代码#include <iostream.h>#include <malloc.h>typedef struct LNode{int data;struct LNode *next;}Lnode, *LinkList;//假设下面的单链表均为带头结点。
void CreatLinkList(LinkList &L,int j){//建立一个单链表L,数据为整数,数据由键盘随机输入。
LinkList p,q;L=(LinkList )malloc(sizeof(Lnode));L->next=NULL;q=L;cout<<"在单链表内输入整数:"<<endl;for(int i=0;i<j;i++) p=(LinkList)malloc(sizeof(Lnode)); cin>>p->data;p->next=q->next;q->next=p;q=p; }int PrintLinkList(LinkList &L){//输出单链表L的数据元素LinkList p;p=L->next;if(L->next==NULL){cout<<"链表没有元素!"<<endl;return 0;}cout<<"单链表的数据元素为:";while(p){cout<<p->data<<" ";p=p->next;}cout<<endl;return 1;}void LinkListLengh(LinkList &L){//计算单链表L的数据元素个数。
队列的建立及操作
队列的建⽴及操作数据结构与算法 --> 实验报告 4实验项⽬名称:队列的建⽴及操作⼀、实验⽬的1.掌握队列存储结构的表⽰和实现⽅法。
2.掌握队列的⼊队和出队等基本操作的算法实现。
⼆、实验题建⽴顺序循环队列,并在顺序循环队列上实现⼊队、出队基本操作。
三、实验过程及结果①基本思路:采⽤⼀种循环的结构去实现队列的顺序存储,队满和队空时标志都是 Q->front=Q->rear;为了区别两种情况,我的思路是:修改队满条件,浪费⼀个元素空间,当只有⼀个空闲单元时队满。
程序代码:#include<stdio.h>#include<stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -1#define MAXSIZE 10typedef int QElemType;typedef struct{QElemType \*base;int front;int rear;}SqQueue;Status InitQueue(SqQueue \*Q){Q->base = (QElemType *)malloc(MAXSIZE * sizeof(QElemType));if (Q->base==NULL) exit(OVERFLOW);Q->front = Q->rear = 0;return OK;}Status EnQueue(SqQueue \*Q,QElemType e){if ((Q->rear + 1) % MAXSIZE == Q->front)return ERROR;Q->base[Q->rear] = e;Q->rear = (Q->rear + 1) % MAXSIZE;return OK;}Status DeQueue(SqQueue *Q, QElemType *e){if (Q->front == Q->rear)return ERROR;*e = Q->base[Q->front];Q->front = (Q->front + 1) % MAXSIZE;return OK;}int main() {SqQueue Q;QElemType e;InitQueue(&Q);for (int i = 2; i < 7; i++){EnQueue(&Q, i);printf("⼊队元素为%d\n", i);}for (int j=2; j <7; j++) {DeQueue(&Q, &e);printf("出队元素为%d\n", e);}return 0;}②实验结果:四、实验总结队列的顺序存储采⽤循环队列,为了区分队空和队满,当只有⼀个空闲单元时队满。
实验报告队列
一、实验目的1. 理解队列的概念和特点;2. 掌握队列的基本操作,包括入队、出队、查看队列头元素等;3. 能够使用队列解决实际问题。
二、实验环境1. 操作系统:Windows 10;2. 编程语言:C语言;3. 开发环境:Visual Studio 2019。
三、实验内容1. 队列的定义和实现;2. 队列的基本操作;3. 使用队列解决实际问题。
四、实验步骤1. 队列的定义和实现(1)定义队列的数据结构```c#define MAXSIZE 100 // 队列的最大容量typedef struct {int data[MAXSIZE]; // 队列的存储空间int front; // 队列头指针int rear; // 队列尾指针} Queue;```(2)初始化队列```cvoid InitQueue(Queue q) {q->front = 0;q->rear = 0;}```(3)判断队列是否为空```cint IsEmpty(Queue q) {return q->front == q->rear;}```(4)判断队列是否已满```cint IsFull(Queue q) {return (q->rear + 1) % MAXSIZE == q->front; }```2. 