5MOS场效应管的特性
mos场效应管分类
mos场效应管分类MOS场效应管是一种重要的电子器件,广泛应用于各种电路中。
它由金属-氧化物-半导体构成,具有优良的放大特性和开关特性。
根据不同的工作模式和结构特点,MOS场效应管可以分为多种类型。
本文将对常见的几种MOS场效应管进行分类介绍。
1.增强型N沟道MOS场效应管(NMOS)增强型N沟道MOS场效应管是一种常见的MOS管。
它的基本结构由N型半导体材料构成,其中有一个P型掺杂区域作为沟道。
当给定一个正的门电压时,该电压会吸引P型掺杂区域的载流子,形成一个导电通道,从而实现电流的流动。
因此,NMOS管可以作为开关或放大器使用。
2.增强型P沟道MOS场效应管(PMOS)增强型P沟道MOS场效应管与NMOS管相反,它的基本结构由P 型半导体材料构成,其中有一个N型掺杂区域作为沟道。
当给定一个负的门电压时,该电压会吸引N型掺杂区域的载流子,形成一个导电通道,从而实现电流的流动。
因此,PMOS管也可以作为开关或放大器使用。
3.增强型双极性MOS场效应管(CMOS)增强型双极性MOS场效应管结合了NMOS和PMOS管的特点,由NMOS和PMOS管并联组成。
CMOS具有很高的抗干扰能力和低功耗特性,广泛应用于数字集成电路和微处理器等领域。
4.去耦MOS场效应管(DMOS)去耦MOS场效应管是一种特殊的MOS管,它主要用于功率放大器和开关器件中。
DMOS管具有较高的耐压能力和较低的导通电阻,可以实现高功率输出。
5.隧道氧化物MOS场效应管(TOM)隧道氧化物MOS场效应管是一种特殊的MOS管,它的氧化层非常薄,可以实现电流的隧穿效应。
TOM管常用于存储器和传感器等应用中。
以上是几种常见的MOS场效应管分类。
每种MOS管都有自己独特的特点和应用领域。
了解不同类型的MOS管对于电子工程师和电路设计师来说是非常重要的,可以根据实际需求选择合适的MOS管来设计和优化电路。
同时,随着科技的不断发展,新型的MOS场效应管也在不断涌现,为电子技术的发展带来了更多的可能性。
MOS 场效应管的工作原理及特点
MOS 场效应管的工作原理及特点场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。
有N沟道器件和P 沟道器件。
有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。
IGFET也称金属-氧化物-半导体三极管MOSFET(Metal Oxide SemIConductor FET)。
MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。
场效应管有三个电极:D(Drain) 称为漏极,相当双极型三极管的集电极;G(Gate) 称为栅极,相当于双极型三极管的基极;S(Source) 称为源极,相当于双极型三极管的发射极。
增强型MOS(EMOS)场效应管道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。
在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。
P型半导体称为衬底(substrat),用符号B表示。
一、工作原理1.沟道形成原理当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。
当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。
耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。
进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。
了解MOS管,看这个就够了!
了解MOS管,看这个就够了!MOS管学名是场效应管,是⾦属-氧化物-半导体型场效应管,属于绝缘栅型。
本⽂就结构构造、特点、实⽤电路等⼏个⽅⾯⽤⼯程师的话简单描述。
其结构⽰意图:解释1:沟道上⾯图中,下边的p型中间⼀个窄长条就是沟道,使得左右两块P型极连在⼀起,因此mos管导通后是电阻特性,因此它的⼀个重要参数就是导通电阻,选⽤mos管必须清楚这个参数是否符合需求。
解释2:n型上图表⽰的是p型mos管,读者可以依据此图理解n型的,都是反过来即可。
因此,不难理解,n 型的如图在栅极加正压会导致导通,⽽p型的相反。
解释3:增强型相对于耗尽型,增强型是通过“加厚”导电沟道的厚度来导通,如图。
栅极电压越低,则p型源、漏极的正离⼦就越靠近中间,n衬底的负离⼦就越远离栅极,栅极电压达到⼀个值,叫阀值或坎压时,由p型游离出来的正离⼦连在⼀起,形成通道,就是图⽰效果。
因此,容易理解,栅极电压必须低到⼀定程度才能导通,电压越低,通道越厚,导通电阻越⼩。
由于电场的强度与距离平⽅成正⽐,因此,电场强到⼀定程度之后,电压下降引起的沟道加厚就不明显了,也是因为n 型负离⼦的“退让”是越来越难的。
耗尽型的是事先做出⼀个导通层,⽤栅极来加厚或者减薄来控制源漏的导通。
但这种管⼦⼀般不⽣产,在市⾯基本见不到。
所以,⼤家平时说mos管,就默认是增强型的。
解释4:左右对称图⽰左右是对称的,难免会有⼈问怎么区分源极和漏极呢?其实原理上,源极和漏极确实是对称的,是不区分的。
但在实际应⽤中,⼚家⼀般在源极和漏极之间连接⼀个⼆极管,起保护作⽤,正是这个⼆极管决定了源极和漏极,这样,封装也就固定了,便于实⽤。
我的⽼师年轻时⽤过不带⼆极管的mos管。
⾮常容易被静电击穿,平时要放在铁质罐⼦⾥,它的源极和漏极就是随便接。
解释5:⾦属氧化物膜图中有指⽰,这个膜是绝缘的,⽤来电⽓隔离,使得栅极只能形成电场,不能通过直流电,因此是⽤电压控制的。
在直流电⽓上,栅极和源漏极是断路。
MOS场效应管特性曲线及主要参数
12
Lec 05
华中科技大学电信系 张林
MOSFET是如何实现信号放大的?
