数字图像处理图像基本运算

合集下载

《数字图像处理教学课件》第3章图像的基本运算(2)

《数字图像处理教学课件》第3章图像的基本运算(2)

实例
源图像
(b)双线性插值方法的结果
实例
用最近邻插值和双线性插值的方法分别将老虎放大 1.5倍。
实例
采用最近邻插值放大1.5倍 采用双线性插值放大1.5倍
比例变换中对应图像的确定
比例变换中对应图像的确定
假设输出图像的宽度为W,高度为H; 输入图像的宽度为w高度为h,要将输入图像的尺度拉伸或压
枕形失真
由镜头引起的画面向中间“收缩”的现象。
6.图像变形
图像变形(Image Warping) 图像变形合成(Image morphing )
参数化(全局)变形(warping)
参数化变形实例
Translation 平移
Rotation 旋转
Aspect 缩放
Affine 仿射变换
Perspective 透视变换
x' a b c x y' d e f y 1 0 0 1 1
x' ax by c
y'
dx
ey
f
将三对对应点的坐标代入上面公式,
可以求得变换的
对于内的任意一个像素点,再计算其新的坐标,然后 颜色映像
三角变形实例
四边形区域的变换方法
图像变形的几何校正
用控制点及插值过程定义,通常具有较为复杂的数学 变换函数
投影变换
投影变换是下列变换的组合
仿射变换 投影变形
投影变换的性质:
原点无需变换至原点 线变换为线 比例不保持 平行线无需保持平行
x' a b c x y' d e f y w' g h i w
举例:三角变形
B
源图像
?
B’ 目标图像
T(x,y)

数字图像处理领域的二十四个典型算法

数字图像处理领域的二十四个典型算法

数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。

图像处理是信号处理在图像域上的⼀个应⽤。

⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。

本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。

由于篇幅所限,只给出某⼀算法的主体代码。

ok,请细看。

⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。

灰度分为256阶。

所以,⽤灰度表⽰的图像称作灰度图。

程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。

这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。

数字图像处理-图像基本运算

数字图像处理-图像基本运算

数字图像处理_图像基本运算图像基本运算1点运算线性点运算是指输⼊图像的灰度级与输出图像呈线性关系。

s=ar+b(r为输⼊灰度值,s为相应点的输出灰度值)。

当a=1,b=0时,新图像与原图像相同;当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显⽰时更亮或更暗;当a>1时,新图像对⽐度增加;当a<1时,新图像对⽐度降低;当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补; ⾮线性点运算是指输⼊与输出为⾮线性关系,常见的⾮线性灰度变换为对数变换和幂次变换,对数变换⼀般形式为:s=clog(1+r)其中c为⼀常数,并假设r≥0.此变换使窄带低灰度输⼊图像映射为宽带输出值,相对的是输出灰度的⾼调整。

