机械原理运动副.ppt

合集下载

机械原理自由度课件(1)

机械原理自由度课件(1)

高副:点或线接触的运动副。接触面压强(yāqiáng)较高,易
磨损。 常见(chánɡ jiàn)低幅
常见高副
第六页,共61页。
(2)按相对运动形式分平面(píngmiàn)副和空间副
平面 (píngmiàn)副
空间(kōngjiān) 副
第七页,共61页。
运动(yùndòng)链
• 由两个或两个以上构件通过运动(yùndòng) 副联接而构成的系统。分两类:闭式和开 式。
第四十七页,共61页。
(2)非圆形曲线(qūxiàn)
由于曲线各处曲率中心的位置不同,故在机构运动中随着接 触点的改变(gǎibiàn),曲率中心OO1相对于构件1、2的位置及 OO1间的距离也会随之改变(gǎibiàn)。因此对于一般的高副机 构,在不同的位置有不同的瞬时替代机构。实例
如果(rúguǒ)是一对齿轮,如何替
第十七页,共61页。
第十八页,共61页。

第十九页,共61页。
第二十页,共61页。
第二十一页,共61页。
第二十二页,共61页。
第二十三页,共61页。
第二十四页,共61页。
其他零部件的表示(biǎoshì)方法可参看GB4460— 84“机构运动简图符号”。
第二十五页,共61页。
• 绘制小型(xiǎoxíng)压力机机构运动简图
拆成4个二级杆组
第五十七页,共61页。
实例(shílì)2
第五十八页,共61页。
机构(jīgòu)的级别:
第五十九页,共61页。
第六十页,共61页。
第六十一页,共61页。
F 3n 2PL PH
第三十一页,共61页。
1.3.2 机构具有确定相对运动(xiānɡ duì yùn dònɡ)的条件

机械原理(全套15PPT课件)

机械原理(全套15PPT课件)
按形状分为盘形、圆柱形、平板型等;按从动件类型分为尖底、滚子、平底等
从动件的常用运动规律
等速运动规律
从动件匀速运动,产生刚性冲击
等加速等减速运动规律
从动件分段匀变速运动,产生柔性冲击
简谐运动规律(余弦加速度运动规律)
从动件按余弦规律加速运动,无冲击
正弦加速度运动规律
从动件按正弦规律加速运动,无冲击
平面四杆机构的设计
按照给定的连杆位置设计四杆机构
按照给定的运动轨迹设计四杆机构
作图法、解析法
作图法、解析法
按照给定的急回特性设计四杆机构
按照给定的传动角设计四杆机构
作图法、解析法
作图法、解析法
05 凸轮机构及其设 计
凸轮机构的应用和分类
凸轮机构的应用
自动机械、操纵控制、传动装置等
凸轮机构的分类
重要性
机械原理是机械工程学科的基础 ,对于理解和分析机械系统的运 动、力和能量传递过程具有重要 意义。
机械原理的研究对象和内容
研究对象
机械系统,包括机构、传动、控制等 方面。
研究内容
机构的结构分析、运动分析、力分析 、动力学分析、优化设计等。
机械原理的发展历程和趋势
发展历程
从简单机械到复杂机械系统,从经验设计到基于科学计算的设计。
机械原理(全套15PPT课件)
contents
目录
• 机械原理概述 • 机构的结构分析 • 平面机构的运动分析 • 平面连杆机构及其设计 • 凸轮机构及其设计 • 齿轮机构及其设计
01 机械原理概述
机械原理的定义与重要性
定义
机械原理是研究机械系统中力的 传递、转换和效应的基本规律和 原理的学科。
具有急回特性、死点位置、压力角和 传动角等特性,这些特性对机构的运 动性能和动力性能有重要影响。