与BJT类似,FET也有器件参数,选用时必须以此为依据
二、交流参数
iD
1. 输出电阻rds
rds
vDS iD
VG S
rds=
1 斜率
Q VGSQ
由 iD Kn (vGS VT )2 (1 vDS )
得
vDS
rds
[ λKn (vGS
vDS=vGS-VT(或 vGD=vGS-vDS=VT)
可变电阻区
3V
2 (非饱和区)
① 截止区
1.5
当vGS<VT时,导电沟道 1
尚 未 形 成 , iD = 0 , 为 截
止工作状态。
0.5
饱和区 2.5V
2V vGS=1.5V
截止区
0 2.5 5 7.5 10
vDS/V
2
Lec 05
华中科技大学电信系 张林
MOSFET是如何实现信号放大的?
其它类型的MOSFET —— N沟道耗尽型MOSFET
二氧化硅绝缘层中掺有大量的正离子,已存在导电沟道
可以在正或负的栅源电压下工作,而且基本上无栅流
s
g 掺杂后具有正 d
离子的绝缘层 二氧化硅
d
++++++++++
N+
N+
耗尽层 N 型沟道 P
衬底 g
B
s
B 衬底引线
特性方程 iD Kn (vGS VT )2 (非线性, =0)
可变电阻区工作条件 vGS >VT , vDS <(vGS-VT)
特性方程 iD 2Kn (vGS VT ) vDS
六种场效应管
六种场效应管一、结型场效应管结型场效应管是一种单极场效应管,其工作原理是基于栅极电压改变二氧化硅(SiO2)层中电荷分布来实现对漏极电流的控制。
它的工作特点是在工作过程中不需要很大的功耗,并且具有良好的噪声特性。
在电子设备中,结型场效应管通常用于放大、振荡、开关等电路中。
二、绝缘栅型场效应管绝缘栅型场效应管是一种单极场效应管,其工作原理是通过在二氧化硅(SiO2)绝缘层上覆盖金属薄膜来实现对源极和漏极之间的控制。
由于没有栅极氧化层与半导体之间的电容,因此其输入电阻非常高,并且具有低噪声特性。
在电子设备中,绝缘栅型场效应管通常用于放大、振荡、开关等电路中。
三、MOS型场效应管MOS型场效应管是一种单极场效应管,其工作原理是通过在金属-氧化物-半导体(MOS)结构上施加电压来改变电荷分布实现对漏极电流的控制。
它的优点是输入电阻高、驱动电流小、功耗低、易于集成等。
在电子设备中,MOS型场效应管通常用于放大、振荡、开关等电路中。
四、高电子饱和迁移率型场效应管高电子饱和迁移率型场效应管是一种具有高电子饱和迁移率的单极场效应管。
它的工作原理是通过改变栅极电压来改变半导体内部的电子饱和迁移率实现对漏极电流的控制。
它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。
五、高电子饱和迁移率型场效应管高电子饱和迁移率型场效应管是一种具有高电子饱和迁移率的双极场效应管。
它的工作原理是通过改变栅极电压来改变半导体内部的电子饱和迁移率实现对漏极电流的控制。
它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。
六、结型双极型场效应管结型双极型场效应管是一种双极场效应管,其工作原理是基于栅极电压改变半导体内部的电子和空穴浓度实现对漏极电流的控制。
它的优点是具有高速响应和低功耗特性,适用于高速数字电路和模拟电路中。
同时,它还具有较好的噪声特性和稳定性,适用于各种复杂的电子设备中。
MOSFET_MOS管特性参数的理解
MOSFET_MOS管特性参数的理解MOSFET(金属氧化物半导体场效应晶体管)是一种常用的半导体器件,具有较高的性能和功耗优势。
了解MOSFET的特性参数对于设计和应用电子电路至关重要。
下面将从基本结构、特性参数和其理解等方面进行详细阐述。
MOSFET 的基本结构如下:它由源极、漏极、栅极和底座四个引脚组成,其中源极(source)和漏极(drain)与半导体结成二极管,栅极(gate)则是介质氧化铝上的金属引脚。
其中金属层和介质氧化铝之间的结构形成了场效应管,因此被称为MOS管。
接下来是几个关键的特性参数:1. 阈值电压:阈值电压(Threshold Voltage,简称Vth)是MOSFET 的一个重要参数,它表示了在栅极和漏极之间形成导电路径的最低电压。
当栅极电压高于Vth 时,MOSFET 开始工作并形成导通通道。
2. 饱和电流:饱和电流(Saturation Current,简称Isat)是指在MOSFET 处于饱和工作区时的漏极电流,也称为最大漏极电流。
在饱和区,漏极电流与栅极电压成非线性关系。
3. 输出电导:输出电导(Output Conductance,简称gds)表示了MOSFET 在饱和状态时,输出电流变化对栅极漏极电压的敏感程度。
较高的输出电导意味着MOSFET 在饱和区的输出电流更敏感,从而使其在放大器等应用中更可靠。
4. 线性区增益:线性区增益(Linear Region Gain,简称gm)表示MOSFET 在线性工作区时,输入阻抗和输出阻抗间的关系。
该参数也可以用来衡量MOSFET 对输入信号的放大能力。
5. 输出电容:输出电容(Output Capacitance,简称Coss)表示栅极和漏极之间的电容。
这个电容会导致MOSFET 在高频应用中的频率响应减弱,影响其性能。
以上只是几个主要的特性参数,实际上MOSFET 还有很多其他的参数,如输入电容(Input Capacitance)、迁移率(Mobility)、开启延迟(Turn-on Delay)和反向转移电容(Reverse Transfer Capacitance)等。
mos管 场效应管