1 x=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1)3 imshow(x);4 title('原图');5 J=0.3*x+50/255;6 subplot(2,2,2);7 imshow(J);8 title('线性点变换');9 subplot(2,2,3);10 x1=im2double(x);11 H=2*log(1+x1);12 imshow(H)13 title('⾮线性点运算');%对数运算幂次变换⼀般形式:s=cr^γ幂级数γ部分值把窄带暗值映射到宽带输出值下⾯是⾮线性点运算的幂运算1 I=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1);3 imshow(I);title('原始图像','fontsize',9);4 subplot(2,2,2);5 imshow(imadjust(I,[],[],0.5));title('Gamma=0.5');7 imshow(imadjust(I,[],[],1));title('Gamma=1');8 subplot(2,2,4);9 imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');2代数运算和逻辑运算加法运算去噪处理1 clear all2 i=imread('lenagray.jpg');3 imshow(i)4 j=imnoise(i,'gaussian',0,0.05);5 [m,n]=size(i);6 k=zeros(m,n);7for l=1:1008 j=imnoise(i,'gaussian',0,0.05);9 j1=im2double(j);10 k=k+j1;11 End12 k=k/100;13 subplot(1,3,1),imshow(i),title('原始图像')14 subplot(1,3,2),imshow(j),title('加噪图像')15 subplot(1,3,3),imshow(k),title(‘求平均后的减法运算提取噪声1 I=imread(‘lena.jpg’);2 J=imnoise (I,‘lena.jpg’,0,0.02);3 K=imsubtract(J,I);4 K1=255-K;5 figure;imshow(I);7 figure;imshow(K1);乘法运算改变图像灰度级1 I=imread('D:/picture/SunShangXiang.jpg')2 I=im2double(I);3 J=immultiply(I,1.2);4 K=immultiply(I,2);5 subplot(1,3,1),imshow(I);subplot(1,3,2),imshow(J);6 subplot(1,3,3);imshow(K);逻辑运算1 A=zeros(128);2 A(40:67,60:100)=1;3 figure(1)4 imshow(A);5 B=zeros(128);6 B(50:80,40:70)=1;7 figure(2)8 imshow(2);9 C=and(A,B);%与10 figure(3);11 imshow(3);12 D=or(A,B);%或13 figure(4);14 imshow(4);15 E=not(A);%⾮16 figure(5);17 imshow(E);3⼏何运算平移运算实现图像的平移1 I=imread('lenagray.jpg');2 subplot(1,2,1);3 imshow(I);4 [M,N]=size(I);g=zeros(M,N);5 a=20;b=20;6for i=1:M7for j=1:N8if((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N)) 9 g(i,j)=I(i-a,j-b);10else11 g(i,j)=0;12 end13 end14 end15 subplot(1,2,2);imshow(uint8(g));⽔平镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(i,N-j+1);7 end8 end9 subplot(122);imshow(uint8(g));垂直镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(M-i+1,j);7 end8 end9 subplot(122);imshow(uint8(g));图像的旋转1 x=imread('D:/picture/DiaoChan.jpg');2 imshow(x);3 j=imrotate(x,45,'bilinear');4 k=imrotate(x,45,'bilinear','crop');5 subplot(1,3,1),imshow(x);6 title(‘原图')7 subplot(1,3,2),imshow(j);8 title(‘旋转图(显⽰全部)')9 subplot(1,3,3),imshow(k);10 title(‘旋转图(截取局部)')⼏种插值法⽐较1 i=imread('lena.jpg');2 j1=imresize(i,10,'nearest');3 j2=imresize(i,10,'bilinear');4 j3=imresize(i,10,'bicubic');5 subplot(1,4,1),imshow(i);title(‘原始图像')6 subplot(1,4,2),imshow(j1);title(‘最近邻法')7 subplot(1,4,3),imshow(j2);title(‘双线性插值法')8 subplot(1,4,4),imshow(j3);title(‘三次内插法')放缩变换1 x=imread('D:/picture/ZiXia.jpg')2 subplot(2,3,1)3 imshow(x);4 title('原图');5 Large=imresize(x,1.5);6 subplot(2,3,2)7 imshow(Large);8 title('扩⼤为1.5');9 Small=imresize(x,0.1);10 subplot(2,3,3)11 imshow(Small);12 title('缩⼩为0.3');13 subplot(2,3,4)14 df=imresize(x,[600700],'nearest');15 imshow(df)16 title('600*700');17 df1=imresize(x,[300400],'nearest');18 subplot(2,3,5)19 imshow(df1)20 title('300*400');后记:(1)MATLAB基础知识回顾1:crtl+R是对选中的区域注释,ctrl+T是取消注释2:有的代码中点运算如O=a.*I+b/255 ,其中b除以255原因是:灰度数据有两种表式⽅法:⼀种是⽤unit8类型,取值0~255;另⼀种是double类型,取值0~1。

数字图像处理图像变换实验报告

数字图像处理图像变换实验报告

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用与意义;4、观察图像点运算与几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。

三、实验原理1、图像灰度直方图、点运算与几何变换的基本原理及编程实现步骤图像灰度直方图就是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算就是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。

点运算可以瞧作就是“从象素到象素”的复制操作,而这种复制操作就是通过灰度变换函数实现的。

如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值与输出灰度值之间的转换关系。

一旦灰度变换函数确定,该点运算就完全确定下来了。

另外,点运算处理将改变图像的灰度直方图分布。

点运算又被称为对比度增强、对比度拉伸或灰度变换。

点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸与均衡等。

图像几何变换就是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放与图像旋转等,其理论基础主要就是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算与几何变换相关内容的文字说明,用户在操作过程中可以参考。

下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法与频域法,点运算与几何变换属于空域法。

数字图像-医学图像处理 Part2:解答题和计算题

数字图像-医学图像处理 Part2:解答题和计算题

Part2:解答题和计算题2.1 图像处理基础一、简答题1、解释模拟图像和数字图像的概念。

(10分)模拟图像在水平与垂直方向上灰度变化都是连续的,因此有时又将模拟图像称之为连续图像( continuous image)数字图像是指把模拟图像分解成被称作像素的若干小离散点,并将各像素的颜色值用量化的离散值,即整数值来表示的图像。