队列的基本操作(1)入队操作```cint EnQueue(Queue q, int x) {if (IsFull(q)) {return 0; // 队列已满}q->data[q->rear] = x;q->rear = (q->rear + 1) % MAXSIZE; return 1;}```(2)出队操作```cint DeQueue(Queue q, int x) {if (IsEmpty(q)) {return 0; // 队列为空}x = q->data[q->front];q->front = (q->front + 1) % MAXSIZE; return 1;}```(3)查看队列头元素```cint GetHead(Queue q, int x) {if (IsEmpty(q)) {return 0; // 队列为空}x = q->data[q->front];return 1;}```3. 使用队列解决实际问题(1)实现一个简单的函数,将一个整数数组中的元素按照逆序输出```cvoid ReversePrint(int arr[], int n) {Queue q;InitQueue(&q);for (int i = 0; i < n; i++) {EnQueue(&q, arr[i]);}int x;while (!IsEmpty(&q)) {DeQueue(&q, &x);printf("%d ", x);}printf("\n");}```(2)实现一个函数,计算两个整数序列的交集```cvoid Intersection(int arr1[], int n1, int arr2[], int n2, int result[]) {Queue q;InitQueue(&q);for (int i = 0; i < n1; i++) {EnQueue(&q, arr1[i]);}int x;int i = 0, j = 0;while (!IsEmpty(&q)) {DeQueue(&q, &x);while (i < n2 && arr2[i] < x) {i++;}if (i < n2 && arr2[i] == x) {result[j++] = x;}}result[j] = 0; // 标记交集结束}```五、实验结果与分析1. 实验结果(1)定义队列的数据结构(2)初始化队列(3)判断队列是否为空(4)判断队列是否已满(5)入队操作(6)出队操作(7)查看队列头元素(8)使用队列逆序输出整数数组(9)使用队列计算两个整数序列的交集2. 实验分析通过本次实验,我们掌握了队列的基本概念、数据结构、操作方法以及在实际问题中的应用。
数据结构 实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
队列的定义、表示、实现
根据队列的大小,预先分配一定的存储空间,以 减少动态内存分配的开销。
3
设置队头和队尾指针
初始化队头和队尾指针,指向队列的起始位置。
队列的入队操作
检查队列是否已满
在执行入队操作之前,需要检查队列是否已 满,如果已满则无法再添加元素。
添加元素
将新元素添加到队列的末尾,更新队尾指针。
调整指针
将队尾指针指向新添加的元素。
使用Java实现队列
01
queue.add(1);
02
queue.add(2);
03
queue.add(3);
使用Java实现队列
System.out.println(queue.poll()); // 输出 1
System.out.println(queue.peek()); // 输出 2
使用Java实现队列
q.pop(); // 移除元素2
cout << q.size() << endl; // 输 出2
使用C实现队列
return 0;
}
谢谢观看
队头,最后一个元素为队尾。
插入操作
在数组存储结构的队尾插入元素时, 需要将新元素存储到数组的最后一 个位置,并将队尾指针向前移动一 位。
删除操作
在数组存储结构的队头删除元素时, 需要将队头指针向后移动一位,并 从数组中删除该位置的元素。
队列的顺序存储结构
顺序存储结构
队列的顺序存储结构使用连续的 内存空间来实现,每个元素包含 数据域和下标。数据域用于存储 数据,下标表示元素在队列中的 位置。
04
队列的效率分析
队列的入队效率
总结词
入队效率指的是向队列中添加元素的速度。
数据结构教学大纲
《数据结构》课程教学大纲一、课程基本概况课程名称:数据结构课程名称(英文):Data Structure课程编号:课程总学时:64(理论课50 ,实验课14 )课程学分:4课程分类:必修开设学期:第5学期适用专业:计算机网络工程先修课程:《集合论》、《图论》和《高级语言(结构或记录,指针)》。
后续课程:《数据库》、《编译原理》、《操作系统》等二、课程性质、目的和任务本课程系统地介绍线性表、栈、队列、字符串、数组、广义表、树、二叉树、图、查找表等几种数据结构的基本概念、操作及其典型应用的例子,通过课堂教学、课外练习和上机实习,使学生了解数据对象的特性,数据组织的基本方法,并初步具备分析和解决现实世界问题在计算机中如何表示和处理的能力以及培养良好的程序设计技能,为后续课程的学习和科研工作的参与打下良好的基础。
三、主要内容、重点及难点(一)理论部分第一章绪论基本要求:掌握相关的基本概念,算法五大要素,计算语句频度和估算算法时间复杂度的方法。