mos管场效应管摘要:1.引言2.什么是MOS 管和场效应管3.MOS 管和场效应管的工作原理4.MOS 管和场效应管的特性比较5.MOS 管和场效应管的应用领域6.结论正文:MOS 管和场效应管是两种不同类型的半导体器件,它们都具有放大和开关等功能,广泛应用于各种电子设备中。
下面将从它们的定义、工作原理、特性比较和应用领域等方面进行详细介绍。
1.引言MOS 管(Metal-Oxide-Semiconductor Transistor,金属- 氧化物- 半导体晶体管)和场效应管(Field Effect Transistor,场效应晶体管)是两种常见的半导体器件,它们在现代电子设备中扮演着重要角色。
本文将对这两种器件进行详细解析,以帮助读者更好地理解它们的工作原理和应用。
2.什么是MOS 管和场效应管MOS 管是一种三端半导体器件,由金属导电层、氧化物绝缘层和半导体基片组成。
它的主要功能是控制电路中的电流流动,具有高输入阻抗、低噪声和低功耗等特点。
场效应管是一种四端半导体器件,由源极、漏极、栅极和衬底组成。
它的主要功能是通过改变栅极电势来调节源漏电流,具有响应速度快、驱动能力强和可控制的电流增益等特点。
3.MOS 管和场效应管的工作原理MOS 管的工作原理:当栅极施加正向电压时,栅极和源极之间的绝缘层上会形成一个正向电场。
这个电场可以吸引源极处的电子,使其向栅极方向运动。
如果这个电子流足够大,就会形成一个电流,从而导致MOS 管的导通。
场效应管的工作原理:当栅极施加正向电压时,栅极和源极之间的绝缘层上会形成一个正向电场。
这个电场会使得源极处的电子被吸引到靠近栅极的位置,从而减小源极和漏极之间的电阻。
如果栅极电压足够大,源漏电流将显著增加,从而导致场效应管的导通。
4.MOS 管和场效应管的特性比较MOS 管和场效应管在特性上有一定的差异。
MOS 管具有更高的输入阻抗、更低的工作电压和更小的功耗,但驱动能力较弱;而场效应管具有更强的驱动能力、更高的电流增益和更快的响应速度,但输入阻抗和功耗相对较差。
MOS管参数详解和驱动电阻选择
MOS管参数详解和驱动电阻选择MOS管,全名金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor),是一种广泛应用于电子电路中的晶体管。
它具有低功耗、高开关频率、低电压驱动、高噪声抑制等特点,常被用作功率放大器和开关。
下面将详细解析MOS管的一些重要参数及其影响,以及驱动电阻的选择。
1. 阈值电压(Threshold Voltage):阈值电压是指当MOS管工作在放大区时,控制电压达到的临界值。
它决定了MOS管的导通条件,越小表示MOS管对控制电压的敏感度越高。
2. 栅极电容(Gate Capacitance):栅极电容是指栅极和源极之间的电容。
它是MOS管的核心特性之一,决定了MOS管的响应速度。
栅极电容越小,MOS管的开关速度越快。
3. 输出电容(Output Capacitance):输出电容是指输出端和源极之间的电容。
它是MOS管的另一个重要特性,影响MOS管的开关频率和功耗。
输出电容越大,MOS管的开关频率越低,功耗越大。
4. 导通电阻(On-Resistance):导通电阻是指MOS管导通时的电阻值。
它是MOS管的一个重要参数,影响功率损耗和效率。
导通电阻越小,MOS管的功率损耗和热量损失越小。
5. 驱动电阻(Drive Resistance):驱动电阻是指用于驱动MOS管的电路中的电阻。
驱动电阻的选择对MOS管的性能和可靠性至关重要。
一般来说,驱动电阻不能过大,以保证MOS管在短时间内能够迅速充放电,提高开关速度;同时也不能过小,以避免过大的电流流过驱动电路,降低效率。
在选择驱动电阻时,需要考虑以下几个因素:1.驱动电压:驱动电阻的阻值应根据MOS管的驱动电压来确定。
一般来说,驱动电阻的阻值应小于MOS管的输入电阻,以确保能够提供足够的电流来驱动MOS管。
2.驱动能力:驱动电阻应具有足够的驱动能力,即能够提供足够的电流来驱动MOS管的栅极。
第五章 MOS场效应管的特性
1 1 C C C Si ox
1
+
N+ N+ N+
G N+ N+
以SiO2为介质的电容器—Cox 以耗尽层为介质的电容器—CSi
MOS管的电容
MOS电容—束缚电荷层厚度
耗尽层电容的计算方法同 PN 结的耗尽层电容的计算 方法相同,利用泊松方程
2
1
Si
Q qNAWL X p WL 2 Si qNA
CD = Cdb + 0 + Cdb
1 W 2 I ds Vgs VT 2 tox L L
MOS管的电容
深亚微米CMOS IC工艺的寄生电容
21 40 86 9 15 48 36 14
Metal3 Metal2 Metal1
29 38 39 62 46
在耗尽层中束缚电荷的总量为
2 Si Q qNA X pWL qN AWL WL 2 Si qNA q NA
是耗尽层两侧电位差的函数,耗尽层电容为
dQ 1 CSi WL 2 Si qNA dv 2
1 2
Si qNA WL 2
是一个非线性电容,随电位差的增大而减小。
这时,栅极电压所感应的电荷Q为,
Q=CVge 式中Vge是栅极有效控制电压。
MOS管特性
电荷在沟道中的渡越时间
非饱和时(沟道未夹断),在漏源电压Vds作用 下,这些电荷Q将在时间内通过沟道,因此有
L L2 Eds Vds L
为载流子速度,Eds= Vds/L为漏到源方向电场强度,Vds为漏 到源电压。 为载流子迁移率: n n µ n = 650 cm2/(V.s) 电子迁移率(NMOS) µ p = 240 cm2/(V.s) 空穴迁移率(PMOS)
场效应管的问题点解答
场效应管的问题点解答1 场效应管的性能与双极型三极管比较具有哪些特点?答:场效应管是另一种半导体放大器件。