因此,又将数字图像称为离散图像(discrete image)。

像素是组成数字图像的基本元素。

2、简述图像的采样和量化过程,并解释图像的空间分辨率和灰度分辨率的概念。

(10分) 空间采样将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

由于图像是二维分布的信息,所以采样是在x轴和y轴两个方向上进行。

量化把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。

量化值一般用整数来表示。

考虑人眼的识别能力,目前非特殊用途的图像均为8bit量化,即用0~255描述“黑~白”。

空间分辨率(spatial resolution ):图像空间中可分辨的最小细节。

一般用单位长度上采样的像素数目或单位长度上的线对数目表示。

灰度分辨率(contrast resolution ):图像灰度级中可分辨的最小变化。

一般用灰度级或比特数表示。

3、在理想情况下获得一幅数字图像时,采样和量化间隔越小,图像的画面效果越好。

当一幅图像的数据量被限制在一个范围内时,如何考虑图像的采样和量化,使得图像的表现效果尽可能的好? (10 分)当限定数字图像的大小时, 为了得到质量较好的图像,一般可采用如下原则:①对缓变的图像,应该细量化,粗采样,以避免假轮廓②对细节丰富的图像,应细采样,粗量化,以避免模糊4、图像量化时,如果量化级别较少时会发生什么现象?为什么? (10分)如果量化级比较少,会出现伪轮廓现象。

原因:量化过程是将连续的颜色划分到有限个级别中,必然会导致颜色的信息缺失。

当量化级别数量级过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间过渡就会变得突然,所以可能会导致伪轮廓现象。

实验一数字图像基本操作及灰度调整

实验一数字图像基本操作及灰度调整

实验一 数字图像基本操作及灰度调整一.实验目的1.掌握读、写图像的基本方法;2.掌握MATLAB 语言中图像数据与信息的读取方法;3.理解图像灰度变换处理在图像增强的作用;4.掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方法。

二.实验基本原理1. 灰度变换灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。

1) 图像反转灰度级范围为[0, L-1]的图像反转可由下式获得r L s --=12) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围,如直接使用原图,则一部分细节可能丢失。

解决的方法是对原图进行灰度压缩,如对数变换:s = c log(1 + r ),c 为常数,r ≥ 03) 幂次变换:0,0,≥≥=γγc cr s4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸:其对应的数学表达式为:2. 直方图均衡化灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频度,它是图像最基本的统计特征。

依据定义,在离散形式下, 用r k 代表离散灰度级,用p r (r k )代表p r (r ),并且有下式成立:nn r P k k r =)( 1,,2,1,010-=≤≤l k r k 式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,而n k /n 即为频数。

直方图均衡化处理是以累积分布函数变换法为基础的直方图修正法。

假定变换函数为ωωd p r T s r r)()(0⎰==(a) Lena 图像 (b) Lena 图像的直方图图1-1 Lena 图像及直方图当灰度级是离散值时,可用频数近似代替概率值,即1,,1,010)(-=≤≤=l k r n n r p k k k r式中:l 是灰度级的总数目,p r (r k )是取第k 级灰度值的概率,n k 是图像中出现第k 级灰度的次数,n 是图像中像素总数。

数字图像处理复习

数字图像处理复习

数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。

图-是物体透射或反射光的分布,是客观存在的。

像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。

数字图像是物体的一个数字表示,是以数字格式存放的图像。

2. 数字图像处理的概念。

数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。

3. 数字图像处理的优点。

精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。

3.光强度与主观亮度曲线。

P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。

(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。

采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。

采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。

设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。

(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。

8. 领域空间内像素距离的计算。

(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。

数字图像处理总复习(14)(1)