知识点:1.数据结构的基本概念2. 算法设计3.时间和空间复杂度第二章线性表基本要求:掌握线性表的逻辑结构,线性表的存储结构,线性表在顺序结构和链式结构上实现基本操作的方法,从时间和空间复杂度的角度比较线性表两种存储结构的不同特点及其适用场合。
知识点:1.线性表的逻辑结构2.线性表的存储结构及操作的实现3.一元多项式的表示4.习题讨论课第三章栈和队列基本要求:掌握栈和队列的特点,在两种存储结构上栈的基本操作的实现;熟练掌握循环队列和链队列的基本运算,掌握递归算法执行过程中栈状态的变化过程。
知识点:1.栈的定义、表示及实现2.表达式求值3.栈与递归过程4.队列的定义、表示及实现5.习题讨论课第四章串基本要求:掌握串的七种基本运算的定义,利用这些基本运算来实现串的其它各种运算的方法;掌握在顺序存储结构上实现串的各种操作的方法,KMP算法,熟悉NEXT函数和改进NEXT函数的定义和计算;理解串名的存储映象和在堆存储结构实现串操作的方法。
队列的操作实验报告
队列的操作实验报告队列的操作实验报告一、实验目的本次实验旨在通过对队列的操作,加深学生对队列数据结构的理解,掌握队列的基本操作方法。
二、实验原理队列是一种先进先出(First In First Out,FIFO)的线性数据结构。
它可以用数组或链表来实现。
在队列中,新元素插入到队尾,已有元素从队头删除。
因此,队列具有以下几个特点:1. 只允许在一端插入元素,在另一端删除元素。
2. 插入和删除元素时分别称为入队和出队。
3. 入队操作在队尾进行,出队操作在对头进行。
三、实验内容本次实验主要涉及以下几个方面:1. 队列的初始化:初始化一个空的循环队列。
2. 入队操作:将一个元素插入到循环队列中。
3. 出队操作:从循环队列中删除一个元素,并返回该元素值。
4. 判断循环队列是否为空:如果循环对了为空,则返回 true;否则返回 false。
5. 判断循环对了是否已满:如果循环对了已满,则返回 true;否则返回 false。
四、实验步骤1. 队列的初始化首先需要定义一个结构体来表示循环队列,包括以下几个成员变量:```ctypedef struct {int *base; // 队列的基地址int front; // 队头指针int rear; // 队尾指针int size; // 队列长度} Queue;```然后定义一个初始化函数,用来初始化一个空的循环队列:```cvoid initQueue(Queue *queue, int size) {queue->base = (int *) malloc(sizeof(int) * size);queue->front = queue->rear = 0;queue->size = size;}```2. 入队操作入队操作比较简单,只需要将元素插入到队尾即可。
如果队列已满,则无法插入元素。
```cbool enQueue(Queue *queue, int value) {if (isFull(queue)) {return false;}queue->base[queue->rear] = value;queue->rear = (queue->rear + 1) % queue->size;return true;}```3. 出队操作出队操作也比较简单,只需要从队头删除一个元素,并返回该元素值。
第4章 队列
4-2
队列的存储实现及运算实现
4-2-1 顺序队列
1.顺序队列
顺序队列是用内存中一组连续的存储单元顺序存放队 列中各元素。所以可以用一维数组Q[MAXLEN]作为队列 的顺序存储空间,其中MAXLEN为队列的容量,队列元素 从Q[0]单元开始存放,直到Q[MAXLEN–1]单元。因为队 头和队尾都是活动的,因此,除了队列的数据以外,一般 还设有队首(front)和队尾(rear)两个指针。
出队
入队
a1 a2 a3 a4 a5 … … an
图4-1 队列示意图
4. 队列的实例
(1)如车站排队买票或自动取款机排队取款。 (2)在计算机处理文件打印时,为了解决高速的CPU与低 速的打印机之间的矛盾,对于多个请求打印文件,操作系 统把它们当作可以被延迟的任务,提出打印任务的先后顺 序,就是它们实际打印的先后顺序。即按照“先进先出” 的原则形成打印队列。
2.循环队列
为了解决上述队列的“假溢出”现象,要做移动操作, 当移动数据较多时将会影响队列的操作速度。一个更有效 的方法是将队列的数据区Q[0 ..MAXLEN-1]看成是首尾相连 的 环 , 即 将 表 示 队 首 的 元 素 Q[0] 与 表 示 队 尾 的 元 素 Q[MAXLEN–1]连接起来,形成一个环形表,这就成了循环队 列,如图4-3所示。
第 4 章 目录
队列的定义和基本运算 4-2 队列的存储及运算的实现 4-3 队列的应用举例 小 结 实验4 队列子系统 习题4
4-1
4-1
队列的定义和基本运算
4-1-1 队列(Queue)的定义
1.队列的定义 设有n个元素的队列Q=(a1,a2,a3,…,an),则称a1 为队首元素,an 为队尾元素。队列中的元素按,a1 ,a2 , a3,…,an–1 ,an的次序进队,按a 1,a2,a3,…,an–1 ,an 次序出队,即队列的操作是按照“先进先出” 的原则进行的。 2. 队列的特性 (1)队列的主要特性是“先进先出”。 (2)队列是限制在两端进行插入和删除操作的线性表。 能够插入元素的一端称为 队尾(Rear),允许删除元素 的一端称为 队首(Front)。
《数据结构》实验指导及实验报告栈和队列