机械原理——构件、约束、运动副

机械原理——构件、约束、运动副
2.2.3 约束力 2.2.3 构件运动约束的设计
可以通过加入中间元件改善磨损状况 无摩擦的柔顺机构
2.3运动副及其分类 如果仅仅考虑构件之间接触所提供的 运动约束的类型,这种对构件之间的 物理连接所作的理想化的描述定义为 运动副。
2.3.2.1 力闭合运动副、形闭合运动副 及材料闭合运动副
力闭合运动副
第2章 构件、约束和运动副
机械运动 约束运动
接触 点\线\面
2.1 构件及其分类 2.1.1构件 运动单元体
2.1.2构件的类型 刚性构件,拉曳件 机架、原动件和从动件
2.2 构件的运动约束
空间自由运动的构件有6个自由度
平面自由运动的构件有3个自由度
y
y
x
z
x
构件接触形成约束,约束性质与接触方式相关
形闭合运动副
材料闭合运动副
2.3.2.2 平面运动副和空间运动副
常见的平面运动副有移动副、转动 副和曲线副
(a)
(b)(c)(d)源自空间运动副2.3.2.3 低副和高副
高副,构件之间为一个点或一条线接触 低副,构件之间为平面或圆柱面接触
2.3.2.4 运动副的级
根据运动副所引入的约束数可以将运动副分为五 级:引入一个约束的运动副为Ⅰ级副,引入两个约束 的运动副为Ⅱ级副,依次类推,还有Ⅲ级副、Ⅳ级副, 最多为Ⅴ级副。
分析图示机器人机构构件和运动副组成
至少有三个活动构 件、机架和三个移 动副组成
直角坐标机械手 柱坐标机械手 极坐标机械手
机构设计鉴赏
肘关节设计
y
x
z
j
Pi
j i
y
j
j
x
i
i
2.2.1构件之间的运动 自由度与约束数的关 系

2.运动副的分类及运动简图的绘制

2.运动副的分类及运动简图的绘制
一、机构的组成要素
1.构件 作为一个整体参与机构运动的刚性单元体称为构件
连杆机构
规格严格 功夫到家
4
构件
一个构件,可以是不能拆开的单一整体,也可能是由 若干个不同零件组装起来的刚性体。
例如:
规格严格 功夫到家
5
运动副
2.运动副
由两个构件直接接触而产生一定相对运动的联接称为 运动副。
两构件上参与接触构成运动副的部分称为运动副元素。
20
机构运动简图的绘制
绘制十字滑块联轴节的运动简图
规格严格 功夫到家
21
教学单元1结束
规格严格 功夫到家
22
规格严格 功夫到家
23
机械原理
第二章 机构的结构分析和综合
(模块2教学单元1)
陈明
哈尔滨工业大学
2013年3月
规格严格 功夫到家
1
§2-1 结构分析和综合的基本内容
机械原理课程对机械的研究主要有以下几个方面:
一、对已有机械进行分析
机械的结构分析
机械的运动分析
机械的动力分析
二、设计新的机械
机构的选型 设计机构 机构的运动设计
7
运动副的分类
二、运动副的分类
组成机构的运动副的类型决定机构的运动形式。运动
副有多种类型,对运动副进行正确的分类,在机构设计和
综合中是非常重要的。
自由度与约束
y
y
x
x
z
z
规格严格 功夫到家
8
运动副的分类
运动副的分类可以根据其所引入的约束 数分类也可根据组成运动副的两个运动副 元素的接触情况分类以及根据运动副连接 的两个构件的相对运动分类。
规格严格 功夫到家

机械原理 第一章 构件 约束 运动副

机械原理  第一章 构件 约束 运动副

按在机械传动中的功能分类:
机 构件分成 活动构件 从动件 机 架:机架是指要被固定、而作为机构运动的参考 系的构件 。 原动件:作用有驱动力或驱动力矩的活动构件,又称主 动件。 从动件:在机构中除机架和原动件以外的其余构件则称 为从动件 。
动画链接1 2
架(或固定构件) 原动件(主动件)
机架 原动件
从动件
传动构件
从动件
输出构件
按照其几何和运动特征进行分类:
如齿轮、凸轮、摩擦轮、滑块、导槽、杆件等
滑块、导槽、杆件
动画链接
广义来讲,随着科学技术的不断发展,机构中的构件可 以是有形的,也可以是无形的,只要它在传递运动和力或在 运动的导引的过程中能完成一些确定的运动任务,我们都可 以将其视为一个构件。例如:液态介质或气态介质、可塑性 的颗粒状物质等等,只要这些物质能够充满所提供的空腔, 在运动的传递过程中起到了必不可少的作用,都可以看作为 压力构件;机械运动的计算机控制程序等也可以看作是一个 构件。
只有1个自由度
用平面和曲面构造约束:用四个平面构造的相对移动约束
只有1个自由度
约束中加入中间元件,改变接触处的摩擦状态 滑动摩擦
滚动摩擦
钢球
滑动摩擦
保持架
滚动摩擦
2-9(b)
2-9(c)
1.4
1.4.1
运动副及其分类
运动副
运动副:两个构件直接接触组成的仍能产生某些相对运 动的联接。
三个条件,缺一不可
第一章 构件、约束和运动副
1.2 构件及其分类
构件和零件是两个不同的概念:构件是运
动时的单元体,而零件是制造时的单元体。
构件是由一个或若干个零件组成。
这些零件之间没有任何的相对运动。

