电力系统自动化 ppt课件

合集下载

《电力系统自动化》PPT课件

《电力系统自动化》PPT课件

01
馈线自动化
对配电网中的馈线进行实时监测和控制,实现馈线故障的快速定位和隔
离,恢复非故障区域的供电。
02
配电管理系统(DMS)
对配电网进行实时监测、控制和优化管理,提高配电网的供电可靠性和
经济性。
03
分布式电源接入与微电网技术
应用于分布式电源接入和微电网领域,实现分布式电源的自动控制和优
化运行,提高能源利用效率。
能源互联网
构建基于大数据的能源互联网平台,实现能源的 优化配置和共享。
5G通信技术在电力系统自动化中的应用
实时数据传输
5G通信技术的高带宽和低时延特性,使得电力系统能够实现实时数 据传输和监控。
远程控制与操作
通过5G通信技术,实现对电力设备的远程控制和操作,提高系统的 可靠性和安全性。
智能化电网
结合5G通信技术和人工智能技术,构建智能化电网,实现电力系统的 自适应和自学习。
自动化调度系统可以根据实时数据进行电网优化调度,提高电力输送效率和供电质 量。
自动化管理系统可以实现电力设备的状态监测和预防性维护,避免设备故障对系统 运行的影响。
面临的挑战与问题
电力系统自动化需要高度的技术支持和资金投入,对于一些经济相对落后的地区来说,实现 难度较大。
自动化控制系统的复杂性和安全性问题也需要得到充分考虑和解决,以避免出现系统崩溃或 数据泄露等安全问题。
未来电力系统自动化的展望
完全自动化
未来电力系统将实现完全自动化,从发电、输电 到配电等各个环节都将实现自动化运行和管理。
绿色能源融合
未来电力系统将更加注重绿色能源的融合和利用 ,如风能、太阳能等可再生能源将更多地接入电 力系统。同时,电动汽车等新型负荷也将成为电 力系统的重要组成部分。

电力系统自动化--智能电网与智能变电站 ppt课件

电力系统自动化--智能电网与智能变电站  ppt课件

PPT课件
page26
“直采直跳”采样跳闸模式——过程层网络结构
运动通信管理机
监控系统
对时装置
继电保护1
测控装置2
继电保护2
测控装置3
继电保护3
保护跳闸也是通过本间隔的GOOSE跳闸网络,即直跳网络直 接出口不再通过网络交换机
PPT课件
page27
小结
1、智能电网概念
2、智能电网范畴
3、智能电网组成环节
站 控 层
B A
设备
IEC 61850 8 1
集中 保护A
集中 保护B
集中 保护A
集中 保护B
A B
电源监 控终端
安防监 控终端
IEC 61850 9 2
合并单元 过 程 层 合并单元
GOOSE
GOOSE
ECVT 电子式互感器
ECVT
智能 终端 智能 一次设备 常规 一次设备
站用交直 流电源
ECVT
SW/QF
ECVT
SW/QF
ECVT
SW/QF
110KV一次设备
35KV一次设备
10KV一次设备
SV网、GOOSE网、IEC 61588 网合并为一个物理网络,不需 要额外的对时系统
PPT课件
page24
智能变电站“三网合一”组网结构
站控层系统 继电保护1 继电保护2 继电保护3 对时装置
更有效地利用电能
分散式自动温度控制和负荷控制技术为用户侧智能化提供支撑
PPT课件
page9
智能电网组成—— 6 调度环节
智能电网在电网调度端的体现就是在分布式一体化平台支撑 实现电网基础信息的“统一建模,分层处理,集成应用” 深化大电网运行监控、安全预警和智能决策技术 构建坚强灵活的电力通信网络

电力系统配电自动化基础知识课件PPT

电力系统配电自动化基础知识课件PPT
,不需再建配电所等土建,投资节约,外形美观且与环境相协调,因此己被广泛采用。
四、监控主站端是整个系统的最后一个环节,系统中任何一个环节、一个局部出问题都会反映到主站端,因此,系统集成商的责任和
压力大,风险大。 发达国家: 99.
表、传感器在厂内连接调试完毕,不需
再建配电所等土建,投资节约,外形美 智能电网是已有新技术应用的综合与升华
配电主站系统 主站
SDH/MSTP/光纤
骨干层
接入层
子站 工业以太网
子站 处理机
交换机
工业以 太网
配电 终端
工业以 太网 光纤专网
子站 无线专网
通信管理机
无线主设备
子站 无线公网
通信管理机
无线主设备
无线专网
无线公网
无线从 设备
配电 终端
无线从 设备
配电 终端
无线从 设备
配电 终端
无线从 设备
配电 终端
箱式变变电站:简称箱变,是一种将配 优点是占地面积小,可以工厂化生产,现场安装施工快,节省了二次部分的接线,所有开关及二次仪表、传感器在厂内连接调试完毕
,不需再建配电所等土建,投资节约,外形美观且与环境相协调,因此己被广泛采用。
电变压器、中压环网开关、低压开关按 与一次设备配合,使配电网安全、可靠、经济地运行,保证对用户的供电质量。
目录
电力系统基本概念 配电自动化基础知识 智能电网基本概念 自动化工程项目的特点 个人的观点
0
电力系统基本概念
电力系统的构成
发电
输电
变电
配电
用电
2
基本概念
电力系统:发电设备、升压及降压变电站、电力线 路、用电设备及保护、测控设备