数字图像处理总复习(14)(1)
将M幅图像相加求平均利用了M幅图像中同一位置的M个 像素的 平均值,用一个n*n的模板进行平滑滤波利用了同一 幅图像中的n*n个像素的平均值。因为参与的像素个数越多, 消除噪声的能力越强,所以如果M>n*n,则前者消除噪声的 效果较好,反之则后者消除噪声的效果较好。
2.图像锐化与图像平滑有何区别与联系?
第三章 (不考计算题) 频域滤波的物理含义 傅立叶变换性质 频域滤波的基本方法
第四章 灰度基本变换(线形、非线性) 直方图处理(定义、直方图规定化、均衡化) 算术逻辑运算(帧差分,帧平均) 空间滤波(均值、中值、KNN) 同态滤波(滤波流程) 边缘检测(一阶,二阶,循环卷积) 图像锐化与图像平滑 真彩色图像处理与伪彩色图像处理
第一章图像数字图像处理灰度图像的概念图像工程定义分类图像的表达图像文件格式bmp文件第二章视觉感知要素图像采样和量化颜色模型像素之间的基本关系邻接连通距离度量第三章不考计算题频域滤波的物理含义傅立叶变换性质频域滤波的基本方法第四章灰度基本变换线形非线性直方图处理定义直方图规定化均衡化算术逻辑运算帧差分帧平均空间滤波均值中值knn同态滤波滤波流程边缘检测一阶二阶循环卷积图像锐化与图像平滑真彩色图像处理与伪彩色图像处理第五章图像编码与压缩不考计算图像编码的基本概念图像编码的方法第六章图像恢复颜色模型第七章图像分割图像的阈值分割图像的梯度分割图像边缘检测第八章目标的表达和描述目标表达目标的描述第九章形态学运算膨胀腐蚀开运算闭运算?除电磁波谱图像外按成像来源进行划分的话常见的计算机图像还包三种类型
8. 直方图修正有哪两种方法?二者有何主要区别于 联系?
方法:直方图均衡化和直方图规定化。
区别:直方图均衡化得到的结果是整幅图对比度的增 强,但一些较暗的区域有些细节仍不太清楚,直方图 规定化处理用规定化函数在高灰度区域较大,所以变 换的结果图像比均衡化更亮、细节更为清晰。联系: 都是以概率论为基础的,通过改变直方图的形状来达 到增强图像对比度的效果。

《数字图像处理》-教学大纲

《数字图像处理》-教学大纲

《数字图像处理》课程教学大纲Digital image processing一、教学目标及教学要求数字图像处理课程是智能科学与技术、数字媒体技术等专业的专业必修课。

主要目标及要求是通过该课程的学习,使学生初步掌握数字图像处理的基本概念、基本原理、基本技术和基本处理方法,了解数字图像的获取、存储、传输、显示等方面的方法、技术及应用,为学习相关的数字媒体、视频媒体和机器视觉等课程,以及今后从事数字媒体、视频媒体、图像处理和计算机视觉等领域的技术研究与系统开发打下坚实的理论与技术基础。

二、本课程的重点和难点(一)课程教学重点教学重点内容包括:图像的表示,空间分辨率和灰度级分辨率,图像直方图和直方图均衡,基于空间平滑滤波的图像增强方法,基于空间锐化滤波的图像增强方法,图像的傅里叶频谱及其特性分析,图像编码模型、霍夫曼编码和变换编码,图像的边缘特征及其检测方法,彩色模型,二值形态学中的有腐蚀运算和膨胀运算。

(二)课程教学难点教学难点包括:直方图均衡,二维离散傅里叶变换的若干重要性质、图像的傅里叶频谱及其特性分析,变换编码,小波变换的概念、嵌入式零树小波编码,图像的纹理特征及其描述和提取方法,Matlab图像处理算法编程。

三、主要实践性教学环节及要求本课程的实验及实践性环节要求使用Matlab软件平台,编写程序实现相关的数字图像处理算法及功能,并进行实验验证。

课程实验与实践共10学时,分别为:实验一:图像基本运算实验(2学时)。

实验二:图像平滑滤波去噪实验(2学时)。

实验三:图像中值滤波去噪实验(2学时)。

实验四:图像边缘检测实验(2学时)。

相关图像处理算法的课堂演示验证(2学时)。

要求每个学生在总结实验准备、实验过程和收获体会的基础上,写出实验报告。

四、采用的教学手段和方法利用多媒体课件梳理课程内容和讲授思路,合理运用启发式教学方式激发学生的思考力,采用讨论式教学方式增强教学过程的互动效果,理论教授与应用实例编程实践相结合,提高学生的分析和解决问题的能力。

《数字图像处理》课程教学大纲

《数字图像处理》课程教学大纲

《数字图像处理》课程教学大纲一、课程基本信息课程编号:dq04091010课程名称:数字图像处理Digital Image Processing学时/学分:32/2实验学时:12课程类别:专业类课程课程性质:必修课适用专业:电子信息工程开设学期:第六学期先行课程:概率与数理统计、线性代数、信号与系统、数字信号处理责任单位:电气与信息工程学院电子信息工程系二、课程简介《数字图像处理》是面向电子信息工程专业开设的一门专业课程。

通过本课程的学习,学生将获得图像处理的系统设计、相关软件设计与开发知识,并理解图像处理的设计需求、设计原理、设计方法、具有相应实践能力。

能够运用深入的图像处理方法进行数学建模及仿真验证;掌握多层次的实验设计、实现及结果分析的方法,并能将其用于复杂工程实践中。

并为学习后续课程以及从事与本专业相关的工程技术等工作奠定必要的理论基础。

三、课程目标通过本课程的学习,应达到的目标及能力如下:目标1:能够利用数字图像处理所需的数学工具。

学会图像分析的基本方法,具备解决图像应用问题的初步能力;目标2:能够学会数字图像处理基本算法,分析数字图像处理领域复杂工程问题;目标3:能够自行编写MATLAB程序,仿真实现图像处理分析过程,准确筛选、处理、分析实验数据,得出合理有效的结论,规范撰写实验报告。

