光通信复习及课件 (2)
光纤通信复习(各章复习要点)
![光纤通信复习(各章复习要点)](https://img.taocdn.com/s3/m/7d6623dddb38376baf1ffc4ffe4733687e21fc49.png)
光纤通信复习(各章复习要点)光纤通信复习(各章复习要点)第⼀章光纤的基本理论1、光纤的结构以及各部分所⽤材料成分2、光纤的种类3、光纤的数值孔径与相对折射率差4、光纤的⾊散5、渐变光纤6、单模光纤的带宽计算7、光纤的损耗谱8、多模光纤归⼀化频率,模的数量第⼆章光源和光发射机1、光纤通信中的光源2、LD的P-I曲线,测量Ith做法3、半导体激光器的有源区4、激光器的输出功率与温度关系5、激光器的发射中⼼波长与温度的关系6、发光⼆极管⼀般采⽤的结构7、光源的调制8、从阶跃响应的瞬态分析⼊⼿,对LD数字调制过程出现的电光延迟和张弛振荡的瞬态性质分析(p76)9、曼彻斯特码10、DFB激光器第三章光接收机1、光接收机的主要性能指标2、光接收机主要包括光电变换、放⼤、均衡和再⽣等部分3、光电检测器的两种类型4、光电⼆极管利⽤PN结的什么效应第四章光纤通信系统1、光纤通信系统及其⽹管OAM2、SDH系统3、再⽣段距离的设计分两种情况4、EDFA第五章⽆源光器件和WDM1、⼏个常⽤性能参数2、波分复⽤器的复⽤信道的参考频率和最⼩间隔3、啁啾光纤光栅4、光环形器的各组成部分的功能及⼯作原理其他1、光孤⼦2、中英⽂全称:DWDM 、EDFA 、OADM 、SDH 、SOA第⼀章习题⼀、单选题1、阶跃光纤中的传输模式是靠光射线在纤芯和包层的界⾯上(B)⽽是能量集中在芯⼦之中传输。
A、半反射B、全反射C、全折射D、半折射2、多模渐变折射率光纤纤芯中的折射率是(A)的。
A、连续变化B、恒定不变C、间断变换D、基本不变3、⽬前,光纤在(B)nm处的损耗可以做到0.2dB/nm左右,接近光纤损耗的理论极限值。
A、1050B、1550C、2050D、25504、普通⽯英光纤在波长(A)nm附近波导⾊散与材料⾊散可以相互抵消,使⼆者总的⾊散为零。
A、1310B、2310C、3310D、43105、⾮零⾊散位移单模光纤也称为(D)光纤,是为适应波分复⽤传输系统设计和制造的新型光纤。
光通信培训课件
![光通信培训课件](https://img.taocdn.com/s3/m/b86b632c24c52cc58bd63186bceb19e8b8f6ec0d.png)
偏振复用技术
偏振复用原理
利用光的偏振态不同,将多个独立信号在同一波长上进行复用,提高传输速率和 容量。
偏振复用技术分类
包括偏振复用直接调制和偏振复用外调制两种方式。
前向纠错技术
前向纠错原理
在发送端对数据进行一定的编码处理,在接收端对接收到的数据进行解码处理,从而纠正传输过程中可能出现的 错误。
前向纠错技术分类
案例四:智慧城市中的光传输技术应用
总结词
详细描述
智慧城市对于光传输技术的需求主要体现在 城市管理和公共服务方面。通过使用光纤和 无线相结合的方式,智慧城市可以实现更高 效、更智能和更便捷的数据传输。
在智慧城市中,光传输技术被广泛应用于城 市管理和公共服务领域。例如,通过使用光 纤传感器和高速光模块,智慧城市可以实现 实时监控和管理城市的交通、公共安全和环 境质量等方面的问题。同时,光纤的无线通 信网络也可以为市民提供高速、便捷的网络
将电信号转换为光信号,通过改变光源的 发光强度或相位来实现。
驱动电路
发送模块
为光源提供合适的偏置和调制电流,以控 制光信号的幅度和相位。
将电信号转换为光信号,并进行电光转换 、调制、发送等操作。
光接收机
01
光检测器
将接收到的光信号转换为电信号 。
限幅放大器
进一步放大电信号,并消除噪声 干扰。
03
02
案例三:电力通信网中的光传输技术应用
总结词
电力通信网对于光传输技术的需求主要体现在高可靠性和安全性方面。通过使用光纤和光器件,电力通信网可以 实现更稳定、更可靠和更安全的数据传输。
详细描述
在电力通信网中,光传输技术被广泛应用于电力线路和变电站之间的互联。通过使用光纤和光器件,电力通信网 可以实现高速、大容量的数据传输,满足电力通信网对于高可靠性和安全性的需求。另外,光纤的物理特性也使 得电力通信网在遭受自然灾害或其他干扰因素时能够保持相对稳定的数据传输服务。