在场效应管中只是多子参与导电,故称为单极型三极管;而普通三极管参与导电的,既有多数载流子,又有少数载流子,故称为双极型三极管。
由于少数载流子的浓度易受温度的影响,因此,在温度稳定性、低噪声等方面前者优于后者。
2.双极型三极管是电流控制器件,通过控制基极电流到达控制输出电流的目的。
因此,基极总有一定的电流,故三极管的输人电阻较低;场效应管是电压控制器件,其输出电流决定于栅源极之间的电压,栅极基本上不取电流,因此,它的输入电阻很高,可达109~1014Ω。
高输入电阻是场效应管的突出优点。
3.场效应管的漏极和源极可以互换,耗尽型绝缘栅管的栅极电压可正可负,灵活性比双极型三极管强。
4 场效应管和三极管都可以用于放大或作可控开关。
但场效应管还可以作为压控电阻使用,可以在微电流、低电压条件下工作。
且便于集成。
在大规模和超大规模集成电路中应用极为广泛。
2 场效应管的伏安特性如何表示?试以N沟道结型场效应管为例,说明场效应管的输出特性曲线与双极型三极管的输出特性有和区别?答:场效应管的伏安特性用输出特性(又称漏极特性)Id=f(Vds)|Vgs=常数和转移特性Id=f(Vgs)|Vds=常数表示。
它们都反映了场效应管工作的同一物理过程,转移特性可以直接从输出特性上用作图法?一对应地求出。
N沟道结型场效应管的输出特性曲线与双极型三极管的输出特性相比有类似之处,但有区别,详见表 1.3.2。
3 何为场效应管的开启电压Vt和夹断电压Vp? 在图1.3.3(a)和(b)所示场效应管的输出特性曲线上如何确定其值?答:对于增强型绝缘栅型场效应管(MOSFET),在Vgs=0时不存在导电沟道,只有当Vgs达到开启电压Vt时才有漏极电流Id。
因此,在输出特性中, Id大于或等于零(即开始出现Id)时所对应的Vgs值即为开启电压计。
场效应管讲解
导电沟道
2021/6/24
N沟道增强型
D
S
4
SG D
N
N
P
予埋了导 电沟道
2021/6/24
D G
S
N 沟道耗尽型
5
SG D
P
P
N
D
G S
P 沟道增强型
2021/6/24
6
SG D
P
P
N
予埋了导 电沟道
2021/6/24
D
G S
P 沟道耗尽型
7
二、MOS管的工作原理
1. 开启沟道
VGS控制沟道宽窄 增强型MOS管
vDS=0V时 vDS
21
vDS=0V时 但当vGS较小时,耗尽
vGS越大耗尽区越宽, 沟道越窄,电阻越大。
D
iD区电宽沟度 道有 。限 DS,间存相在当导于 线性电阻。
N
vDS
G NP NP
vGS
2021/6/24
S
22
VGS达到一定值时 (夹断电压VP),耗 尽区碰到一起,DS
间被夹断,这时,即
(1)MOS管有四种基本类型;
(2)增强型的MOS管的vGS必须超过一定的值以使沟 道形成;
耗尽型的MOS管使形成沟道的vGS可正可负; (3)MOS管的输入阻抗特别高
(4)衡量场效应管的放大能力用跨导 单位:ms
gm
I D VGS
VDS
2021/6/24
gm 2Kn (vGS VT ) (5.1.18)
C2
C1
+
vi
Rg
-
iD
+
vGS -
R
CS
场效应管的特性
场效应管的特性根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件。
[编辑本段]1.概念: 场效应管场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件.特点:具有输入电阻高(100MΩ~1 000MΩ)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,现已成为双极型晶体管和功率晶体管的强大竞争者.作用:场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器.场效应管可以用作电子开关.场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. [编辑本段]2.场效应管的分类: </B>场效应管分结型、绝缘栅型(MOS)两大类按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种.按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类. [编辑本段]3.场效应管的主要参数: </B>Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流.Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压.Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压.gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数.BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS.PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量.IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSMCds---漏-源电容Cdu---漏-衬底电容Cgd---栅-漏电容Cgs---漏-源电容Ciss---栅短路共源输入电容Coss---栅短路共源输出电容Crss---栅短路共源反向传输电容D---占空比(占空系数,外