四、课程目标对毕业要求的支撑五、课程教学内容(一)数字图像处理概述1.主要教学内容:图像的基本概念;数字图像处理,计算机视觉,计算机图形学;数字图像处理系统结构;数字图像处理的主要研究内容;图像的数字化方法;数字图像的数值描述;数字图像的位图文件结构;数字图像的灰度直方图。

2.知识点与能力点要求:(1)知识点:要求学生了解什么是图像以及图像的分类,了解数字图像处理、计算机视觉、计算机图形学之间的区别,了解数字图像处理系统结构。

了解图像的采样和量化方法;掌握BMP位图文件的结构,掌握数字图像灰度直方图的定义、性质和用途。

数字图像处理技术

数字图像处理技术

数字图像处理技术数字图像处理技术是在数字计算机上对图像进行采集、处理、分析和输出的一种技术。

它广泛应用于各个领域,如医疗影像、广告设计、电影制作等。

数字图像处理技术的发展为图像处理提供了更加灵活、高效、精确和全面的方法。

数字图像处理技术的基础是数字化图像。

在数字化图像中,图像是以数字矩阵的形式表示的。

每个矩阵元素代表图像中的一个像素点,其数值表示像素点的亮度或颜色。

通过对这些像素点进行各种运算和处理,可以得到最终的图像结果。

数字图像处理技术通过一系列的图像处理算法对图像进行处理和改善。

常见的图像处理操作包括图像增强、图像滤波、图像分割和图像压缩等。

图像增强技术可以改善图像的视觉效果,使图像更加明亮、清晰和鲜艳。

图像滤波技术可以去除图像中的噪声、模糊和伪影等干扰,提高图像的质量和清晰度。

图像分割技术可以将图像分割成多个具有独立特征的区域,便于后续的图像分析和处理。

图像压缩技术可以减少图像文件的存储空间,提高图像传输的效率。

数字图像处理技术的实现离不开计算机软件和硬件的支持。

现代数字图像处理软件提供了丰富的图像处理算法和函数库,简化了图像处理的复杂性,提高了图像处理的效率。

计算机硬件的进步也为数字图像处理技术的发展提供了良好的基础,例如高性能的图形处理器(GPU)和专用的数字信号处理器(DSP)。

除了常见的图像处理技术,数字图像处理技术还包括一些高级的技术,如图像识别、目标跟踪和图像生成等。

图像识别技术可以通过分析图像中的特征和模式,自动识别图像中的物体、人脸或文字等。

目标跟踪技术可以实时追踪图像中的目标,并在跟踪过程中对目标进行分析和处理。

图像生成技术可以根据给定的规则和参数,生成新的图像,如电脑生成的艺术作品和虚拟现实场景等。

总之,数字图像处理技术是一门涵盖各个方面的综合性学科,它不断地更新和发展,为我们提供了丰富的工具和方法,用于处理、改善和分析图像。

在未来,随着计算机技术和图像处理算法的不断进步,数字图像处理技术将在更多的领域发挥重要作用,为人们的生活和工作带来更多的便利和创新。

(数字图像处理)第三章图像的基本运算

(数字图像处理)第三章图像的基本运算
非线性点运算相对于线性点运 算来说计算较为复杂,但能够 实现更加灵活和多样的图像处 理效果。
点运算的应用场景
点运算在图像处理中具有广泛的应用,例如在医学影像处理中,可以通过点运算来 调整图像的对比度和亮度,提高医学影像的清晰度和可读性。
在遥感图像处理中,点运算可以用于校正和增强遥感图像,提高遥感数据的准确性 和可靠性。
图像基本运算的重要性
01
图像基本运算是图像处理的基础 ,是实现复杂图像处理算法的基 石。
02
掌握基本运算有助于深入理解图 像处理原理,提高图像处理技能 。
02
图像的点运算
线性点运算
线性点运算是指通过线性变换对图像的像素值进行 操作,常见的线性点运算包括加法、减法、乘法和 除法等。
线性点运算可以用于增强图像的对比度、调整图像 的亮度、改变图像的色彩等。
总结词
旋转操作用于将图像围绕一个点旋转一定角度,同时改变像 素的位置。
详细描述
旋转操作用于将图像中的像素按照指定的角度进行旋转,同 时像素值保持不变。这种操作常用于纠正倾斜的图像、实现 特定视角的观察等。
图像的剪切
总结词
剪切操作用于从图像中删除一部分区域,只保留所需部分。
详细描述
剪切操作用于从图像中删除指定的区域,只保留所需的像素部分。这种操作常 用于裁剪照片、去除背景等。剪切操作可以快速有效地去除不需要的区域,突 出显示所需的细节或主题。
图像的缩放
总结词
缩放操作用于改变图像的大小,可以通过放大或缩小像素值来实 现。
详细描述
缩放操作用于改变图像的尺寸,可以通过放大或缩小像素值来实 现。放大图像时,像素值会被插值计算以填充新的像素空间;缩 小图像时,像素值可能会被平均或选择性地丢弃。这种操作常用 于调整图像大小、视窗变换等。