机械原理之四杆机构受力分析PPT课件

机械原理之四杆机构受力分析PPT课件
FR12、 FR32
第21页/共30页
FR32= - FR12= FR21
3).取构件3为分离体——其上作用有:FR23、 FR43、 M3
由力平衡条件得: FR43= - FR23= FR21
M3 = FR23L´
C
FR23
3
L
M3
ω1 1 D
FR43
第22页/共30页
例 如图所示为一曲柄滑块机构,设各构件的尺寸(包括转动副的半径)已知,各
式中
xI, yI——力作用点I的坐标, xK, yK——取矩点K的坐标。
第16页/共30页
4) 各构件的力平衡方程式
•对于构件1分别根据
•对于构件2有
•对于构件3有
可得
第17页/共30页
以上共列出九个方程式,故可解出上述各运动副反力和平衡力的九个力 的未知要素。又因为以上九式为一线性方程组,因此可按构件1、2、3上待 定的未知力Mb, R41x, R41y, R12x, R12y, R23x, R23y, R34x, R34y的次序整理成以下的 矩阵形式:
3求rc取构件3为分离体并取该构件上的诸力对d点取矩规定力矩的方向逆时针者为正顺时针者为负则于是得同理取构件2为分离体并取诸力对b点取矩则因此可得3求rd根据构件3上的诸力平衡条件4求rb根据构件2上的诸力平衡条件5求ra同理根据构件1的平衡条件得至此机构的受力分析进行完毕
一. 构件组的静定条件
——该构件组所能列出的独立的力平衡方程式的数目,应等于构件组中所 有力的未知要素的数目。
A
ω23
C
FR32
3
M3
4D
解:1).求构件2所受的两力FR12、FR32的方位。
2).取曲柄1为分离体——其上作用有:

机械原理 第1章-平面机构

机械原理 第1章-平面机构
28
F 3 7 2 10 1
F 3 10 2 14 2
教本P25题1-27 a,b,c----求自度
F 3 7 2 10 1
29
F=3*6-2*8-1=1
注意有局部自由度, 大小凸轮是同一体 F=3*9-2*12-2=1
F=3*4-2*4-2=2
F 3 4 2 5 2
上图中,机构的自 由度为:F 33 2 4 源自1上图中,机构的自由 度为:
而主动件数2,F小 于 2 ,当主动件 1 和 3 都如图转动时,杆 件 2 可能损坏,其运 动也不能确定。
F 3 4 2 6 0
自由度为0,机构变 成了桁架,它的构件 之间不可能产生相对 运动。
从上图中可看出,高副低代构件都是包含一个构件两个低副,总的自由试 19 是-1,即限制了一个自由度,相当于一个高副。
高副低代例
图1-17 高副低代
图1-18高副低代 应注意,这些替代 中,只是在此瞬时 位置是正确的,如 果变化位置,则替 代也要发生变化。 另外替代后,活动 构件数和运动副数 与原构件也可能变 化了。
(b)去除局部自由度和虚 约束后的运动简图
F 3 8 2 1111 1
16
椭圆仪的虚约束分 析:不管什虚约束,首 先要把不起约束作 用的构件找出来,这 个构件就是虚约束, 然后去掉这个构件 来计算自度. 右图中,由于 AB=DB=BC,所以当 AB杆绕A点转动 时,C点始终会沿X线 移动,所以滑块3对C 图1-13 椭圆仪 点不起约束作用,滑 块3是虚约束去掉.这活动构件有:滑块4,杆2,杆1,即n=3;转动副 有A 、B、D,移动副有4(滑块),即PL=4,这样椭圆仪的 17 自由度:F=3n-2PL-PH=3*3-2*4=1

