BQ24072 TI 锂电池 电源管理芯片

合集下载

bq24740

bq24740
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
Sense Resistor) – Adapter Current Limit (DPM) • Status and Monitoring Outputs – AC/DC Adapter Present with Programmable
Voltage Threshold – Low Input-Power Detect with Adjustable
DPMDET CELLS SRP SRN BAT SRSET IADAPT
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PowerPad is a trademark of Texas Instruments.
Host-Controlled Multi-Chemistry Battery Charger With Low Input Power Detect

BCT24157_REV2P2_20170511

BCT24157_REV2P2_20170511

如果器件工作条件超过上述各项极限值,可能对器件造成永久性损坏。上述参数仅仅是工作条件的极限值,不建议器 件工作在推荐条件以外的情况。器件长时间工作在极限工作条件下,其可靠性及寿命可能受到影响。

5
Ver 2.2
电气特性
除特别说明外,测试条件均为:VBUS=5V,TA=25℃。
VBUS=5V, VBAT=3.6V, IOREG=1600mA No Battery, VBUS at Power UP
OTG MODE波形(CH2=VBUS,CH4=BAT,CH3=SW,CH1=IL)
VBAT=3.6V, IVBUS=500mA Battery Removal/Insertion During Charging


应用
手机、智能手机、PDA、充电宝 平板电脑、便携式媒体播放器 游戏机、数码相机
订购信息
产品型号 BCT24157EBP-TR 工作温度范围 -40℃~85℃ 封装形式 WLCSP-20L 器件标识 24157 发货形式 卷带包装3000 片/盘

VBUS OVP VCC
Q1A Q1B ISNS
POWER OUTPUT STAGE
RSENSE
PGND
Battery
DAC
VREF
CSIN
VBAT
CBAT
SDA SCL
PMID
I2C INTERFACE OSC LOGIC AND CONTROL
STAT 50mA
SYSTEM LOAD
图2
IC 和系统原理框图
1
Ver 2.2
典型应用原理图
手机USB 端口
VBUS SW
L1 1uH

锂电池充电管理芯片BQ24025

锂电池充电管理芯片BQ24025

锂电池充电管理芯片BQ24025一、特性●体积小,MLP封装●可以采用AC电源适配器或者USB电源充电,并能够自主选择●USB电源充电下,可以选择100mA、500mA两种充电电流●低压差比●内部集成定时器●低功耗情况下自动进入睡眠模式●工作时允许结温:—40~125℃,存储温度:—60~150℃●应用范围:PDA、MP3 player、数码相机、网络产品、智能电话等二、引脚功能AC:AC适配器电源输入端USB:USB电源输入端STAT1、STAT2:充电状态VSS:电源、信号地ISET1:设置AC适配器供电时的充电电流;设置AC充电或USB充电时的中止电流ISET2:设置USB充电时的充电电流/CE:充电使能(高电平禁止充电,低电平允许充电,下降沿充值所有定时器及定时器出错状态TS:温度检测输入OUT:充电电流输出三、电气参数输入电压范围:—0.3~7.0V功耗:40℃以下1.5W ,AC 输入电压范围:最低:4.5V ,最高:6.5V USB 输入电压范围:最低:4.35,最高:6.5V AC 输入电流Icc :典型值1.2mA ,最大值2.0mA 输出电压:4.2VAC 充电时输出电流:最小50mA ,最大1000mAUSB 充电时输出电流:100mA 时最小80mA ,最大100mA ;500mA 时最小400mA ,最大500mA控制信号低电平:≤0.4V 控制信号高电平:≥1.4V四、BQ24025工作模式及相关参数设置● 充电电源选择:AC 适配器提供的电源优先 ● 温度保护采用温敏电阻检测蓄电池的温度,将得到的电压信号输入到TS 引脚。

芯片内部有两个比较电压V (LTF )(典型值2.5V )和V (HTF )(典型值0.5V ),当TS 引脚的电压在这两个电压值之间时,可以正常充电,一旦超出这个范围立即通过内部的功率FET 停止充电并暂停充电定时器(不复位),当温度回到正常范围时恢复充电。

用于高端手持设备的低成本充电管理芯片BQ24070应用设计

用于高端手持设备的低成本充电管理芯片BQ24070应用设计

机,游戏机,PDA 和其他手持设备。

功能设计DP PM 功能动态功率路径管理(DPPM )是指当交流适配器或者U S B 电源提供的电流不足以满足电池充电和系统供电时,B Q24070的D PPM 单元将进行下面两个操作:1)当V out 引脚电压降到1.15×V D PPM时(V D PP M 即在R D P PM 电阻上的电压),B Q24070就会降低电池充电电流,阻止交流适配器或者U SB 电源电压的下降,将电源中的更多电流分配给系统—称为浅度DP PM 模式。

2)如果降低充电电流、甚至将所有充电电流都分配给系统,依然不能满足系统电流需求时,使得V out 电压继续下降,当V out 电压跌到预先设定电压值时,B Q 24070就会从电池中自动抽取部分电流补充给系统,即Q 2导通,Q 2的最大电流通流量为4A —称为深度DP PM 模式。

DPP M 工作原理通过设置DP P M 引脚对地的电阻阻值即可完成,当系统电流与充电电流之和大于交流适配器或者U SB 电源最大输出电流时必然会引起交流适配器或者U SB 电源电压的跌落(当电源过载时,电源会进入限流模式,即电流会恒定到某一数值,但是电压会逐渐下用于高端手持设备的低成本充电管理芯片B Q 24070应用设计Q ui ck Si ngl e Li -i on Bat t er y C har ger D es i gn w i t h B Q 24070f or t he C om pl ex H andset Syst em■秦小虎德州仪器半导体技术(上海)有限公司秦小虎:高性能模拟产品技术应用工程师。

图1D PPM 功能简图摘要:给出详细的锂电池充电管理芯片B Q 24070应用设计。

关键词:电池充电管理;D PPM ;B Q24070应用指南ApplicationNotes引言BQ24070是T I (德州仪器公司)基于B Q TI N Y I I I 产品衍生出来的低成本单节锂电池线性充电管理芯片,支持U SB 和交流适配器充电模式,符合预充-恒流-恒压-涓充的充电过程;它具有DPP M (动态功率路径管理功能),因此支持深度放电电池充电(插入交流适配器后不需要等待即可正常开机)和使用小功率交流适配器充电的应用,自动功率补偿、调整充电电流和系统电流分配关系,最大程度保证系统的正常工作;具有电池温度检测功能,在电池处于过冷或者过热的环境中充电时保护电池,避免损坏;支持高达1.5A 充电电流,具有充电时间设置功能,避免电池长时间充电而损坏。

笔记本维修

笔记本维修

1:插上可调电源,电流表指针可能出现以下变化:a:电流表指针无任何变化:主供电无输出,查待机和保护隔离电路,适配器接口' b:电流表指针摆到1A左右就不停地左右摆动:主供电电容漏电:电流表指针一直打到最大:主供电短路,查电容,二极管,和需用主供电的所有芯片,充电单元,CPU供电等,d:电流表指针有轻微摆动:说明保护和待机正常2:待机正常后,按下开机键: a:电流表指针不动:一般是无3.3V和5V输出:电流表指针摆到0.8A回落,又掉以原来位置(0.1A),说明系统供电性能不良,(如MAX1632,ADP3421),另一种可能为开机信号不持续,查信号端,也就是开机电路的好坏。

C:电流表指针应摆到0.8A,但到了0.4A就不动了(查时钟电路,有未工作的元件,造成无电流消耗.)d:电流表指针打到底,电压被拉低(3.3V和5V或CPU供电输出有短路,先断电,用万用表对地打阻值):电流表指针打到0.8A处不动了(硬起动正常,上面说的第一步自检没过):电流表指针打到0.8A后,摆动了一下就不动了(基本内存未过或第一步自检中有坏件)g:电流表指针打到0.8A后,摆动了两下就不动了(内存或显卡坏)h:电流表指针打到0.8A后,摆动了三下,机器依然不亮(显卡坏或屏部分未工作,外接显示器试开机芯片:东芝TM87XX、IBM:TB6805F、TB6806F、TB6808F、TB62501F、TMP48U0QTB62506F. BI/O芯片:PC97338、PC87391、PC87392、pc87393、 SMSC系列:FDC7N869、FDC37N958、LPC47N227、LPC47N267 ^系统供电芯片:MAX1999、MAX1632、MAX1631、MAX1904、MAX1634、MAX785、MAX786、SB3052、SC1402、LTC1628、SB3053、TPS51020._CPU供电芯片:MAX1711、MAX1714、MAX1717、MAX1718、MAX1897 MAX1845、MAX1887、MAX1715、ISL6262.供电芯片搭配使用:ADP3203,ADP3415、ADP3410,ADP3421、ADP3410,ADP3422、ADP3205,ADP3415.k充电芯片:MAX1645、MAX1772、MAX1773、LT1505G 、ADP3806、TC490/591、MB3887、MB3878、MAX1908 、MAX745、MAX8725.7' WCPU温度控制芯片:MAX1617、AD1020A、AD1030A、CM8500 、MAX1989) c& M7 u% B( m5 c, KG767、ATTM01G、ATTM02G.1显卡品牌:ATI、NVIDIA、S3、NEOMAGIC、TRIDENT、SMI、INTEL、FW82807和CH7001AR搭配使用网卡芯片:RTL8100、RTL8139、Intel DA82562、RC82540、3COM、BCM440Broadcom.c网卡隔离:LF8423、LF-H80P、H-0023、H0024、H0019、ATPL-1192d声卡芯片:ESS1921、ESS1980S、STAC9704、AU8810、4299-JQ、TPA0202、4297-JQ、8552TS、8542TS、CS4239-KQ、BA7786、AD1981B、AN12942 、ALC655., k声卡功放芯片:ESS1980S、G1420、AU8810、TPA0202、TPA0302、TPA03128552TS、8542TS、BA7786、BH7884、ANI2942.,PC卡芯片:R5C551、R5C552、R5C476、R5C472 、R5C593、R5C554、CB1410.oPC卡供电芯片:TPS2204、TPS2205、TPS2206、TPS2216、TPS2211、PU2211、M2562A、M2563A、M2564A 、CP2211、G576COM口芯片:MAX3243、MAX213、ADM213、HIN213、SP3243、MC145583% 键盘芯片:M38857、M38867、M38869、KB3886、7 }:键盘芯片:具有开机功能/images/smilies/default/tongue.gifC87570、PC87591、PC87593、IT8510、pc87541H8系列:、H8/3434、H8/3437、H8/2146、H8/2147、H8/2149、H8/2161、H82169、2 F94 c) L% h' T+ u ?2 ZAAT3200低压差稳压器 -IAAI3680笔记本电脑充电控制芯片AAT4280端口限流保护芯片GAD1885主板声卡芯片 (ADl888主板声卡芯片yADl981主板声卡芯片 3ADP3160,ADP3167笔记本电脑供电控制芯片ADP3166主板CPU供电控制芯片ADP3168笔记本电脑供电控制芯片)& oADP3180主板CPU供电控制芯片eADP3181笔记本电脑CPU供电芯片vADP3203笔记本电脑CPU供电芯片 )ADP3421笔记本电脑CPU供电芯片.eADP3806笔记本电脑电池充,放电控制芯片 !AIC1567主板CPU供电控制芯片 * ~7 C4 \' p: p1 ^! vALC200主板声卡芯片 % l- B7 n o) D! c1 V7 A( nALC201A主板声卡芯片 6 _' O; m$ Z1 K5 B ~+ OALC655主板声卡芯片! w( _AMS1505低压差稳压器eAPA2020,TPA0202小功率音频功率放大芯片[APW7060主板供电控制芯片BQ2040笔记本电脑电池电量检测芯片 . I5 ]9 X4 m6 g7 `1 ? L) ] BQ2060笔记本电脑电池电量检测芯片IBQ24700笔记本电脑充电控制芯片sBQ2470l笔记本电脑充电控制芯片\BQ24702,BQ24703笔记本电脑充电控制芯片CM8501,CM8501A主板内存供电控制芯片# iCM8562主板内存供电控制芯片, [; qCMl9738主板声卡芯片 0 ^8 I, b, q) `; r9 Z: |: o; VCS5322主板CPU供电控制芯片bCS950502主板时钟芯片 2 R/ J6 M+ S" s2 W1 t- Z2 Z. aCY28404C主板时钟芯片~DS1620笔记本电脑数字温度控制芯片) QDS2770笔记本电脑充电控制芯片FAN5056主板CPU供电控制芯片 1 P1 c7 g* f9 P8 j. l8 t3 PFAN7601笔记本电脑电源适配器控制芯片IPM6220A笔记本电脑电源管理芯片 " m ~( ]- J5 I( |+ T, m8 W2 j ISL6223笔记本电脑CPU供电控制芯片( GISL6224笔记本电脑内存供电控制芯片 , Y, |; p! y* aISL6225笔记本电脑内存供电控制芯片 ) Q0 p8 s5 z- o- D: r' ]W$ WLM4861小功率音频功率放大芯片 ; r4 c! i6 p4 a6 z7 P8 \" F LM4863小功率音频功率放大芯片FLM4880几M4881小功率音频功率放大芯片T" DLM4911小功率音频功率放大芯片`LTl505笔记本电脑充电控制芯片/ L7 pLTCl628笔记本电脑系统供电电路 1 @# [# X7 w% ?3 k& D7 U( ILTC1709笔记本电脑CPU供电控制芯片qLTC3728L笔记本电脑系统供电控制芯片W( LLTC4008笔记本电脑充电控制芯片 $ V4 B) @3 G/ J* {_M51995A笔记本电脑电源适配器控制芯片 * x% p. O3 U k! n0 \M61040FP笔记本电脑电池管理控制芯片 7 s( z% R- j# Q5 g0 q% p( gMAXl522,MAXl523,MAXl524笔记本电脑LCD背光电源控制芯片MAX1631笔记本电脑主电源控制芯片?MAXl644笔记本电脑供电控制芯片 ( v& W3 E) X! Q4 J; |) ?MAXl645B笔记本电脑电池充电管理芯片X( KMAX1710,MAX1711,MAXl712笔记本电脑CPU内核供电芯片& jMAX1714笔记本电脑CPU外核供电控制芯片[( MMAX1715笔记本电脑CPU供电芯片~. PMAX1717笔记本电脑CPU供电控制芯片YMAX1718笔记本电脑CPU供电控制芯片 cMAX1736笔记本电脑充电控制芯片. 2 w! MAX1772笔记本电脑充电控制芯片 ; {. L1 @3 a* \' s5 q& ~7 Q5 D$ V' eMAX1773笔记本电脑充电控制芯片_MAX1830,MAXl831笔记本电脑CPU供电控制芯片JMAX1845笔记本电脑CPU内核供电控制芯片 ! o% c3 H1 a" Q3 `1 f* O( JMAX1873笔记本电脑充电控制芯片NMAX1902笔记本电脑系统供电控制芯片 ) }. A p. o7 r$ d, nMAX1908笔记本电脑充电控制芯片 9 J1 o5 h5 O# g |6 eMAX1909笔记本电脑充电控制芯片 & t( z( q+ m, a& v# j6 W+ BXMAX1992,MAXl993笔记本电脑供电控制芯片 / n2 `2 a9 Q/ ]* H4 ^2 vMAX1999笔记本电脑系统供电控制芯片 8 r6 e; C! s8 D. y, ?MAX745笔记本电脑充电控制器 ; `$ m0 c% f# T" cMAX785,MAX786笔记本电脑系统供电控制芯片QMAX8794笔记本电脑DDR内存供电控制芯片UMB3878笔记本电脑充电控制芯片 : ]5 y* k, b6 A+ O1 |MIC2545端口限流保护芯片 1 b# c7 M5 @2 lMIC5205低压差稳压器NCPl205笔记本电脑电源适配器控制芯片4 C7 D" E7 D$ x: ?NCP1207笔记本电脑电源适配器控制芯片 0 q" ^" ~/ Y3 ]$ v" F NCP5201主板DDR2内存供电控制芯片/ {/ o e8 j: \' j6 B* Z B" H" ZNCP5314主板CPU供电控制芯片 ) T9 n6 l+ ?2 @7 WOZ960笔记本电脑液晶屏高压驱动控制芯片\SC1470笔记本电脑供电控制芯片 1 L5 M2 v9 r- R- R, RSC1486,SCl486A笔记本电脑内存供电芯片 0 ?: m5 G1 N) [, t d2 T! hTSC2422主板CPU供电控制芯片\3 hTPS51020笔记本电脑DDR内存供电控制芯片}TPS54672笔记本电脑内存供电控制芯片 6 [) e1 {& q# {; Q7 {) wq特殊芯片:光驱解码芯片、{MICRO OZ168T 0319A MG5PM}h1394接口芯片、{7SB43AB22}一、笔记本不充电(充电芯片损坏) / g: F0 A- ]' Y) w/ n有些笔记本主板维修,突然不能充电,即使拔掉电源,拿出电池,也不能充电,那么这只有一种可能,笔记本充电芯片损坏。