光通信培训课件
![光通信培训课件](https://img.taocdn.com/s3/m/d0aeb021f4335a8102d276a20029bd64783e6299.png)
应用场景
保护数据传输安全、防止数据泄露、 确保通信内容不被篡改
防火墙技术及其部署策略
防火墙技术
包过滤防火墙、代理服务 器防火墙、应用层网关防 火墙等
部署策略
根据网络拓扑结构、安全 需求等因素,选择合适的 防火墙技术和部署位置
配置规则
根据安全策略,配置防火 墙的访问控制规则,确保 内外网络的隔离和访问控 制
根据业务需求和技术发展趋势,设计合理的城域网架构调整方案 。
实施过程与效果评估
详细介绍实施过程,包括设备替换、配置变更、网络调试等,并 对实施效果进行评估。
某大型活动网络保障方案设计与实施过程回顾
活动背景与需求分析
介绍活动背景、规模和影响范围,分析网络保障需求。
网络保障方案设计
设计合理的网络保障方案,包括带宽保障、网络安全、应 急预案等。
根据信道特性和传输距离选择合适的调制方式,如QAM、PSK等 ,以提高传输速率和可靠性。
编码方式优化
采用高效的编码方式,如前向纠错编码、重复码等,以降低误码率 和提高传输性能。
多级调制和编码组合
结合多种调制方式和编码方式,实现多级调制和编码的组合,进一 步提高传输性能。
故障诊断与排除技巧
01
02
03
光通信培训课件
汇报人: 日期:
目录
• 光通信基础知识 • 光通信设备与器件 • 光通信网络架构与协议 • 光通信系统设计与优化 • 光通信安全与防护技术 • 实际案例分析与实践操作演示
01
光通信基础知识
光通信定义与发展
光通信定义
光通信是一种利用光波作为信息 载体进行传输的通信方式。
光通信发展历程
《光通信原理》课件
![《光通信原理》课件](https://img.taocdn.com/s3/m/06dfca4853ea551810a6f524ccbff121dc36c559.png)
BIG DATA EMPOWERS TO CREATE A NEWERA
目录
CONTENTS
光通信概述光波的传播原理光通信系统原理光通信的关键技术光通信的发展趋势光通信的应用案例
BIG DATA EMPOWERS TO CREATE A NEWERA
光通信概述
激光器的发明为光通信奠定了基础。
应用场景
大容量光通信技术广泛应用于骨干网、城域网、海底光缆等领域,为全球信息高速公路的建设提供了强有力的支撑。
01
02
03
04
总结词
新型光器件是实现超高速和大容量光通信的关键,包括光调制器、光放大器、光检测器等。
发展趋势
新型光器件不断发展,性能不断提升。未来,随着新材料、新工艺的研发和应用,新型光器件的性能还有望进一步提升。
03
02
01
光波在真空中传播,不受介质限制,传播速度最快。
自由空间传播
光波在介质中传播时,会受到介质的折射、反射和散射等作用,传播路径和速度会发生改变。
介质中的传播
光纤是一种特殊介质,光波在其中传播时能量损耗较小,传输距离远,是现代光通信的主要传输方式。
光纤中的传播
BIG DATA EMPOWERS TO CREATE A NEWERA
总结词
大容量光通信技术是实现大规模信息传输的关键技术,通过多通道、多波长等方式提升通信容量。
详细描述
随着信息社会的不断发展,通信网络需要传输的数据量越来越大,传统的单通道光通信技术已经无法满足需求。大容量光通信技术通过多通道、多波长等方式,实现了通信容量的大幅提升。
发展趋势
大容量光通信技术不断发展,通道数和波长数不断增加。未来,随着光学器件和信号处理技术的进步,大容量光通信技术的通信容量还有望进一步提升。
光通信原理PPT课件
![光通信原理PPT课件](https://img.taocdn.com/s3/m/e3332f4454270722192e453610661ed9ad5155d8.png)
按制式分类分类
二进制IM/DD系统:
开关键控( On Off Keying ——OOK)编码:
在OOK编码中,每一比特时间内光脉冲处于开或关的状 态。每个“1”比特编码为一个光脉冲,而每个“0”比特则以 一个关闭比特(无光场)进行编码。