机械原理第二章2-1

机械原理第二章2-1

2 1
3 1 4
2
4
3
2. 机构
机构:若将运动链的一个构件固定为机架
时,运动链便成为机构。
构件的分类
机构中的构件可分为三大类: (1)机架 机构中固定不动的构件。 一个机构只有一个机架。 (2)原动件(主动件) 机构中按给定的已知运动规律独立运动的构件。 (3)从动件 机构中除原动件外的其余活动构件。 当确定原动件后,其余从动件随之作 确定的运动。
•根据运动副引入的约束数 •根据构成运动副的两构件之间的相对运动 •根据构成运动副的两构件之间的接触情况 •根据构成运动副的两构件的接触部分几何形状
运动副分类
根据运动副引入的约束数,运动副分为五级 I级副: 引入1个约束的运动副 Ⅱ级副:引入2个约束的运动副 Ⅲ级副:引入3个约束的运动副 Ⅳ级副:引入4个约束的运动副 Ⅴ级副:引入5个约束的运动副
圆柱副(cylindric pair)
球销副(sphere-pin pair)
环运动副(looping pair)
二、运动链(Kinematic Chain)和机构
1.运动链(Kinematic Chain)
2.机构
1.运动链(Kinematic Chain) 运动链
用运动副将两个或两个以上的构件连接 而成的系统称为运动链。
1 2 3 4
3
2 1
如果机构中有一个或多个高 副,则称此机构为高副机构。
机构
平面机构中的所有运动副一定是平面运动副, 但是只包含平面运动副的机构也可能是空间机构。
例如:
万向联轴节是空 间机构,该机构 只包含转动副 (平面运动副)
三、平面机构运动简图
1.机构运动简图的定义和目的 2.机构运动简图的作用 3.运动副和构件的表示方法 4.绘制机构运动简图的步骤

机械原理机构的结构分析 ppt课件

机械原理机构的结构分析  ppt课件

为了防止计算差错,在计算自由度时,也可以设 想将产生局部运动的构件与其连接的构件视为焊接在 一起,以达到消除局部自由度的目的。
ppt课件 48
第二章 机构的结构分析
3.虚约束 在机构中,有些约束所起的限制作用可能是重复的, 这种不起独立限制作用的约束称为虚约束。
F 3n 2Pl Ph 3 4 2 6 0 0
C B D
A
E
F 3n 2P l P h
3 4 2 5 0 2
ppt课件 41
第二章 机构的结构分析
例7:例3中活塞泵机构的自由度。
F 3n 2P l P h
3 4 2 5 1 1
ppt课件
42
第二章 机构的结构分析
第六节 计算平面机构自由度时应注意的事项
第二章 机构的结构分析
1.构件 构件是指作为一个整体参与机构运动的刚性单元 体。 一个构件,可以是不能拆开的单一零件,也可以 是由若干个不同零件装配起来的刚性体。
ppt课件
6
第二章 机构的结构分析
构件与零件的区别: 零件是从制造加工角度提出的最小单元概念, 即零件是制造加工的最小单元,是组成机器最基本的、 不可再拆分的单元。 构件则是从运动和功能实现的角度提出的最小单元概 念,即构件是最小的独立运动单元,从运动角度讲, 构件是一个刚体。
ppt课件
3
第二章 机构的结构分析
第一节 机构结构分析的内容及目的
机构运动的可能性及其具有确定运动的条件
研究机构的组成,绘制机构运动简图
研究机构的组成原理
ppt课件
4
第二章 机构的结构分析
第二节 机构的组成
机构分为两大类: 平面机构 空间机构

机械原理运动副.

机械原理运动副.

机构运动简图的绘制方法和步骤:
1.确定构件数目及原动件、输出构件; 2.根据各构件间的相对运动确定运动副的种类和数目; 3.选定比例尺,按规定符号绘制运动简图; 4.标明机架、原动件和作图比例尺;
机械原理
例1 颚式破碎机
§1-2、平面机构的运动简图
2
A B 1
3
4 C
D
机械原理
一、构件的自由度
§1-3、平面机构的自由度
面接触、相对转动或相对移动 低副
机械原理
§1-1、运动副及其特点: 点或线接触、沿接触点切线方向相对移动、绕接触点 的转动 高副
机械原理
运动副符号
§1-1、运动副及其分类
转动副
移动副
机械原理
1
1
§1-1、运动副及其分类
2
齿轮副
2
2
2
凸轮副
机械原理
参与形成两个运动副的构件
处理:排除。
2 1 4 3
2
1
5 4
3
F=3n-2PL-PH = 3 3 -2 4-0 =1
F=3n-2PL-PH = 3 4 -2 6- 0 =0 F=3n-2PL-PH =3 3-2 4 -0 =1