电力系统自动化ppt1

电力系统自动化ppt1

1.什么是发电机的并列运行?同步发电机的并列操作分为哪两种,各自的定义及适用的情况?进行自动准同期并列应该满足的条件?发电机的并列运行是指在电力系统中,如果发电机转子都已相同的电角速度运转,或各发电机转子间的相对电角度不超过允许值得运行方式。

同步发电机的并列操作分为准同期并列和自同期并列两种。

准同期并列是将待并发电机组加上励磁电流,在符合并列条件时进行并网操作(先励磁,后并网),一般情况下采用准同期的方法将发电机组并入电网。

自同期并列操作是将未加励磁电流的发电机升速至接近于电网频率,在滑差角频率不超过允许值时进行并网操作(先并网,后励磁),应用较少,在事故情况下为迅速投入水轮机组才采用。

准同期满足的条件:a)待并发电机频率与母线频率相等,即滑差(频差)为零,;b)断路器主触头闭合瞬间,待并发电机电压与母线的瞬时相角差为零,即角差为零,,;c)待并发电机电压与母线电压幅值相等,即压差为零,。

自动准同期装置的功能a)压差和滑差满足,提前(恒定越前时间)发合闸命令;b)当滑差和压差不合格时,能自动对待并发电机均频、均压。

2.恒定越前时间的含义?数值角差的含义?线性整步电压的定义及物理意义?线性整步电压如何对滑差和压差进行检查?恒定越前时间:同期装置中所取提前量是某一恒定时间信号,即在脉动电压在到达相角差为0之前的时刻发出合闸信号。

数值角差:在有滑差的情况下,母线电压与发电机电压之间的相角差为时间t的函数,即:。

其预报计算方法有:1、微分预报法;2、积分预报法。

线性整步电压:指幅值在一周期内与角差σ分段按比例变化的电压。

物理意义:只反映发电机与母线电压间的相角特性,与发电机电压和系统电压的幅值无关。

形成电路:1、整形电路;2、相敏电路;3、滤波电路。

(3)滤波电路线性整步电压对滑差和压差的检查p15~16 期中内容3.微机自动准同期装置的合闸原理?模拟式自动准同期装置的合闸原理?(了解框图)微机自动准同期装置的合闸原理p17模拟式自动准同期装置的合闸原理p18期中内容4发电机同期操作实验注意事项?解列步骤?对数据的分析。

电力系统自动化.ppt

电力系统自动化.ppt

交变电势的产生:由于电枢绕组与主磁场之间 的相对切割运动,电枢绕组中将会感应出大小 和方向按周期性变化的三相对称交变电势。通 过引出线,即可提供交流电源。
第三章 同步发动机励磁自动控制系统
第一节 励磁自动控制系统
========基本知识点======== 一、同步发电机励磁自动控制系统的组成 二、励磁控制系统的基本任务 三、励磁系统的任务与要求
6、信息就地处理的自动化系统的特点 对电力系统运行的情况作出快速反应,
但由于信息的有限性,不能以全局的角度处 理问题。
一般只能作“事后”处理,而不能做 “事先”处理。 7、信息集中处理的自动化系统(即电网调度 自动化系统)的作用 (2)可以通过设在发电厂、变电站的远方终 端采集电网运行的实时信息,通过信道传输 到设置在调度中心的主站,主站根据收到的 全网信息,对电网的状态进行安全分析、
电力系统自动化
第一章概述 第二章同步发电机的同步并列 第三章同步发动机励磁自动控制系统
第一章 概述
电力系统运行与调度自动化
1、电力系统的构成 由发电厂、输电线路、配电系统及符合组
成,并由调度中心对全系统运行进行统一管理。 2、电力系统调度的基本任务
为保证供电质量和电力系统的可靠性和经 济性,系统的调度控制中心必须及时而准确地 掌握全面的运行情况,随时进行分析,做出正 确的判断和决策,必要时采取相应的措施,及 时处理事故和运行情况,以保证电力系统安全、 经济、可靠运行。
主磁场的建立:励磁绕组通以直流励磁电流, 建立极性相间的励磁磁场,即建立起主磁场。
载流导体:三相对称的电枢绕组充当功率 绕组,成为感应电势或者感应电流的载体。
切割运动:原动机拖动转子旋转(给电机输入 机械能),极性相间的励磁磁场随轴一起旋转 并顺次切割定子各相绕组(相当于绕组的导体 反向切割励磁磁场)