智能数字图像处理-原理与技术 第3章 图像的基本运算与变形处理

智能数字图像处理-原理与技术 第3章  图像的基本运算与变形处理
逻辑运算 ➢ 逻辑运算主要是针对两幅二值图像进行逻辑与、或、非等。 ➢ 运用这种方法可以获得某种特殊的效果。
几何运算 ➢ 几何运算就是改变图像中物体对象(像素)之间的空间关系,几何变换可以分为 位置变换(平移、镜像、旋转)、形状变换(放大、缩小)等。
5
代数与逻辑运算作用
降低或消除噪声 检测两幅图像之间的变化 图像叠加或合成 确定物体边界位置处的梯度
4. 图像的几何运算
2. 图像的代数运算
5. 图像的缩放及插值
3. 图像的逻辑运算
6. 图像变形技术
3
1.图像的基本运算
根据运算基本数学特征,常用的图像基本运算有: ➢ 代数运算 ➢ 逻辑运算 ➢ 几何运算 ➢ 图像缩放 ➢ 图像插值运算
4
代数、逻辑、几何运算基本简介
代数运算 ➢ 代数运算是指将两幅图像通过对应像素之间的加、减、乘、除运算得到输出图 像的方法。 ➢ 可以通过适当的组合,构成复合代数运算
6
2. 图像的代数运算
四种基本的代数运算:
运算规则:像素位置不变,A和B对应位置的像素灰度(或者颜色)进行计算 代数运算作用:
迭加:合成图像 相减:运动物体检测 相乘:提取或删掉图像某部分 相除:遥感多光谱图像相除,抵消一些入射分量
7
加运算
加法运算:两幅图像对应像素的灰度值或彩色分量进行相加
否则置为0 。
12
乘运算实例
乘运算实例1:扣取水流区域
乘运算实例2:扣取前景目标
13
相除运算
除法运算:就是两幅图像对应像素的灰度值或彩色分量进行相除。简单的除法运算可用于 改变图像的灰度级。
如果除数为0, 结果置为0.
两个图像相除实例 运算规则:像素位置不变,A和B对应位置的像素灰度(或者颜色)进行相除运算 主要用途:除法运算可用于校正非线性畸变的成像设备。

《数字图像处理》实验教案

《数字图像处理》实验教案

《数字图像处理》实验教案一、实验目的1. 理解数字图像处理的基本概念和原理;2. 掌握常用的数字图像处理方法和技术;3. 培养实际操作数字图像处理工具的能力;4. 提高对数字图像处理问题的分析和解决能力。

二、实验内容1. 图像读取与显示:使用图像处理软件,读取、显示和保存不同格式的图像文件;2. 图像基本运算:进行图像的加、减、乘、除等基本运算;3. 图像滤波:使用低通滤波器、高通滤波器、带通滤波器等对图像进行滤波处理;4. 图像增强:采用直方图均衡化、对比度增强等方法改善图像质量;5. 边缘检测:使用Sobel算子、Canny算子等方法检测图像边缘。

三、实验原理1. 图像读取与显示:介绍图像处理软件的基本操作,掌握图像文件格式的转换;2. 图像基本运算:介绍图像像素的运算规则,理解图像基本运算的原理;3. 图像滤波:介绍滤波器的原理和应用,掌握滤波器的设计和实现方法;4. 图像增强:介绍图像增强的目的和方法,理解直方图均衡化和对比度增强的原理;5. 边缘检测:介绍边缘检测的原理和算法,掌握不同边缘检测方法的特点和应用。

四、实验步骤1. 图像读取与显示:打开图像处理软件,选择合适的图像文件,进行读取、显示和保存操作;2. 图像基本运算:打开一幅图像,进行加、减、乘、除等基本运算,观察结果;3. 图像滤波:打开一幅图像,选择合适的滤波器,进行滤波处理,观察效果;4. 图像增强:打开一幅图像,选择合适的增强方法,进行增强处理,观察质量改善;5. 边缘检测:打开一幅图像,选择合适的边缘检测方法,进行边缘检测,观察边缘效果。

