数值分析复习习题

合集下载

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

《数值分析》期末复习题(1)

《数值分析》期末复习题(1)

《数值分析》期末复习题一、单项选择题1. 数值x *的近似值x =0.32502×10-1,若x 有5位有效数字,则≤-*x x ( ).(A)21×10-3 (B) 21×10-4 (C) 21×10-5 (D) 21×10-6 2. 设矩阵A =10212104135⎡⎤⎢⎥⎢⎥⎣⎦,那么以A 为系数矩阵的线性方程组A X =b 的雅可比迭代矩阵为( )(A)00.20.10.200.40.20.60--⎡⎤⎢⎥--⎢⎥--⎣⎦(B)10.20.10.210.40.20.61⎡⎤⎢⎥⎢⎥⎣⎦(C) 00.20.10.200.40.20.60⎡⎤⎢⎥⎢⎥⎣⎦ (D)021204130⎡⎤⎢⎥⎢⎥⎣⎦3. 已知(1)1,(2)4,(3)9f f f ===,用拉格朗日2次插值,则(2.5)f =( )(A) 6.15 (B) 6.25 (C) 6.20 (D) 6.10 4. 抛物形求积公式的代数精度是( )A. 1,B. 2 ,C. 3,D. 45. 改进欧拉格式的 局部截断误差是( ). (),A O h 2. (),B O h 3. (),C O h 4. ().D O h二、填空题1、以722作为π的近似值,它有( )位有效数字; 2、经过)1,2( ),2,1( ),1,0(C B A 三个节点的插值多项式为( ); 3、用高斯-赛德尔迭代法解方程组⎩⎨⎧-=+-=+,10,232121x bx bx x 其中b 为实数,则方法收敛的充分条件是b 满足条件( );4、取步长为1.0=h ,用欧拉法计算初值问题22',(0)0,y x y y ⎧=+⎨=⎩的解函数)(x y ,它在3.0=x 的近似值为( );5、已知方程0sin 1=--x x 在)1,0(有一个根,使用二分法求误差不大于41021-⨯的近似解至少需要经过( )次迭代。

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析

《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。

数值分析期末复习题

数值分析期末复习题

数值分析期末复习题⼀、填空题1.设真值x=983350,则其近似值y=98000的有效数字的位数,绝对误差为,相对误差为。

2.x=0.1062,y=0.947,计算x+y 其有效数字的位数为。

3.对f(x)=x 3+x+1,差商f[0,1,2,3]= ;f[0,1,2,3,4]= 。

4.设f(x)可微,求⽅程x=f(x)根的⽜顿迭代法格式是。

5.设⽅程x=?(x)有根x *,且设?(x)在含x *的区间(a,b)内可导,设x 0∈(a,b)则迭代格式x k+1=?(x k )收敛的充要条件为。

6.求解线性⽅程组Ax=b 的迭代格式x (k+1)=Jx (k)+f 收敛的充要条件为。

7.=011001001001....A ,||A||∝= ,cond(A)∝= 。

8.n 次Legendre 多项式的最⾼次项系数为。

9.中矩形公式:)()2()(a b b a f dx x f b a -+=?的代数精度为。

10.求积公式:)1(21)0()(10f f dx x f '+≈?的代数精度为。

11.在区间[1,2]上满⾜插值条件??==3)2(1)1(P P 的⼀次多项式P(x)= 。

12.设∑==n k k k n x f A f I 0)()(是函数f(x)在区间[a,b]上的插值型型求积公式,则 ∑=n k k A0= 。

13.梯形公式和改进的Euler 公式都是阶精度的。

⼆、计算题1.利⽤矩阵的⾼斯消元法,解⽅程组=++=++=++2053182521432321321321x x x x x xx x x2.设有函数值表试求各阶差商,并写出Newton 插值多项式。

3.求解超定⽅程组= ?43231211121x x的最⼩⼆乘解。

4.给定下列函数值表:求3次⾃然样条插值函数5.给定x x f =)(在x=100, 121, 144 三点处的值,试以这三点建⽴f(x)的⼆次(抛物)插值公式,利⽤插值公式求115的近似值并估计误差。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。