电路参数)di/dt---电流上升率(外电路参数)dv/dt---电压上升率(外电路参数)ID---漏极电流(直流)IDM---漏极脉冲电流ID(on)---通态漏极电流IDQ---静态漏极电流(射频功率管)IDS---漏源电流IDSM---最大漏源电流IDSS---栅-源短路时,漏极电流IDS(sat)---沟道饱和电流(漏源饱和电流)IG---栅极电流(直流)IGF---正向栅电流IGR---反向栅电流IGDO---源极开路时,截止栅电流IGSO---漏极开路时,截止栅电流IGM---栅极脉冲电流IGP---栅极峰值电流IF---二极管正向电流IGSS---漏极短路时截止栅电流IDSS1---对管第一管漏源饱和电流IDSS2---对管第二管漏源饱和电流Iu---衬底电流Ipr---电流脉冲峰值(外电路参数)gfs---正向跨导Gps---共源极中和高频功率增益GpG---共栅极中和高频功率增益GPD---共漏极中和高频功率增益ggd---栅漏电导gds---漏源电导K---失调电压温度系数Ku---传输系数L---负载电感(外电路参数)LD---漏极电感Ls---源极电感rDS---漏源电阻rDS(on)---漏源通态电阻rDS(of)---漏源断态电阻rGD---栅漏电阻rGS---栅源电阻Rg---栅极外接电阻(外电路参数)RL---负载电阻(外电路参数)R(th)jc---结壳热阻R(th)ja---结环热阻PD---漏极耗散功率PDM---漏极最大允许耗散功率POUT---输出功率PPK---脉冲功率峰值(外电路参数)to(on)---开通延迟时间td(off)---关断延迟时间ti---上升时间ton---开通时间toff---关断时间tf---下降时间trr---反向恢复时间Tj---结温Tjm---最大允许结温Ta---环境温度Tc---管壳温度Tstg---贮成温度VDS---漏源电压(直流)VGS---栅源电压(直流)VGSF--正向栅源电压(直流)VGSR---反向栅源电压(直流)VDD---漏极(直流)电源电压(外电路参数)VGG---栅极(直流)电源电压(外电路参数)Vss---源极(直流)电源电压(外电路参数)VGS(th)---开启电压或阀电压V(BR)DSS---漏源击穿电压V(BR)GSS---漏源短路时栅源击穿电压VDS(on)---漏源通态电压VDS(sat)---漏源饱和电压VGD---栅漏电压(直流)Vsu---源衬底电压(直流)VDu---漏衬底电压(直流)VGu---栅衬底电压(直流)Zo---驱动源内阻η---漏极效率(射频功率管)Vn---噪声电压aID---漏极电流温度系数ards---漏源电阻温度系数[编辑本段]4.结型场效应管的管脚识别: </B>判定栅极G:将万用表拨至R×1k档,用万用表的负极任意接一电极,另一只表笔依次去接触其余的两个极,测其电阻.若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极.漏极和源极互换,若两次测出的电阻都很大,则为N沟道;若两次测得的阻值都很小,则为P沟道.判定源极S、漏极D:在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极.用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极. [编辑本段]5.场效应管与晶体三极管的比较场效应管是电压控制元件,而晶体管是电流控制元件.在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计:晶体管:基极发射极集电极场效应管:栅极源极漏极要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。
场效应管的符号及特性
场效应三极管的特性曲线类型比较多, 根据导电沟道的不同,以及是增强型还是耗 尽型可有四种转移特性曲线和输出特性曲线,其电
压和电流方向也有所不同。如果按统一规定正方 向,特性曲线就要画在不同的象限。
为了便于绘制,将P沟道管子的正方向反过来 设定(电流方向)。有关曲线绘于下图之中。
N 沟 道
(2)夹断电压UGS(off) (或UP) 夹断电压是结型和耗尽型FET的参数,漏极电流约为
零时的UGS值 。即当UGS=UGS(off) 时,漏极电流为零(微小电
流)。
(3)饱和漏极电流IDSS 耗尽型场效应三极管, 当UGS=0时,产生预夹断时所对 应的漏极电流。
(4)直流输入电阻RGS(DC) 场效应三极管的栅源输入电阻的典型值,对于结型
场效应三极管 较小
较小,可有零温度系数点 几兆欧姆以上 易受静电影响
适宜大规模和超大规模集成 避免栅极悬空
最大漏源电压U(BR)DS 最大栅源电压U(BR)GS
(3)最大漏极功耗PDM 最大漏极功耗可由PDM= U (BR)DS IDM决定。
1.4.4 双极型和场效应型三极管的比较
结构
双极型三极管
NPN型 PNP型
C与E一般不可倒置使用
载Hale Waihona Puke 子 多子扩散少子漂移输入量
电流输入
控制 电流控制电流源CCCS(β)
场效应三极管
结型耗尽型 N沟道 P沟道 绝缘栅增强型 N沟道 P沟道 绝缘栅耗尽型 N沟道 P沟道 D与S(有的型号)可倒置使用
多子漂移 电压输入 电压控制电流源VCCS(gm)
噪声 温度特性 输入电阻 静电影响 集成工艺
双极型三极管 较大
受温度影响较大 几十到几千欧姆 不受静电影响 不易大规模集成
mos场效应管
mos场效应管MOS场效应管是半导体功率放大器的最重要的部件。