《数据结构》实验指导及实验报告栈和队列实验四栈和队列⼀、实验⽬的1、掌握栈的结构特性及其⼊栈,出栈操作;2、掌握队列的结构特性及其⼊队、出队的操作,掌握循环队列的特点及其操作。
⼆、实验预习说明以下概念1、顺序栈:2、链栈:3、循环队列:4、链队三、实验内容和要求1、阅读下⾯程序,将函数Push和函数Pop补充完整。
要求输⼊元素序列1 2 3 4 5 e,运⾏结果如下所⽰。
#include#include#define ERROR 0#define OK 1#define STACK_INT_SIZE 10 /*存储空间初始分配量*/#define STACKINCREMENT 5 /*存储空间分配增量*/typedef int ElemType; /*定义元素的类型*/typedef struct{ElemType *base; /*定义栈底部指针*/ElemType *top; /*定义栈顶部指针*/int stacksize; /*当前已分配的存储空间*/}SqStack;int InitStack(SqStack *S); /*构造空栈*/int push(SqStack *S,ElemType e); /*⼊栈操作*/int Pop(SqStack *S,ElemType *e); /*出栈操作*/int CreateStack(SqStack *S); /*创建栈*/void PrintStack(SqStack *S); /*出栈并输出栈中元素*/int InitStack(SqStack *S){S->base=(ElemType *)malloc(STACK_INT_SIZE *sizeof(ElemType)); if(!S->base) return ERROR;S->top=S->base;int Push(SqStack *S,ElemType e){if(S->top-S->base>=S->stacksize){S->base=(ElemType*)realloc(S->base,(S->stacksize+STACKINCREMENT)*sizeof(ElemType)); S->top=S->base+S->stacksize;S->stacksize+=STACKINCREMENT;}*S->top++=e;return 1}/*Push*/int Pop(SqStack *S,ElemType *e){if(S->top!=S->base){*e=*--S->top;return 1;}elsereturn 0;}/*Pop*/int CreateStack(SqStack *S){int e;if(InitStack(S))printf("Init Success!\n");else{printf("Init Fail!\n");return ERROR;}printf("input data:(Terminated by inputing a character)\n"); while(scanf("%d",&e))Push(S,e);return OK;}/*CreateStack*/while(Pop(S,&e))printf("%3d",e);}/*Pop_and_Print*/int main(){SqStack ss;printf("\n1-createStack\n");CreateStack(&ss);printf("\n2-Pop&Print\n");PrintStack(&ss);return 0;}●算法分析:输⼊元素序列1 2 3 4 5,为什么输出序列为5 4 3 2 1?体现了栈的什么特性?2、在第1题的程序中,编写⼀个⼗进制转换为⼆进制的数制转换算法函数(要求利⽤栈来实现),并验证其正确性。
《数据结构》实验指导书(Java语言版).
《数据结构》课程实验指导《数据结构》实验教学大纲课程代码:0806523006 开课学期:3 开课专业:信息管理与信息系统总学时/实验学时:64/16 总学分/实验学分:3.5/0.5一、课程简介数据结构是计算机各专业的重要技术基础课。
在计算机科学中,数据结构不仅是一般程序设计的基础,而且是编译原理、操作系统、数据库系统及其它系统程序和大型应用程序开发的重要基础。
数据结构课程主要讨论各种主要数据结构的特点、计算机内的表示方法、处理数据的算法以及对算法性能的分析。
通过对本课程的系统学习使学生掌握各种数据结构的特点、存储表示、运算的原理和方法,学会从问题入手,分析研究计算机加工的数据结构的特性,以便为应用所涉及的数据选择适当的逻辑结构、存储机构及其相应的操作算法,并初步掌握时间和空间分析技术。
另一方面,本课程的学习过程也是进行复杂程序设计的训练过程,通过对本课程算法设计和上机实践的训练,还应培养学生的数据抽象能力和程序设计的能力。
二、实验的地位、作用和目的数据结构是一门实践性较强的基础课程,本课程实验主要是着眼于原理和应用的结合,通过实验,一方面能使学生学会把书上学到的知识用于解决实际问题,加强培养学生如何根据计算机所处理对象的特点来组织数据存储和编写性能好的操作算法的能力,为以后相关课程的学习和大型软件的开发打下扎实的基础。
另一方面使书上的知识变活,起到深化理解和灵活掌握教学内容的目的。
三、实验方式与基本要求实验方式是上机编写完成实验项目指定功能的程序,并调试、运行,最终得出正确结果。
具体实验要求如下:1.问题分析充分地分析和理解问题本身,弄清要求,包括功能要求、性能要求、设计要求和约束,以及基本数据特性、数据间联系等等。