TI BQ IC简介 (Gas Gauge IC)

TI BQ IC简介 (Gas Gauge IC)


(電量監測芯片及類比前端保護芯片雖然能提供電壓過載保護, 但它們仍需要透過取樣才能監控電壓,使整個鋰電池保護系統 的反應時間會受到限制,因此需要反應快速、即時和獨立的二
段保護芯片與電量監測芯片及類比前端保護芯片一起工作。)
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 8
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 16
TI Gas Gauge IC 頂端標記
Device: bq20Z90 (IT 2nd Gen. Gas Gauge IC) 30-pin TSSOP(DBT) 引腳/封裝 Level-2-260C-1 YEAR(潮濕敏感度等級/回流焊溫度) YMS(89K) : 2008年9月在馬來西亞封裝 (1=Jan, 2=Feb, 3=Mar, 4=Apr, 5=May, 6=Jun, 7=Jul, 8=Aug, 9=Sept, A=Oct, B=Nov, C=Dec) 封裝地點: T: 台灣 W: 菲律賓 K: 馬來西亞 J : 日本 G4: TI 器件/封裝組合轉換成“環保”複合成型 材料的標記. LLLL(FL2K): 追蹤碼(LTC)
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 17
TI Gas Gauge IC 頂端標記
Device: bq20Z75 (IT 2nd Gen. Gas Gauge IC, bq20z70 +bq29330) 38-pin TSSOP(DBT) 引腳/封裝 Level-2-260C-1 YEAR(潮濕敏感度等級/回流焊溫度) YMS(88T) : 2008年8月在台灣封裝 (1=Jan, 2=Feb, 3=Mar, 4=Apr, 5=May, 6=Jun, 7=Jul, 8=Aug, 9=Sept, A=Oct, B=Nov, C=Dec) 封裝地點:

用于高端手持设备的低成本充电管理芯片BQ24070应用设计

用于高端手持设备的低成本充电管理芯片BQ24070应用设计

用于高端手持设备的低成本充电管理芯片BQ24070应用设

秦小虎
【期刊名称】《电子产品世界》
【年(卷),期】2008(000)005
【摘要】给出详细的锂电池充电管理芯片13Q24070应用设计.
【总页数】4页(P90-93)
【作者】秦小虎
【作者单位】德州仪器半导体技术(上海)有限公司
【正文语种】中文
【中图分类】TP3
【相关文献】
1.应用于手持设备的显示芯片 [J],
2.可涓流充电的串行实时钟芯片DS1302及应用设计 [J], 王明顺;赵德平
3.可涓流充电的串行实时时钟芯片DS1302及应用设计 [J], 王明顺;吴省
4.用于可充电电池的低成本CCR充电方案 [J], Steve Sheard
5.无线能量传输技术有望用于手持设备充电 [J], Christina;Nickolas
因版权原因,仅展示原文概要,查看原文内容请购买。

TI Audio芯片选型表

TI Audio芯片选型表

2*40W(BTL),75W(PBTL),带音效处理以及音频算法的DSP,多达3段DRC,动态低音增强:小信 号增强低频信号,大信号压缩的特色,有声场空间拓展3D的音效算法,多段EQ补偿,人声音效,高 保真,THD+N可以做到更小,闭环功放,可使用在大功率的WIFI SPEAKER/Soundbar 2*20W(8欧姆/18V/THD+N=10%),宽电压输入:8V-26V,带MINI DSP,多段EQ调整及2段DRC 2*20W(8欧姆/18V/THD+N=10%),宽电压输入:8V-26V,低音BASS算法,带MINI DSP,多段EQ 调整及2段DRC 2*20W(8欧姆/18V/THD+N=10%),宽电压输入:8V-26V,3D环绕,带MINI DSP,多达16段EQ调 整及2段DRC,最重要还能做2.1(2*SE+BTL),可适用在2.1声道的Soundbar/WIFI SPEAKER/BT SPEAKER 2*30W ,宽电压输入:8V-24V,3D环绕,带MINI DSP,多达16段EQ调整及2段DRC,最重要还能做 2.1(2*SE+BTL),可适用在2.1声道的Soundbar/WIFI SPEAKER/BT SPEAKER 模拟信号转数字信号芯片,通用性强,性价比高,比较适用在对ADC性能要求不高但要求性价比高的应用 TI新推出的主推的高性能ADC,支持MIC麦克风输入,支持最大2vRMS输入,支持差分输入信号, 单电源供电,自动音频信号检测以便降低芯片功耗,软件I2C/SPI控制 硬件控制,支持4Channel,或者2channel差分输入 TI新推出的主推的高性能ADC,高性能,支持4通道 数字信号转模拟信号芯片,性价比高,目前推PCM1754,适用于简单的,客户要求性价比高的音频产品上 TI新推出的高性能DAC,硬件控制,内部集成PLL,最大支持2vRMS输出 可软件控制DAC,可软件自由配置定义一些功能,比较灵活 可差分输出的DAC,封装可以做到更小,集成PLL,无需MCLK,可省外部时钟芯片 4通道DAC,SNR高达118dB,性能高 带EN脚关断使能功能,输入最大6V,输出3.3V,低压差,低静态电流,低功耗,SOT23-5 带EN脚关断使能功能,输入最大6V,输出1.8V,低压差,低静态电流,低功耗,SOT23-5 带EN脚关断使能功能,输入最大5.5V,输出3.3V,低压差,低静态电流,低功耗,SOT23-5 带EN脚关断使能功能,输入最大5.5V,输出1.8V,低压差,低静态电流,低功耗,SOT23-5 输入电压范围为:2.0V-5.5V,输出3.3V,电流800mA,封装为:SOT-223 输入电压范围为2.7-16V,输出3.3V,电流800mA,封装为:SOT-223 输入电压范围为2.7-16V,输出5V,电流800mA,封装为:SOT-223 输入电压范围为2.7-16V,输出可调,电流800mA,封装为:SOT-223 输入电压范围6-42V,输出可调,电流最大可达1A 输入电压范围3.5-28V,输出可调,电流最大可达3A 输入电压范围3.5-28V,输出可调,电流最大可达2A 输入电压范围3.5-42V,输出可调,电流最大可达3.5A 输入电压范围4.5-18V,输出电压范围为0.76-7V,电流输出可达2A 输入电压范围4.5-18V,输出电压范围为0.76-7V,电流输出可达3A 输入4.5V-28V,输出可调,1.7A开关转换器,轻载高效(81%@10mA负载) 输入电压范围4.5V-17V,输出0.76-7V,可调,电流0.5A,封装为:SOT-23,5PIN 输入电压范围4.5V-17V,输出0.76-7V,可调,电流2A,封装为:SOT-23,6PIN 输入电压范围4.5-28V,输出0.8V-25V可调,电流最大可达3A 输入电压范围4.5-17V,输出0.76V-7V可调,电流最大可达3A,封装为:SOT-23,6PIN 输入电压范围4.5-18V,输出0.76V-7V可调,电流最大可达4A,封装为:8-HSOIC 输入电压范围4.5-28V,输出0.8V-25V可调,电流最大可达5A,封装为:8-HSOIC 输入电压范围4.5-18V,输出0.76V-7V可调,电流最大可达6A,封装为:8-HSOIC 输入电压范围为2.97-48V,典型的应用为输出5V/2A,外置MOS