它拥有良好的低噪声特性,被广泛应用于声音、视频、电视和通讯系统中,以改善系统整体质量和增强系统性能。
MOS场效应管在20世纪60年代末由乔治斯坦和罗伯特比尔森发明,他们的研究证实了MOSFET在微型晶体管无源功率放大器中的重要性。
MOS场效应管是在现今的半导体部件中最重要的,它可以提供高输出功率、低噪声、低热量、低电压差应用中精确控制,并且是高效耐用的,具有对电磁污染抗拒性,可以实现更加可靠的电源供应系统。
MOS场效应管有两种类型:一种是增加型MOSFET,另一种是减少型MOSFET。
增加型MOSFET是电源输出或增益控制系统中的主要组件,它可以控制输出级的电流,从而控制输出功率;减少型MOSFET则控制输出级的电压,从而控制输出功率。
MOSFET在制造过程中采用的是活性元件的技术,这种技术在这种类型的MOS场效应管中拥有更好的性能,更突出的特性和更高的效率。
另外,由于MOSFET的占用空间小,因此,系统整体布局也能够得到更好的优化。
MOS场效应管有许多用途,尤其在频率控制和驱动系统中特别有用,它可以被用来驱动各种负载,包括电机、电磁阀、电热元件等等,在此之外,它还可以用作开关、变压器和发动机控制系统等等。
MOS场效应管的研究工作还在不断的深入开发,使它的性能变得更好、使用寿命更长、低噪声性能更强、功耗更低,同时又具有较强的抗干扰能力。
MOS场效应管不仅应用于传统的电源放大器,而且也可以应用于新兴的智能电源放大器,其中,电源放大器可以根据环境参数和输入的电压、电流值来实现自适应的输出,这样可以实现更快速的控制效果,抗干扰性更强,从而使整个系统的使用寿命更长。
从技术的角度看,MOS场效应管的发展推动了智能电源放大器的发展,更好的抗干扰性能和更精确的控制精度使它们在智能驱动、高精度检测、采集放大等领域发挥着重要作用。
总之,MOS场效应管是一种具有重要作用的半导体器件,它可以广泛应用于各种系统,并且可以提供良好的质量和性能。
MOS场效应管的特性
阈值电压VT
在工艺确定之后,阈值电压VT主要决 定于衬底的掺杂浓度: P型衬底制造NMOS,杂质浓度越大,需 要赶走更多的空穴,才能形成反型层, VT 值增大,因而需要精确控制掺杂浓度 如果栅氧化层厚度越薄,Cox越大,电荷的 影响就会降低。故现在的工艺尺寸和栅氧 化层厚度越来越小
当器件尺寸还不是很小时,这个ΔW影响还 小,但是器件缩小时,这个ΔW就影响很大
迁移率的退化
MOS管的电流与迁移率成正比,一般假定μ 为常数
实际上, μ并不是常数,它至少受到三个因 素的影响
温度 垂直电场 水平电场
特征迁移率μ0
电场强度
电场强度增加时,迁移率是减小的 电场有水平分量和垂直分量,因而迁移率
沟道很短、很窄,边沿效应对器件特性产 生很大的影响,最主要的是阈值电压减小
短沟道效应
短沟道效应
狭沟道效应引起的阈值电压的变化
沟道太窄,W太小,那么栅极的边缘电场也 引起Si衬底中的电离化,产生附加的耗尽层, 因而增加阈值电压
狭沟道效应
C ox
ox A tox
oxW L tox
Vgs增加达到VT值
C ( 1 1 )1达到最小值 Cox CSi
Vgs继续增加
C Cox
MOS管电容变化曲线
MOS电容计算
VGS<VT
沟道未建立,MOS管源漏沟道不通 Cg=Cgs+Cox Cd=Cdb
VGS>VT
MOS电容是变化的 MOS电容对Cg和Cd都有贡献,贡献大小取决于
-电压特性不变,Dennard等人提出了等比例缩小规律 等比例缩小规律即器件水平和垂直方向的参数以及电压按
MOS场效应晶体管的基本特性
MOSFET相比双极型晶体管的优点
(1)输入阻抗高:双极型晶体管输入阻抗约为几千欧,而 场效应晶体管的输入阻抗可以达到109~1015欧; (2)噪声系数小:因为MOSFET是依靠多数载流子输运电 流的,所以不存在双极型晶体管中的散粒噪声和配分噪声; (3)功耗小:可用于制造高集成密度的半导体集成电路; (4)温度稳定性好:因为它是多子器件,其电学参数不易 随温度而变化。 (5)抗辐射能力强:双极型晶体管受辐射后β下降,这是 由于非平衡少子寿命降低,而场效应晶体管的特性与载流子 寿命关系不大,因此抗辐射性能较好。
3.高输入阻抗 由于栅氧化层的影响,在栅和其他端点之间不存在直流通道,因 此输入阻抗非常高,而且主要是电容性的。通常,MOSFET的直 流输入阻抗可以大于1014欧。 4.电压控制 MOSFET是一种电压控制器件。而且是一种输入功率非常低的器 件。一个MOS晶体管可以驱动许多与它相似的MOS晶体管;也 就是说,它有较高的扇出能力。 5.自隔离
说
明
公式(7-1)、(7-2)只适用于长沟道MOSFET。 当沟道长度较短时,必须考虑短沟道效应,管子的阈 值电压VT会随沟道长度L的减小而减小。这个问题将 在以后讨论。
7.4 MOSFET的伏安特性
为了方便起见,先作以下几个假定: (1)漏区和源区的电压降可以忽略不计; (2)在沟道区不存在复合-产生电流; (3)沿沟道的扩散电流比由电场产生的漂移电流小得多; (4)在沟道内载流子的迁移率为常数; (5)沟道与衬底间的反向饱和电流为零; (6)缓变沟道近似成立,即跨过氧化层的垂直于沟道方 向的电场分量与沟道中沿载流子运动方向的电场分量无关。
4qN D S 0 F 2kT N D ln C OX q ni
场效应管的工作原理和优势
场效应管的工作原理和优势
一、工作原理
场效应管是一种广泛应用的电子器件,它利用电场效应来控制半导体材料的导电性能。
具体来说,场效应管由三个电极组成:栅极、源极和漏极。
在栅极与源极之间加一个电压,会在半导体材料中产生一个电场。
这个电场会影响源极和漏极之间的电流,从而实现电压的控制。
二、优势