2.数据结构设计针对要解决的问题,考虑各种可能的数据结构,并且力求从中选出最佳方案(必须连同算法实现一起考虑),确定主要的数据结构和全程变量。
对引入的每种数据结构和全程变量要详细说明其功用、初值和操作的特点。
数据结构实验报告队列的表示与实现
一旦visit失败, 则操作失败。
链队列:
//单链队列-—队列的链式存储结构
typedef struct QNode{
QElemType data;
struct QNode *next;
}QNode,*QueuePtr;
typedef struct{
if(! Q.front )exit(OVERFLOW); //存储分配失败
Q.front —〉next =NULL;
return OK;}
Status DestoryQueue(LinkQueue &Q){//销毁队列Q, Q不再存在
while(Q.front){
Q。rear=Q.front —〉next;
DestoryQueue(&Q)//初始条件:队列Q已存在
//操作结果: 队列Q被销毁, 不再存在
ClearQueue(&Q)//初始条件:队列Q已存在
//操作结果: 将Q清为空队列
QueueEmpty(Q)//初始条件: 队列Q已存在
//操作结果:若队列Q为空队列, 则返回TRUE, 否则FALSE
QueuePtr front;//队头指针
QueuePtr rear;//队尾指针
}LinkQueue;
//—---—单链队列的基本操作的算法描述—-————
status INitQueue(LinkQueue &Q){//构造一个空队列Q
Q.front=Q。rear=(QueuePtr)malloc(sizeof(QNode));
数据结构实验报告
姓名
学号
号
实验地点
数学楼
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过实验可以更深入地理解和掌握数据结构的概念、原理和应用。
本次实验的主要目的包括:1、熟悉常见的数据结构,如链表、栈、队列、树和图等。
2、掌握数据结构的基本操作,如创建、插入、删除、遍历等。
3、提高编程能力和解决实际问题的能力,能够运用合适的数据结构解决具体的问题。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容1、链表的实现与操作单向链表的创建、插入和删除节点。
双向链表的实现和基本操作。
循环链表的特点和应用。
2、栈和队列的实现栈的后进先出特性,实现入栈和出栈操作。
队列的先进先出原则,完成入队和出队功能。
3、树的操作二叉树的创建、遍历(前序、中序、后序)。
二叉搜索树的插入、查找和删除操作。
4、图的表示与遍历邻接矩阵和邻接表表示图。
深度优先搜索和广度优先搜索算法的实现。
四、实验步骤及结果1、链表的实现与操作单向链表:首先,定义了链表节点的结构体,包含数据域和指向下一个节点的指针域。
通过创建链表头节点,并使用循环依次插入新节点,实现了链表的创建。
插入节点时,根据指定位置找到插入点的前一个节点,然后修改指针完成插入操作。
删除节点时,同样找到要删除节点的前一个节点,修改指针完成删除。
实验结果:成功创建、插入和删除了单向链表的节点,并正确输出了链表的内容。
双向链表:双向链表节点结构体增加了指向前一个节点的指针。
创建、插入和删除操作需要同时维护前后两个方向的指针。
实验结果:双向链表的各项操作均正常,能够双向遍历链表。
循环链表:使链表的尾节点指向头节点,形成循环。
在操作时需要特别注意循环的边界条件。
实验结果:成功实现了循环链表的创建和遍历。
2、栈和队列的实现栈:使用数组或链表来实现栈。
入栈操作将元素添加到栈顶,出栈操作取出栈顶元素。
实验结果:能够正确进行入栈和出栈操作,验证了栈的后进先出特性。
数据结构栈和队列实验报告
数据结构栈和队列实验报告实验目的:掌握数据结构栈和队列的基本概念和操作,通过实验加深对栈和队列的理解。
1.实验原理1.1 栈的原理栈是一种具有后进先出(LIFO)特点的数据结构。
在栈中,只允许在栈顶进行插入、删除和访问操作,并且这些操作仅限于栈顶元素。
1.2 队列的原理队列是一种具有先进先出(FIFO)特点的数据结构。
在队列中,元素的插入操作只能在队列的一端进行,称为队尾。
而元素的删除操作只能在队列的另一端进行,称为队头。
2.实验要求2.1 实现栈和队列的基本操作●栈的基本操作:压栈、弹栈、获取栈顶元素和判断栈是否为空。
●队列的基本操作:入队、出队、获取队头元素和判断队列是否为空。
2.2 进行相应操作的测试●对栈进行插入、删除、访问等操作的测试,并输出测试结果。
●对队列进行插入、删除、访问等操作的测试,并输出测试结果。
3.实验环境●操作系统:Windows 10●开发工具:C++编译器4.实验步骤4.1 栈的实现步骤1:定义栈的结构体,包含栈的容量和栈顶指针。
步骤2:根据栈的容量动态分配内存。
步骤3:实现栈的基本操作函数:压栈、弹栈、获取栈顶元素和判断栈是否为空。
步骤4:进行栈的相关测试。
4.2 队列的实现步骤1:定义队列的结构体,包含队列的容量、队头和队尾指针。
步骤2:根据队列的容量动态分配内存。
步骤3:实现队列的基本操作函数:入队、出队、获取队头元素和判断队列是否为空。
步骤4:进行队列的相关测试。
5.实验结果与分析5.1 栈的测试结果●压栈操作测试:将若干元素压入栈中。
●弹栈操作测试:依次弹出栈中的元素。
●获取栈顶元素测试:输出栈顶元素。