机械原理
虚约束常发生在下列情况
§1-3、平面机构的自由度
1、两构件在同一轴线上形成多个转动副。 2、两构件在同一导路或平行导路上形成多个移动副。
F =3n 2PL PH

F=3n2PL PH =3 3 24 0 = 1
F=3n2PLPH =32 2 2 1 = 1
机械原理
§1-3、平面机构的自由度
2.机构(运动链)具有确定相对运动的条件

机械原理第10章 空间连杆机构及机器人机构概述

机械原理第10章  空间连杆机构及机器人机构概述

Fig.10-2 Spatial kinematic pairs 2(空间运动副2)
(4)Ⅳ类副 具有4个约束和2个自由度的运动副。图10-3a 所示的球销副中,由于球销的约束,仅保留2个转动自由 度。运动副符号如图10-3b所示,名称用S′表示。图10-3c中 的圆柱副中,仅保留沿轴线的移动和绕轴线的转动自由度, 运动副符号如图10-3d所示,名称用C表示。Ⅳ类运动副在 空间机构中应用较广泛。
10.1 空间连杆机构概述
1.空间连杆机构中的运动副
(1)Ⅰ类副 图10-1a所示的球放在平面上,形成点接触的高副,仅提供沿 二者公法线n—n方向的一个约束。 (2)Ⅱ类副 具有2个约束、4个自由度。图10-1b所示的圆柱平面副中,提 供沿z轴移动和绕x轴转动的2个约束,用CE表示圆柱平面副。图10-1c所 示的球槽副中,提供沿z轴移动和沿x轴移动2个约束,用SG表示球槽副, 它们是典型的Ⅱ类副。Ⅱ类副也很少应用。
例10-3 计算图10-8所示开链机器人机构自由度。
Fig.10-8 Open link robot mechanism (开链机器人机构)
10.2 机器人机构概述
1.串联机器人机构
串联机器人大都是开链机构,图10-9a所示机器人是3个 转动副、3个构件组成的串联机器人,也简称3R串联机器人。 串联机器人机构可以是平面开链机构,也可以是空间开链 机构。串联机器人一般由底座、腰部、大臂、小臂和腕部 组成,分别对应腰关节、肩关节、肘关节和腕关节。图109b为其机构简图。
Fig.10-3 Spatial kinematic pairs 3(空间运动副3)
(5)Ⅴ类副 具有5个约束、1个自由度的运动副。图10-4a所示的转动 副中,仅有一个绕轴线的转动自由度,运动副代表符号如图10-4b所示, 名称用R表示。图10-4c所示移动副中,仅有1个沿导路方向的移动自 由度,运动副代表符号如图10-4d所示,名称用P表示。图10-4e所示的 螺旋副中,沿轴线的移动和绕轴线的转动线性相关,所以只有1个移 动自由度,代表符号如图10-4f所示,名称用H表示。

机械原理课件第二章

机械原理课件第二章

Ⅲ级杆组
Ⅱ级杆组
计算自由度,高副低代
计算自由度 n=4,PL=5,PH=1
拆杆组
机构的组成
机构的分解
五杆机构
大筛机构
感谢下 载
感谢下 载
(①一定②不一定③一定不)
6、绘制机构运动简图的长度比例尺为

7、一个构件,它的实际长度
,在机构运动简图中,图示长度
AB=40mm,试问其长度比例lAB 尺 0.8m 。
8、在比例尺
的机构运动简图中,量得构件长度AB=20mm,
试问该构件 的0.00实5m/际mm长度 =

9、机构具有确定运动的条件是主动构件数 少于)机构的自由度数。
3. 运动副分类:
• 按接触形式分: (1)低副:面接触的运动副。 图 (2)高副:点或线接触的运动副。 图
第一节 机构的组成(3)
• 按相对运动形式分:
(1)平面运动副
转动副

移动副
高副

(2)空间运动副 • 圆柱副、球面副、螺旋副等。
第一节 机构的组成(4)
• 按运动副引入的约束数分:x个约束,x级副。 1级副、2级副、… • 构件的自由度:构件具有的独立运动的数目。
比例表示各运动副的相对位置。这种能够表达机构运动特性的简单图形称为 机构运动简图。
• 运动副、构件的表示:表2-2 • 常见机构表示:表2-3
第二节 机构运动简图(2)
• 二、机构运动简图绘制
• 1.分析机械的结构和动作原理,确定构件的数目。
• 2.分析构件间的相对运动,确定运动副的数目和类型。
• 3.选定视图投影面及比例尺μL=实际尺寸/图上尺寸(m/mm),顺序确定转动副和 移动副导路的位置,根据原动件的位置及各杆长等绘出各构件,得到机构运