数值分析复习题

数值分析复习题

数值分析复习题⼀、填空1.近似数x*=0.4231关于真值x=0.4229有位有效数字.2.设f(x)可微,则求⽅程x 2=f(x)根的⽜顿迭代格式为 .3.对f(x)=x 3+3x 2-x+5,差商f[0,1,2,3,4]= .4.⽅阵A 的谱半径是指 .5.求积分?ba dx x f )(的近似值,其⾟⼘⽣公式为 .⼆、已知观测数据(1,-5),(2,0),(4,5),(5,6),试⽤最⼩⼆乘法求形如xb ax x +=)(?的经验公式。

(10分)三、求⼀个次数不⾼于4的多项式p 4(x),满⾜下列插值条件 x 0 1 2f(x) 0 1 1)(x f '0 1四、写出计算线性⽅程组=+-=+-=+-272135223121321x x x x x x x 的⾼斯⼀赛德尔迭代格式,并分析此格式的敛散性.五、⽤预估⼀校正法求初值问题=≤≤-='1)0(102y x y x y y在x=0.2处的数值解,步长取h=0.1。

(要求保留⼩数点后4位)六、把区间分成两等份,⽤复化⾟⼘⽣公式计算dxx+1七、在求⾮线性f(x)=0根的近似值时,论证简单迭代法⼀般为线性收敛,⽽⽜顿迭代法为平⽅收敛.⼀填空1.近似数x*=0.4231关于真值x=0.4229有位有效数字.2.设643()35f x x x x =-+-,则差商[0,1,2,3,4,5,6]f = 3.求积分()ba f x dx ?的近似值,其复化梯形公式为4.5点⾼斯求积公式,其代数精度为5.设f(x)可微,则求⽅程x 2=f(x)根的近似值的⽜顿迭代格式为 6.利⽤⼆分法求()0f x =在[,]a b 上根的近似值,误差限为 7.⽅阵A 的谱半径是指 8.矩阵A 的条件数是指 9.能⽤⾼斯消元法求解A x b =的充要条件是 10.设215314278A -??=,则1||||A = ⼆给定线性⽅程组1231232231242122316x x x x x x x x x -++=??-++=??++=? 1. ⽤列主元消元法求解所给线性⽅程组。

数值分析考试题

数值分析考试题

数值分析考试题一、选择题1. 以下哪个方法不是数值分析中常用的数值积分方法?A. 梯形法则B. 辛普森法则C. 牛顿法D. 龙格-库塔法2. 在求解线性方程组的直接方法中,高斯消元法属于以下哪种类型?A. 列主元消去法B. 行主元消去法C. 完全主元消去法D. 选主元消去法3. 非线性方程求根的二分法属于以下哪种类型的数值方法?A. 迭代法B. 直接法C. 优化算法D. 插值法4. 在数值分析中,用于度量舍入误差的常用指标是:A. 截断误差B. 舍入误差C. 估计误差D. 计算误差5. 插值多项式的最高次数与插值节点的数量关系是:A. 次数多于节点数量B. 次数少于节点数量C. 次数等于节点数量D. 与节点数量无关二、填空题1. 在数值分析中,__________是用来描述一个算法在实际运算中所需步数的度量。

2. 线性方程组的雅可比方法是一种__________消去法。

3. 牛顿法在求解非线性方程时,每次迭代都需要计算__________。

4. 龙格现象是指在数值积分中,由于__________而引起的误差。

5. 在多项式插值中,拉格朗日插值法是通过__________来构建插值多项式的。

三、简答题1. 请简述数值分析中的截断误差和舍入误差的区别。

2. 描述高斯-赛德尔迭代法的基本思想,并与雅可比迭代法进行比较。

3. 解释在数值积分中为什么需要使用自适应方法。

4. 讨论在求解非线性方程时,二分法与牛顿法的适用条件和优缺点。

5. 分析多项式插值与样条插值的主要区别及其各自的应用场景。

四、计算题1. 给定函数f(x) = sin(x),在区间[0, π]上使用梯形法则计算积分的近似值,取4个等分点。

2. 设线性方程组如下:\[\begin{cases}2x + y + z = 6 \\x + 2y + 4z = 14 \\3x + y + 2z = 10\end{cases}\]使用高斯消元法求解该方程组的解。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。