电力系统自动装置绪论PPT课件

电力系统自动装置绪论PPT课件

2、调度自动化
(2)、高级应用
(1)、状态估计 (2)、潮流计算
……
page7
第7页/共21页
2021/7/1
电力系统自动化的内容
第四层
第三层 第二层 第一层
协调、安全调度
寻优功能 监督功能 控制器 被控设备
寻优功能 监督功能 控制器 被控设备
page8
第8页/共21页
2021/7/1
电力系统自动化的重要性
先进的自动化技术
目标:电力系统的安全、可靠、经济运行
page13
第13页/共21页
2021/7/1
电力系统自动化的重要性
电磁暂态
Electromagnetic Switching Transient
机电暂态
Transient stability(angle and voltage)
系统稳态运行
Power system operation
第16页发展过程
☆综合自动化特点:
利用计算机技术、通信技术实现对系统的自动监测、保 护、控制,以及对系统运行情况的自动分析和处理。
电力系统 信息
电力系统 自动装置
YX,YC YK,YT
电力系统 远动和 通信装置
YX,YC YK,YT
信息处理
确定数学模 型
做出控制决策
电压稳定 Long term voltage stability
0.001 0.01
0.1
1
10
100
1000 Sec.
继电保护范围 自动装置范围
调度自动化范围
page14
第14页/共21页
2021/7/1
电力系统自动化的发展过程

电力系统自动化第三版PPT课件

电力系统自动化第三版PPT课件

编辑版pppt
15
提高稳定性
系统在扰动后,系统能够恢复到原来的运行状态或者 过渡到另一个新的运行状态,则称系统是稳定的。
通常将电力系统的稳定性问题分为三类:静态稳定 (Steady State Stability)、和暂态稳定(Transient Stability)和动态稳定(Dynamic Stability)。
编辑版pppt
7
一般 G 很小,可近似认为 cosG1,可得简化的运算式为
E qU GIQXd
(2-2)
(2-2)式说明,负荷的无功电流是造成 E q 和 U G 幅值 差的主要原因,发电机的无功电流越大,两者之间的差值也 越大。
由(2-2)式可以看出,同步发电机的外特性必然是下降 的。当励磁电流一定时,发电机端电压随无功负荷增大而下 降。
T e(s)
编辑版pppt
25
PGmax
0.75 0.70
0.65
0.60
Te 0.1s
Te 0.8s
从图2-11的强励倍数与 暂态稳定极限功率之间的 关系中,可以说明当励磁 系统既有快速响应特性又 有高强励倍数时,才对改 善电力系统暂态稳定有明 显的作用。
0.55
0
1
2
3
4
K
图2-11 强励倍数与暂态 稳定极限功率的关系
EqsinK2



A
E q2
Eq
E q1 A'
K2

IQ2
B

IP

IG2
'