●判断栈是否为空测试:输出栈是否为空的结果。
5.2 队列的测试结果●入队操作测试:将若干元素入队。
●出队操作测试:依次出队元素。
●获取队头元素测试:输出队头元素。
●判断队列是否为空测试:输出队列是否为空的结果。
6.结论通过本次实验,我们掌握了栈和队列的基本概念和操作。
队列基本操作实验报告
队列基本操作实验报告一、实验目的本次实验的主要目的是通过编写队列的基本操作,掌握队列数据结构的基本原理及其应用。
二、实验内容1. 队列的定义和基本操作队列是一种先进先出(FIFO)的线性数据结构,它只允许在队尾插入元素,在队头删除元素。
队列的基本操作包括:入队(enqueue)、出队(dequeue)、获取队头元素(getFront)、获取队列长度(getSize)等。
2. 队列的顺序存储结构顺序存储结构是指用数组来存储队列中的元素,其中需要维护两个指针:front指向队头元素,rear指向下一个待插入位置。
当rear等于数组长度时,需要进行循环,即将rear置为0。
3. 队列的链式存储结构链式存储结构是指用链表来存储队列中的元素,其中每个节点包含一个数据域和一个指针域。
head指向链表头节点,tail指向链表尾节点。
4. 实验流程(1) 编写顺序存储结构下的队列基本操作函数。
(2) 编写链式存储结构下的队列基本操作函数。
(3) 分别测试两种存储方式下各个函数是否正确实现。
三、实验步骤1. 顺序存储结构下的队列基本操作函数(1) 定义队列结构体和初始化函数。
typedef struct {int *data;int front, rear;int maxSize;} SeqQueue;SeqQueue* initSeqQueue(int maxSize) {SeqQueue *q = (SeqQueue*)malloc(sizeof(SeqQueue));q->data = (int*)malloc(sizeof(int) * maxSize);q->front = q->rear = 0;q->maxSize = maxSize;return q;}(2) 实现入队操作。
bool enqueue(SeqQueue *q, int x) {if ((q->rear + 1) % q->maxSize == q->front) return false; // 队满q->data[q->rear] = x;q->rear = (q->rear + 1) % q->maxSize; // 循环return true;}(3) 实现出队操作。
数据结构实验报告
数据结构实验报告一、实验目的数据结构是计算机科学中的重要基础课程,通过本次实验,旨在加深对常见数据结构(如数组、链表、栈、队列、树、图等)的理解和运用,提高编程能力和问题解决能力,培养算法设计和分析的思维。
二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。
三、实验内容1、数组与链表的实现与操作分别实现整数数组和整数链表的数据结构。
实现数组和链表的插入、删除、查找操作,并比较它们在不同操作下的时间复杂度。
2、栈与队列的应用用数组实现栈结构,用链表实现队列结构。
模拟栈的入栈、出栈操作和队列的入队、出队操作,解决实际问题,如表达式求值、任务调度等。
3、二叉树的遍历构建二叉树的数据结构。
实现先序遍历、中序遍历和后序遍历三种遍历算法,并输出遍历结果。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法,并分析它们的时间复杂度。
四、实验步骤1、数组与链表数组的实现:定义一个固定大小的整数数组,通过索引访问和操作数组元素。
链表的实现:定义链表节点结构体,包含数据和指向下一个节点的指针。
插入操作:对于数组,若插入位置在末尾,直接赋值;若不在末尾,需移动后续元素。
对于链表,找到插入位置的前一个节点,修改指针。
删除操作:数组需移动后续元素,链表修改指针即可。
查找操作:数组通过索引直接访问,链表需逐个节点遍历。
2、栈与队列栈的实现:用数组模拟栈,设置栈顶指针。
队列的实现:用链表模拟队列,设置队头和队尾指针。
入栈和出栈操作:入栈时,若栈未满,将元素放入栈顶,栈顶指针加 1。
出栈时,若栈不为空,取出栈顶元素,栈顶指针减 1。
入队和出队操作:入队时,在队尾添加元素。
出队时,取出队头元素,并更新队头指针。
3、二叉树构建二叉树:采用递归方式创建二叉树节点。
先序遍历:先访问根节点,再递归遍历左子树,最后递归遍历右子树。
中序遍历:先递归遍历左子树,再访问根节点,最后递归遍历右子树。
数据结构队列实验报告
数据结构队列实验报告队列是一种基本的数据结构,它按照先进先出的原则进行操作。
在实际应用中,队列经常用于实现缓冲区、任务调度、排队系统等场景。
本实验通过C++编程实现了队列的基本操作,并分析了队列的性能特点。
一、实验目的1.了解队列的基本概念及其实现方式;2.掌握队列的插入、删除、查找等基本操作;3.分析队列的时间复杂度和空间复杂度;二、实验原理队列是一种数据结构,它具有以下特点:1.只能在一端插入元素,在另一端删除元素;2.遵循先进先出(FIFO)的原则,即最先插入的元素最先删除;3.队列的插入操作称为入队(enqueue),删除操作称为出队(dequeue)。
队列的基本实现方式有两种:顺序队列和链式队列。
1.顺序队列:使用数组实现,通过两个指针front和rear分别表示队首和队尾的位置。