机械原理__第1章__平面机构的自由度

机械原理__第1章__平面机构的自由度
3 2 1
1
= 3? 3 2? 3 1 = 2
对于图b) 的机构,有: F=3×2 -2×2 -1=1 事实上,两个机构的运动相同,且F=1
2
1
处理的方法:
计算前先将小滚轮焊接在推杆上 a) b)
§1—3 平面机构自由度的计算
三、虚约束 :对机构的运动不起实际约束作用的约束。 例:平行四边形机构,AB = CD 连杆2作平动,BC线上各点轨迹均为圆 B 2
n K 1
运动副联接前自由度: 3 n 通过运动副联接后,低副产生的约束数 : 2 Pl 高副产生的约束数: 1 Ph
计算公式: F = 3n - 2Pl - Ph
§1—3 平面机构自由度的计算
例1、计算曲柄滑块机构的自由度。 解:活动构件数n= 低副数Pl = 4 高副数Ph = 0 1
原动件数=F 机构运动确定
§1—3 平面机构自由度的计算
例4、计算自由度 ,Ph = 0 解: n = 2, P l =3
F = 3n - 2Pl - Ph = 3? 2 2? 3 0
1 3 例5、计算自由度 2
,Ph = 0 解: n = 3, P l =5
F = 3n - 2Pl - Ph = 3? 3 2? 5 0 = - 1
2
3
4
F = 3n - 2Pl - Ph = 3? 3 2? 4 0
=1
§1—3 平面机构自由度的计算
二、机构具有确定运动的条件 对不同的机构,自由度不同,给定原动件的个数也应不同, 那么,原动件数与自由度有什么关系,才能使机构具有确定的运 动呢? 2 3 例2、计算铰链四杆机构的自由度 1 解:活动构件数n= 3 低副数Pl= 4 高副数Ph= 0 F = 3n - 2Pl - Ph = 3? 3 2? 4 1 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