1.低噪声:场效应管具有较低的噪声系数,因此它在放大信号时能保持较高的信噪比,特别适合用于通信、音频和视频等领域。
2.高输入阻抗:场效应管的输入阻抗极高,接近于无穷大。
这意味着它对信号源的负载非常小,有利于减小信号源的负担。
3.低功耗:由于场效应管的工作效率高,因此它在工作时的功耗较低。
这使得它适合用于便携式设备和电池供电的应用。
4.易于集成:场效应管可以在集成电路中实现小型化,使得它在微电子领域具有广泛的应用。
5.稳定性好:场效应管的阈值电压相对稳定,不易受温度和工艺等因素的影响。
这使得它在各种工作条件下都能保持稳定的性能。
6.易于控制:通过改变栅极电压,可以方便地控制漏极电流,使得场效应管成为一种易于控制的电子器件。
MOS 场效应晶体管
工作原理
mosfet通过在金属-氧化物-半导 体结构上施加电压,控制电子流动, 实现信号放大和开关作用。
结构
mosfet由栅极、源极、漏极和半导 体层组成,具有对称的结构。
mos 场效应晶体管的应用
集成电路
mosfet是集成电路中的基本元件, 广泛应用于数字电路和模拟电路 中。
工作原理概述
电压控制
导电通道的形成与消失
mos场效应晶体管是一种电压控制器 件,通过在栅极施加电压来控制源极 和漏极之间的电流流动。
随着栅极电压的变化,导电通道的形 成与消失,从而控制源极和漏极之间 的电流流动。
反型层
当在栅极施加正电压时,会在半导体 表面产生一个反型层,使得源极和漏 极之间形成导电通道。
电压与电流特性
转移特性曲线
描述栅极电压与漏极电流之间关 系的曲线。随着栅极电压的增加, 漏极电流先增加后减小,呈现出
非线性特性。
跨导特性
描述源极电压与漏极电流之间关 系的曲线。跨导反映了mos场效
应晶体管的放大能力。
输出特性曲线
描述漏极电压与漏极电流之间关 系的曲线。在一定的栅极电压下, 漏极电流随着漏极电压的增加而
增加,呈现出线性特性。
Part
03
mos 场效应晶体管的类型与 特性
nmos 场效应晶体管
总结词
NMOS场效应晶体管是一种单极型晶体管,其导电沟道由负电荷主导。
详细描述
NMOS场效应晶体管通常由硅制成,其导电沟道由负电荷主导,因此被称为 NMOS。在NMOS中,电子是主要的载流子,其源极和漏极通常为n型,而衬 底为p型。
制造工艺中的挑战与解决方案
1 2 3
MOS场效应管的特性
第五章MOS 场效应管的特性5.1MOS 场效应管5.3体效应第五章MOS 场效应管的特性5.1 MOS 场效应管5.2 MOS 管的阈值电压5.3 体效应115.5MOSFET 的噪声5.6MOSFET 尺寸按比例缩小5.7MOS 器件的二阶效应5.4 MOSFET 的温度特性5.5 MOSFET 的噪声5.6 MOSFET 尺寸按比例缩小5.7 MOS 器件的二阶效应1)N 型漏极与P 型衬底;2)N 型源极与P 型衬底。
5.1 MOS 场效应管5.1.1 MOS 管伏安特性的推导两个PN 结:图2)1)2同双极型晶体管中的PN 结一样,在结周围由于载流子的扩散、漂移达到动态平衡,而产生了耗尽层。
3)一个电容器结构:23)栅极与栅极下面的区域形成一个电容器,是MOS 管的核心,决定了MOS 管的伏安特性。
p+/ n+n(p) MOSFET的三个基本几何参数toxpoly-Si diffusionDWG L3p+/ n+⏹栅长:⏹栅宽:⏹氧化层厚度:LWt oxSMOSFET的三个基本几何参数⏹L min、W min和t ox由工艺确定⏹L min:MOS工艺的特征尺寸(feature size)决定MOSFET的速度和功耗等众多特性⏹L和W由设计者选定⏹通常选取L= L min,设计者只需选取W,W是主要的设计变量。
⏹W影响MOSFET的速度,决定电路驱动能力和功耗4MOSFET 的伏安特性:电容结构⏹当栅极不加电压或加负电压时,栅极下面的区域保持P 型导电类型,漏和源之间等效于一对背靠背的二极管,当漏源电极之间加上电压时,除了PN 结的漏电流之外,不会有更多电流形成。
⏹当栅极上的正电压不断升高时,P 型区内的空穴被不断地排斥到衬底方向。
当栅极上的电压超过阈值电压V T ,在5栅极下的P 型区域内就形成电子分布,建立起反型层,即N 型层,把同为N 型的源、漏扩散区连成一体,形成从漏极到源极的导电沟道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
5MOS场效应管的特性
• 随着Vgs的增大,排斥掉更多的空穴,耗尽层厚度 Xp增大,耗尽层上的电压降就增大,因而耗尽层 电容CSi就减小。耗尽层上的电压降的增大,实际 上就意味着Si表面电位势垒的下降,意味着Si表面 能级的下降。
• 一旦Si表面能级下降到P型衬底的费米能级,Si表 面的半导体呈中性。这时,在Si表面,电子浓度 与空穴浓度相等,成为本征半导体。
击穿区
0
Vds
10
5MOS场效应管的特性
MOS电容是一个相当复杂的电容,有多层介质: 在栅极电极下面有一层SiO2介质。SiO2下面是P型衬底,最后
是衬底电极,同衬底之间是欧姆接触。 MOS电容与外加电压有关。
1)当Vgs<0时,栅极上的负电荷吸引了P型衬底中的多数载流 子—空穴,使它们聚集在Si表面上。这些正电荷在数量上 与栅极上的负电荷相等,于是在Si表面和栅极之间,形成 了平板电容器,其容量为,
9
5MOS场效应管的特性
• •
在非饱和区 饱和区
IdsVdsCa1Vgsb1
Idsa2V gs V T2
Idstoo xx W LVgsV TV ds1 2V ds2
Ids 1 2tooxxW LVgsVT 2
(Ids 与 Vds无关) . MOSFET是平方律器件!