2.链式队列:使用链表实现,通过指针front和rear分别指向队首和队尾。
三、实验过程本实验以顺序队列为例进行实现,实验步骤如下:1.定义一个固定大小的数组作为队列的存储空间;2.定义两个指针front和rear,初始时都指向-1;3.入队操作:向队尾插入元素,rear指针加1,将元素存入rear指针所指位置;4.出队操作:从队首删除元素,front指针加1,将队首元素返回;5.判断队列是否为空:如果front等于rear,说明队列为空;6.判断队列是否已满:如果rear指针等于数组大小减1,说明队列已满;7.获取队列大小:rear减去front即可得到队列的大小;四、实验结果对队列进行插入、删除、查找等基本操作,并输出结果。
实验数据:插入元素1、2、3,然后删除一个元素;实验结果:入队操作后,队列中的元素为:123出队操作后,队列中的元素为:23五、实验分析1.队列的时间复杂度:入队和出队操作的时间复杂度都是O(1),即常数时间复杂度;2.队列的空间复杂度:队列所占用的存储空间为O(n),n为队列中元素的个数;3.队列适用于先进先出的场景,插入和删除操作效率较高;4.在实际应用中,可以通过队列实现缓冲区、任务调度、排队系统等功能。
数据结构实验——队列(附程序)
数据结构实验——队列(附程序) 目录1.引言2.队列的定义与性质2.1 队列的概念2.2 队列的性质2.2.1 先进先出性质2.2.2 顺序存储和链式存储3.队列的基本操作3.1 初始化队列3.2 入队操作3.3 出队操作3.4 判空操作3.5 获取队头元素4.队列的应用4.1 模拟排队系统4.2 广度优先搜索(bfS)4.3 线程池任务调度5.队列的实现5.1 顺序队列的实现5.2 链式队列的实现6.程序示例6.1 顺序队列的实现代码6.2 链式队列的实现代码7.实验结果与分析8.总结与展望1.引言本文档旨在介绍队列数据结构及其实验分析。
队列作为一种基本数据结构在计算机科学中应用广泛,本文将从队列的定义与性质开始,介绍队列的基本操作和应用,并提供队列的实现示例。
2.队列的定义与性质2.1 队列的概念队列是一种具有先进先出(first in first Out,fifO)特性的线性数据结构。
它可以通过尾部插入元素,头部删除元素。
2.2 队列的性质2.2.1 先进先出性质队列的先进先出性质意味着最早插入的元素将首先被访问或删除,而最新插入的元素将最后被访问或删除。
2.2.2 顺序存储和链式存储队列可以通过顺序存储和链式存储来实现。
顺序存储使用数组实现,具有随机访问的特性,但容量固定。
链式存储使用链表实现,没有容量限制,但访问速度较慢。
3.队列的基本操作3.1 初始化队列队列的初始化操作用于创建一个空的队列供后续操作使用。
3.2 入队操作入队操作将一个元素插入到队列的尾部,使其成为新的队尾。
3.3 出队操作出队操作将队头元素删除,并返回该元素的值。
3.4 判空操作判空操作用于判断队列是否为空。
3.5 获取队头元素获取队头元素操作返回队列头部的元素值,但不删除。
4.队列的应用4.1 模拟排队系统队列可以用来模拟现实中的排队系统,如银行柜台、售票窗口等。
通过模拟排队系统,我们可以评估业务处理的效率、平均等待时间等指标。
数据结构实验任务书(8个)
目录实验1 线性表顺序存储的应用 (2)实验2 线性表链式存储的应用 (5)实验3 栈及其应用 (6)实验4 队列及其应用 (7)实验5 树及其应用 (8)实验6 图的遍历和连通性应用 (9)实验7 图的最短路径应用 (11)实验8 查找和排序应用 (12)实验1 线性表顺序存储的应用实验目的1.熟悉C语言的上机环境,掌握C语言的基本结构。
2.会定义线性表的顺序存储结构。
3.熟悉对顺序表的一些基本操作和具体的函数定义。
4.掌握在线性表的顺序存储结构上的一些其它操作。
实验要求1.独立完成;2.程序调试正确,有执行结果。
实验内容1、基础题:编写应用程序(填空),实现可以在顺序表中插入任意给定数据类型(定义为抽象数据类型)数据的功能。
要求在主函数中定义顺序表并对该顺序表插入若干个整数类型的数据(正整数),对它们求和并输出。
请使用动态内存分配的方式申请数组空间,并把主函数设计为一个文件SeqList.cpp,其余函数设计为另一个文件SeqList.h。
请填空完成以下给出的源代码并调试通过。
(1)文件SeqList.h:typedef struct List{ElemType *elem;int length;int listsize;}SeqList;void InitList(SeqList &L){ //初始化线性表…………}void ClearList(SeqList &L){ //清除线性表………………}int LengthList(SeqList L){ //求线性表长度………..}bool InsertList(SeqList &L, ElemType item, int pos){ //按给定条件pos向线性表插入一个元素…….}ElemType GetList(SeqList L, int pos){ //在线性表L中求序号为pos的元素,该元素作为函数值返回…………..}(2)文件SeqList.cpp:#include <stdio.h>#include <stdlib.h>typedef ElemType;#define MAXSize 10#include "SeqList.h"void main(void){SeqList myList;int i=1, x, sum=0, n;InitList ( );scanf(“%d”, &x);while ( x!