π m1cosα1= π m2cosα2

m1 = m2 = m
α1 = α2 = α
结论 一对渐开线齿轮正确啮合的条件是两轮的模数和压力 角应分别相等。
渐开线直齿圆柱齿轮的啮合传动(2/6)
2.中心距及啮合角 (1)中心距
1)在确定传动中心距时应满足的要求: ① 保证两轮的齿侧间隙为零,即 c′= 0。 ② 保证两轮的顶隙为标准值,即 c = c*m
2)标准中心距 a
a = r1+r2 = m (z1+z2)/2 结论 当两标准齿轮按标准中心距安装时,既能保证两轮顶隙 为标准值,又能保证齿侧间隙为零,即 c = c*m, c′= 0。
(2)啮合角
渐开线直齿圆柱齿轮的啮合传动(3/6)
渐开线齿轮传动的啮合角α′就等于其节圆压力角。 当两轮按标准中心距安装时,则实际中心距 a′= a; 当两轮实际中心距 a′与标准中心距 a 不同时,则:
第十章 齿轮机构及其设计
§10-1 齿轮机构的应用及分类 §10-2 齿轮的齿廓曲线 §10-3 渐开线齿廓的啮合特点 §10-4 渐开线标准齿轮的基本参数和几何尺寸 §10-5 渐开线直齿圆柱齿轮的啮合传动 §10-6 渐开线齿轮的变位修正 §10-7 斜齿圆柱齿轮传动 §10-8 蜗杆传动 §10-9 圆锥齿轮传动 §10-10 圆弧齿轮传动简介
(2)连续传动条件 为了两轮能够连续传动,必须保证在前一对轮齿尚未能脱离
啮合时,后一对轮齿就要及时进入啮合。则实际啮合线段B1B2应大 于或至少等于齿轮的法向齿距 pb,即B1B2 ≥ pb。
通常把 B1B2与 pb的比值εα称为齿轮的重合度, 故齿轮连续传 动的条件为
εα = B1B2 /pb ≥1
渐开线齿轮的变位修正(5/6)
3.变位齿轮的传动
(1)变位齿轮传动
1)变位齿轮传动的正确啮合和连续传动条件与标准齿轮相同。 2)变位齿轮传动的中心距取无侧隙中心距 a′= a + ym 。 此时需将两轮齿顶各减短 ym,以满足标准顶隙的要求。 其中△y为齿顶高降低系数,而y=( x1 + x2) - y。
因渐开线齿廓之间的正压力方向沿其接触点的公法线方向, 即为啮合线,且为一定直线N1N2。 故在传动过程中,其正压力方 向是始终不变的。
(3)渐开线齿廓传动具有可分性 一对渐开线齿轮传动,即使两齿轮的实际中心距与设计中心
距有偏差,也不会影响其传动比的这一特性,称为渐开线齿轮传 动的可分性。这对于齿轮的装配和使用都是十分有利的。
2.齿轮机构的分类 (1)平行轴间的传动 (2)相交轴间的传动 (3)交错轴间的传动
齿轮机构的应用及分类(2/2)
外啮合传动 直齿轮传动 内啮合传动
齿条与齿轮传动 斜齿轮传动 人字齿轮传动
直齿圆锥齿轮传动 斜齿圆锥齿轮传动 曲线齿圆锥齿轮传动
交错轴斜齿轮传动 蜗杆传动 准双曲面齿轮传动
§10-2 齿轮的齿廓曲线
渐开线齿轮的变位修正(6/6)
(2)变位齿轮传动的类型
1)标准齿轮传动 2)等变位齿轮传动 3)不等变位齿轮传动
x1= x2= 0 x1= - x2≠0 x1 + x2 ≠ 0
当x1 + x2 > 0时,为正传动; 当x1 + x2 < 0时,为负传动。
§10-7 斜齿圆柱齿轮传动
1.斜齿轮的基本参数和几何尺寸计算 (1)斜齿轮的基本参数
(b)
式中inv αk称为渐开线函数(即展角θk),
是压力角αk的函数。
(3)渐开线的极坐标方程式
θk = inv αk = tan αk- αk
rk = rb / cos αk
(c)
渐开线齿廓的啮合特点(3/3)
3.渐开线齿廓的啮合特点 (1)渐开线齿廓能保证定传动比传动
i12 = ω1/ω2 = O2P/O1P = const (2)渐开线齿廓之间的正压力方向不变
若 a′>a 时, r1′>r1,r2′>r2; c′>0,c>c*m;α′>α。 若 a′<a 时,两轮将无法安装。
(3)齿轮传动的中心距与啮合角的关系 a′cosα′= a cosα
渐开线直齿圆柱齿轮的啮合传动(4/6)
3.一对轮齿的啮合过程及连续传动条件
(1)一对轮齿的啮合过程
实际啮合线段B1B2 理论啮合线段N1N2
结论 重合度εα 与模数m无关,而随着齿数z的增多而增大, 还随啮合角α′减少和齿顶高系数ha*的增大而加大, 但εαmax=1.981。
2)重合度的意义
渐开线直齿圆柱齿轮的啮合传动(6/6)
① 用来衡量齿轮连续传动的条件;
② 代表同时参与啮合的轮齿对数的平均值。
增大重合度,同时参与啮合的轮齿对数增加, 故这对于提高 齿轮传动平稳性,提高承载能力都有重要意义。
2)滚刀切制齿轮的运动 用滚刀切制齿轮时,其转动 一方面产生切削运动,而另一方 面产生范成运动, 同时滚刀还需 沿轮坯轴线方向作进给运动。