x jI G2 •
d
UU• GG UU•

x j I G1 d
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沿海核电
South
East 三峡地下电站 270 280
400
450
长沙300 380
南昌 360
200
280 福州
沿海核电 温州
170
China 赣州
410
沿海核电
泉州
Taiwan
China
Legend
AC 500kV AC±810000k0VkV
AC 750kV
三、 电力系统的运行状态与事故
正常运行状态 (满足负荷要求,有一定的安全储备)
四、 电力系统自动化技术
电网监控与调度自动化系统 控制整个电力系统的运行方式,使整个电
力系统在正常状态下能满足安全优质和经济地 向用户供电,在事故状态下能迅速消除故障的 影响和恢复正常供电。由三部分组成:
调度端控制决策系统; 信息传输系统; 厂、站基础自动化系统。
四、 电力系统自动化技术
电网监控与调度自动化系统 可以通过设置在发电厂和变电站的远动
四、 电力系统自动化技术
电力系统状态估计SE(State Estimator)功能 网络接线分析(网络拓扑) 潮流计算 状态估计 负荷预测 短路电流计算 电压/无功优化
四、 电力系统自动化技术
电网监控与调度自动化系统由三个子部分 组成:
调度端 SCADA/EMS系统
信息传输系统
厂、站基础自动化系统
四、 电力系统自动化技术
调度端能量管理系统(EMS) 数据采集与控制(SCADA) 自动发电与经济调度(AGC、AVC、EDC) 系统状态估计与安全分析(SE/SA) 调度模拟培训(DTS)
三、 电力系统的运行状态与事故
将会引起静态稳定的破坏,即所谓的电压崩溃。 系统稳定破坏引起的事故 电力系统振荡时,电力设备经受周期性的冲
击。负荷得受到严重影响,特别是振荡中心附近。 可能发展成大的系统事故―――解列为功率不平 衡的局域网。
电力设备过负荷引起事故
三、 电力系统的运行状态与事故
防止系统性事故的“三道防线”
四、 电力系统自动化技术
数据采集和监视(SCADA) SCADA(Supervisory Control And Data Acquisition) 是EMS的基础,也是其早期的功能。主要有:数 据采集、越限报警、事件记录、事故追忆、远方控 制等功能。
四、 电力系统自动化技术
自动发电控制(AGC)和经济调度控制(EDC)
安全
恢复状态 (重新并列) 恢复对用户供电
系统崩溃 (切机、切负荷
断开线路)
储备系统减小或 干扰概率增大
警戒状态 (预防性控制)
不安全
由于外界干扰 使电压、频率、潮流越限
解列
紧急状态 (紧急控制)
危险
系统解列
系统保持原状
电力系统运行状态
三、 电力系统的运行状态与事故
系统频率下降引起事故和事故扩大 电源与负荷不能平衡,同时又无旋转备用容 量或低频切负荷措施时,系统频率就会下降, 可能导致恶性循环,出现频率崩溃。 系统电压下降引起的事故 电力系统的电压水平是依靠系统无功功率 电源来维持的。电力系统中无功电源短缺时, 电网电压就会下降。当系统电压下降到某一程 度,某些枢纽变电站的母线电压遇到一定扰动
徐州煤电 450
东南郊
400 南阳
140
淮南煤电
470
300
300
260
徐州
沿海核电
160 连云港
270 270
滁1州70 泰州
70 南京
170
100
1无30锡150上海西北 170 上海西南
Central China 300 重庆360
恩施 300 荆州
220
武汉 440
芜湖 290
杭北 240
金华
蒙西煤电II
蒙西煤电I
100
420
280
蒙西煤电V 宁夏煤电
陕北
银川东
陕北煤电220
300
石家庄 晋中煤电
240
120 天津
300
250
沿海核电
宁东260 靖边
460 晋中300 晋东南煤电 100
340 豫北
济南
青岛 280
300
平凉
400
晋东南
360
乾县 渭北
晋东南煤电II
300
×西安东 330 驻马店
AGC(Automatic Generation Control)的功能: 独立电网,AGC功能的目标是自动控制网内发 电机组的出力,以保持电网频率为稳定值。 跨区域互联网,除自动控制电网频率为稳定值, 还要对联络线功率进行控制。 EDC(Economic Dispatch Control)通常与AGC 相配合使用。
第一道防线的技术措施主要是继电保护(包括重合 闸,电气制动等)
第二道防线主要是按稳定判据决定的切机,切负荷, 以及连动切机,切负荷等,在第一道防线的技术措 施外,必须丢掉部分负荷
第三道防线主要是低频,低压减负荷,振荡解列等。 当系统已经失去稳定,为使系统不演变为大面积停 电和系统崩溃而采取的措施。振荡解列应考虑功率 自身平衡的“孤岛”
三、 电力系统的运行状态与事故
大停电的威胁 2000年后,美国、加拿大、意大利等相 继发生了电网的大停电故障。
四、 电力系统自动化技术
电力系统自动化的概念 简单说,就是根据电力系统本身特有的规 律,应用自动控制技术,采用自动控制装置来 自动实现电力生产的安全、可靠运行。 按照电力系统各个组成部分,发、输、配、 用,以及整体性、一体化的特点,可将电力系 统自动化分成以下几个部分:
电力系统自动化技术 及其发展概况
中国的能源情况
经济发展区域不平衡,能源分布东西不平衡,中西 部能源丰富,东部经济发达,进入工业化中后期 。
2020年全国联网示意图
中国的能源情况。特高压,直流输电建设改变能源 分布不均给经济发展带来的障碍。
远东(俄)
呼盟煤电
Tibet
乌鲁木齐主网
哈密电厂 × 哈密二、三厂
安西
张掖
Northwest 永登 白银
西宁
拉西瓦
官亭 兰州东
雅江水电
川西水电
川西水电 雅龙江梯级
雅安 150
乐山
金沙江I期 金沙江II期
Yunnan
锡盟煤电I 锡盟煤电II
Northeast
North锡盟
China 蒙西煤电IV
480 480
蒙西煤电III 蒙西
450 北京东 150
唐山 沿海电源
沈阳
终端(RTU)采集电网运行的实时信息,通 过信道传输到设置在调度中心的主站上,主 站根据收集到的全局信息,对电网的运行状 态进行:
安全性分析 负荷预测 自动发电控制 经济调度
四、 电力系统自动化技术
电网监控与调度自动化系统 当系统发生故障,调度自动化系统根据保护
及断路器动作信息,分析事故原因,并采取相 应的措施使电网恢复供电。
相关文档
最新文档