光场 光电探测器 +
前放
主放
i(t) 阈值判别 解码比特
光场 光电探测器 i(t)
+ 前放
Tb 0
v
解码比特
阈值判别
图 接收机和解码器
按制式分类
二进制IM/DD系统:
曼彻斯特编码:
曼彻斯特码利用一个半占空的对称方波(如01)表示数 据“1”,而其反相波(如10)表示数据“0”。
0
编码激光强度
0
T2 b
T b
1
0
T2 b
T b
按制式分类
光场 光电探测器 i(t)
+ 前放
Tb 2 0
解码PPM 字节
按制式分类
相干光通信系统
比特
激光调制器
光场
接收光场
本振 光源
光电 探测器
RF滤波器
射频解码 器
载波追踪
按制式分类
接收光场
光电 探测器
RF滤波器
射频解码 器
频谱 频谱
频谱
本振 光源
fs
2B
fLF
fL
2B
频率
频率
B 频率
外差检测及信号频谱分布
按制式分类
接收光场
光电 探测器
基带信号
频谱 频谱
光通信子系统 中继光学平台
ATP子系统
无线光通信系统组成
激光通信终端
光通信培训ppt课件
![光通信培训ppt课件](https://img.taocdn.com/s3/m/989b6cb4856a561253d36f1f.png)
守规则做事。培养主动积极
的精神。
✓
培养好习惯,遵守 规则的员工;
营造良好的团队精 神。
.
1. 检查表; 2. 红牌子作战。
如: 1. 应遵守出勤、作息时间; 2. 工作应保持良好的状态(如不可以随意谈
天说笑、离开工作岗位、看小说、打瞌睡 、吃零食等); 3. 服装整齐,待好识别卡; 4. 待人接物诚恳有礼貌; 5. 爱护公物,用完归位; 6. 保持清洁; 7. 乐于助人;
大功率激光器及光探测器一般采
用调节三个轴的方法。
.
35
耦合图示
焦距 X
Y
.
36
5S基本知识
5S是日文SEIRI(整理)、 SEITON(整顿)、SEISO(清扫)、 SEIKETSU(清洁)、SHITSUKE(修 养)这五个单词,因为五个单词前 面发音都是“S”,所以统称为 “5S”。它的具体类型内容和典型
.
3
4.光纤结构及光传输原理
空气(折射率n1) θ
水(折射率n2)
折射率:n1<n2 θ被称作临介角
.
纤芯(n2)
包层(n1)
n1<n2
4
光纤的种类
单模光纤 外径125微米 内径9微米
多模光纤 外径125微米 内径50或62.5微米
.
5
5 .光纤通信系统组成
电光
端
端 送
机 (发)
光 中 继 机
.
20
PD的主要参数
饱和光功率(Ps):在工作速率 下,当误码率为某一数值时的最 大接收光功率。
.
21
PIN-TIA内部结构
.
22
PD的管脚定义----155M
光通信复习及课件 (2)
![光通信复习及课件 (2)](https://img.taocdn.com/s3/m/eb1f69132af90242a895e555.png)
产生受激辐射和产生受激吸收的物质是不同的。 设在单 位物质中,处于低能级E1和处于高能级E2(E2>E1)的原子数分别 为N1和N2。
当系统处于热平衡状态时,
N2 exp( E2 E1 )
(3.2)
N1
kT
式中, k=1.381×10-23J/K,为波尔兹曼常数,T为热力学温度。 由于(E2-E1)>0,T>0,所以在这种状态下,总是N1>N2。 这是 因为电子总是首先占据低能量的轨道。
问题:如何得到粒子数反转分布的状态呢? 这个问题将 在下面加以叙述。
2. PN
在半导体中,由于邻近原子的作用,电子所处的能态扩展成 能级连续分布的能带。能量低的能带称为价带,能量高的能带称 为导带,导带底的能量Ec 和价带顶的能量Ev 之间的能量差EcEv=Eg称为禁带宽度或带隙。电子不可能占据禁带。
增益区的导带主要是电子,价带主要是空穴,结果获得粒 子数反转分布,见图3.3(c)。
在电子和空穴扩散过程中,导带的电子可以跃迁到价带和 空穴复合,产生自发辐射光。
p
Ec
hf hf
p
Ef
p
Ev
内部电场 外加电场
电子,
n
Ec
n
Ef
n
Ev
空穴
3.3.c正向偏压下P - N结能带图 获得粒子数反转分布
3. 激光振荡和光学谐振腔