渐开线齿轮的变位修正(3/6)
用齿轮滚刀切制齿轮的方法(动画) 3)切制渐开线齿廓的过程
(2)齿轮不产生根切的最小齿数
为了避免产生根切现象,则啮合极限点N1必须位于刀具齿顶 线之上,为此应使 PN1sinα≥ha*m。
结论 正是由于上述优点,故渐开线齿轮传动获得十分广泛 应用。
§10-4 标准齿轮的基本参数和几何尺寸
1.齿轮各部分的名宽
ra,da
rf,df
任分意度圆圆齿齿厚厚 ssi 任分意度圆圆齿齿槽槽宽宽eei
s
e
si
ei pn
pb
齿 距 任分意度圆圆齿齿距距 ppi==ssi++eei
当x>0时,称为正变位,所加工的齿轮称为正变位齿轮; 当x<0时,称为负变位,所加工的齿轮称为负变位齿轮。
2.变位齿轮的几何尺寸
齿厚 齿槽宽 齿顶高 齿根高
s = (π/2 + 2xtanα ) m e = (π/2 - 2xtanα ) m ha= (ha*+ x ) m hf= (ha*+ c*- x) m
§10-6 渐开线齿轮的变位修正
为何对齿轮进行变位修正? 渐开线标准齿轮传动存在的不足之处: 1)一对相互啮合的标准齿轮中,小齿轮的强度较低,容易损 坏,从而影响了整个齿轮传动的承载能力。
2)标准齿轮不适用于中心距 a′≠a = m(z1+z2)/2的场合。 因3)当在a′切<制a时齿,数无较法少安的装标;准而齿当轮a时′>,a时其,齿尚廓可会安发装生,根但切齿现象。 侧间隙根过切大使,轮重齿合的度抗会弯降强低度,降影低响,传重 动合的度平因减稳此小性,。。为改善和解决标准齿轮存 在的上述问题,就必须突破标准齿轮 的限制对齿轮进行必要的修正。
而“变位修正法”为目前最为广泛 采用的一种齿轮修正方法。
渐开线齿轮的变位修正(2/4)
1.变位修正轮齿的切制
(1)标准齿轮的切制原理
1)齿轮切制的方法
① 仿形法
采用盘形铣刀在卧铣床上加工 采用指状铣刀在立铣床上加工
② 范成法 采用齿轮插刀在插齿机上加工 采用齿轮滚刀在滚齿机上加工
近代齿轮加工的方法很多,其中广泛采用的是用齿轮滚刀来 加工齿轮。
(1)渐开线压力角αk=∠BOK
渐开线齿廓的啮合特点(2/3)
αk= arccos (rb/rk)
(a)
结论 渐开线上的压力角是变化的, 随rk增大而增大。
(2)渐开线函数
( (
tan αk= BK/rb= AB/rb
= rb (αk +θk) / rb= αk + θk
故 inv αk = θk= tan αk- αk
分度圆 r,d
齿顶,齿顶高 ha
齿根,齿根高 hf
齿全高 h = ha +hf
基圆
rb, db
基圆齿距
Pb、Pn
o
标准直齿圆柱外齿轮
2.齿轮的基本参数 ① 齿数 z
标准齿轮的基本参数和几何尺寸(2/3)
② 模数 由m,于其齿单轮位的为分m度m圆,直且径已d标可准由化其了周(长表z1p0-确1,定标,准即模数
一对齿轮传动是依靠它们的共轭齿廓来实现的。 所谓共轭齿廓是指两轮相互连续接触传动并能实现预定传动 比规律的一对齿廓。 1.齿廓啮合的基本定律 由瞬心概念知, 两轮的传动比为
i12=ω1/ω2=O2P/O1P 此式表明: 一对齿轮在任意位置时的传动比, 都与其连心 线O1O2被其啮合齿廓在接触点处的公法线所分成的两段成反比。 这个规律称为齿廓啮合基本定律。 点P 称为两轮的啮合节点(简称节点)。
4.齿条和内齿轮
(1)齿条:齿条的齿廓为直线;齿廓上各点压力角相同,等于 其齿形角。
(2)内齿轮:内齿轮的齿廓为内凹齿;齿根圆大于齿顶圆;齿 顶圆必须大于基圆。
§10-5 渐开线直齿圆柱齿轮的啮合传动
1.齿轮正确啮合的条件
一对渐开线齿轮在传动时,它们的齿廓啮合点都应位于其啮 合线上。因此要两轮能正确啮合,应使处于啮合线上的多对轮齿 能同时进入啮合。即应满足两齿轮的法向齿距相等,即
返回
§10-1 齿轮机构的应用及分类
1.齿轮机构的应用 (1)应用实例
例10-1 某航空发动机附件传动系统 例10-2 桑塔纳轿车的主传动系统 (2)传动特点 优点:① 齿轮传动用来传递空间任意轴间的运动及动力; ② 传递功率范围大; ③ 传动比准确; ④ 效率高、寿命长、安全可靠。 缺点: 制造成本较高。
由此可得被切齿轮不发生根切的最少齿数为
zmin= 2ha* / sin2α 当 ha* =1, α = 20。时, zmin= 17。
(3)齿轮的变位修正法
为了切制齿数 z≤zmin而不发生根切的齿轮, 可减小 ha* 及加 大α 。 但 ha*减小,将使重合度减小, 增大α将使功率损耗增加, 且要采用非标准刀具。 故尽量不采用这些方法,而最好的方法 是采用变位修正法。
相关文档
最新文档