Ids
饱和区
线性区
5
5MOS场效应管的特性
• 当栅极不加电压或加负电压时,栅极下面的区域保持P型导 电类型,漏和源之间等效于一对背靠背的二极管,当漏源电 极之间加上电压时,除了PN结的漏电流之外,不会有更多 电流形成。
• 当栅极上的正电压不断升高时,P型区内的空穴被不断地排 斥到衬底方向。当栅极上的电压超过阈值电压VT,在栅极 下的P型区域内就形成电子分布,建立起反型层,即N型层, 把同为N型的源、漏扩散区连成一体,形成从漏极到源极的 导电沟道。这时,栅极电压所感应的电荷Q为,
Vge:栅级对衬底的有效控制电压
8
5MOS场效应管的特性
当Vgs-VT=Vds时,满足:
dI ds 0 dV ds
Ids达到最大值Idsmax,其值为 Idsma1 2 x tooxxW LVgsVT2
Vgs-VT=Vds, 意 味 着 近 漏 端 的 栅 极 有 效 控 制 电 压 Vge=Vgs-VT-Vds=Vgs-Vds-VT = Vgd-VT =0 感应电荷为0,沟道夹断,电流不会再增大,因而, 这个 Idsmax 就是饱和电流。
poly-Si G
D diffusion W
S
• 栅长:
L
• 栅宽:
W
• 氧化层厚度: tox
t ox L
p+/n+4来自5MOS场效应管的特性
• Lmin、 Wmin和 tox 由工艺确定 • Lmin: MOS工艺的特征尺寸(feature size)
决定MOSFET的速度和功耗等众多特性 • L和W由设计者选定 • 通常选取L= Lmin,由此,设计者只需选取W • W影响MOSFET的速度,决定电路驱动能力和功耗
5MOS场效应管的特性
第五章 MOS 场效应管的特性
广州集成电路设计中心 殷瑞祥 教授
5MOS场效应管的特性
5.1 MOS场效应管 5.2 MOS管的阈值电压 5.3 体效应 5.4 MOSFET的温度特性 5.5 MOSFET的噪声 5.6 MOSFET尺寸按比例缩小 5.7 MOS器件的二阶效应
以SiO2为介质的电容器——Cox
以耗尽层为介质的电容器——CSi
总电容C为:
C
1 Cox
1 CSi
1
比原来的Cox要小些。
12
5MOS场效应管的特性
耗尽层电容的计算方法同PN结的耗尽层电容的计算方法相
同,利用泊松公式
21Si1SiqNA
式中NA是P型衬底中的掺杂浓度,将上式积分得耗尽区上的 电位差 :
CoxotxW ox LotxW ox L 通常,ox=3.98.85410-4 F/cm2;A是面积,单位是cm2; tox是厚度,单位是cm。
11
5MOS场效应管的特性
2)当Vgs>0时,栅极上的正电荷排斥了Si中的空穴,在 栅极下面的Si表面上,形成了一个耗尽区。
耗尽区中没有可以自由活动的载流子,只有空穴被赶走后 剩下的固定的负电荷。这些束缚电荷是分布在厚度为Xp的 整个耗尽区内,而栅极上的正电荷则集中在栅极表面。这 说明了MOS电容器可以看成两个电容器的串联。
7
5MOS场效应管的特性
非饱和情况下,通过MOS管漏源间的电流Ids为:
Ids Q L2C VgV eds otxW oxLL 2VgeVdstooxxW L(VgsVT1 2Vds)Vds
tooxxW LVgsVT Vds1 2Vds2
VgeVgsVT1 2Vds
= '.0 栅极-沟道间氧化层介电常数, ′ = 4.5, 0 = 0.88541851.10-11 C.V-1.m-1
1 Si
qN Adx'd q xN AXp 2 Si
从而得出束缚电荷层厚度
Xp
2Si
q NA
13
5MOS场效应管的特性
在耗尽层中束缚电荷的总量为
Q qA N X p Wq L N A W2 L q SN i AW2 L Sq i A N
是耗尽层两侧电位差的函数,耗尽层电容为
C S i d dQ v W2 L Sq i A N 1 21 2WL S2 q i A N
Q=CVge 式中Vge是栅极有效控制电压。
6
5MOS场效应管的特性
非饱和时(沟道未夹断),在漏源电压Vds作用下,这 些电荷Q将在时间内通过沟道,因此有
L L L2 Eds Vds
为载流子速度,Eds= Vds/L为漏到源方向电场强度,Vds为漏 到源电压。 为载流子迁移率: n µn = 650 cm2/(V.s) 电子迁移率(NMOS) n µp = 240 cm2/(V.s) 空穴迁移率(PMOS)
2
5MOS场效应管的特性
两个PN结: 1)N型漏极与P型衬底; 2)N型源极与P型衬底。
同双极型晶体管中的PN 结 一样, 在结周围由于载流 子的扩散、漂移达到动态平 衡,而产生了耗尽层。 一个电容器结构 栅极与栅极下面区域形成一个电容器,是MOS管的核心。
3
p+/n+
n(p)
5MOS场效应管的特性