五、实验要求1. 熟练掌握图像处理软件的基本操作;2. 能够正确进行图像的基本运算;3. 能够合理选择和应用不同类型的滤波器;5. 能够根据图像特点选择合适的边缘检测方法。

六、实验环境1. 操作系统:Windows 10或更高版本;2. 图像处理软件:MATLAB或OpenCV;3. 编程环境:MATLAB或C++;4. 硬件要求:普通计算机或服务器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性拉伸不是通过在不同灰度值区间选择不同的线 性方程来实现对不同灰度值区间的扩展与压缩,而是在整 个灰度值范围内采用统一的非线性变换函数,利用函数的 数学性质实现对不同灰度值区间的扩展与压缩。
3.3代数运算与逻辑运算 (Algebra and Logical Operation)
1.概念
代数运算是指两幅或多幅输入图像之间进行点对点 的加、减、乘、除运算得到输出图像的过程。如果记输 入图像为A(x,y)和B(x,y),输出图像为C(x,y),则有如 下四种形式:
3.1 图像基本运算的概述(Introduction)
图像基本运算的分类
按图像处理运算的数学特征, 图像基本运算可分为:
图像基本运算
点运算(Point Operation) 代数运算(Algebra Operation) 逻辑运算(Logical Operation) 几何运算(Geometric Operation)
C(x, y) A(x, y) B(x, y)
代数运算的四种基本形式
C(x, y) A(x, y) B(x, y) C(x, y) A(x, y) B(x, y) C(x, y) A(x, y) B(x, y)
逻辑运算
3.3代数运算与逻辑运算 (Algebra and Logical Operation)
线性点运算的应用 s ar b
1)如果a>1,输出图像的对比度增大(灰度扩展)
s
255
变换前
r 0 48 178 255
3.4 对比度增大
变换后
3.2.1线性点运算(Linear Point Operation)
2) 如果0<a<1,输出图像的对比度减小(灰度压缩)
255 Байду номын сангаас42
变换前
0
255
生成图象叠加效果:可以得到各种图像合成的效果,也可以 用于两张图片的衔接。
3.3.2减法运算 (Subtraction )
减法运算 将同一景物在不同时间拍摄的图像或同一景物在不同波段
的图像相减,这就是图像的减法运算。实际中常称为差影法。 C(x, y) A(x, y) B(x, y)
差值图像提供了图像间的差值信息,能用于指导动态监测、 运动目标的检测和跟踪、图像背景的消除及目标识别等。
本章知识点
1、图像基本运算可分为哪几类? 2、掌握线性点运算拉升对比度的算法实现 3、掌握Matlab实现图像对比度变化 4、图像代数运算有哪几类?各有什么意义? 5、理解通过多幅图像平均进行降噪的原理。 6、差影法的用处。 7、理解通过多幅图像平均进行降噪的原理。 8、图像的几何变换有哪几种? 9、理解灰度插值用在何种情况?
变换”等,按灰度变换函数T[ ]的性质,可将点运算分为:
线性灰度变换(线性点运算)
点运算
灰度变换增强 分段线性灰度变换(分段线性点运算)
非线性灰度变换(非线性点运算) 直方图增强(5.2.2 基于直方图处理的图像增强)
rs ar b
3.2.1线性点运算(Linear Point Operation)
则灰度变换函数可简化表示为: s T[r]
s
255
s
255 218
非线性灰度变换
0 48
r
178 255
3.1 对比度增大
0
r
128
255
3.2 加亮、减暗图像
点运算可以改变图像数据所占据的灰度值范围, 从而改善图像显示效果。
3.2 点运算 (Point Operation)
2.点运算的分类 点运算又称为“对比度增强”、“对比度拉伸”、“灰度
数字图像处理
第3章 图像基本运算
(Basic Operation in Digital Image Processing )
3.1 图像基本运算的概述(Introduction) 3.2 点运算 (Point Operation) 3.3 代数与逻辑运算(Algebra and Logical Operation) 3.4几何运算 (Geometric Operation)
3.5 降低对比度
变换后
3.2.1线性点运算(Linear Point Operation)
3)如果a为负值,暗区域将变亮,亮区域将变暗
255
0
变换前
255
变换后
3.2.1线性点运算(Linear Point Operation)
2、分段线性点运算
将感兴趣的灰度范围线性扩展,相对抑制不感兴趣的灰度区域。
加暗、减亮图像
3.2.2非线性点运算(Non-Linear Point Operation)
思考问题:
1、点运算是否会改变图像内像素点之间的空间位置关系?
点运算是一种像素的逐点运算,它与相邻的像素之间没有 运算关系,点运算不会改变图像内像素点之间的空间位置关系 。 2、对图像灰度的拉伸,非线性拉伸与分段线性拉伸的区别?
3.2.1线性点运算(Linear Point Operation)
分段线性点运算的应用
g(x,y) Mg
d
变换前
c
f(x,y)
0
ab
Mf
变换后
3.2.2非线性点运算(Non-Linear Point Operation)
1、非线性点运算 非线性点运算的输出灰度级与输入灰度级呈非线性关
系,常见的非线性灰度变换为对数变换和幂次变换。 1)、对数变换
i =1,2,...M
M个图像的均值为:
g(x, y) 1
M
M
fi (x, y) ei (x, y)
i 1
f (x, y) 1 M
M
ei (x, y)
i 1
当:噪音ei(x,y)为互不相关,且均值为0时,上述图象均值将降低噪音的影响。
3.3.1加法运算(Addition)
g(x, y) 1
逻辑运算是指将两幅或多幅图像通过对应像素之间 的与、或、非逻辑运算得到输出图像的方法。
在进行图像理解与分析领域比较有用。运用这种方法可 以为图像提供模板,与其他运算方法结合起来可以获得某种 特殊的效果。
3.3.1加法运算(Addition)
1、加法运算
C(x, y) A(x, y) B(x, y)
3.3.2减法运算 (Subtraction )
混合图像的分离
(a)混合图像
(b)被减图像
图3.6 差影法进行混合图像的分离
(c)差影图像
3.3.2减法运算 (Subtraction )
消除背景影响
即去除不需要的叠加性图案 设:背景图像b(x ,y),前景背景混合图像f(x ,y)
g(x,y)=f(x,y)–b(x,y) g(x,y) 为去除了背景图像
f x, y
利用同一景物的多幅图像取平均、消除噪声。取M个图像相 加求平均得到1幅新图像,平均后图像的信噪比提高M倍。
3.3.1加法运算(Addition)
相加
▪ Addition:
– averaging for noise reduction
M=1
M=2
M=4
M=16
3.3.1加法运算(Addition)
设f(x,y)灰度范围为[0,Mf],g(x,y)灰度范围为[0,Mg],
g(x,y)
Mg
M
f
d b
[
f
(x,
y)
b]
d
b f (x, y) M f
Mg
d
g
(x,
y)
d b
c a
[
f
(
x,
y)
a]
c
c
a
f
(x,
y)
a f (x, y) b 0 f (x, y) a
c
0
ab
f(x,y) Mf
1、线性点运算
线性点运算的灰度变换函数形式可以采用线性方程描述,即
s ar b
黑线: 0 a 1, b 0 输出灰度压缩
红线: a 1, b 0
输出灰度不变
蓝线: a 1, b 0
输出灰度扩展 整体变亮
45º
绿线: 0 a 1,
b0
输出灰度压缩, 整体变暗
图 3.3线性点运算
3.2.1线性点运算(Linear Point Operation)
非线性点运算应用实例3
输 L-1 出