另一方面,有源层的折射率比限制层高,产生的激光被 限制在有源区内,因而电/光转换效率很高,输出激光的阈值电 流很低,很小的散热体就可以在室温连续工作。
+
P
(a)
Ga1- xAlxAs
E
(b)
能 量
n 折
(c) 射 率
光通信复习及(2)幻灯片PPT
![光通信复习及(2)幻灯片PPT](https://img.taocdn.com/s3/m/d0d29fca915f804d2b16c1f6.png)
非线性失真一般可以用幅度失真参数——微分增益(DG) 和相位失真参数——微分相位(DP)表示。DG可以从LED输 出功率特性曲线看出,其定义为:
DGddpI|Idd2 pI|Idd2 pI|I1max10% 0
在全电视信号中,图像信号随亮场和暗场而变化,其同步 脉冲信号在工作过程是不变的,因而利用同步脉冲和图像信号 处于不同电平的特点,对全电视信号中的同步脉冲进行分离和 箝位。
2. 光接收机的功能是把光信号转换为电信号。 对光接收机的基本要求是: • 信噪比(SNR) • •
模 拟 基 带 D-IM 光 纤 电 视 传 输 系 统 光 接 收 机 方 框 图 如 图 6.8所示,光检测器把输入光信号转换为电信号,经前置放大 器和主放大器放大后输出,为保证输出稳定,通常要用自动增 益控制(AGC)。
因为传统意义上的载波是光载波,为区别起见,把受模拟 基带信号预调制的RF电载波称为副载波,这种复用方式也称为副 载波复用(SCM)。
SCM模拟电视光纤传输系统的优点:
• 一个光载波可以传输多个副载波,各个副载波可以承 载不同类型的业务。
• SCM系统灵敏度较高,又无需复杂的定时技术, 制造 成本较低。
图6.2示出对发光二极管进行正弦信号直接光强调制的原 理。
P Pb
输 出 信号
0 Im in
Ib Io m
Im ax I 输 入 信号
图 6.2 发光二极管模拟调制原理
这种系统的信噪比定义为接收信号功率和噪声功率(NP) 的比值 :
N s p噪 信声 号功 功 iin s2 2R RL L 率 率 iin s2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自建电场
PN
P区
结空 间电
荷区
扩散 漂移
N区
P - N结内载流子运动; 图 3.3a PN P区空穴多,向N区扩散
能量
p
Ec P区
p
Ev
n
Ec
势垒
Ef N区
n
Ev
零偏压时P - N结的能带倾斜 图 3.3b
N区费米能级靠近导带
增益区的产生:
在PN结上施加正向电压,产生与内部电场相反方向的外加 电场,结果能带倾斜减小,扩散增强。电子运动方向与电场方 向相反,便使N区的电子向P区运动,P区的空穴向N区运动, 最后在PN结形成一个特殊的增益区。
(3.1)
式中,h=6.628×10-34J·s,为普朗克常数,f12为吸收或辐射的光子 频率。
受激辐射和自发辐射产生的光的特点很不相同。
受激辐射光的频率、相位、偏振态和传播方向与入射光相同, 这种光称为相干光。
自发辐射光是由大量不同激发态的电子自发跃迁产生的,其 频率和方向分布在一定范围内,相位和偏振态是混乱的,这种光 称为非相干光。
积 、i 单位频率间隔内的光能量
E2
初态
hf12
E1
E2
终态
E1
(3.1b) 自发辐射;
在高能级E2的电子是不稳定的,即使没有外界的作 用, 也会自动地跃迁到低能级E1上与空穴复合,释 放的能量转换为光子辐射出去,这种跃迁称为自发 辐射。自发辐射速率为:
Rsp
ห้องสมุดไป่ตู้
dN2 dt
rspN2
E2能级上的电子数密度为N2 rsp为从E2跃迁到E1的自发发射几率
f为入射光能量密度
受激发射光和入射光的能量、相位、偏振以及传播 方向都一样,因此称为相干光。
受激发射是激光器和光放大器工作的共同基础
受激辐射和受激吸收的区别与联系
受激辐射是受激吸收的逆过程。电子在E1和E2两个能级之间 跃迁,吸收的光子能量或辐射的光子能量都要满足波尔条件,即
E2-E1=hf12
1
1 exp( E Ef
)
(3.3)
kT
式中,k为波兹曼常数,T为热力学温度。Ef 称为费米能 级,用来描述半导体中各能级被电子占据的状态。