A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。

A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。

A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。

A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。

A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。

A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。

A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。

数值分析复习题

数值分析复习题

一、判断题1. 区间[a,b]上,若f(a)f(b)<0,则方程f(x)=0在[a,b]内一定有实根。

2. 22/7作为π=3.1415926……近似值,它有3位有效数字。

3. 设P(x)和Q(x)都是n 次多项式,如果在n +1 个不同的节点x i 上都有P(x i )=Q(x i ),则P(x)≡Q(x) 。

4. 取节点01231, 0, 2 ,4x x x x =-===作2()f x x =的插值多项式()p x ,则()p x 次数为2,插值基函数的次数为3。

5. 插值多项式严格通过所有的节点(x i ,y i )。

6. 若k<=n ,P(x)和Q(x)分别是 x k的通过n +1 个不同的节点的牛顿插值多项式和拉格朗日插值多项式则P(x)≡Q(x)≡x k。

7. 插值多项式次数越高,逼近效果越好。

8. 任何一组互异数据,逼近它们的多项式插值函数仅有一个。

9. 插值多项式次数与拟合曲线都严格通过所给定的数据点。

10. 求积公式:⎰30)(dx x f ≈。

f f f f 是插值型的)]3()2(3)1(3)0([83+++11. 牛顿-科特斯求积公式中的求积节点是等分的。

12. 牛顿法求方程ƒ(x)=0的单根, 在ƒ(x)可导的情况下, 至少二阶收敛。

13. 高斯型求积公式是插值型的。

14. 一阶亚当姆斯格式是单步法。

15. 显式的亚当姆斯公式:+-=+-()n n n n h y y f f 1132是单步法。

16. 求初值问题数值解的四阶亚当姆斯公式是多步法。

17. 如果有一常微分方程数值解法的局部截断误差3111()()n n n T y x y O h +++=-=,则该方法是3阶的。

18. 用一般迭代法求方程()0f x =的根,如其迭代过程()1k k x x ϕ+=发散,则方程()0f x = 的无解。

19. 牛顿法求方程ƒ(x)=0的根, 在ƒ(x)可导的情况下, 至少二阶收敛。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。

A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。

A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。

A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。

A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。

A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。

A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。

A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。

A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。

A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。

A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。

答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。

答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。

答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。

《数值分析》复习题(14)

《数值分析》复习题(14)

《数值分析》复习题一、填空题1. 已知近似数 1.28y *=-,则其绝对误差限为 -0.005 ,相对误差限是 0.39% 。

2. 测量一支铅笔长是16cm , 那么测量的绝对误差限是 0.5cm ,测量的相对误差限是3.125% 。

3. 度量一根杆子长250厘米,则其绝对误差限为 0.5cm ,相对误差限是 0.20% 。

4. 在数值计算中,当a1/(√(a+1) +√a ) 5. 在数值计算中,计算356-应变成3561+来计算。

6. 在数值计算中,计算1cos3-应变为2)5.1(sin 2⨯来计算。

7. 若543()2792100f x x x x x =-+-+,则12345[1,4,4,4,4,4]f =____2__________,123456[1,3,3,3,3,3,3]f = 0 。

8. 函数()f x 关于三个节点012,,x x x 的拉格朗日二次插值多项式为 f(x)=f(x0)[(x-x1)(x-x2)/(x0-x1)(x0-x2)] ,9. 当()f x x =时,(,)n B f x =∑f (k/n )Pk(x)=x 。

10. 代数式222236()66x xR x x x +=++ ______________,323222122()23x x R x x x ++=++ __________________. 11. 已知方程组123123123103127322115x x x x x x x x x --=-⎧⎪-++=⎨⎪+-=-⎩,那么收敛的Jacobi 迭代格式为:,收敛的G S -迭代格式为:收敛理由是方程组的系数矩阵为严格对角占优阵12. 已知线性方程组1233111193234184x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,那么收敛的Jacobi 迭代格式:收敛的G-S 迭代格式: 。

收敛理由是 严格对角占优矩阵 ,13. 求积公式0()nn kk k I Af x ==∑至少有n 次代数精度的充要条件是__严格对角占优矩阵 __________________;当n 是偶数时,牛顿-柯特斯公式()0()()nn n kk k I b a Cf x ==-∑至少有___n+1________次代数精度;高斯求积公式()()()nbk k ak f x x dx A f x ρ=≈∑⎰至少有___2n+1_______次代数精度。