级 L/2
s
=0.04
=0.1 =0.4 =1 =2.5
=10.0
=25.0
0
L/2
L-1
输入灰度级r
不同的s=cr曲线及图像变换
结果
加暗、减亮图像
=1.5
=0.66
加亮、减暗图像
原始图像
3.2.2非线性点运算(Non-Linear Point Operation)
对数变换的一般表达式为: s = c log(1 + r) 其中C是一个常数。
低灰度区扩展,高灰度区压缩。 图像加亮、减暗。
s
s=log(1+r)
r
图3.9 对数曲线图
非线性拉伸不是对图像的整个灰 度范围进行扩展,而是有选择地对某 一灰度值范围进行扩展,其他范围的 灰度值则有可能被压缩。
3.2.2非线性点运算(Non-Linear Point Operation) 非线性点运算应用实例1
T2(x,y)
3.3.2减法运算 (Subtraction )
差影法在自动现场监测中的应用
1、在银行金库内,摄像头每隔一固定时间拍摄一幅图像,并与上 一幅图像做差影,如果图像差别超过了预先设置的阈值,则表明可 能有异常情况发生,应自动或以某种方式报警; 2、用于遥感图像的动态监测,差值图像可以发现森林火灾、洪水泛滥, 监测灾情变化等; 3、也可用于监测河口、海岸的泥沙淤积及监视江河、湖泊、海岸等的污染; 4、利用差值图像还能鉴别出耕地及不同的作物覆盖情况。
相关文档
最新文档