在费米能级,被电子占据和空穴占据的概率相同。
一般状态下,本征半导体的电子和空穴是成对出现的,用Ef 位于禁带中央来表示,见图3.2(a)。
在本征半导体中掺入施主杂质,称为N型半导体,见图3.2(b)。
增益区的导带主要是电子,价带主要是空穴,结果获得粒 子数反转分布,见图3.3(c)。
在电子和空穴扩散过程中,导带的电子可以跃迁到价带和 空穴复合,产生自发辐射光。
p
Ec
hf hf
p
Ef
p
Ev
内部电场 外加电场
电子,
n
Ec
n
Ef
n
Ev
空穴
3.3.c正向偏压下P - N结能带图 获得粒子数反转分布
3. 激光振荡和光学谐振腔
E2 hf12
E1 E2 E1
初态 终态
(3.1c) 受激辐射
在高能级E2的电子,受到能量为hv的入射光子的作 用,在他的诱导下跃迁到低能级E1上与空穴复合,释放 出一个和入射光子频率、相位、偏振态一样的光子,这
种跃迁称为受激辐射 。受激辐射速率为:
R
st
dN 2 dt
B21 f N 2
B12为 受 激 发 射 系 数
E2 hf12
E1
初态
E2
终态
E1
(3.1 a) 受激吸收
如果有能量为 hvE2 E1 的入射光子能量被吸收后,
就有一个电子从低能级E1跃迁到高能级E2,就称为受激 吸收过程。受激吸收速率为:
Rab
dN1 dt
B12f
N1
N1为E1能级上的电子数密度 B12为受激吸收系数
为入射光能量密度,它表示在频率v附近一个单位体
受激吸收和受激辐射的速率分别比例于N1和N2,且比例 系数(吸收和辐射的概率)相等。
如果N1>N2,即受激吸收大于受激辐射。当光通过这种 物质时,光强按指数衰减, 这种物质称为吸收物质。
如果N2>N1,即受激辐射大于受激吸收,当光通过这种 物质时,会产生放大作用,这种物质称为激活物质。
N2>N1的分布,和正常状态(N1>N2)的分布相反,所以称 为粒子(电子)数反转分布。
产生受激辐射和产生受激吸收的物质是不同的。 设在单 位物质中,处于低能级E1和处于高能级E2(E2>E1)的原子数分别 为N1和N2。
当系统处于热平衡状态时,
N2 exp(E2 E1)
(3.2)
N1
kT
式中, k=1.381×10-23J/K,为波尔兹曼常数,T为热力学温度。 由于(E2-E1)>0,T>0,所以在这种状态下,总是N1>N2。 这是 因为电子总是首先占据低能量的轨道。
1. 受激辐射和粒子数反转分布
2.
有源器件的物理基础是光和物质相互作用的效应p98。
3.
在物质的原子中,存在许多能级,最低能级E1称为基
态,能量比基态大的能级Ei(i=2, 3, 4 …)称为激发态。
4.
电子在低能级E1的基态和高能级E2的激发态之间的跃迁
有三种基本方式:受激吸收、自发辐射、受激辐射 (见图3.1)
能量 Eg
导带
Ec Eg/2
Ef
Eg
Eg/2
Ev
价带
Ec
Ec
Ef Eg Ef
Ev
Ev
(a)
(b)
(c)
图 3.2
(a) 本征半导体; (b) N型半导体; (c) P型半导体
图3.2示出不同半导体的能带和电子分布图。根据量子统 计理论,在热平衡状态下,能量为E的能级被电子占据的概率 为费米分布
p(E)
问题:如何得到粒子数反转分布的状态呢? 这个问题将 在下面加以叙述。
2. PN
在半导体中,由于邻近原子的作用,电子所处的能态扩展成 能级连续分布的能带。能量低的能带称为价带,能量高的能带称 为导带,导带底的能量Ec 和价带顶的能量Ev 之间的能量差EcEv=Eg称为禁带宽度或带隙。电子不可能占据禁带。
激光振荡的产生:
粒子数反转分布(必要条件)+激活物质置于光学谐振腔中, 对光的频率和方向进行选择=连续的光放大和激光振荡输出。
基本的光学谐振腔由两个反射率分别为R1和R2的平行反射 (如图3.4所示),并被称为法布里 - 珀罗(Fabry Perot,
在本征半导体中,掺入受主杂质,称为P型半导体,见图3.2(c)。
在P型和N型半导体组成的PN结界面上,由于存在多数载流 子(电子或空穴)的梯度,因而产生扩散运动,形成自建电场, 见 图3.3(a)。
自建电场产生与扩散相反方向的漂移运动,直到P区和N区 的Ef 相同,两种运动处于平衡状态为止,结果能带发生倾斜,见 图3.3(b)。