= -1 ){if ( InsertList (myList, , i )==0) {printf("错误!\n");return ;}i++;scanf(“%d”, &x);}n = LengthList (myList);for (i=1; i<=n; i++){x=GetList(myList, i);sum = + x;}printf("%d\n ", sum);ClearList(myList);}2、提高部分:编写函数bool DeleteElem(SeqList &L, int min, int max)实现从顺序表中删除其值在给定值min和max之间(min < max)的所有元素,要求把该函数添加到文件SeqList.h中,并在主函数文件SeqList.cpp中添加相应语句进行测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意事项:
在磁盘上创建一个目录,专门用于存储数据结构实验的程序。
因为机房机器有还原卡,请同学们将文件夹建立在最后一个盘中,以学号为文件夹名。
实验四队列的表示与操作
一、实验目的
1。
掌握队列的掌握队列的类型定义,掌握循环队列的表示与实现方法
2.掌握队列的基本操作:判空、元素入队、出队,删除队头元素
基本操作:
InitQueue()构造一个空队列Q
QueueEmpty(Q) 判断队列是否为空
QueueLenght(Q)返回队列Q的元素个数,即队列的长度
GetHead(Q,&e)取队列Q的队头元素,并用e返回
InQueue(&Q,e) 将元素e入队列
OutQueue(&Q,&e)删除非空队列Q的队头元素,并用e返回其值
二、实验要求
1.认真阅读和掌握本实验的算法。
2.上机将本算法实现。
3.将程序补完整,打印出程序的运行结果,并结合程序进行分析。
三、实验内容
程序:设计一个循环队列的顺序表示和实现的演示程序
参考程序如下:
#include <iostream.h>
#include <malloc.h>
typedef int DataType;
#define Maxsize 100 /*最大队列长度*/
typedef struct {
DataType data[Maxsize]; /*初始化的动态分配存储空间*/
int front; /*头指针,若队列不空,指向队列头素元素的前一位置*/
int rear; /*尾指针,若队列不空,指向队列尾元素位置*/
}SeqQueue,*PSeqQueue;
PSeqQueue InitQueue(){
/*构造一个空队列Q*/
}
int QueueEmpty(PSeqQueue Q){
/*若队列Q为空队列,则返回TRUE,否则返回FALSE*/
}
int QueueLength(PSeqQueue Q){
/*返回Q的元素个数,即为队列的长度*/
}
int GetHead(PSeqQueue Q,DataType &e){
/*若队列不为空,则用e返回Q的队头元素,并返回OK;否则返回ERROR*/
}
int InQueue(PSeqQueue &Q,DataType e){
/*插入元素e为Q的新的队尾元素*/
}
int OutQueue(PSeqQueue &Q,DataType &e){
/*若队列不空,则删除Q的队头元素,用e返回其值,并返回OK,否则返回ERROR*/
}
void main(){
PSeqQueue Q;
int select;
DataType e;
if ((Q=InitQueue())==NULL)
cout<<"分配失败,即将退出程序!\n";
else/*否则显示队列操作的菜单,并选择相应的基本操作*/
do {
cout<<"1:判断队列是否为空\n";
cout<<"2:测试队列的长度\n" ;
cout<<"3:取队头元素值\n";
cout<<"4:向队列中插入一新元素\n";
cout<<"5:删除队列中一元素\n";
cout<<"0:结束\n";
cout<<"\n请输入您的选择:";
cin>>select;
cout<<endl;
switch (select) {
case 1:
if (QueueEmpty(Q)==1) cout<<"队列为空\n";
else cout<<"队列不为空\n";break;
case 2:
cout<<"队列长度为:"<<QueueLength(Q)<<endl;break;
case 3:
if(GetHead(Q,e)==-1) cout<<"队列为空\n";
else cout<<"队首元素为:"<<e<<endl;break;
case 4:
cout<<"请输入要插入的元素值:";
cin>>e;
if(InQueue(Q,e)==-1) cout<<"\n队列满\n";
else cout<<"\n元素成功插入\n";break;
case 5:
if(OutQueue(Q,e)==-1) cout<<"队列空,无数据可删\n"; else cout<<"删除元素为:"<<e;break;
case 0:
cout<<"操作结束\n";break;
default:
cout<<"输入选择出错!\n";
}/*switch*/
cout<<endl<<endl;
}while (select);
}/*main_end*/。