常见混合像元分解方法简介二

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

端元就相当于一个像素里的亚像元,只包含一种地物的光谱信息,根据多光谱或高光谱的高光谱分辨率可以提取出来。

端元只包含一种地物信息,一般的像元都为混合像元,包括多种地物,在进行混合像元分解的时候,可以对一个像元中包括的几种端元进行定量描述,求得每个像元中几种端元在这个像元中的面积百分比,即端元的丰度。

混合像元分解

(2011-06-10 14:46:57)

转载▼

分类:ENVI/IDL学习

标签:

杂谈

混合像元是指在一个像元内存在有不同类型的地物,主要出现在地类的边界处。混合像元的存在是影响识别分类精度的主要因素之一,特别是对线状地类和细小地物的分类识别影响较为突出,在土地利用遥感动态监测工作中,经常遇到混合像元的难题,解决这一问题的关键在于通过一定方法找出组成混合像元的各种典型地物的比例。

线性混合像元分解

由于线性模型是应用最广泛,也是研究最多的算法,下面重点介绍基于线性模型的混合像元分解算法。一般而言,混合像元分解算法包括数据降维、端元选取和反演三个步骤。

1.数据降维

尽管数据降维不是混合像元分解算法的一个必需步骤,但由于大多数算法都将其作为一个流程,我们也将其当作一个步骤。常用的降维算法有主成分分析(Principle Component Analysis,PCA)、最大噪声比变换(Maximum Noise Fraction,MNF)和奇异值分解(Singular Value Decomposition,SVD)。

(1) 主成分分析:遥感图像各波段之间经常是高度相关的,因此所有的波段参加分析是不必要的。PCA就是一种去除波段之间相关性的变换。PCA通过对原数据进行线性变换,获得新的一组变量,即主成分。其中前几个主成分包含了原数据主要方差,同时各个主成分之间是不相关的。

(2) 最大噪声比变换:最大噪声比变换(Maximum Noise Fraction,MNF)[24]由Green等(1989)提出,该变换通过引入噪声协方差矩阵以实现对噪声比率的估计。首先,通过一定方式(比如对图像进行高通滤波)获取噪声的协方差矩阵,然后将噪声协方差矩阵对角化和标准化,即可获得对图像的变换矩阵,该变换实现了噪声的去相关和标准化,即变换后的图像包含的噪声在各个波段上方差都为1,并且互不相关。最后对变换后的图像再做主成分变换,从而实现了MNF变换,此时得到的图像的主成分的解释方差量对应于该主成分的信噪比大小。

(3) 奇异值分解:奇异值分解(Singular Value Decomposition, SVD)也是遥感图像处理中常用的变换,与PCA类似,SVD能够找出包含原始数据大部分方差的特征方向,不同的是,SVD特别适合于波段间高度相关的数据,而PCA在这种情况下很有可能会失败[25]。

2.端元选取

选取合适的端元是成功的混合像元分解的关键[26, 27]。端元选取包括确定端元数量以及端元的光谱。理论上,只要端元数量m小于等于L+1(L表示波段数),线性方程组就可以求解。然而实际上由于端元波段间的相关性,选取过多的端元会导致分解结果更大的误差,尽管此时残差会减少[28]。在能够描述一个场景内光谱的大部分方差的前提下,越少的端元数量是越好的选择[29]。对于城市地区,最常用的端元选取方式是由Ridd等(1995)[30]

提出的植被-不透水层-土壤端元模型(Vegetation - Impervious surface–Soil, V-I-S),V-I-S

模型在很多研究中得到应用[2,31-35]。而在非城市地区,一般采用植被-土壤-阴影(或干植被)端元模型。

端元的数量和类型确定后,下一步是确定端元的光谱。端元光谱的确定有两种方式:(1) 使用光谱仪在地面或实验室测量到的“参考端元”;(2) 在遥感图像上得到的“图像端元”。参考端元虽然可以精确测量,但由于各种因素(包括不同传感器、大气影响、辐射条件及物候等)造成的噪声,可能会导致其与图像上像元光谱的不一致。要将二者匹配起来需要进行复杂的校正,而且参考端元的微弱噪声就可能引起最后计算得到的端元比例有很大误差。相对而言,直接从图像上寻找端元更加直接方便,因而得到广泛研究。图像端元选取的方法大致可以分为两类:交互式端元提取和自动端元提取。

2.1交互式端元提取

从图像上选取端元的各种方法,都基于这样一种思想:在特征空间中,所有的混合像元都存在于由端元连接而成的多边形(或多面体)内。这样的混合像元才能满足端元面积比例为正值并且总和为1的条件。因此,最简单的交互式提取方法就是在特征空间中(通常是前两个或三个主成分构成的特征空间)目视寻找多边形的顶点作为端元。为了减少目视选取的主观性,一些定量化方法被引进作为选取端元时的参考,这些方法的特点是仍然需要人工参与,所以被称为交互式提取。

(1)PPI指数[36]:像元纯度指数(Pixel Purity Index)是最成功的方法之一。首先对图像进行MNF变换以实现数据降维,接着在由MNF的前几个主要成分组成的特征空间中,随机生成穿过数据云的测试向量,然后将数据点投影到测试向量上。投影在测试向量两端的数据点有较大的可能性属于端元,用一个阈值选出在这个测试向量两端的极值点。继续生成新的随机向量,重复上述步骤,记录图像中每个像元作为极值点的频度,即为PPI指数。PPI指数越高意味着像元的纯度也越高。

(2)MEST算法[37]:MEST(Manual Endmember Selection Tool)算法通过主成分分析来确定混合物中端元的数目。对于三维及三维以内的数据而言,可以直接通过目视选取多边形的顶点来确定端元,但对于更高维数的数据,显示上存在困难。MEST提供了一种在高维空间中寻找端元光谱的方法。

(3)CAR和EAR指数[38]:由于端元内的光谱差异,一类端元往往对应很多条光谱,这两个指数用于解决从多条光谱中选择最具代表性的光谱问题。CAR(Class Average RMSE)计算A类端元光谱用B类端元光谱来分解产生的残差,显然残差越小,A、B两类端元的混淆性越大。EAR(Endmember average RMSE)计算A端元内某一条光谱用A端元内其他光谱来分解产生的残差。显然EAR越低表明这条光谱的代表性越好,如果很高则证明这条光谱可能是离群点,没有代表性。因此,利用CAR和EAR指数可以为端元的合并或分离提供依据,进而指导端元选取。

2.2自动端元提取

自动端元提取指不需要人工参与的端元提取方法。相对于交互式提取方法,自动方法的提取

相关文档
最新文档