西安理工大学研究生《数值分析》复习题

西安理工大学研究生《数值分析》复习题

1 1 1 2 1 3 1 x1 1 x 六 求解矛盾方程组 2 5 2 2 1 x3 2 3 1 5
七 已知初值问题 y ax b, y(0) 0 有精确解 y ( x)
2 1 5 10.设 A 3 1 4 ,则 || A ||1 2 7 8 2 x1 2 x2 3x3 12 二 给定线性方程组 4 x1 2 x2 x3 12 x 2 x 3x 16 2 3 1
1. 用列主元消元法求解所给线性方程组。 2. 写出 Gauss-Seidel 迭代格式,并分析该迭代格式是否收敛。 三 设 M 2 Span 1, x 四 对于积分
. 试在 M
2
2
中求 f ( x) | x | 在区间 [1,1] 上的最佳平方逼近元。

1
0
1 1 4 f ( x)dx ,若取节点 x0 , x1 , x2 , 试推导一个插值型求积公式,并用这个公式求 5 2 5
e
0
1
x
dx 的值。
五 给定方程 x Lnx 2 0 (1)分析该方程存在几个根,找出每个根所在的区间; (2)构造求近似根的迭代公式,并证明所用的迭代公式是收敛的。 六 已知观测数据(1,-5) , (2,0) , (4,5) , (5,6) ,试用最小二乘法求形如 ( x) ax 七 已知初值问题 y ax b, y(0) 0 有精确解 y ( x)
x4 y4 . .
y m0 m1 m2 m3 m4 则可利用 插值,其插值多项式的次方为 3 2 4.设 f(x)=3x +2x +1,则差商 f [0,1,2,3,4]=

数值分析练习题附答案

数值分析练习题附答案

目录一、绪论------------------------------------------------------------------------------------- 2-2二、线性方程组直接解法列主元高斯LU LDL T GG T-------------------- 3-6二、线性方程组迭代法----------------------------------------------------------------- 7-10 三、四、非线性方程组数值解法二分法不动点迭代---------------------- 11-13五、非线性方程组数值解法牛顿迭代下山弦截法----------------- 14-15六、插值线性插值抛物线插值------------------------------------------------ 16-18七、插值Hermite插值分段线性插值-----------------------------------------19-22八、拟合------------------------------------------------------------------------------------ 23-24九、数值积分----------------------------------------------------------------------------- 25-29十、常微分方程数值解法梯形欧拉改进----------------------------------- 30-32 十一、常微分方程数值解法龙格库塔------------------------------------------ 33-35绪论1-1 下列各数都是经过四舍五入得到的近似值 ,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.X 1 =5.420, X 2 =0.5420, X 3 =0.00542, X 4 =6000, X 5 =0.6×105注:将近似值改写为标准形式X 1 =(5*10-1+4*10-2+2*10-3+0*10-4)*101 即n=4,m=1 绝对误差限|△X 1|=|X *1-X 1|≤ 12×10m-n =12×10-3 相对误差限|△r X 1|= |X∗1−X1||X∗1|≤|X∗1−X1||X1|= 12×10-3/5.4201-2 为了使101/2 的相对误差小于0.01%, 试问应取几位有效数字?1-3 求方程x 2 -56x+1=0的两个根, 使它们至少具有4位有效数字( √783≈27.982)注:原方程可改写为(x-28)2=783线性方程组解法(直接法)2-1用列主元Gauss消元法解方程组解:回代得解:X1=0 X2=-1 X3=12-2对矩阵A进行LU分解,并求解方程组Ax=b,其中解:(注:详细分解请看课本P25)A=(211132122)→(211(1/2)5/23/2(1/2)3/23/2)→(2111/25/23/21/2(3/5)3/5)即A=L×U=(11/211/23/51)×(2115/23/23/5)先用前代法解L y=P b 其中P为单位阵(原因是A矩阵未进行行变换)即L y=P b 等价为(11/211/23/51)(y1y2y3)=(111)(465)解得 y 1=4 y 2=4 y 3=35再用回代解Ux =y ,得到结果x即Ux =y 等价为(2115/23/23/5)(x 1x 2x 3)=(y 1y 2y 3)=(443/5) 解得 x 1=1 x 2=1 x 3=1即方程组Ax=b 的解为x =(111)2-3 对矩阵A 进行LDL T 分解和GG T 分解,求解方程组Ax=b,其中A=(164845−48−422) , b =(123)解:(注:课本 P 26 P 27 根平方法)设L=(l i j ),D=diag(d i ),对k=1,2,…,n,其中d k =a kk -∑l kj 2k−1j=1d jl ik =(a ik −∑l ij l kj k−1j=1d j )/ d k 即d 1=a 11-∑l 1j 20j=1d j =16-0=16因为 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=a 21/ d 1=416=14 所以d 2=a 22-∑l 2j 21j=1d j =5-(14)2d 1=4同理可得d 3=9 即得 D=(1649)同理l 11=(a 11−∑l ij l 1j 0j=1d j )/ d 1=1616=1=l 22=l 33 l 21=(a 21−∑l 2j l 1j 0j=1d j )/ d 1=416=14 l 31=(a 31−∑l 3j l 1j 0j=1d j )/ d 1=816=12 l 32=(a 32−∑l 3j l 2j 1j=1d j )/ d 2=−4−12×14×164=−64=-32即L=(114112−321) L T=(114121−321) 即LDL T分解为A=(114112−321)(1649)(114121−321)解解:A=(164845−48−422)→(41212−32−33)故得GG T分解:A=(4122−33)(4122−33) LDL T分解为A=(114112−321)(1649)(114121−321) 由(114112−321)(y 1y 2y 3)=(123) ,得(y 1y 2y 3)=(0.250.8751.7083)再由(4122−33)(x 1x 2x 3)=(0.250.8751.7083) ,得(x 1x 2x 3)=(−0.54511.29160.5694)2-4 用追赶法求解方程组:解:(4−1−14−1−14−1−14−1−14)→(4−14−1154−415−15615−1556−120956−56209−1780209)由(4−1154−15615−120956−1780209)(y1y2y3y4y5)=(100200),得(y1y2y3y4y5)=(256.66671.785700.4784753.718)再由(1−141−4151−15561−562091)(x1x2x3x4x5)=(256.66671.785700.4784753.718),得(x1x2x3x4x5)=(27.0518.20525.769314.87253.718)线性方程组解法(迭代法)2-1 设线性方程组{4x 1−x 2+2x 3=1−x 1−5x 2+x 3=22x 1+x 2+6x 3=3(1) 写出Jacobi 法和SOR 法的迭代格式(分量形式) (2) 讨论这两种迭代法的收敛性(3) 取初值x (0)=(0,0,0)T ,若用Jacobi 迭代法计算时,预估误差 ||x*-x (10)||∞ (取三位有效数字)解:(1)Jacobi 法和SOR 法的迭代格式分别为Jacobi 法迭代格式SOR(2)因为A 是严格对角占优矩阵,但不是正定矩阵,故Jacobi 法收敛,SOR 法当0<ω≤1时收敛.⎪⎪⎪⎩⎪⎪⎪⎨⎧+--=-+-=+-=+++216131525151412141)(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x xx x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-++-=+-+-=+-+-+=++++++)216131()525151()412141()(3)1(2)1(1)(3)1(3)(3)(2)1(1)(2)1(2)(3)(2)(1)(1)1(1k k k k k k k k k k k k k k k x x x x x x x x x x x x x x x ωωω(3)由(1)可见||B ||∞=3/4,且取x (0)=(0,0,0)T ,经计算可得x (1)=(1/4,-2/5,1/2)T ,于是||x (1)-x (0)||∞=1/2,所以有2-2 设方程组为{5x 1+2x 2+x 3=−12−x 1+4x 2+2x 3=202x 1−3x 2+10x 3=3试写出其Jacobi 分量迭代格式以及相应的迭代矩阵,并求解。

数值分析试题及答案汇总

数值分析试题及答案汇总

数值分析试题及答案汇总一、单项选择题(每题5分,共20分)1. 在数值分析中,下列哪个方法用于求解线性方程组?A. 牛顿法B. 插值法C. 迭代法D. 泰勒展开法答案:C2. 以下哪个选项是数值分析中用于求解非线性方程的迭代方法?A. 高斯消元法B. 牛顿法C. 多项式插值D. 辛普森积分法答案:B3. 以下哪个选项是数值分析中用于数值积分的方法?A. 牛顿法B. 辛普森积分法C. 牛顿-拉弗森迭代D. 拉格朗日插值答案:B4. 在数值分析中,下列哪个方法用于求解常微分方程的初值问题?A. 欧拉法B. 牛顿法C. 辛普森积分法D. 高斯消元法答案:A二、填空题(每题5分,共20分)1. 插值法中,拉格朗日插值法的插值多项式的阶数是______。

答案:n2. 泰勒展开法中,如果将函数展开到第三阶,那么得到的多项式是______阶多项式。

答案:三3. 在数值分析中,牛顿法求解非线性方程的迭代公式为______。

答案:x_{n+1} = x_n - f(x_n) / f'(x_n)4. 辛普森积分法是将积分区间分为______等分进行近似计算。

答案:偶数三、简答题(每题10分,共30分)1. 请简述数值分析中插值法的基本原理。

答案:插值法的基本原理是根据一组已知的数据点,构造一个多项式函数,使得该函数在给定的数据点上与数据值相等,以此来估计未知数据点的值。

2. 解释数值分析中误差的概念,并说明它们是如何影响数值计算结果的。

答案:数值分析中的误差是指由于计算方法或计算工具的限制,导致计算结果与真实值之间的差异。

误差可以分为舍入误差和截断误差。

舍入误差是由于计算机表示数值的限制而产生的,而截断误差是由于计算方法的近似性质而产生的。

这些误差会影响数值计算结果的准确性和稳定性。

3. 请说明在数值分析中,为什么需要使用迭代法求解线性方程组。

答案:在数值分析中,迭代法用于求解线性方程组是因为对于大规模的方程组,直接方法(如高斯消元法)的计算成本很高,而迭代法可以在较少的计算步骤内得到近似解,并且对于稀疏矩阵特别有效。

(完整word版)数值分析复习题及答案

(完整word版)数值分析复习题及答案

数值分析复习题一、选择题1.3.142和3.141分别作为二的近似数具有()和()位有效数字A . 4 和 3B . 3 和 2C . 3 和 4D . 4 和 421 r 「2 11 f xdx『1 A f (-)-f (2) 2.已知求积公式6 3 6,则 A =() 11 1 2A .6B .32D . 33•通过点X 0,y 。

,x 1,y 1的拉格朗日插值基函数l ox ,h x 满足()4.设求方程f X =o的根的牛顿法收敛,则它具有( )敛速。

A .超线性B .平方C .线性D .三次X j 2x 2 x 3 = o “ 2% +2x 2 +3x 3 =35.用列主元消元法解线性方程组 厂X | — 3x 2 = 2 作第一次消元后得到的第3个方程 -X 2 X 3 =2 -2X 2 1.5X 3 二 3.5 C .—2x 2 x 3 = 3x 2 - o.5x 3 二、填空1.设-2.3149541...,取5位有效数字,则所得的近似值 x=f X 1,X 2 =2.设一阶差商 f X 2 - f X x 2 一為 1 -4 2-1 f X 1,X 2,X 3= ___________f X 2,X 3=f X 3 - f X 2X 3 -X 2().=-1.56-1 _ 5 4-2 2I 。

* )= 0, h(X 1 )=0Io (X 。

)= 0,)=1C . I o (X o )= 1 h (X 1 ) = 1Io(Xo ) = 1 h(X 1)=18、若线性代数方程组 AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯 9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为y=10 +丄 + 2 310、为了使计算 x-1 (x-1) (x-1)的乘除法运算次数尽量的少,应将表达式改写12•—阶均差f x ),x1-13.已知n =3时,科茨系数=8,C/心=8,那么C 33 =18.设 X=(2,一3,7)T,则 ||X|1 厂3•设 X =(2, -3,-1),则 ||X ||2 二,l|X Id4 •求方程x 2-X-仁5" 的近似根,用迭代公式 x 「x425,取初始值x=1 ,那么x1二5 •解初始值问题 y 、f(x,y)y (x0)= y °近似解的梯形公式是yk 16、 一5 1丿,则A 的谱半径Q(A)= 7、设f(x) =3x +5, X k=kh, k =0,1,2,...,则f 1人,焉 1,X n.2】 =-塞德尔迭代都11•设 X=(2,3T T ,则 ||X|"l|X||2 =14.因为方程f x =^4 2 =0在区间1,2I 上满足,所以f x =0在区间内有根。

数值分析期末考试复习题及其答案

数值分析期末考试复习题及其答案

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限.(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分)解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x )=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛 (8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss —Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f (x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x (x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x (x-1)=442++x x 4分9. 求f (x )=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x , k=2x ,计算得: (m ,m)=dx ