线性规划经典例题及详细解析
六种经典线性规划例题
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 DxyOxyO 22x=2y =2x + y =2BA2x + y –6= 0= 5x+y – 3 = 0OyxABCMy =2四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、13,255解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六·比值问题当目标函数形如y azx b时,可把z看作是动点(,)P x y与定点(,)Q b a连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。
线性规划经典例题
线性规划经典例题一、问题描述假设有一家生产玩具的工厂,该工厂生产两种类型的玩具:A型和B型。
工厂有两个车间可供使用,分别是车间1和车间2。
每一个车间生产一种类型的玩具,并且每一个车间每天的生产时间有限。
玩具A的生产需要1个小时在车间1和2个小时在车间2,而玩具B的生产需要3个小时在车间1和1个小时在车间2。
每一个车间每天的生产能力分别是8个小时和6个小时。
每一个玩具A的利润为100元,而玩具B的利润为200元。
现在的问题是,如何安排每一个车间每天的生产时间,以使得利润最大化?二、数学建模1. 定义变量:设x1为在车间1生产的玩具A的数量(单位:个);设x2为在车间2生产的玩具A的数量(单位:个);设y1为在车间1生产的玩具B的数量(单位:个);设y2为在车间2生产的玩具B的数量(单位:个)。
2. 建立目标函数:目标函数为最大化利润,即:Maximize Z = 100x1 + 200y13. 建立约束条件:a) 车间1每天的生产时间限制:x1 + 3y1 ≤ 8b) 车间2每天的生产时间限制:2x1 + y1 ≤ 6c) 非负约束条件:x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0三、求解线性规划问题使用线性规划求解器,可以求解出最优的生产方案。
1. 求解结果:根据线性规划求解器的结果,最优解为:x1 = 2, x2 = 0, y1 = 2, y2 = 0即在车间1生产2个玩具A,在车间2生产2个玩具B,可以实现最大利润。
2. 最大利润:根据最优解,可以计算出最大利润:Z = 100x1 + 200y1= 100(2) + 200(2)= 600元因此,在给定的生产时间限制下,最大利润为600元。
四、结果分析根据线性规划求解结果,我们可以得出以下结论:1. 最优生产方案:根据最优解,最优生产方案为在车间1生产2个玩具A,在车间2生产2个玩具B。
2. 最大利润:在给定的生产时间限制下,最大利润为600元。
线性规划经典例题及详细解析
一、 已知线性约束条件,探求线性目标关系最值问题1. 设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
二、 已知线性约束条件,探求非线性目标关系最值问题2. 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值就是 。
3. 已知变量x,y 满足约束条件+201-70x y x x y -≤⎧⎪≥⎨⎪+≤⎩,则 y x 的取值范围就是( )、 A 、 [95,6] B 、(-∞,95]∪[6,+∞) C 、(-∞,3]∪[6,+∞) D 、 [3,6]三、 研究线性规划中的整点最优解问题4. 某公司招收男职员x 名,女职员y 名,x 与y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值就是 。
四、 已知最优解成立条件,探求目标函数参数范围问题5. 已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。
6. 已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的值为( )A. -3 B 、 3 C 、 -1 D 、 1五、 求可行域的面积7. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A. 4 B 、 1 C 、 5 D 、 无穷大图1解析:1.如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z最大值为18。
图22. 如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。
线性规划经典例题
线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。
工厂有两个生产车间:车间1和车间2。
生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。
每一个车间的加工时间和加工费用都是不同的。
我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。
二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。
假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。
线性规划经典例题
线性规划经典例题【题目描述】某公司生产两种产品A和B,每天的生产时间为8小时。
产品A和B的生产时间分别为2小时和3小时。
产品A和B的利润分别为每一个单位的利润为5元和4元。
公司希翼最大化每天的利润。
已知产品A和B的生产过程中,每一个单位所需的原材料分别为2个和3个。
公司每天可用的原材料数量为12个。
请问公司应该如何安排每天的生产计划,以获得最大利润?【解题思路】这是一个典型的线性规划问题,我们可以通过建立数学模型来求解。
首先,我们定义决策变量:x表示每天生产的产品A的数量,y表示每天生产的产品B的数量。
然后,我们需要确定目标函数和约束条件。
【目标函数】公司的目标是最大化每天的利润,即最大化目标函数Z:Z = 5x + 4y【约束条件】1. 生产时间约束:产品A和B的生产时间不能超过每天的生产时间,即:2x + 3y ≤ 82. 原材料约束:产品A和B的生产过程中所需的原材料数量不能超过每天可用的原材料数量,即:2x + 3y ≤ 123. 非负约束:产品A和B的数量不能为负数,即:x ≥ 0y ≥ 0【求解过程】我们可以使用线性规划的求解方法来求解该问题。
首先,我们需要将目标函数和约束条件转化为标准的线性规划形式。
将目标函数Z = 5x + 4y转化为标准形式:Z = 5x + 4y + 0将约束条件2x + 3y ≤ 8转化为标准形式:2x + 3y + s1 = 8,其中s1 ≥ 0将约束条件2x + 3y ≤ 12转化为标准形式:2x + 3y + s2 = 12,其中s2 ≥ 0将约束条件x ≥ 0转化为标准形式:-x + 0y + s3 = 0,其中s3 ≥ 0将约束条件y ≥ 0转化为标准形式:0x - y + s4 = 0,其中s4 ≥ 0得到线性规划的标准形式为:Max Z = 5x + 4y + 02x + 3y + s1 = 82x + 3y + s2 = 12-x + 0y + s3 = 00x - y + s4 = 0x ≥ 0y ≥ 0s1 ≥ 0s2 ≥ 0s3 ≥ 0s4 ≥ 0【求解结果】通过线性规划求解器,我们可以得到最优解:x = 2,y = 2,Z = 5(2) + 4(2) = 18因此,公司应该每天生产2个产品A和2个产品B,以获得最大利润18元。
八种经典线性规划例题(超实用)
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
线性规划经典例题
线性规划经典例题【问题描述】某工厂生产两种产品A和B,每天的生产时间为8小时。
产品A每件需要2小时的生产时间,产品B每件需要3小时的生产时间。
产品A的利润为200元/件,产品B的利润为300元/件。
每天的生产量不能超过100件。
工厂希翼最大化每天的利润。
【数学建模】设工厂每天生产的产品A的件数为x,产品B的件数为y。
根据题目条件,可以得到以下数学模型:目标函数:最大化利润Maximize Z = 200x + 300y约束条件:1. 生产时间限制:2x + 3y ≤ 82. 产量限制:x + y ≤ 1003. 非负性约束:x ≥ 0,y ≥ 0【求解过程】将目标函数和约束条件转化为标准形式,得到如下线性规划模型:Maximize Z = 200x + 300ysubject to2x + 3y ≤ 8x + y ≤ 100x ≥ 0,y ≥ 0使用线性规划求解器进行求解,得到最优解。
【求解结果】经过计算,得到最优解为:x = 50(产品A的件数)y = 16.67(产品B的件数,近似值)此时,工厂每天的最大利润为:Z = 200 * 50 + 300 * 16.67 = 33333.33 元(近似值)【结果分析】根据最优解,工厂每天应该生产50件产品A和16.67件产品B,以达到每天最大利润33333.33元。
由于生产时间和产量限制,工厂无法达到每天生产更多的产品。
【结论】根据线性规划模型的最优解,工厂每天生产50件产品A和16.67件产品B,可以获得每天最大利润33333.33元。
这个结果可以作为工厂生产计划的参考,以实现最大化利润的目标。
【备注】以上的数学模型和求解结果仅为示例,实际问题中的数值和约束条件可能有所不同。
为了得到准确的结果,需要根据具体情况进行调整和求解。
第8课线性规划(经典例题练习、附答案)
第8课线性规划(经典例题练习、附答案)第8课线性规划◇考纲解读①从实际情境中抽象出⼆元⼀次不等式组;②了解⼆元⼀次不等式的⼏何意义,能⽤平⾯区域表⽰⼆元⼀次不等式组;③从实际情境中抽象出⼀些简单的⼆元线性规划问题,并能加以解决.◇知识梳理1.平⾯区域①⼆元⼀次不等式0Ax By C ++>在平⾯直⾓坐标系中表⽰0Ax By C ++=某⼀侧所有点组成的__________.②在直线的某⼀侧取⼀特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表⽰直线哪⼀侧的平⾯区域.(特殊地,当C ≠0时,常把_______作为此特殊点)王新敞③在坐标系中画不等式0Ax By C ++>所表⽰的平⾯区域时,把直线0Ax By C ++=画成虚线,表⽰区域__________边界直线.④在坐标系中画不等式0Ax By C ++≥所表⽰的平⾯区域时,把直线0Ax By C ++=画成实线,表⽰区域____________边界直线.2.线性规划:①求线性⽬标函数在线性约束条件下的最⼤值或最⼩值的问题,统称为________问题②满⾜线性约束条件的解(x ,y )叫做__________,由所有可⾏解组成的集合叫做__________.(类似函数的定义域);③使⽬标函数取得最⼤值或最⼩值的可⾏解叫做____________ 线性规划问题⼀般⽤图解法,其步骤如下:(1)根据题意,设出变量x 、y ;(2)找出线性约束条件;(3)确定线性⽬标函数z =f (x ,y );(4)画出可⾏域(即各约束条件所⽰区域的公共区域);(5)利⽤线性⽬标函数作平⾏直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可⾏域上使t 取得欲求最值的位置,以确定最优解,给出答案◇基础训练1.(2008⼭东青岛)若y x z y y x x y y x +=??-≥≤+≤2,11,则满⾜约束条件的最⼤值为()A .2B .3C .4D .52. (2008佛⼭⼀模)在平⾯直⾓坐标系中,不等式组0401x y x y x +≥??-+≥??≤?表⽰的平⾯区域⾯积是().A .3B .6C .92D .9 3.设实数x , y 满⾜的最⼤值是则x y y y x y x ,03204202??≤->-+≤-- _________4.(2008⼭东济宁)已知点(,)P x y 的坐标满⾜条件41x y y x x +≤??≥??≥?,点O 为坐标原点,那么||PO 的最⼤值等于_______,最⼩值等于____________.◇典型例题例1.已知实数x ,y 满⾜不等式组22021x y x y +-≥??≤??≤?,求22z x y =+-⼤值和最⼩值.例2.为迎接2008年奥运会召开,某⼯艺品加⼯⼚准备⽣产具收藏价值奥运会标志——“中国印·舞动的北京”和奥运会吉祥物——“福娃”.该⼚所⽤的主要原料为A 、B 两种贵重⾦属,已知⽣产⼀套奥运会标志需⽤原料A 和原料B 的量分别为4盒和3盒,⽣产⼀套奥运会吉祥物需⽤原料A 和原料B 的量分别为5盒和10盒.若奥运会标志每套可获利700元,奥运会吉祥物每套可获利1200元,该⼚⽉初⼀次性购进原料A 、B 的量分别为200盒和300盒.问该⼚⽣产奥运会标志和奥运会吉祥物各多少套才能使该⼚⽉利润最⼤,最⼤利润为多少?◇能⼒提升1.(2007⼴州⼆模)已知⽅程2x bx 10(b R 0)a a a +-=∈>、且有两个实数根,其中⼀个根在区间(1,2)内,则a -b 的取值范围为()A .()+∞-1,B .()1,-∞-C .()1,∞-D .()1,1-2.给出平⾯区域(包括边界)如图所⽰,若使⽬标函数(0)z ax y a =+>取得最⼤值的最优解有⽆穷多个,则a 的值为() A .14 B .35 C .4 D .533.(2008佛⼭⼆模)已知A 为xOy 平⾯内的⼀个区域.命题甲:点20(,){(,)|0}360x y a b x y x x y -+≤??∈≥??+-≤?;命题⼄:点A b a ∈),(.如果甲是⼄的充分条件,那么区域A的⾯积的最⼩值是(). A .1 B .2 C .3 D .44.(2008深圳⼆模)当点(,)M x y 在如图所⽰的三⾓形ABC 内(含边界)运动时,⽬标函数z kx y =+取得最⼤值的⼀个最优解为(1,2),则实数k 的取值范围是()A .(,1][1,)-∞-+∞B .[1,1]-C .(,1)(1,)-∞-+∞D .(1,1)-5.实数x ,y 满⾜不等式组00220y x y x y ≥??-≥??--≥?若ωω则,11+-=x y 的取值范围是 . 6.(2008韶关⼆模)某车间⽣产甲、⼄两种产品,已知制造⼀件甲产品需要A 种元件5个,B 种元件2个,制造⼀件⼄种产品需要A 种元件3个,B 种元件3个,现在只有A 种元件180个,B 种元件135个,每件甲产品可获利润20元,每件⼄产品可获利润15元,试问在这种条件下,应如何安排⽣产计划才能得到最⼤利润?2)第8课线性规划◇知识梳理1. ①平⾯区域,②原点,③不包括,④包括. 2. ①线性规划,②可⾏解,③最优解。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品A和B,每种产品的生产需要消耗不同的资源,且每种产品的利润也不同。
公司希望通过线性规划来确定生产计划,以最大化利润。
二、数据分析1. 资源消耗情况:- 产品A每单位需要消耗3个资源1和2个资源2;- 产品B每单位需要消耗2个资源1和4个资源2。
2. 利润情况:- 产品A每单位利润为10;- 产品B每单位利润为15。
3. 资源限制:- 资源1的总量为30个;- 资源2的总量为40个。
三、数学建模1. 定义变量:- 设生产的产品A数量为x,产品B数量为y。
2. 建立目标函数:- 目标函数为最大化利润,即Maximize Z = 10x + 15y。
3. 建立约束条件:- 资源1的消耗约束:3x + 2y ≤ 30;- 资源2的消耗约束:2x + 4y ≤ 40;- 非负约束:x ≥ 0,y ≥ 0。
四、求解将目标函数和约束条件带入线性规划模型,使用合适的求解方法,例如单纯形法、内点法等,求解得到最优解。
五、结果分析根据求解结果,得到最优解为x = 6,y = 6,此时利润最大为Z = 150。
意味着公司应该生产6个产品A和6个产品B,才能达到最大利润。
六、敏感性分析为了进一步了解模型的稳定性和可行性,可以进行敏感性分析。
通过改变资源数量、利润等参数,观察最优解的变化情况,以评估模型的可行性和鲁棒性。
七、结论根据线性规划模型的求解结果和敏感性分析,可以得出以下结论:- 公司应该生产6个产品A和6个产品B,以达到最大利润。
- 如果资源数量发生变化,最优解可能会有所调整。
- 如果产品利润发生变化,最优解也会相应变化。
综上所述,通过线性规划模型,我们可以帮助公司制定最优的生产计划,以达到最大利润。
同时,敏感性分析可以提供决策者对模型的可行性和鲁棒性的评估,为决策提供参考依据。
线性规划经典例题
线性规划经典例题引言概述:线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。
它在实际问题中有着广泛的应用,如生产计划、资源分配、运输问题等。
本文将介绍几个经典的线性规划例题,并详细阐述每个例题的解题思路和步骤。
一、最大化利润问题1.1 目标函数的建立首先,我们需要确定目标函数。
假设有两种产品A和B,每个单位的利润分别为x和y。
令x表示产品A的产量,y表示产品B的产量,我们的目标是最大化总利润。
1.2 约束条件的建立其次,我们需要确定约束条件。
假设产品A和B的生产所需的资源有限,分别为资源1和资源2。
我们需要考虑资源的限制以及产品的需求量。
1.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。
通过线性规划求解器,我们可以得到最优解,即产量x和y的数值,以及最大化的利润。
二、最小化成本问题2.1 目标函数的建立假设有n种原材料,每种原材料的价格为c1、c2、...、cn。
我们需要确定购买每种原材料的数量,以最小化总成本。
2.2 约束条件的建立每种原材料的数量要满足一定的约束条件,如总量限制、质量要求等。
此外,我们还需要考虑生产过程中的限制条件,如生产能力、工时等。
2.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。
通过线性规划求解器,我们可以得到最优解,即每种原材料的购买数量,以及最小化的成本。
三、资源分配问题3.1 目标函数的建立假设有m个任务需要分配给n个人员,每个人员的效率不同。
我们需要确定每个任务分配给哪个人员,以最大化总效率。
3.2 约束条件的建立每个任务只能由一个人员完成,每个人员只能执行一个任务。
此外,我们还需要考虑人员的可用时间、技能匹配等约束条件。
3.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。
通过线性规划求解器,我们可以得到最优解,即每个任务分配给哪个人员,以及最大化的总效率。
四、运输问题4.1 目标函数的建立假设有m个供应地和n个需求地,每个供应地的供应量和每个需求地的需求量已知。
线性规划题型整理与例题(含答案)
积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
八种经典线性规划例题
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230 x y mx y m-++>⎧⎨-+-<⎩由右图可知3330mm+>⎧⎨-<⎩,故0<m<3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
简单的线性规划典型例题
简单的线性规划典型例题篇一:典型例题:简单的线性规划问题典型例题【例1】求不等式|某-1|+|y-1|≤2表示的平面区域的面积.【例2】某矿山车队有4辆载重量为10t的甲型卡车和7辆载重量为6t的乙型卡车,有9名驾驶员此车队每天至少要运360t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低参考答案例1:【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.【解】|某-1|+|y-1|≤2可化为或其平面区域如图:或或∴面积S=某4某4=8【点拨】画平面区域时作图要尽量准确,要注意边界.例2:【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.【解】设每天派出甲型车某辆、乙型车y辆,车队所花成本费为z元,那么z=252某+160y,作出不等式组所表示的平面区域,即可行域,如图作出直线l0:252某+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252某+160y=t经过点(2,5)时,满足上述要求.此时,z=252某+160y取得最小值,即某=2,y=5时,zmin=252某2+160某5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(某,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.篇二:不等式线性规划知识点梳理及经典例题及解析线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】1.目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3.整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5.整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3.平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(某0,y0)在直线A某+By+C=0上,则点P坐标适合方程,即A某0+By0+C=02.点P(某0,y0)在直线A某+By+C=0上方(左上或右上),则当B>0时,A某0+By0+C>0;当B<0时,A某0+By0+C<03.点P(某0,y0)在直线A某+By+C=0下方(左下或右下),当B>0时,A某0+By0+C<0;当B<0时,A某0+By0+C>0注意:(1)在直线A某+By+C=0同一侧的所有点,把它的坐标(某,y)代入A某+By+C,所得实数的符号都相同,(2)在直线A某+By+C=0的两侧的两点,把它的坐标代入A某+By+C,所得到实数的符号相反,即:1.点P(某1,y1)和点Q(某2,y2)在直线A某+By+C=0的同侧,则有(A某1+By1+C)(A某2+By2+C)>02.点P(某1,y1)和点Q(某2,y2)在直线A某+By+C=0的两侧,则有(A某1+By1+C)(A某2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式A某+By+C>0(或<0)在平面直角坐标系中表示直线A某+By+C=0某一侧所有点组成的平面区域.不.包括边界;②二元一次不等式A某+By+C≥0(或≤0)在平面直角坐标系中表示直线A某+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验;“直线定界、特殊点定域原因:由于对在直线A某+By+C=0的同一侧的所有点(某,y),把它的坐标(某,y)代入A某+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(某0,y0),从A某0+By0+C的正负即可判断A某+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品A和B,每个单位产品A的利润为100元,每个单位产品B的利润为150元。
公司有两个车间可用于生产这两种产品,每个车间每天的工作时间为8小时。
产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。
每天车间1的生产能力为400个单位产品A或200个单位产品B,车间2的生产能力为300个单位产品A或150个单位产品B。
公司的目标是在满足车间生产能力的前提下,最大化利润。
二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。
目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。
1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。
线性规划经典例题及详细解析
一、已知线性约束条件,探求线性目标关系最值问题1. 设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
二、已知线性约束条件,探求非线性目标关系最值问题2. 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 。
3. 已知变量x ,y 满足约束条件+201-70x y x x y -≤⎧⎪≥⎨⎪+≤⎩,则 yx的取值范围是( ).A. [95,6]B.(-∞,95]∪[6,+∞)C.(-∞,3]∪[6,+∞)D. [3,6] 三、 研究线性规划中的整点最优解问题4. 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是 。
四、已知最优解成立条件,探求目标函数参数范围问题5. 已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。
6. 已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的值为( )A. -3B. 3C. -1D. 1五、求可行域的面积7. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A. 4B. 1C. 5D. 无穷大图1解析:1.如图1,画出可行域,得在直线2x-y=2与直线x-y=-1的交点A(3,4)处,目标函数z最大值为18。
图22. 如图2,只要画出满足约束条件的可行域,而22x y +表示可行域内一点到原点的距离的平方。
由图易知A (1,2)是满足条件的最优解。
22x y +的最小值是为5。
线性规划经典例题
线性规划经典例题一、问题描述某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位需要2小时加工时间,产品B每单位需要3小时加工时间。
公司每天的加工时间总共为8小时。
已知产品A的利润为200元/单位,产品B的利润为300元/单位。
公司希望在每天的生产过程中,能够最大化利润。
二、数学建模1. 定义变量:设产品A的生产数量为x,产品B的生产数量为y。
2. 建立数学模型:目标函数:最大化利润Z = 200x + 300y约束条件:加工时间约束:2x + 3y ≤ 8非负约束:x ≥ 0,y ≥ 0三、求解过程1. 将约束条件转化为等式:2x + 3y = 82. 绘制可行域:根据约束条件2x + 3y ≤ 8,可以绘制出可行域的图形。
3. 确定目标函数的最优解:在可行域内,通过计算目标函数的值,确定最优解。
四、结果分析根据计算结果,最大利润为Z = 1000元。
此时,产品A的生产数量为x = 2,产品B的生产数量为y = 2。
五、结论在每天的生产过程中,为了最大化利润,公司应该生产2个单位的产品A和2个单位的产品B。
此时,公司每天的利润为1000元。
六、灵敏度分析在该线性规划问题中,我们可以进行灵敏度分析,来观察目标函数系数的变化对最优解的影响。
1. 目标函数系数变化:如果产品A的利润系数增加,即200变为250,而产品B的利润系数保持不变,重新求解线性规划问题,可以得到新的最优解。
2. 约束条件变化:如果加工时间约束由8变为10,重新求解线性规划问题,可以得到新的最优解。
通过灵敏度分析,可以帮助公司在实际生产过程中进行决策,根据不同的情况调整目标函数系数或约束条件,以达到最优化的生产效果。
线性规划经典例题
线性规划经典例题一、问题描述某工厂生产A、B两种产品,每天生产的产品数量不同,且每种产品的生产时间和利润也不同。
现在需要确定每种产品的生产数量,以使得总利润最大化。
已知每天可用的生产时间为8小时,A产品的生产时间为2小时/件,利润为200元/件;B产品的生产时间为3小时/件,利润为300元/件。
同时,还有以下限制条件:1. A、B产品的总生产数量不能超过100件;2. A产品的生产数量不能超过60件;3. B产品的生产数量不能超过80件。
二、问题分析这是一个典型的线性规划问题,需要确定A、B产品的生产数量,使得总利润最大化。
根据题目中的限制条件,可以得到以下数学模型:目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0三、数学模型目标函数:max Z = 200A + 300B约束条件:1. A + B ≤ 1002. A ≤ 603. B ≤ 804. A, B ≥ 0四、求解过程1. 根据数学模型,列出线性规划的标准形式:目标函数:max Z = 200A + 300B约束条件:A +B ≤ 100A ≤ 60B ≤ 80A, B ≥ 02. 根据标准形式,画出目标函数和约束条件的图形:在二维坐标系中,以A为横轴,B为纵轴,画出以下直线:A +B = 100A = 60B = 80并标明非负约束条件。
3. 确定可行解区域:根据约束条件,可得到可行解区域为一个三角形,顶点分别为(60, 40)、(60, 80)和(0, 80)。
4. 确定目标函数的最优解:由于目标函数是线性的,最优解一定在可行解区域的某个顶点上。
计算每一个顶点的目标函数值:(60, 40):Z = 200 * 60 + 300 * 40 = 28,000(60, 80):Z = 200 * 60 + 300 * 80 = 36,000(0, 80):Z = 200 * 0 + 300 * 80 = 24,000可知,目标函数的最优解为Z = 36,000,对应的生产数量为A = 60,B = 80。
线性规划例题
线性规划例题例题1、某公司生产的彩电每台利润是1000元,需要投资1000元,成本1200元,那么此时生产该电视的利润是多少?解:①直接从题目中选取代数式。
1000x1200=10000x1200,得: x=2,因此,公司的利润是10000×2=20000元。
②求出最大利润,利润等于或小于20000元的电视机,最大利润是10000×2。
根据条件求出应选取的单位“ 1”:20000÷(2+1)= 1000,所以,选取1作为单位“ 1”,有:1200÷1000=12,再查解得: x=3,因此,答案应选为(3)×3=6台。
2、某市国税局所属工商银行和建设银行都准备发行各种储蓄债券,总金额均为20000元,现将储蓄债券分别以三个价格销售:①工商银行以900元的面值卖给储户,以800元的面值卖给储户;②建设银行以850元的面值卖给储户,以900元的面值卖给储户;③建设银行以950元的面值卖给储户,以850元的面值卖给储户。
请问:两家银行的实际收入相比,工商银行获得的利润大还是建设银行获得的利润大?4、在某种情况下,王师傅生产某种零件的总成本比计划成本节约100元,完成了10件。
照这样计算,他所用的天数,比原计划缩短了20天。
(如果天数不变,缩短的天数是原来的20%)。
(1)当天数不变,成本减少100元时,工人小王生产的件数可能是多少件?(2)当天数不变,成本增加100元时,工人小王生产的件数可能是多少件?(3)两种情况中,小王各生产多少件零件?(4)当天数不变,成本增加200元时,工人小王生产的件数可能是多少件?(5)当天数不变,成本增加400元时,工人小王生产的件数可能是多少件?当天数不变,成本增加100元时,工人小王可能生产10×100÷(100+100)=12件。
当天数不变,成本增加100元时,工人小王可能生产10×100÷(100+100)=12件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 6
一、 已知线性约束条件,探求线性目标关系最值问题
1. 设变量x 、y 满足约束条件⎪⎩
⎪
⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
二、 已知线性约束条件,探求非线性目标关系最值问题
2. 已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩
则22
x y +的最小值是 。
3. 已知变量x ,y 满足约束条件+201-70x y x x y -≤⎧⎪
≥⎨⎪+≤⎩
,则 错误! 的取值范围是( )。
A 。
[错误!,6] B.(-∞,错误!]∪[6,+∞)
C.(-∞,3]∪[6,+∞) D 。
[3,6] 三、 研究线性规划中的整点最优解问题
4. 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩
⎪
⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大
值是 。
四、 已知最优解成立条件,探求目标函数参数范围问题
5. 已知变量x ,y 满足约束条件14
22x y x y ≤+≤⎧⎨
-≤-≤⎩。
若目标函数z ax y =+(其中0a >)仅在点(3,1)处
取得最大值,则a 的取值范围为 。
6. 已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪
-+≤⎨⎪≤⎩
,使z=x+a y (a >0) 取得最小值的最优解有无数个,则a 的
值为( )
A. -3
B. 3 C 。
-1 D. 1
五、 求可行域的面积
7. 不等式组260302x y x y y +-≥⎧⎪
+-≤⎨⎪≤⎩
表示的平面区域的面积为 ( )
A. 4
B. 1
C. 5 D 。
无穷大
图1
2 / 6 解析:
1.如图1,画出可行域,得在直线2x—y=2与直线x-y=-1的交点A(3,4)处,目标函数z最大值为18。
3 / 6
图2
4 / 6
5 / 6
2. 如图2,只要画出满足约束条件的可行域,而2
2
x y +表示可行域内一点到原点的距离的平方.由图易
知A (1,2)是满足条件的最优解。
2
2
x y +的最小值是为5。
点评:本题属非线性规划最优解问题。
求解关键是在挖掘目标关系几何意义的前提下,作出可行域,寻求最优解.
3. 错误!是可行域内的点M(x,y )与原点O (0,0)连线的斜率,当直线
OM 过点(错误!,错误!)时,错误!取得最小值错误!;当直线OM 过点(1,6)时,错误!取得最大值6。
答案A
点评:当目标函数形如y a
z x b
-=
-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
4. 如图,作出可行域,由101010
z
z x y y x =+⇒=-+
,它表示为斜率为1-,纵截距为
10
z
的平行直线系,要使1010z x y =+最得最大值。
当直线1010z x y =+通过119
(,)22
A z 取得最大
值.因为,x y N ∈,故A点不是最优整数解.于是考虑可行域内A 点附近整点B(5,4)、C(4,4),经检验直线经过B点时,max 90.Z = 点评:在解决简单线性规划中的最优整数解时,可在去掉限制条件求得的最优解的基础上,调整优解法,通过分类讨论获得最优整数解。
5. 如图,作出可行域,由z ax y y ax z =+⇒=-+其表示为斜率为a -,
纵截距为z的平行直线系, 要使目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值。
则直线y ax z =-+过A 点且在直线
4,3x y x +==(不含界线)之间。
即1 1.a a -<-⇒>则a 的取值范
围为(1,)+∞。
点评:本题通过作出可行域,在挖掘a z -与的几何意义的条件下,借助用数形结合利用各直线间的斜率变化关系,建立满足题设条件的a 的不等式组即可求解。
求解本题需要较强的基本功,同时对几何动态问题的能力要求较高。
6. 如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a >0)
取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a =1,选D.
x + y = 5
x – y + 5 = 0
O
y
x
x=3
7.如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减
去梯形OMAC的面积即可,选B。
6 / 6。