常用开关电源芯片大全之欧阳育创编

常用开关电源芯片大全之欧阳育创编

常用开关电源芯片大全第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT31142.低功耗开关型DC-DC电源转换器ADP30003.高效3A开关稳压器AP15014.高效率无电感DC-DC电源转换器FAN56605.小功率极性反转电源转换器ICL76606.高效率DC-DC电源转换控制器IRU30377.高性能降压式DC-DC电源转换器ISL64208.单片降压式开关稳压器L49609.大功率开关稳压器L4970A10.1.5A降压式开关稳压器L497111.2A高效率单片开关稳压器L497812.1A高效率升压/降压式DC-DC电源转换器L597013.1.5A降压式DC-DC电源转换器LM157214.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15.3A降压单片开关稳压器LM2576/LM2576HV16.可调升压开关稳压器LM257717.3A降压开关稳压器LM259618.高效率5A开关稳压器LM267819.升压式DC-DC电源转换器LM2703/LM270420.电流模式升压式电源转换器LM273321.低噪声升压式电源转换器LM275022.小型75V降压式稳压器LM500723.低功耗升/降压式DC-DC电源转换器LT107324.升压式DC-DC电源转换器LT161525.隔离式开关稳压器LT172526.低功耗升压电荷泵LT175127.大电流高频降压式DC-DC电源转换器LT176528.大电流升压转换器LT193529.高效升压式电荷泵LT193730.高压输入降压式电源转换器LT195631.1.5A升压式电源转换器LT196132.高压升/降压式电源转换器LT343333.单片3A升压式DC-DC电源转换器LT343634.通用升压式DC-DC电源转换器LT346035.高效率低功耗升压式电源转换器LT346436.1.1A升压式DC-DC电源转换器LT346737.大电流高效率升压式DC-DC电源转换器LT378238.微型低功耗电源转换器LTC175439.1.5A单片同步降压式稳压器LTC187540.低噪声高效率降压式电荷泵LTC191141.低噪声电荷泵LTC3200/LTC3200-542.无电感的降压式DC-DC电源转换器LTC325143.双输出/低噪声/降压式电荷泵LTC325244.同步整流/升压式DC-DC电源转换器LTC340145.低功耗同步整流升压式DC-DC电源转换器LTC340246.同步整流降压式DC-DC电源转换器LTC340547.双路同步降压式DC-DC电源转换器LTC340748.高效率同步降压式DC-DC电源转换器LTC341649.微型2A升压式DC-DC电源转换器LTC342650.2A两相电流升压式DC-DC电源转换器LTC342851.单电感升/降压式DC-DC电源转换器LTC344052.大电流升/降压式DC-DC电源转换器LTC344253.1.4A同步升压式DC-DC电源转换器LTC345854.直流同步降压式DC-DC电源转换器LTC370355.双输出降压式同步DC-DC电源转换控制器LTC373656.降压式同步DC-DC电源转换控制器LTC377057.双2相DC-DC电源同步控制器LTC380258.高性能升压式DC-DC电源转换器MAX1513/MAX151459.精简型升压式DC-DC电源转换器MAX1522/MAX1523/MAX152460.高效率40V升压式DC-DC电源转换器MAX1553/MAX155461.高效率升压式LED电压调节器MAX1561/MAX159962.高效率5路输出DC-DC电源转换器MAX156563.双输出升压式DC-DC电源转换器MAX1582/MAX1582Y64.驱动白光LED的升压式DC-DC电源转换器MAX158365.高效率升压式DC-DC电源转换器MAX1642/MAX164366.2A降压式开关稳压器MAX164467.高效率升压式DC-DC电源转换器MAX1674/MAX1675/MAX167668.高效率双输出DC-DC电源转换器MAX167769.低噪声1A降压式DC-DC电源转换器MAX1684/MAX168570.高效率升压式DC-DC电源转换器MAX169871.高效率双输出降压式DC-DC电源转换器MAX171572.小体积升压式DC-DC电源转换器MAX1722/MAX1723/MAX172473.输出电流为50mA的降压式电荷泵MAX173074.升/降压式电荷泵MAX175975.高效率多路输出DC-DC电源转换器MAX180076.3A同步整流降压式稳压型MAX1830/MAX183177.双输出开关式LCD电源控制器MAX187878.电流模式升压式DC-DC电源转换器MAX189679.具有复位功能的升压式DC-DC电源转换器MAX194780.高效率PWM降压式稳压器MAX1992/MAX199381.大电流输出升压式DC-DC电源转换器MAX61882.低功耗升压或降压式DC-DC电源转换器MAX62983.PWM升压式DC-DC电源转换器MAX668/MAX66984.大电流PWM降压式开关稳压器MAX724/MAX72685.高效率升压式DC-DC电源转换器MAX756/MAX75786.高效率大电流DC-DC电源转换器MAX761/MAX76287.隔离式DC-DC电源转换器MAX8515/MAX8515A88.高性能24V升压式DC-DC电源转换器MAX872789.升/降压式DC-DC电源转换器MC33063A/MC34063A90.5A升压/降压/反向DC-DC电源转换器MC33167/MC3416791.低噪声无电感电荷泵MCP1252/MCP125392.高频脉宽调制降压稳压器MIC220393.大功率DC-DC升压电源转换器MIC229594.单片微型高压开关稳压器NCP1030/NCP103195.低功耗升压式DC-DC电源转换器NCP1400A96.高压DC-DC电源转换器NCP140397.单片微功率高频升压式DC-DC电源转换器NCP141098.同步整流PFM步进式DC-DC电源转换器NCP142199.高效率大电流开关电压调整器NCP1442/NCP1443/NCP1444/NCP1445100.新型双模式开关稳压器NCP1501101.高效率大电流输出DC-DC电源转换器NCP1550102.同步降压式DC-DC电源转换器NCP1570103.高效率升压式DC-DC电源转换器NCP5008/NCP5009 104.大电流高速稳压器RT9173/RT9173A105.高效率升压式DC-DC电源转换器RT9262/RT9262A106.升压式DC-DC电源转换器SP6644/SP6645107.低功耗升压式DC-DC电源转换器SP6691108.新型高效率DC-DC电源转换器TPS54350109.无电感降压式电荷泵TPS6050x110.高效率升压式电源转换器TPS6101x111.28V恒流白色LED驱动器TPS61042112.具有LDO输出的升压式DC-DC电源转换器TPS6112x 113.低噪声同步降压式DC-DC电源转换器TPS6200x114.三路高效率大功率DC-DC电源转换器TPS75003115.高效率DC-DC电源转换器UCC39421/UCC39422116.PWM控制升压式DC-DC电源转换器XC6371117.白光LED驱动专用DC-DC电源转换器XC9116118.500mA同步整流降压式DC-DC电源转换器XC9215/XC9216/XC9217119.稳压输出电荷泵XC9801/XC9802120.高效率升压式电源转换器ZXLB16001.2 线性/低压差稳压器121.具有可关断功能的多端稳压器BAXXX122.高压线性稳压器HIP5600123.多路输出稳压器KA7630/KA7631124.三端低压差稳压器LM2937125.可调输出低压差稳压器LM2991126.三端可调稳压器LM117/LM317127.低压降CMOS500mA线性稳压器LP38691/LP38693128.输入电压从12V到450V的可调线性稳压器LR8129.300mA非常低压降稳压器(VLDO)LTC3025130.大电流低压差线性稳压器LX8610131.200mA负输出低压差线性稳压器MAX1735132.150mA低压差线性稳压器MAX8875133.带开关控制的低压差稳压器MC33375134.带有线性调节器的稳压器MC33998135.1.0A低压差固定及可调正稳压器NCP1117136.低静态电流低压差稳压器NCP562/NCP563137.具有使能控制功能的多端稳压器PQxx138.五端可调稳压器SI-3025B/SI-3157B139.400mA低压差线性稳压器SPX2975140.五端线性稳压器STR20xx141.五端线性稳压器STR90xx142.具有复位信号输出的双路输出稳压器TDA8133143.具有复位信号输出的双路输出稳压器TDA8138/TDA8138A144.带线性稳压器的升压式电源转换器TPS6110x145.低功耗50mA低压降线性稳压器TPS760xx146.高输入电压低压差线性稳压器XC6202147.高速低压差线性稳压器XC6204148.高速低压差线性稳压器XC6209F149.双路高速低压差线性稳压器XC64011.3 基准电压源150.新型XFET基准电压源ADR290/ADR291/ADR292/ADR293151.低功耗低压差大输出电流基准电压源MAX610x152.低功耗1.2V基准电压源MAX6120153.2.5V精密基准电压源MC1403154.2.5V/4.096V基准电压源MCP1525/MCP1541155.低功耗精密低压降基准电压源REF30xx/REF31xx156.精密基准电压源TL431/KA431/TLV431A第2章AC-DC转换器及控制器1.厚膜开关电源控制器DP104C2.厚膜开关电源控制器DP308P3.DPA-Switch系列高电压功率转换控制器DPA423/DPA424/DPA425/DPA4264.电流型开关电源控制器FA13842/FA13843/FA13844/FA138455.开关电源控制器FA5310/FA53116.PWM开关电源控制器FAN75567.绿色环保的PWM开关电源控制器FAN76018.FPS型开关电源控制器FS6M07652R9.开关电源功率转换器FS6Sxx10.降压型单片AC-DC转换器HV-2405E11.新型反激准谐振变换控制器ICE1QS0112.PWM电源功率转换器KA1M088013.开关电源功率转换器KA2S0680/KA2S088014.电流型开关电源控制器KA38xx15.FPS型开关电源功率转换器KA5H0165R16.FPS型开关电源功率转换器KA5Qxx17.FPS型开关电源功率转换器KA5Sxx18.电流型高速PWM控制器L499019.具有待机功能的PWM初级控制器L599120.低功耗离线式开关电源控制器L659021.LINK SWITCH TN系列电源功率转换器LNK304/LNK305/LNK30622.LINK SWITCH系列电源功率转换器LNK500/LNK501/LNK52023.离线式开关电源控制器M51995A24.PWM电源控制器M62281P/M62281FP25.高频率电流模式PWM控制器MAX5021/MAX502226.新型PWM开关电源控制器MC4460427.电流模式开关电源控制器MC4460528.低功耗开关电源控制器MC4460829.具有PFC功能的PWM电源控制器ML482430.液晶显示器背光灯电源控制器ML487631.离线式电流模式控制器NCP120032.电流模式脉宽调制控制器NCP120533.准谐振式PWM控制器NCP120734.低成本离线式开关电源控制电路NCP121535.低待机能耗开关电源PWM控制器NCP123036.STR系列自动电压切换控制开关STR8xxxx37.大功率厚膜开关电源功率转换器STR-F665438.大功率厚膜开关电源功率转换器STR-G865639.开关电源功率转换器STR-M6511/STR-M652940.离线式开关电源功率转换器STR-S5703/STR-S5707/STR-S570841.离线式开关电源功率转换器STR-S6401/STR-S6401F/STR-S6411/STR-S6411F 442.开关电源功率转换器STR-S651343.离线式开关电源功率转换器TC33369~TC3337444.高性能PFC与PWM组合控制集成电路TDA16846/TDA1684745.新型开关电源控制器TDA1685046.“绿色”电源控制器TEA150447.第二代“绿色”电源控制器TEA150748.新型低功耗“绿色”电源控制器TEA153349.开关电源控制器TL494/KA7500/MB375950.Tiny SwitchⅠ系列功率转换器TNY253、TNY254、TNY25551.Tiny SwitchⅡ系列功率转换器TNY264P~TNY268G52.TOP Switch(Ⅱ)系列离线式功率转换器TOP209~TOP22753.TOP Switch-FX系列功率转换器TOP232/TOP233/TOP23454.TOP Switch-GX系列功率转换器TOP242~TOP25055.开关电源控制器UCX84X56.离线式开关电源功率转换器VIPer12AS/VIPer12ADIP57.新一代高度集成离线式开关电源功率转换器VIPer53第3章功率因数校正控制/节能灯电源控制器1.电子镇流器专用驱动电路BL83012.零电压开关功率因数控制器FAN48223.功率因数校正控制器FAN75274.高电压型EL背光驱动器HV8265.EL场致发光背光驱动器IMP525/IMP5606.高电压型EL背光驱动器/反相器IMP8037.电子镇流器自振荡半桥驱动器IR21568.单片荧光灯镇流器IR21579.调光电子镇流器自振荡半桥驱动器IR215910.卤素灯电子变压器智能控制电路IR216111.具有功率因数校正电路的镇流器电路IR216612.单片荧光灯镇流器IR216713.自适应电子镇流器控制器IR252014.电子镇流器专用控制器KA754115.功率因数校正控制器L656116.过渡模式功率因数校正控制器L656217.集成背景光控制器MAX8709/MAX8709A18.功率因数校正控制器MC33262/MC3426219.固定频率电流模式功率因数校正控制器NCP165320.EL场致发光灯高压驱动器SP440321.功率因数校正控制器TDA4862/TDA486322.有源功率因数校正控制器UC385423.高频自振荡节能灯驱动器电路VK05CFL24.大功率高频自振荡节能灯驱动器电路VK06TL第4章充电控制器1.多功能锂电池线性充电控制器AAT36802.可编程快速电池充电控制器BQ20003.可进行充电速率补偿的锂电池充电管理器BQ20574.锂电池充电管理电路BQ2400x5.单片锂电池线性充电控制器BQ2401xB接口单节锂电池充电控制器BQ2402x7.2A同步开关模式锂电池充电控制器BQ241008.集成PWM开关控制器的快速充电管理器BQ29549.具有电池电量计量功能的充电控制器DS277010.锂电池充电控制器FAN7563/FAN756411.2A线性锂/锂聚合物电池充电控制器ISL629212.锂电池充电控制器LA5621M/LA5621V13.1.5A通用充电控制器LT157114.2A恒流/恒压电池充电控制器LT176915.线性锂电池充电控制器LTC173216.带热调节功能的1A线性锂电池充电控制器LTC173317.线性锂电池充电控制器LTC173418.新型开关电源充电控制器LTC198019.开关模式锂电池充电控制器LTC400220.4A锂电池充电器LTC400621.多用途恒压/恒流充电控制器LTC400822.4.2V锂离子/锂聚合物电池充电控制器LTC405223.可由USB端口供电的锂电池充电控制器LTC405324.小型150mA锂电池充电控制器LTC405425.线性锂电池充电控制器LTC405826.单节锂电池线性充电控制器LTC405927.独立线性锂电池充电控制器LTC406128.镍镉/镍氢电池充电控制器M62256FP29.大电流锂/镍镉/镍氢电池充电控制器MAX150130.锂电池线性充电控制器MAX150731.双输入单节锂电池充电控制器MAX1551/MAX155532.单节锂电池充电控制器MAX167933.小体积锂电池充电控制器MAX1736B接口单节锂电池充电控制器MAX181135.多节锂电池充电控制器MAX187336.双路输入锂电池充电控制器MAX187437.单节锂电池线性充电控制器MAX189838.低成本/多种电池充电控制器MAX190839.开关模式单节锂电池充电控制器MAX1925/MAX192640.快速镍镉/镍氢充电控制器MAX2003A/MAX200341.可编程快速充电控制器MAX712/MAX71342.开关式锂电池充电控制器MAX74543.多功能低成本充电控制器MAX846A44.具有温度调节功能的单节锂电池充电控制器MAX8600/MAX860145.锂电池充电控制器MCP73826/MCP73827/MCP7382846.高精度恒压/恒流充电器控制器MCP73841/MCP73842/MCP73843/MCP73844 647.锂电池充电控制器MCP73861/MCP7386248.单节锂电池充电控制器MIC7905049.单节锂电池充电控制器NCP180050.高精度线性锂电池充电控制器VM7205。

二合一锂电保护芯片原理

二合一锂电保护芯片原理

二合一锂电保护芯片原理二合一锂电保护芯片是一种应用于锂电池保护的集成电路芯片,具有多种保护功能。

本文将从原理角度详细介绍二合一锂电保护芯片的工作原理。

一、二合一锂电保护芯片的概述二合一锂电保护芯片是用于锂电池保护的一种专用集成电路芯片。

它是一种高度集成的电气设备,能够对锂电池进行多种保护功能,如过充保护、过放保护、过流保护、短路保护等。

通过对电池的工作状态进行实时监测和控制,可以有效保护电池的安全性和寿命。

二、二合一锂电保护芯片的工作原理1. 过充保护当锂电池电压超过设定的过充保护电压时,二合一锂电保护芯片会立即切断电池与充电电源之间的连接,防止电池过充。

同时,保护芯片会向外部控制电路发送过充保护信号,以提醒用户停止充电。

2. 过放保护当锂电池电压降至设定的过放保护电压时,二合一锂电保护芯片会切断电池与负载之间的连接,防止电池过放。

同时,保护芯片会向外部控制电路发送过放保护信号,以提醒用户充电或更换电池。

3. 过流保护当电池充放电电流超过设定的过流保护电流时,二合一锂电保护芯片会立即切断电池与负载或充电电源之间的连接,防止电流过大损坏电池。

同时,保护芯片会向外部控制电路发送过流保护信号,以提醒用户检查电路连接或更换电池。

4. 短路保护当电池与负载之间出现短路时,二合一锂电保护芯片会立即切断电池与负载之间的连接,防止电池短路造成的危险。

同时,保护芯片会向外部控制电路发送短路保护信号,以提醒用户检查电路连接或更换电池。

5. 温度保护二合一锂电保护芯片还具有温度保护功能。

当电池温度超过设定的温度保护范围时,保护芯片会切断电池与负载或充电电源之间的连接,防止温度过高损坏电池。

同时,保护芯片会向外部控制电路发送温度保护信号,以提醒用户降低电池温度或停止充放电。

三、二合一锂电保护芯片的应用二合一锂电保护芯片广泛应用于各种锂电池供电设备中,如移动电源、笔记本电脑、无人机、智能手机等。

它能够保护电池免受过充、过放、过流、短路和高温等因素的损害,提高了锂电池的安全性和使用寿命。

电源管理芯片是什么_电源管理芯片介绍

电源管理芯片是什么_电源管理芯片介绍

电源管理芯片是什么_电源管理芯片介绍电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。

主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。

常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。

主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。

它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。

电源管理芯片发展的必要性智能电源管理芯片的市场容量和发展前景所有电子设备都有电源,但是不同的系统对电源的要求不同。

为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。

首先,电子设备的核心是半导体芯片。

而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。

所以,这样,电子系统对电源电压的要求就发生了变化,也就是需要不同的降压型电源。

为了在降压的同时保持高效率,一般会采用降压型开关电源。

同时,许多电子系统还需要高于供电电压的电源,比如在电池供电设备中,驱动液晶显示的背光电源,普通的白光LED驱动等,都需要对系统电源进行升压,这就需要用到升压型开关电源。

此外,现代电子系统正在向高速、高增益、高可靠性方向发展,电源上的微小干扰都对电子设备的性能有影响,这就需要在噪声、纹波等方面有优势的电源,需要对系统电源进行稳压、滤波等处理,这就需要用到线性电源。

上述不同的电源管理方式,可以通过相应的电源芯片,结合极少的外围元件,就能够实现。

TI电源管理芯片指南

TI电源管理芯片指南

非隔离式开关 DC/DC 稳压器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
DC/DC 控制器 (外接开关) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DC/DC 转换器 (集成开关) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 无电感器 DC/DC 稳压器 (充电泵) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
AC/DC 与 DC/DC 电源产品 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
功率因数校正 (PFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PWM 电源控制器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 MOSFET 驱动器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

TI BQ IC简介 (Gas Gauge IC)

TI BQ IC简介 (Gas Gauge IC)
YMS(65Z) : 2006年5月在韓國封裝 (1=Jan, 2=Feb, 3=Mar, 4=Apr, 5=May, 6=Jun, 7=Jul, 8=Aug, 9=Sept, A=Oct, B=Nov, C=Dec) 封裝地點: T: 台灣 W: 菲律賓 Z: 日本Subcon K: 馬來西亞 J : 日本 LLLL(TT17): 追蹤碼(LTC)
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 1
Agenda

鋰離子電池簡介: 鋰離子電池的用途: TI鋰離子電池管理芯片組簡介: IC包裝: 如何使用TI官方網站:
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 2
鋰離子電池簡介
PROSPECT TECHNOLOGY CORP 11
TI IC封裝訊息
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 12
TI IC封裝訊息
CONFIDENTIAL
PROSPECT TECHNOLOGY CORP 13
TI Gas Gauge IC 頂端標記
Device: bq2084 (Gas Gauge IC) 38-Pin TSSOP(DBT) 引腳/封裝 Level-2-260C-1 YEAR(潮濕敏感度等級/回流焊溫度) YMS(82K) : 2008年2月在馬來西亞封裝 (1=Jan, 2=Feb, 3=Mar, 4=Apr, 5=May, 6=Jun, 7=Jul, 8=Aug, 9=Sept, A=Oct, B=Nov, C=Dec) 封裝地點: T: 台灣 K: 馬來西亞

功能: 主要功能用來報告精確的鋰離子電池的剩餘容量。它獨特的演算法可 以即時追蹤電池組電芯容量變化,電壓、溫度、充放電電流及充電狀 態和其它重要資訊,讓使用者知道目前電池組的使用狀況,並了解電 池組還能維持多久的執行時間,讓使用者評估電池組的電力是否可以

TM2702 datasheet

TM2702 datasheet
‐1‐
锂电池充电管理 IC
TM2702
管脚说明:
管脚号
管脚符号
功能说明
1
LED2
电池状态指示
2
LED1
充电状态指示
3
VB2
充电端 2
4
GND
芯片地
5
VB1
充电端 1
6
VDD
芯片电源
电气参数:
1)极限参数:注: 超过上述极限参数会损坏器件.全部电压均以地为参考值. 电流输入到芯片的电
流方向为正, 芯片端口输出方向为负.
符号
条件
最小值 典型值 最大值 单位
电源电压
VDD
THD<1%
5
12
25
V
充电电流
Ich 当电源动态变化时,电源加 90
100
150
mA
100uF 以上电容
充电饱和电压 Vch 充电完成时电池饱和电压 4.2
4.25
4.3
V
状态说明:
电源状态
电池状态
LED1(充电指示)
LED2(电池指示)
LED3(电源指示)
支持2灯及3灯显示模式 工作电压5V~7V 内置基准电压源 典型恒流充电电流100mA 电池极性自动识别 充电饱和电压4.2V(典型值) 自动短路保护功能 极少的外围器件 原理框图:
管脚图:
TM2702
LED2
1
LED1
2
VB2
3
6
VDD
5
VB1
4
GND

锂电池充电管理 IC
TM2702
概述: TM2702是自动识别电池极性的单节锂电池充电IC,不需要任何外部元件就可以为

电源管理芯片有哪些

电源管理芯片有哪些

电源管理芯片有哪些电源管理芯片是一种用于管理和控制电源供应的集成电路。

它通常用于电子设备中,如手机、平板电脑、笔记本电脑、智能家居设备等,用于监测和管理电池的充电和放电过程,提供电信号转换和通信接口等功能。

以下是一些常见的电源管理芯片和其功能的介绍。

1. TI BQ25890:这是一款具有高度集成度的电源管理芯片,主要用于与锂离子电池相关的应用。

它可以实现快速充电、电池保护和温度监控等功能。

2. MAX17041:这是一款用于锂离子电池监测和管理的集成电路。

它可以实时监测电池的电量、电压和温度等参数,并提供通信接口,可以与MCU进行通讯。

3. ON Semiconductor NCP372:这是一款高度集成的电源管理芯片,主要用于移动设备、便携式医疗器械和智能家居等应用。

它具有高效的能量转换和快速充电功能。

4. Maxim MAX17135:这是一款用于锂电池充电和保护的集成电路。

它可以支持高速充电和充电过程中的电池保护功能,同时还可以监测电量和电压。

5. Dialog DA9052:这是一款低功耗的电源管理芯片,主要用于便携式设备和物联网应用。

它具有多种电源管理功能,可以提高电池寿命和延长待机时间。

6. TI BQ24070:这是一款用于LiFePO4锂电池充电管理的集成电路。

它具有高度集成的功能,包括充电控制、电流限制和温度监测等。

7. Richtek RT9455:这是一款具有高度集成度的电源管理芯片,可以用于一次性电池和可充电电池的管理。

它具有多种保护功能,如过充保护、过放保护和过温保护等。

8. Maxim MAX77650:这是一款高效节能的电源管理芯片,适用于可穿戴设备和便携式消费电子产品。

它可以提供高效的能量转换和充电管理功能。

9. STMicroelectronics STBC08:这是一款专用于锂离子电池充电和保护的电源管理芯片。

它具有高度集成的功能,可以提供电流限制、温度监测和电池状态报告等。

TI_HPA_07016%

TI_HPA_07016%

TI類比技術應用HPA_07016【利用TI電源解決方案加速手持終端手機設計】手持終端–電源方塊圖bq2403x–提供動態電源路徑管理、6V最大穩壓輸出和4.2V充電電壓的雙輸入鋰離子充電元件bqTINY III系列是高度整合的鋰離子線性充電與系統電源路徑管理元件,專門支援空間有限的可攜式應用。

bqTINY III系列把USB電源與直流電源供應(電源轉接器)、電源路徑管理與自動電源選擇、功率FET與電流感測器、精準穩流與穩壓、充電狀態和中止充電功能整合成單石元件。

特性▪ 小型3.5x4.5毫米QFN封裝▪ 最適合使用單顆鋰離子或鋰聚合物電池的可攜式應用▪ 內建動態電源路徑管理(DPPM),可利用電源轉接器(AC Adapter)或USB電源同時供電給系統和對電池充電▪ 提供電源增強模式(Power Supplement Mode),可利用電池彌補USB或電源轉接器的電流不足▪ 自動電源選擇(電源轉接器或USB電源)▪ 內建USB充電控制,可將最大輸入穩流值設為100mA或500mA▪ 動態管理USB總電流▪ 支援高達2A總電流▪ 3.3V整合式LDO輸出▪ 熱調節功能,支援充電控制▪ 充電狀態輸出,可透過LED或系統界面顯示充電與故障狀態▪ 逆向電流、短路與過熱保護▪ 電源良好(電源轉接器與USB電源都正常)狀態輸出▪ 充電電壓可設為4.1V、4.2V或4.36V▪ 應用範圍▪ 智慧型手機與PDA▪ MP3播放機▪ 數位相機與手持裝置▪ 網路家電bqTINY是德州儀器(TI)的商標。

Bq2407X–提供動態電源路徑管理和6.0V最大穩壓輸出的鋰離子充電元件bq24070和bq24071是高度整合的鋰離子線性充電與系統電源路徑管理元件,專門支援空間有限的可攜式應用。

bq24070/1把直流電源供應(電源轉接器)、電源路徑管理與自動電源選擇、功率FET與電流感測器、精準穩流與穩壓、充電狀態和中止充電功能整合成單石元件。

锂电池充电电路-保护方案设计

锂电池充电电路-保护方案设计

锂电池特性首先,问一句简单的问题,为什么很多电池都是锂电池?锂电池,工程师对它都不会感到陌生。

在电子产品项目开发的过程中,尤其是遇到电池供电的类别项目,工程师就会和锂电池打交道。

这是因为锂电池的电路特性决定的。

众所周知,锂原子在化学元素周期表中排在第三位,包含3个质子与3个电子,其中3个电子在锂原子核内部的分布对它的化学与物理特性起到决定性作用。

元素周期表锂原子核外层的3个电子,只有最外层的1个电子是自由电子,另外2个电子不属于自由电子,也就是不参与锂原子的电子性能。

为什么会选用锂元素作为电池的材料呢?这是因为,锂原子虽然最外层只有1个电子,但它的相对原子质量却仅仅只有7。

换句话说,在相同的质量密度条件下,锂原子所带的电能是最多的。

以铝元素为例进行对比,可以直观的得出结论。

铝元素,在元素周期表排在13位,最外层自由移动的电子数是3,相对原子质量是27。

也就是如果用质量为27的铝元素制造电池,它的电能是3;如果用相同质量为27的锂元素制造电池,它的电能是27*(1/7),大约为3.86。

显然,在电能方面,锂元素的3.86是要超过铝元素的3。

这就是为什么锂电池如此受欢迎的原因理论解释。

锂电池的充电电路在了解完锂电池的基本电路特性后,工程师在开发带有锂电池供电的项目时,就会面临锂电池的充电电路问题。

锂电池的电压为3.0V ~ 4.2V 之间变化,也就是锂电池的最大电压为4.2V,最小电压为3.0V。

最大电压与最小电压,对于锂电池而言,隐藏着什么电路含义呢?单节锂电池最大电压是4.2V,也就是锂电池两端能承受的极限电压不超过4.2V;最小电压为3.0V,也就是锂电池两端的极限放电电压不低于3.0V;换言之,它的另外一层电路意义是锂电池在接收外界的充电电路充电,它的最后充电电压不能高于4.2V;锂电池在向外界负载提供工作电源,它最后消耗的电压会停留在3.0V;基于此,如果工程师将常用的5V/1A或者5V/2A规格的充电器,对锂电池进行直接充电,这样是否可以呢?充电器显然是不行的。

BQ24071RHLR资料

BQ24071RHLR资料

FEATURES DESCRIPTIONAPPLICATIONSPOWER FLOW DIAGRAM(1)bq24070bq24071SLUS694B–MARCH2006–REVISED AUGUST2006 SINGLE-CHIP LI-ION CHARGE AND SYSTEM POWER-PATH MANAGEMENT IC•Small3,5mm×4,5mm QFN Package The bq24070and bq24071are highly integratedLi-ion linear charger and system power-path •Designed for Single-Cell Li-Ion-ormanagement devices targeted at space-limited Li-Polymer-Based Portable Applicationsportable applications.The bq24070/1offer DC •Integrated Dynamic Power-Path Managementsupply(AC adapter)power-path management with (DPPM)Feature Allowing the AC Adapter to autonomous power-source selection,power FETs Simultaneously Power the System and and current sensors,high-accuracy current and Charge the Battery voltage regulation,charge status,and chargetermination,in a single monolithic device.•Power Supplement Mode Allows Battery toSupplement the AC Input Current The bq24070/1power the system while •Autonomous Power Source Selection(AC independently charging the battery.This feature Adapter or BAT)reduces the charge and discharge cycles on thebattery,allows for proper charge termination and •Supports Up to2-A Total Currentallows the system to run with an absent or defective •Thermal Regulation for Charge Control battery pack.This feature also allows for the system•Charge Status Outputs for LED or System to instantaneously turn on from an external powersource in the case of a deeply discharged battery Interface Indicates Charge and Faultpack.The IC design is focused on supplying Conditionscontinuous power to the system when available from •Reverse Current,Short-Circuit,and Thermalthe AC adapter or battery sources.Protection•Power Good Status Outputs• 4.4-V and6.0-V Options for System OutputRegulation Voltage•Smart Phones and PDA•MP3Players•Digital Cameras and Handheld Devices•Internet Appliances(1)See Figure2and functional block diagram for more detailed feature information.(2)P-FET back gate body diodes are disconnected to prevent body diode conduction.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2006,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters. bq24070bq24071SLUS694B–MARCH2006–REVISED AUGUST2006These devices have limited built-in ESD protection.The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOSFET gates.The MODE pin selects the priority of the input sources.If an input source is not available,then the battery is selected as the source.With the MODE pin high,the bq24070/1attempts to charge from the input at the charge rate set by ISET1pin.With the MODE pin low,the bq24070/1defaults to USB charging at the charge rate.This feature allows the use of a single connector(mini-USB cable),where the host programs the MODE pin according to the source that is connected(AC adaptor or USB port).Table1summarizes the MODE pin function.Table1.Power Source Selection Function SummaryMODE STATE AC MAXIMUM SYSTEM USB BOOT-UPADAPTER CHARGE RATE(1)POWER FEATURESOURCE Low Present ISET2USB EnabledAbsent N/A Battery Disabled High Present ISET1AC DisabledAbsent N/A Battery Disabled (1)Battery charge rate is always set by ISET1,but may be reduced by a limited input source(ISET2USB mode)and I OUT system load.ORDERING INFORMATION(1)BATTERY PART PACKAGE T A OUT PIN STATUSVOLTAGE(V)NUMBER(2)(3)MARKING4.2Regulated to4.4V(4)bq24070RHLR Production BRQ4.2Regulated to4.4V(4)bq24070RHLT Production BRQ–40°C to125°C4.2Regulated to6.0V bq24071RHLR Production BTR4.2Regulated to6.0V bq24071RHLT Production BTR(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TIWeb site at .(2)The RHL package is available in the following options:R-taped and reeled in quantities of3,000devices per reel.T-taped and reeled in quantities of250devices per reel.(3)This product is RoHS compatible,including a lead concentration that does not exceed0.1%of total product weight,and is suitable foruse in specified lead-free soldering processes.In addition,this product uses package materials that do not contain halogens,including bromine(Br)or antimony(Sb)above0.1%of total product weight.(4)If AC<V O(OUT-REG),the AC is connected to the OUT pin by a P-FET,(Q1).2Submit Documentation FeedbackABSOLUTE MAXIMUM RATINGS(1)RECOMMENDED OPERATING CONDITIONS DISSIPATION RATINGSbq24070bq24071 SLUS694B–MARCH2006–REVISED AUGUST2006over operating free-air temperature range(unless otherwise noted)bq24070/1Input voltage IN(DC voltage wrt(with respect to)VSS)–0.3V to18VBAT,CE,DPPM,PG,Mode,OUT,ISET1,ISET2,STAT1,–0.3V to7VSTAT2,TS,(all DC voltages wrt VSS)Input voltageV REF(DC voltage wrt VSS)–0.3V to V O(OUT)+0.3VTMR–0.3V to V O+0.3VInput current 3.5AOUT4AOutput currentBAT(2)–4A to3.5AOutput sink current PG,STAT1,STAT2, 1.5mAStorage temperature range,T stg–65°C to150°CJunction temperature range,T J–40°C to150°CLead temperature(soldering,10seconds)300°C(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.All voltage values are with respect to the network ground terminal unless otherwise noted.(2)Negative current is defined as current flowing into the BAT pin.MIN MAX UNIT V CC Supply voltage(V IN)(1) 4.3516VI AC Input current2AT J Operating junction temperature range–40125°C (1)Verify that power dissipation and junction temperatures are within limits at maximum V CC.T A≤40°C DERATING FACTORPACKAGEθJAPOWER RATING T A>40°C20-pin RHL(1) 1.81W21mW/°C46.87°C/W(1)This data is based on using the JEDEC High-K board and the exposed die pad is connected to a Cu pad on the board.This isconnected to the ground plane by a2×3via matrix.3Submit Documentation FeedbackELECTRICAL CHARACTERISTICSbq24070bq24071SLUS694B–MARCH 2006–REVISED AUGUST 2006over junction temperature range (0°C ≤T J ≤125°C)and the recommended supply voltage range (unless otherwise noted)PARAMETERTEST CONDITIONS MIN TYP MAXUNIT INPUT BIAS CURRENTS I CC(SPLY)Active supply current,VCC V VCC >V VCC(min)12mAV IN <V (BAT)Sleep current (current into BAT I CC(SLP)2.6V ≤V I(BAT)≤V O(BAT-REG),25pin)Excludes load on OUT pinV I(AC)≤6V,Total current into IN pin with I CC(IN-STDBY)Input standby currentchip disabled,Excludes all loads,200CE=LOW,after t (CE-HOLDOFF)delay µATotal current into BAT pin with input present and chip disabled;I CC(BAT-STDBY)BAT standby currentExcludes all loads,CE=LOW,4565after t (CE-HOLDOFF)delay,0°C ≤T J ≤85°CI IB(BAT)Charge done current,BATCharge DONE,input supplying the load 15OUT PIN-VOLTAGE REGULATION bq24070V I(AC)≥4.4V+V DO 4.4 4.5Output regulation V O(OUT-REG)Vvoltagebq24071V I(AC)≥6.0V+V DO 6.06.3OUT PIN –DPPM REGULATION V (DPPM-SET)DPPM set point (1)V DPPM-SET <V OUT 2.6 3.8V I (DPPM-SET)DPPM current source Input present95100105µASFDPPM scale factorV (DPPM-REG)=V (DPPM-SET)×SF1.1391.1501.162OUT PIN –FET (Q1,Q2)DROP-OUT VOLTAGE ®DS(on))V I(AC)≥V CC(min),Mode =High,V (ACDO)AC to OUT dropout voltage (2)300475I I(AC)=1A,(I O(OUT)+I O(BAT)),or no input mVBAT to OUT dropout voltage V (BATDO)V I(BAT)≥3V,I i(BAT)=1.0A,V CC <V i(BAT)40100(discharging)OUT PIN -BATTERY SUPPLEMENT MODE Enter battery supplement mode V I(OUT)(battery supplements OUTV BSUP1V I(BAT)>2V≤V I(BAT)current in the presence of input –60mVsourceVV I(OUT)V BSUP2Exit battery supplement modeV I(BAT)>2V≥V I(BAT)–20mVOUT PIN -SHORT CIRCUIT Current source between BAT to OUT for BAT to OUT short-circuit I OSH1short-circuit recovery to 10mA recoveryV I(OUT)≤V I(BAT)–200mV R SHACAC to OUT short-circuit limit V I(OUT)≤1V500ΩBAT PIN CHARGING –PRECHARGE Precharge to fast-charge V (LOWV)Voltage on BAT2.933.1V transition thresholdDeglitch time for fast-charge to t FALL =100ns,10mV overdrive,T DGL(F)22.5msprecharge transition (3)V I(BAT)decreasing below threshold 1V <V I(BAT)<V (LOWV),t <t (PRECHG),I O(PRECHG)Precharge range 10150mA I O(PRECHG)=(K (SET)×V (PRECHG))/R SET V (PRECHG)Precharge set voltage1V <V I(BAT)<V (LOWV),t <t (PRECHG)225250275mVBAT PIN CHARGING -CURRENT REGULATION V i (BAT)>V (LOWV),Mode =High I O(BAT)Battery charge current range (4)I OUT(BAT)=(K (SET)×V (SET)/R SET ),10010001500mA V I (OUT)>V O (OUT-REG)+V (DO-MAX)R PBATBAT to OUT pullupV i(BAT)<1V1000Ω(1)V (DPPM-SET)is scaled up by the scale factor for controlling the output voltage V (DPPM-REG).(2)V DO(max),dropout voltage is a function of the FET,R DS(on),and drain current.The dropout voltage increases proportionally to the increase in current.(3)All deglitch periods are a function of the timer setting and is modified in DPPM or thermal regulation modes by the percentages that the program current is reduced.(4)When input current remains below 2A,the battery charging current may be raised until the thermal regulation limits the charge current.4Submit Documentation Feedbackbq24070bq24071 SLUS694B–MARCH2006–REVISED AUGUST2006ELECTRICAL CHARACTERISTICS(continued)over junction temperature range(0°C≤T J≤125°C)and the recommended supply voltage range(unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNITVoltage on ISET1,V VCC≥4.35V,Battery charge current setV(SET)V I(OUT)-V I(BAT)>V(DO-MAX), 2.47 2.50 2.53V voltage(5)V I(BAT)>V(LOWV)100mA≤I O(BAT)≤1.5A375425450K(SET)Charge current set factor,BAT10mA≤I O(BAT)≤100mA(6)300450600USB MODE INPUT CURRENT LIMITISET2=Low8090100I(USB)USB input port current range mAISET2=High400500BAT PIN CHARGING VOLTAGE REGULATION,V O(BAT-REG)+V(DO-MAX)<V CC,I TERM<I BAT(OUT)≤1ABattery charge voltage 4.2VV O(BAT-REG)T A=25°C–0.5%0.5% Battery charge voltage regulationaccuracy–1%1%CHARGE TERMINATION DETECTIONCharge termination detection V I(BAT)>V(RCH),I(TERM)10150mA range I(TERM)=(K(SET)×V(TERM))/R SETV I(BAT)>V(RCH),Mode=High230250270 Charge termination set voltage,V(TERM)mV measured on ISET1VI(BAT)>V(RCH),Mode=Low95100130t FALL=100ns,10mV overdrive,Deglitch time for terminationT DGL(TERM)I CHG increasing above or decreasing22.5ms detectionbelow thresholdTEMPERATURE SENSE COMPARATORSV LTF High voltage threshold Temp fault at V(TS)>V LTF 2.465 2.500 2.535VV HTF Low voltage threshold Temp fault at V(TS)<V HTF0.4850.5000.515VTemperature sense currentI TS94100106µAsourceR(TMR)=50kΩ,V I(BAT)increasing orDeglitch time for temperatureT DGL(TF)decreasing above and below;22.5ms fault detection(7)100-ns fall time,10-mv overdriveBATTERY RECHARGE THRESHOLDV O(BAT-REG)V O(BAT-REG)V O(BAT-REG)V RCH Recharge threshold voltage V–0.075–0.100–0.125R(TMR)=50kΩ,V I(BAT)increasingDeglitch time for rechargeT DGL(RCH)or decreasing below threshold,22.5ms detection(7)100-ns fall time,10-mv overdriveSTAT1,STAT2,AND PG,OPEN DRAIN(OD)OUTPUTS(8)Low-level output saturation I OL=5mA,An external pullupV OL0.25V voltage resistor≥1K required.I LKG Input leakage current15µA ISET2,CE INPUTSV IL Low-level input voltage00.4VV IH High-level input voltage 1.4I IL Low-level input current,CE–1I IH High-level input current,CE1µAI IL Low-level input current,ISET2V ISET2=0.4V–20I IH High-level input current,ISET2V ISET2=V CC40t(CE-HLDOFF)Holdoff time,CE CE going low only46ms MODE INPUTFalling Hi→Low;280K±10%appliedV IL Low-level input voltage0.9751 1.025Vwhen low.V IH High-level input voltage Input R Mode sets external hysteresis V IL+.01V IL+.024V(5)For half-charge rate,V(SET)is1.25V±25mV.(6)Specification is for monitoring charge current via the ISET1pin during voltage regulation mode,not for a reduced fast-charge level.(7)All deglitch periods are a function of the timer setting and is modified in DPPM or thermal regulation modes by the percentages that theprogram current is reduced.(8)See Charger Sleep mode for PG(V CC=V IN)specifications.5Submit Documentation Feedbackbq24070bq24071SLUS694B–MARCH 2006–REVISED AUGUST 2006ELECTRICAL CHARACTERISTICS (continued)over junction temperature range (0°C ≤T J ≤125°C)and the recommended supply voltage range (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYPMAXUNIT I ILLow-level input current,Mode–1µATIMERS K (TMR)Timer set factor t (CHG)=K (TMR)×R (TMR)0.3130.3600.414s/ΩR (TMR)(9)External resistor limits 30100k Ωt (PRECHG)Precharge timer0.09×t (CHG)0.10×t (CHG)0.11×t (CHG)s Timer fault recovery pullup from I (FAULT)1k ΩOUT to BATCHARGER SLEEP THRESHOLDS (PG THRESHOLDS,LOW →POWER GOOD)V VCC ≤V (UVLO)≤V I(BAT)≤V O(BAT-REG),V (SLPENT)(10)Sleep-mode entry thresholdV I(BAT)No t (BOOT-UP)delay+125mVVV VCC ≥V (UVLO)≤V I(BAT)≤V O(BAT-REG),V (SLPEXIT)(10)Sleep-mode exit thresholdV I(BAT)No t (BOOT-UP)delay+190mVR (TMR)=50k Ω,t (DEGL)Deglitch time for sleep mode (11)V (IN)decreasing below threshold,100-ns 22.5msfall time,10-mv overdriveSTART-UP CONTROL BOOT-UP On the first application of input with t (BOOT-UP)Boot-up time120150180msMode LowSWITCHING POWER SOURCE TIMING When input applied.Measure from:Switching power source from [PG:Lo →Hi to I (IN)>5mA],t SW-BAT50µsinput to batteryI (OUT)=100mA,R TRM =50K THERMAL SHUTDOWN REGULATION (12)T (SHTDWN)Temperature trip T J (Q1and Q3only)155Thermal hysteresisT J (Q1and Q3only)30°CT J(REG)Temperature regulation limitT J (Q2)115135UVLO V (UVLO)Undervoltage lockout Decreasing V CC2.452.50 2.65V Hysteresis 27mV (9)To disable the safety timer and charge termination,tie TMR to the V REF pin.(10)The IC is considered in sleep mode when IN is absent (PG =OPEN DRAIN).(11)Does not declare sleep mode until after the deglitch time and implement the needed power transfer immediately according to theswitching specification.(12)Reaching thermal regulation reduces the charging current.Battery supplement current is not restricted by either thermal regulation orshutdown.Input power FETs turn off during thermal shutdown.The battery FET is only protected by a short-circuit limit which typically does not cause a thermal shutdown (input FETs turning off)by itself.6Submit Documentation FeedbackDEVICE INFORMATIONSTAT2INBA TBA T ISET2 MODECEbq24070/1RHLRHL PACKAGE(TOP VIEW)PGOUTOUTOUTTMRDPPMTSNDREFVSSISETSTAT1GNDbq24070bq24071 SLUS694B–MARCH2006–REVISED AUGUST2006TERMINAL FUNCTIONSTERMINALI/O DESCRIPTIONNAME NO.IN4I Charge input voltagePG18O Power-good status output(open-drain)BAT5,6I/O Battery input and output.CE9I Chip enable input(active high)DPPM13I Dynamic power-path management set point(account for scale factor)ISET110I/O Charge current set point and precharge and termination set pointCharge current set point for USB port.(High=500mA,Low=100mA)See half-charge current mode ISET27Iusing ISET2.OUT15,16,17O Output terminal to the systemMODE8I Power source selection input(Low for USB mode current limit)STAT12O Charge status output1(open-drain)STAT23O Charge status output2(open-drain)TMR14I/O Timer program input programmed by resistor.Disable safety timer and termination by tying TMR to V REF. TS12I/O Temperature sense inputGND19,20I Ground inputVREF1O Internal reference signalGround input(the thermal pad on the underside of the package)There is an internal electrical connectionbetween the exposed thermal pad and VSS pin of the device.The exposed thermal pad must beVSS11–connected to the same potential as the VSS pin on the printed-circuit board.Do not use the thermal padas the primary ground input for the device.VSS pin must be connected to ground at all times.7Submit Documentation FeedbackINISET2STAT1STAT2VSSTSDPPMISET1BATGNDCEPG GND TMROUTV REFbq24070bq24071SLUS694B–MARCH 2006–REVISED AUGUST 2006FUNCTIONAL BLOCK DIAGRAM8Submit Documentation FeedbackFUNCTIONAL DESCRIPTIONSCHARGECONTROLPre-ConditioningRegulationVoltage RegulationCurrentMinimum Charge VoltagePre−Conditioningand Term DetectUDG−04087bq24070bq24071SLUS694B–MARCH 2006–REVISED AUGUST 2006The bq24070/1supports a precision Li-ion or Li-polymer charging system suitable for single-cell portable devices.See a typical charge profile,application circuit,and an operational flow chart in Figure 1through Figure 3,respectively.Figure 1.Charge Profile9Submit Documentation FeedbackUDG−04083Control and Status Signalsbq24070/1bq24070bq24071SLUS694B–MARCH 2006–REVISED AUGUST 2006FUNCTIONAL DESCRIPTIONS (continued)Figure 2.Typical Application Circuit10Submit Documentation FeedbackSLUS694B–MARCH 2006–REVISED AUGUST 2006FUNCTIONAL DESCRIPTIONS (continued)Figure 3.Charge Control Operational Flow ChartAutonomous Power Source Selection,Mode Control PinBoot-Up SequencePower-Path ManagementCase 1:AC Mode (Mode =High)SLUS694B–MARCH 2006–REVISED AUGUST 2006FUNCTIONAL DESCRIPTIONS (continued)With the MODE input low,the bq24070/1defaults to USB-mode charging,and the supply current is limited by the ISET2pin (100mA for ISET2=Low,500mA for ISET2=High).If an input source is not available,then the battery is selected as the source.In order to facilitate the system start-up and USB enumeration,the bq24070/1offers a proprietary boot-up sequence.On the first application of power to the bq24070/1,this feature enables the 100-mA USB charge rate for a period of approximately 150ms,(t (BOOT-UP)),ignoring the ISET2and CE inputs setting.At the end of this period,the bq24070/1implement CE and ISET2input settings.Table 1indicates when this feature is enabled.See Figure 8.The bq24070/1powers the system while independently charging the battery.This feature reduces the charge and discharge cycles on the battery,allows for proper charge termination,and allows the system to run with an absent or defective battery pack.This feature gives the system priority on input power,allowing the system to power up with a deeply discharged battery pack.This feature works as follows:Figure 4.Power-Path ManagementSystem PowerIn this case,the system load is powered directly from the AC adapter through the internal transistor Q1(see Figure 4).The output is regulated at 4.4V (bq24070).If the system load exceeds the capacity of the supply,the output voltage drops down to the battery's voltage.Charge ControlWhen in AC mode the battery is charged through switch Q2based on the charge rate set on the ISET1input.Dynamic Power-Path Management (DPPM)This feature monitors the output voltage (system voltage)for input power loss due to brown outs,current limiting,or removal of the input supply.If the voltage on the OUT pin drops to a preset value,V (DPPM)×SF,due to a limited amount of input current,then the battery charging current is reduced until the output voltage stops dropping.The DPPM control tries to reach a steady-state condition where the system gets its needed current and the battery is charged with the remaining current.No active control limits the current to the system;therefore,if the system demands more current than the input can provide,the output voltage drops just below the battery voltage and Q2turns on which supplements the input current to the system.DPPM has three main advantages. V (DPPM−REG)+I (DPPM) R (DPPM) SF(1)Case 2:USB Mode (Mode =L)SLUS694B–MARCH 2006–REVISED AUGUST 2006FUNCTIONAL DESCRIPTIONS (continued)1.This feature allows the designer to select a lower power wall adapter,if the average system load ismoderate compared to its peak power.For example,if the peak system load is 1.75A,average system load is 0.5A and battery fast-charge current is 1.25A,the total peak demand could be 3A.With DPPM,a 2-A adaptor could be selected instead of a 3.25-A supply.During the system peak load of 1.75A and charge load of 1.25A,the smaller adaptor’s voltage drops until the output voltage reaches the DPPM regulation voltage threshold.The charge current is reduced until there is no further drop on the output voltage.The system gets its 1.75-A charge and the battery charge current is reduced from 1.25A to 0.25A.When the peak system load drops to 0.5A,the charge current returns to 1A and the output voltage returns to its normal value.ing DPPM provides a power savings compared to configurations without DPPM.Without DPPM,if thesystem current plus charge current exceed the supply’s current limit,then the output is pulled down to the battery.Linear chargers dissipate the unused power (V IN -V OUT )×I LOAD .The current remains high (at current limit)and the voltage drop is large for maximum power dissipation.With DPPM,the voltage drop is less (V IN -V (DPPM-REG))to the system which means better efficiency.The efficiency for charging the battery is the same for both cases.The advantages include less power dissipation,lower system temperature,and better overall efficiency.3.The DPPM sustains the system voltage no matter what causes it to drop,if at all possible.It does this byreducing the noncritical charging load while maintaining the maximum power output of the adaptor.Note that the DPPM voltage,V (DPPM),is programmed as follows:whereR (DPPM)is the external resistor connected between the DPPM and VSS pins.I (DPPM)is the internal current source.SF is the scale factor as specified in the specification table.The safety timer is dynamically adjusted while in DPPM mode.The voltage on the ISET1pin is directly proportional to the programmed charging current.When the programmed charging current is reduced,due to DPPM,the ISET1and TMR voltages are reduced and the timer’s clock is proportionally slowed,extending the safety time.In normal operation V(TMR)=2.5V;and,when the clock is slowed,V(TMR)is reduced.When V(TMR)=1.25V,the safety timer has a value close to 2times the normal operation timer value.See Figure 5through Figure 6.System PowerIn this case,the system load is powered from a USB port through the internal switch Q1(see Figure 4).Note that in this case,Q1regulates the total current to the 100-mA or 500-mA level,as selected on the ISET2input.The output,V OUT ,is regulated to 4.4V (bq24070).The system's power management is responsible for keeping its system load below the USB current level selected (if the battery is critically low or missing).Otherwise,the output drops to the battey voltage;therefore,the system should have a low-power mode for USB power application.The DPPM feature keeps the output from dropping below its programmed threshold,due to the battery charging current,by reducing the charging current.Charge ControlWhen in USB mode,Q1regulates the input current to the value selected by the ISET2pin (0.1/0.5A).The charge current to the battery is set by the ISET1resistor (typically >0.5A).Because the charge current typically is programmed for more current than the USB current limit allows,the output voltage drops to the battery voltage or DPPM voltage,whichever is higher.If the DPPM threshold is reached first,the charge current is reduced until V OUT stops dropping.If V OUT drops to the battery voltage,the battery is able to supplement the input current to the system.V (DPPM−REG)+I (DPPM) R (DPPM) SF(2)Feature PlotsT = 4.26 V , DPPM ModeReg. @ 4.4 V (bq24070)V OUTV ACI CHGI OUTOUT DPPM −OU V OUT ≈V ,OUT BAT Supplement ModeSLUS694B–MARCH 2006–REVISED AUGUST 2006FUNCTIONAL DESCRIPTIONS (continued)Dynamic Power-Path Management (DPPM)The theory of operation is the same as described in CASE 1,except that Q1is restricted to the USB current level selected by the ISET2pin.Note that the DPPM voltage,V (DPPM),is programmed as follows:whereR (DPPM)is the external resistor connected between the DPPM and VSS pins.I (DPPM)is the internal current source.SF is the scale factor as specified in the specification table.Figure 5illustrates DPPM and battery supplement modes as the output current (I OUT )is increased;channel 1(CH1)VAC =5.4V;channel 2(CH2)V OUT ;channel 3(CH3)I OUT =0to 2.2A to 0A;channel 4(CH4)V BAT =3.5V;I (PGM-CHG)=1A.In typical operation,bq24070/1(V OUT =4.4V reg ),through an AC adaptor overload condition and recovery.The AC input is set for ~5.1V (1.5A current limit),I (CHG)=1A,V (DPPM-SET)=3.7V,V (DPPM-OUT)=1.15×V (DPPM-SET)=4.26V,V BAT =3.5V,Mode =H,and USB input is not connected.The output load is increased from 0A to ~2.2A and back to 0A as shown in the bottom waveform.As the I OUT load reaches 0.5A,along with the 1-A charge current,the adaptor starts to current limit,the output voltage drops to the DPPM-OUT threshold of 4.26V.This is DPPM mode.The AC input tracks the output voltage by the dropout voltage of the AC FET.The battery charge current is then adjusted back as necessary to keep the output voltage from falling any further.Once the output load current exceeds the input current,the battery has to supplement the excess current and the output voltage falls just below the battery voltage by the dropout voltage of the battery FET.This is the battery supplement mode.When the output load current is reduced,the operation described is reversed as shown.If the DPPM-OUT voltage was set below the battery voltage,during input current limiting,the output falls directly to the battery's voltage.Under USB operation,when the loads exceeds the programmed input current thresholds a similar pattern is observed.If the output load exceeds the available USB current,the output instantly goes into the battery supplement mode.Figure 5.DPPM and Battery Supplement ModesFigure 6illustrates when Mode is toggled low for 500µs.Power transfers from AC to USB to AC;channel 1 V ACV USBV OUTV BAT Break Before MakeSystem Capacitance Powering System USB is Charging System CapacitanceDPPM ModeHiLow PSELSLUS694B–MARCH 2006–REVISED AUGUST 2006FUNCTIONAL DESCRIPTIONS (continued)(CH1)VAC =5.4V;channel 2(CH2)V (USB)=5V;channel 3(CH3)V OUT ;output current,I OUT =0.25A;channel 4(CH4)V BAT =3.5V;and I (PGM-CHG)=1A.When the Mode went low (1st div),the AC FET opened,and the output fell until the USB FET turned on.Turning off the active source before turning on the replacement source is referred to as break-before-make switching.The rate of discharge on the output is a function of system capacitance and load.Note the cable IR drop in the AC and USB inputs when they are under load.At the 4th division,the output has reached steady-state operation at the DPPM voltage level (charge current has been reduced due to the limited USB input current).At the 6th division,the Mode goes high and the USB FET turns off followed by the AC FET turning on.The output returns to its regulated value,and the battery returns to its programmed current level.Figure 6.Toggle Mode LowFigure 7illustrates when a battery is inserted for power up;channel 1(CH1)VAC =0V;channel 2(CH2)V USB =0V;channel 3(CH3)V OUT ;output current,I OUT =0.25A for V OUT >2V;channel 4(CH4)V BAT =3.5V;C (DPPM)=0pF.When there are no power sources and the battery is inserted,the output tracks the battery voltage if there is no load (<10mA of load)on the output,as shown.If a load is present that keeps the output more than 200mV below the battery,a short-circuit condition is declared.At this time,the load has to be removed to recover.A capacitor can be placed on the DPPM pin to delay implementing the short-circuit mode and get unrestricted (not limited)current.。

DW07D(二合一锂电池保护IC)

DW07D(二合一锂电池保护IC)

第1页共6页
86-755-83468588DW07D二合一锂电池保护 IC
六、 极限参数
参数 电源电压 CSI 输入管脚电压 工作温度 存储温度
七、 电气特性参数
符号 VDD VCSI Topr Tstg
参数范围 VSS-0.3~VSS+12 VDD+15~VDD+0.3
-40~+85 -40~+125
¾ 单芯锂离子电池组;
四、 订货信息
¾ 锂聚合物电池组。
型号
封装
过充检测电压 过充解除电压 过放检测电压 过放解除电压 [VCU](V) [VCL](V) [VDL](V) [VDR](V)
DW07D SOT23-6
4.4
4.2
2.8
3.0
过流 (A)
3A
打印标记 DW07D
五、 引脚图及说明
封装形式
如果没有检测到任何异常情况,充电和放电过程都将自由转换。这种情况称为正常工作模式。 过充电压情况
在正常条件下的充电过程中,当电池电压高于过充检测电压(VOCP),并持续时间达到过充电压检测延迟时间 (TOC)或更长,DW07D将控制MOSFET以停止充电。这种情况称为过充电压情况。 以下两种情况下,过充电压情况将被释放:
二、 特点
¾ 内 部 集 成 等 效 50mΩ 左 右 的 先 进 的 功 率 MOSFET;
¾ 3 段过流保护:过放电流 1、过放电流 2(可 选)、负载短路电流;
¾ 充电器检测功能; ¾ 允许 0V 充电功能
三、 应用
¾ 延时时间内部设定; ¾ 高精度电压检测; ¾ 低静态耗电流:正常工作电流 3.8uA ¾ 兼容 ROHS 和无铅标准。 ¾ 采用 SOT23-6 封装形式塑封。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bq24072,bq24073bq24074,bq24075,bq24079 SLUS810E–SEPTEMBER2008–REVISED JULY2010 1.5A USB-FRIENDLY Li-Ion BATTERY CHARGER AND POWER-PATH MANAGEMENT ICCheck for Samples:bq24072,bq24073,bq24074,bq24075,bq24079FEATURESDESCRIPTION•Fully Compliant USB Charger–Selectable100mA and500mA Maximum The bq2407x series of devices are integrated Li-ionlinear chargers and system power path management Input Currentdevices targeted at space-limited portable –100mA Maximum Current Limit Ensuresapplications.The devices operate from either a USB Compliance to USB-IF Standardport or AC adapter and support charge currents up to –Input based Dynamic Power Management 1.5A.The input voltage range with input overvoltage (V IN-DPM)for Protection Against Poor USB protection supports unregulated adapters.The USB Sources input current limit accuracy and start up sequenceallow the bq2407x to meet USB-IF inrush current •28V Input Rating with Overvoltage Protectionspecification.Additionally,the input dynamic power •Integrated Dynamic Power Path Management management(VIN-DPM)prevents the charger from (DPPM)Function Simultaneously and crashing incorrectly configured USB sources.Independently Powers the System andThe bq2407x features dynamic power path Charges the Batterymanagement(DPPM)that powers the system while •Supports up to1.5A Charge Current with simultaneously and independently charging the Current Monitoring Output(ISET)battery.The DPPM circuit reduces the charge currentwhen the input current limit causes the system output •Programmable Input Current Limit up to1.5Ato fall to the DPPM threshold;thus,supplying the for Wall Adapterssystem load at all times while monitoring the charge •System Output Tracks Battery Voltagecurrent separately.This feature reduces the number (bq24072)of charge and discharge cycles on the battery,allows •Programmable Termination Current(bq24074)for proper charge termination and enables the systemto run with a defective or absent battery pack.•Battery Disconnect Function with SYSOFFInput(bq24075,bq24079)Typical Application Circuit •Programmable Pre-Charge and Fast-ChargeSafety Timers•Reverse Current,Short-Circuit and ThermalProtection•NTC Thermistor Input•Proprietary Start Up Sequence Limits InrushCurrent•Status Indication–Charging/Done,PowerGood•Small3mm×3mm16Lead QFN PackageAPPLICATIONS•Smart Phones•Portable Media Players•Portable Navigation Devices•Low-Power Handheld DevicesPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.Copyright©2008–2010,Texas Instruments Incorporated Products conform to specifications per the terms of the Texasbq24072,bq24073bq24074,bq24075,bq24079SLUS810E–SEPTEMBER2008–REVISED This integrated circuit can be damaged by ESD.Texas Instruments recommends that all integrated circuits be handled with appropriate precautions.Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure.Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.DESCRIPTION(CONTINUED)Additionally,the regulated system input enables instant system turn-on when plugged in even with a totally discharged battery.The power-path management architecture also permits the battery to supplement the system current requirements when the adapter cannot deliver the peak system currents,enabling the use of a smaller adapter.The battery is charged in three phases:conditioning,constant current,and constant voltage.In all charge phases,an internal control loop monitors the IC junction temperature and reduces the charge current if the internal temperature threshold is exceeded.The charger power stage and charge current sense functions are fully integrated.The charger function has high accuracy current and voltage regulation loops,charge status display,and charge termination.The input current limit and charge current are programmable using external resistors.ORDERING INFORMATIONPART NUMBER OPTIONALV OVP V BAT(REG)V OUT(REG)V DPPM MARKING(1)(2)FUNCTIONbq24072RGTR 6.6V 4.2V V BAT+225mV V O(REG)–100mV TD CKP bq24072RGTT 6.6V 4.2V V BAT+225mV V O(REG)–100mV TD CKP bq24073RGTR 6.6V 4.2V 4.4V V O(REG)–100mV TD CKQ bq24073RGTT 6.6V 4.2V 4.4V V O(REG)–100mV TD CKQ bq24074RGTR10.5V 4.2V 4.4V V O(REG)–100mV ITERM BZF bq24074RGTT10.5V 4.2V 4.4V V O(REG)–100mV ITERM BZF bq24075RGTR 6.6V 4.2V 5.5V 4.3V SYSOFF CDU bq24075RGTT 6.6V 4.2V 5.5V 4.3V SYSOFF CDU bq24079RGTR 6.6V 4.1V 5.5V 4.3V SYSOFF ODI bq24079RGTT 6.6V 4.1V 5.5V 4.3V SYSOFF ODI(1)The RGT package is available in the following options:R-taped and reeled in quantities of3,000devices per reel.T-taped and reeled in quantities of250devices per reel.(2)This product is RoHS compatible,including a lead concentration that does not exceed0.1%of total product weight,and is suitable foruse in specified lead-free soldering processes.In addition,this product uses package materials that do not contain halogens,including bromine(Br)or antimony(Sb)above0.1%of total product weight.2Submit Documentation Feedback Copyright©2008–2010,Texas Instruments Incorporatedbq24072,bq24073bq24074,bq24075,bq24079 SLUS810E–SEPTEMBER2008–REVISED JULY2010 ABSOLUTE MAXIMUM RATINGS(1)over the0°C to125°C operating free-air temperature range(unless otherwise noted)VALUE UNITIN(with respect to VSS)–0.3to28VBAT(with respect to VSS)–0.3to5VV I Input VoltageOUT,EN1,EN2,CE,TS,ISET,PGOOD,CHG,ILIM,TMR,ITERM,–0.3to7VSYSOFF,TD(with respect to VSS)I I Input Current IN 1.6AOUT5A Output CurrentI O BAT(Discharge mode)5A(Continuous)BAT(Charging mode) 1.5(2)A Output Sink Current CHG,PGOOD15mAT J Junction temperature–40to150°CT stg Storage temperature–65to150°C (1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.All voltage values are with respect to the network ground terminal unless otherwise noted.(2)The IC operational charging life is reduced to20,000hours,when charging at1.5A and125°C.The thermal regulation feature reducescharge current if the IC’s junction temperature reaches125°C;thus without a good thermal design the maximum programmed charge current may not be reached.DISSIPATION RATINGSPOWER RATING PACKAGE(1)R q JA R q JCT A≤25°C T A=85°C RGT(2)39.47°C/W 2.4°C/W 2.3W225mW(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TIwebsite at .(2)This data is based on using the JEDEC High-K board and the exposed die pad is connected to a Cu pad on the board.The pad isconnected to the ground plane by a2x3via matrix.RECOMMENDED OPERATING CONDITIONSMIN MAX UNIT IN voltage range 4.3526VV I’72,’73,‘75,'79 4.35 6.4 IN operating voltage range V‘74 4.3510.2I IN Input current,IN pin 1.5AI OUT Current,OUT pin 4.5AI BAT Current,BAT pin(Discharging) 4.5AI CHG Current,BAT pin(Charging) 1.5(1)AT J Junction Temperature–40125°CR ILIM Maximum input current programming resistor11008000ΩR ISET Fast-charge current programming resistor(2)5903000ΩR ITERM Termination current programming resistor015kΩR TMR Timer programming resistor1872kΩ(1)The IC operational charging life is reduced to20,000hours,when charging at1.5A and125°C.The thermal regulation feature reducescharge current if the IC’s junction temperature reaches125°C;thus without a good thermal design the maximum programmed charge current may not be reached.(2)Use a1%tolerance resistor for R ISET to avoid issues with the R ISET short test when using the maximum charge current setting. Copyright©2008–2010,Texas Instruments Incorporated Submit Documentation Feedback3bq24072,bq24073bq24074,bq24075,bq24079SLUS810E–SEPTEMBER2008–REVISED ELECTRICAL CHARACTERISTICSOver junction temperature range(0°≤T J≤125°C)and the recommended supply voltage range(unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT INPUTUVLO Undervoltage lock-out V IN:0V→4V 3.2 3.3 3.4VV hys Hysteresis on UVLO V IN:4V→0V200300mVInput power detected when V IN>V BAT+V IN(DT)V IN(DT)Input power detection threshold5580130mVV BAT=3.6V,VIN:3.5V→4VV hys Hysteresis on V IN(DT)V BAT=3.6V,V IN:4V→3.5V20mVTime measured from V IN:0V→5V1m st DGL(PGOOD)Deglitch time,input power detected status 1.2msrise-time to PGOOD=LOV IN:5V→7V(’72,’73,’75,'79) 6.4 6.6 6.8V OVP Input overvoltage protection threshold VV IN:5V→11V(’74)10.210.510.8V IN:7V→5V(’72,’73,’75,'79)110V hys Hysteresis on OVP mVV IN:11V→5V(’74)175t DGL(OVP)Input overvoltage blanking time(OVP fault deglitch)50m sTime measured from V IN:11V→5V with1m st REC Input overvoltage recovery time 1.2msfall-time to PGOOD=LOILIM,ISET SHORT CIRCUIT DETECTION(CHECKED DURING STARTUP)I SC Current source V IN>UVLO and V IN>V BAT+V IN(DT) 1.3mAV SC V IN>UVLO and V IN>V BAT+V IN(DT)520mV QUIESCENT CURRENTCE=LO or HI,input power not detected,I BAT(PDWN)Sleep current into BAT pin 6.5m ANo load on OUT pin,T J=85°CEN1=HI,EN2=HI,V IN=6V,T J=85°C50I IN Standby current into IN pin m AEN1=HI,EN2=HI,V IN=10V,T J=85°C200CE=LO,V IN=6V,no load on OUT pin,I CC Active supply current,IN pin 1.5mAV BAT>V BAT(REG),(EN1,EN2)≠(HI,HI)POWER PATHV DO(IN-OUT)V IN–V OUT V IN=4.3V,I IN=1A,V BAT=4.2V300475mVV DO(BAT-OUT)V BAT–V OUT I OUT=1A,V IN=0V,V BAT>3V50100mVV IN>V OUT+V DO(IN-OUT),V BAT<3.2V 3.3 3.4 3.5OUT pin voltage regulation(bq24072)VBAT +V BAT+V BAT+V IN>V OUT+V DO(IN-OUT),V BAT≥3.2V150mV225mV270mVV O(REG)V OUT pin voltage regulation(bq24073,bq24074)V IN>V OUT+V DO(IN-OUT) 4.3 4.4 4.5OUT pin voltage regulation(bq24075,bq24079)V IN>V OUT+V DO(IN-OUT) 5.4 5.5 5.6EN1=LO,EN2=LO9095100mAI IN max Maximum input current EN1=HI,EN2=LO450475500EN2=HI,EN1=LO K ILIM/R ILIM AI LIM=500mA to1.5A150016101720K ILIM Maximum input current factor AΩI LIM=200mA to500mA133015251720I IN max Programmable input current limit range EN2=HI,EN1=LO,R ILIM=8kΩto1.1kΩ2001500mAInput voltage threshold when input current isV IN-DPM EN2=LO,EN1=X 4.35 4.5 4.63V reducedV O(REG)–V O(REG)–V O(REG)–(’72,’73,’74)V Output voltage threshold when charging current is180mV100mV30mVV DPPMreduced(’75,'79) 4.2 4.3 4.4VV OUT≤V BATV BSUP1Enter battery supplement mode V BAT=3.6V,R ILIM=1.5kΩ,R LOAD=10Ω→2ΩV–40mVV OUT≥V BSUP2Exit battery supplement mode V BAT=3.6V,R ILIM=1.5kΩ,R LOAD=2Ω→10ΩVV BAT–20mVV O(SC1)Output short-circuit detection threshold,power-on V IN>V UVLO and V IN>V BAT+V IN(DT)0.80.91VOutput short-circuit detection threshold,supplementV O(SC2)V IN>V UVLO and V IN>V BAT+V IN(DT)200250300mV mode V BAT–V OUT>V O(SC2)indicates short-circuitt DGL(SC2)Deglitch time,supplement mode short circuit250m st REC(SC2)Recovery time,supplement mode short circuit60ms4Submit Documentation Feedback Copyright©2008–2010,Texas Instruments Incorporatedbq24072,bq24073bq24074,bq24075,bq24079 SLUS810E–SEPTEMBER2008–REVISED JULY2010 ELECTRICAL CHARACTERISTICS(continued)Over junction temperature range(0°≤T J≤125°C)and the recommended supply voltage range(unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BATTERY CHARGERI BAT Source current for BAT pin short-circuit detection V BAT=1.5V47.511mAV BAT(SC)BAT pin short-circuit detection threshold V BAT rising 1.6 1.82V('72,'73,'74,'75) 4.16 4.20 4.23V BAT(REG)Battery charge voltage V('79) 4.059 4.100 4.141V LOWV Pre-charge to fast-charge transition threshold V IN>V UVLO and V IN>V BAT+V IN(DT) 2.93 3.1Vt DGL1(LOWV)Deglitch time on pre-charge to fast-charge transition25mst DGL2(LOWV)Deglitch time on fast-charge to pre-charge transition25msV BAT(REG)>V BAT>V LOWV,V IN=5V CE=LO,Battery fast charge current range3001500mAEN1=LO,EN2=HII CHG CE=LO,EN1=LO,EN2=HI,Battery fast charge current V BAT>V LOWV,V IN=5V,I IN max>I CHG,no load on OUT pin,K ISET/R ISET Athermal loop and DPPM loop not activeK ISET Fast charge current factor797890975AΩI PRECHG Pre-charge current K PRECHG/R ISET AK PRECHG Pre-charge current factor7088106AΩCE=LO,(EN1,EN2)≠(LO,LO),0.09×I CHG0.1×I CHG0.11×I CHGV BAT>V RCH,t<t MAXCH,V IN=5V,DPPM loop and thermalloop not activeTermination comparator detection thresholdI TERM A(internally set)CE=LO,(EN1,EN2)=(LO,LO),0.027×I CHG0.033×I CHG0.040×I CHGV BAT>V RCH,t<t MAXCH,V IN=5V,DPPM loop and thermalloop not activeI BIAS(ITERM)Current for external termination-setting resistor V IN>V UVLO and V IN>V BAT+V IN(DT)727578m ATermination current threshold(externally set)I TERM K ITERM×R ITERM/R ISET A(bq24074)USB500or ISET mode(EN1,EN2)≠(LO,LO)0.02250.03000.0375CE=LO,V BAT>V RCH,t<t MAXCH,V IN=5V,DPPM loop andthermal loop not activeK Factor for termination detection thresholdK ITERM A (externally set)(bq24074)USB100mode(EN1,EN2)=(LO,LO),0.0080.01000.012CE=LO,V BAT>V RCH,t<t MAXCH,V IN=5V,DPPM loop andthermal loop not activet DGL(TERM)Deglitch time,termination detected25msV BAT(REG)V BAT(REG)V BAT(REG)V RCH Recharge detection threshold V IN>V UVLO and V IN>V BAT+V IN(DT)V–140mV–100mV–60mVt DGL(RCH)Deglitch time,recharge threshold detected62.5msV BAT=3.6V.Time measured fromt DGL(NO-IN)Delay time,input power loss to OUT LDO turn-off20msV IN:5V→3V1m s fall-timeI BAT(DET)Sink current for battery detection V BAT=2.5V57.510mAt DET Battery detection timer BAT high or low250ms BATTERY CHARGING TIMERSt PRECHG Pre-charge safety timer value TMR=floating144018002160st MAXCHG Charge safety timer value TMR=floating144001800021600st PRECHG Pre-charge safety timer value18kΩ<R TMR<72kΩR TMR×K TMR st MAXCHG Charge safety timer value18kΩ<R TMR<72kΩ10×R TMR×K TMR sK TMR Timer factor364860s/kΩBATTERY-PACK NTC MONITOR(1)I NTC NTC bias current V IN>UVLO and V IN>V BAT+V IN(DT)727578m AV HOT High temperature trip point Battery charging,V TS Falling270300330mVV HYS(HOT)Hysteresis on high trip point Battery charging,V TS Rising from V HOT30mVV COLD Low temperature trip point Battery charging,V TS Rising200021002200mVV HYS(COLD)Hysteresis on low trip point Battery charging,V TS Falling from V COLD300mVt DGL(TS)Deglitch time,pack temperature fault detection TS fault detected to charger disable50msV DIS(TS)TS function disable threshold(bq24072,bq24073)TS unconnected V IN-200mV V THERMAL REGULATIONT J(REG)Temperature regulation limit125°CT J(OFF)Thermal shutdown temperature T J Rising155°CT J(OFF-HYS)Thermal shutdown hysteresis20°C (1)These numbers set trip points of0°C and50°C while charging,with3°C hysteresis on the trip points,with a Vishay Type2curve NTCwith an R25of10kΩ.Copyright©2008–2010,Texas Instruments Incorporated Submit Documentation Feedback5E T RE T E R M R S OF F E T R bq24072,bq24073bq24074,bq24075,bq24079SLUS810E –SEPTEMBER 2008–REVISED JULY 2010ELECTRICAL CHARACTERISTICS (continued)Over junction temperature range (0°≤T J ≤125°C)and the recommended supply voltage range (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYPMAXUNITLOGIC LEVELS ON EN1,EN2,CE,SYSOFF,TD V IL Logic LOW input voltage 00.4V V IH Logic HIGH input voltage 1.46V I IL Input sink current V IL =0V 1m A I IHInput source currentV IH =1.4V10m ALOGIC LEVELS ON PGOOD,CHG V OLOutput LOW voltageI SINK =5mA0.4VRGT PACKAGE (Top View)PIN FUNCTIONSPINNO.I/ODESCRIPTIONNAME'72,'73'74'75,'79External NTC Thermistor Input.Connect the TS input to the NTC thermistor in the battery pack.TS monitors TS 111I a 10k ΩNTC thermistor.For applications that do not utilize the TS function,connect a 10k Ωfixed resistor from TS to VSS to maintain a valid voltage level on TS.Charger Power Stage Output and Battery Voltage Sense Input.Connect BAT to the positive terminal of the BAT2,32,32,3I/Obattery.Bypass BAT to VSS with a 4.7m F to 47m F ceramic capacitor.Charge Enable Active-Low Input.Connect CE to a high logic level to place the battery charger in standby mode.In standby mode,OUT is active and battery supplement mode is still available.Connect CE to a low CE 444I logic level to enable the battery charger.CE is internally pulled down with ~285k Ω.Do not leave CE unconnected to ensure proper operation.EN2555I Input Current Limit Configuration e EN1and EN2control the maximum input current and enable USB compliance.See Table 2for the description of the operation states.EN1and EN2are internally pulled EN1666I down with ≉285k Ω.Do not leave EN1or EN2unconnected to ensure proper operation.Open-drain Power Good Status Indication Output.PGOOD pulls to VSS when a valid input source isPGOOD 777O detected.PGOOD is high-impedance when the input power is not within specified limits.Connect PGOOD to the desired logic voltage rail using a 1k Ω-100k Ωresistor,or use with an LED for visual indication.VSS 888–Ground.Connect to the thermal pad and to the ground rail of the circuit.Open-Drain Charging Status Indication Output.CHG pulls to VSS when the battery is charging.CHG is high CHG999Oimpedance when charging is complete and when charger is disabled.Connect CHG to the desired logic voltage rail using a 1k Ω-100k Ωresistor,or use with an LED for visual indication.System Supply Output.OUT provides a regulated output when the input is below the OVP threshold and above the regulation voltage.When the input is out of the operation range,OUT is connected to V BAT except OUT 10,1110,1110,11Owhen SYSOFF is high (bq24075and bq24079only).Connect OUT to the system load.Bypass OUT to VSS with a 4.7m F to 47m F ceramic capacitor.Adjustable Current Limit Programming Input.Connect a 1100Ωto 8k Ωresistor from ILIM to VSS to program ILIM 121212Ithe maximum input current (EN2=1,EN1=0).The input current includes the system load and the battery charge current.Leaving ILIM unconnected disables all charging.Input Power Connection.Connect IN to the external DC supply (AC adapter or USB port).The input operating range is 4.35V to 6.6V (bq24072,bq24073,bq24075,and bq24079)or 4.35V to 10.5V (bq23074).The input IN 131313Ican accept voltages up to 26V without damage but operation is suspended.Connect bypass capacitor 1m F to 10m F to VSS.6Submit Documentation FeedbackCopyright ©2008–2010,Texas Instruments Incorporatedbq24072,bq24073bq24074,bq24075,bq24079 SLUS810E–SEPTEMBER2008–REVISED JULY2010PIN FUNCTIONS(continued)PINNO.I/O DESCRIPTIONNAME'72,'73'74'75,'79Timer Programming Input.TMR controls the pre-charge and fast-charge safety timers.Connect TMR to VSS TMR141414I to disable all safety timers.Connect a18kΩto72kΩresistor between TMR and VSS to program the timersa desired length.Leave TMR unconnected to set the timers to the default values.Termination Disable Input.Connect TD high to disable charger termination.Connect TD to VSS to enablecharger termination.TD is checked during startup only and cannot be changed during operation.See the TD TD15––Isection in this datasheet for a description of the behavior when termination is disabled.TD is internally pulleddown to VSS with~285kΩ.Do not leave TD unconnected to ensure proper operation.Termination Current Programming Input.Connect a0Ωto15kΩresistor from ITERM to VSS to program the ITERM–15–I termination current.Leave ITERM unconnected to set the termination current to the default10%terminationthreshold.System Enable Input.Connect SYSOFF high to turn off the FET connecting the battery to the system output.When an adapter is connected,charging is also disabled.Connect SYSOFF low for normal operation. SYSOFF––15ISYSOFF is internally pulled up to V BAT through a large resistor(~5MΩ).Do not leave SYSOFF unconnectedto ensure proper operation.Fast Charge Current Programming Input.Connect a590Ωto3kΩresistor from ISET to VSS to program thefast charge current level.Charging is disabled if ISET is left unconnected.While charging,the voltage at ISET ISET161616I/Oreflects the actual charging current and can be used to monitor charge current.See the CHARGE CURRENTTRANSLATOR section for more details.There is an internal electrical connection between the exposed thermal pad and the VSS pin of the device. Thermal The thermal pad must be connected to the same potential as the VSS pin on the printed circuit board.Do not–Pad use the thermal pad as the primary ground input for the device.VSS pin must be connected to ground at alltimes.Table1.EN1/EN2SettingsEN2EN1Maximum input current into IN pinB100modeB500mode10Set by an external resistor from ILIM to VSS11Standby(USB suspend mode)Copyright©2008–2010,Texas Instruments Incorporated Submit Documentation Feedback7bq24072,bq24073bq24074,bq24075,bq24079SLUS810E–SEPTEMBER2008–REVISED SIMPLIFIED BLOCK DIAGRAM Array8Submit Documentation Feedback Copyright©2008–2010,Texas Instruments IncorporatedV500 mV/div5 V/divI V 5 V/divVV 500 mA/divV CHGI BAT2 V/divV BAT1A/div5 V/div2 V/div400ms/divA/div5 V/divII V 3.6 VBAT V 3.825 VOUT I OUT I BATV 3.8 VBAT500 mA/div500 mV/div1 ms/divV 4.4 V OUT 1A/divSupplement ModeI OUTI BAT200 mV/div400s/divm V 4.4 VOUT 500 mA/div500 mA/div5 V/div2 V/div400s/divm 500 mA/divV SYSOFFIBATV 4 VBAT V 5.5 VOUT V CEI BATV 3.6 VBAT V CHG500 mA/div1 V/div5 V/div5 V/div 10 V/div500 mV/div1A/div40s/divm V INI BATV 4.2 VBAT V 4.4 V OUT bq24072,bq24073bq24074,bq24075,bq24079SLUS810E –SEPTEMBER 2008–REVISED JULY 2010TYPICAL CHARACTERISTICSV IN =6V,EN1=1,EN2=0,bq24073application circuit,T A =25°C,unless otherwise noted.ADAPTER PLUG-IN BATTERY CONNECTEDBATTERY DETECTION BATTERY DETECTION R LOAD =10ΩBATTERY INSERTEDBATTERY REMOVEDFigure 1.Figure 2.Figure 3.ENTERING AND EXITING BATTERYENTERING AND EXITING BATTERYSUPPLEMENT MODE SUPPLEMENT MODE ENTERING AND EXITING DPPMMODER LOAD =25ΩTO 4.5ΩR LOAD =20ΩTO 4.5ΩR LOAD =20Ωto 9Ωbq24074bq24072Figure 4.Figure 5.Figure 6.SYSTEM ON/OFF WITH INPUTOVP FAULT CONNECTED V IN =6V to 15V V IN =6VCHARGER ON/OF USING CER LOAD =10Ωbq24075,bq24079Figure 7.Figure 8.Figure 9.Copyright ©2008–2010,Texas Instruments Incorporated Submit Documentation Feedback 9600400100Temperature -Co 3002005000120125130135140145I - m AB A T 5 V/div4 ms/divV I V V255075100T - Junction Temperature - °CJ D r o p o u t V o l t a g e - V -V I N O U T25T - Junction Temperature - °CJ D r o p o u t V o l t a g e - V -V B A TO U T2.53 3.544.5V - O u t p u t V o l t a g e - VO V - Battery Voltage - VBAT 0255075100125T - Junction Temperature - °CJ V - O u t p u t V o l t a g e - VO bq24072,bq24073bq24074,bq24075,bq24079SLUS810E –SEPTEMBER 2008–REVISED JULY 2010TYPICAL CHARACTERISTICS (continued)V IN =6V,EN1=1,EN2=0,bq24073application circuit,T A =25°C,unless otherwise noted.SYSTEM ON/OFF WITH INPUT NOTCONNECTED DROPOUT VOLTAGEV IN =0Vvsbq24075,bq24079THERMAL REGULATIONTEMPERATUREFigure 10.Figure 11.Figure 12.DROPOUT VOLTAGEbq24072bq24072vsOUTPUT REGULATION VOLTAGEOUTPUT REGULATION VOLTAGETEMPERATURE vsvsNO INPUT SUPPLYBATTERY VOLTAGETEMPERATUREFigure 13.Figure 14.Figure 15.10Submit Documentation Feedback Copyright ©2008–2010,Texas Instruments Incorporated255075100125T - Junction Temperature - °CJ V - O u t p u t V o l t a g e - VO4.304.334.354.384.404.434.45255075100125T - Junction Temperature - °CJ V - O u t p u t V o l t a g e - VO 4.1804.1854.1904.1954.2004.2054.21051015202530T - Junction Temperature - °CJ V - R e g u l a t i o n V o l t a g e - VB A T5678910V - Input Voltage - VI I - I n p u t C u r r e nt - m AL I M 0255075100125T - Junction Temperature - °CJ V - O u t p u t V o l t a g eT h r e s h o l d - VO V P 0255075100125T - Junction Temperature - °CJ V - O u t p u t V o l t a g e T h r e s h o l d - VO V P V IN =6V,EN1=1,EN2=0,bq24073application circuit,T A =25°C,unless otherwise noted.bq24073/74bq24075,bq24079OUTPUT REGULATION VOLTAGEOUTPUT REGULATION VOLTAGEBAT REGULATION VOLTAGEvsvsvsTEMPERATURETEMPERATURETEMPERATUREFigure 16.Figure 17.Figure 18.bq24072/73/75/79bq24074bq24074OVERVOLTAGE PROTECTIONOVERVOLTAGE PROTECTIONTHRESHOLDTHRESHOLDINPUT CURRENT LIMITvsvsvsTEMPERATURETEMPERATUREINPUT VOLTAGEFigure 19.Figure 20.Figure 21.33.23.43.6 3.844.2I - F a s t C h a r g e C u r r e n t -AB A T V - Battery Voltage - VBAT 33.23.4 3.6 3.844.2I - F a s t C h a r g e C u r r e n t -AB A T V - Battery Voltage - VBAT 959697989910010110210310410522.22.42.62.83I - P r e c h a r g e C u r r e n t -AB A T V - Battery Voltage - VBAT22.2 2.4 2.6 2.83I - P r e c h a r g e C u r r e n t -AB A T V - Battery Voltage - VBAT V IN =6V,EN1=1,EN2=0,bq24073application circuit,T A =25°C,unless otherwise noted.FASTCHARGE CURRENTFASTCHARGE CURRENTPRECHARGE CURRENTvsvsvsBATTERY VOLTAGEBATTERY VOLTAGEBATTERY VOLTAGEFigure 22.Figure 23.Figure 24.PRECHARGE CURRENTvsBATTERY VOLTAGEFigure 25.APPLICATION CIRCUITSV IN=UVLO to V OVP,I FASTCHG=800mA,I IN(MAX)=1.3A,Battery Temperature Charge Range=0°C to50°C,6.25 hour Fastcharge Safety Timering bq24072/bq24073in a Host Controlled Charger ApplicationV IN=UVLO to V OVP,I FASTCHG=800mA,I IN(MAX)= 1.3A,I TERM=110mA,Battery Temperature Charge Range=0°C to50°C,Safety Timers disableding bq24074in a Stand Alone Charger ApplicationV IN=UVLO to V OVP,I FASTCHG=800mA,I IN(MAX)=1.3A,Battery Temperature Charge Range=0°C to50°C, 6.25hour Fastcharge Safety Timering bq24075or bq24079to Disconnect the Battery from the System。

相关文档
最新文档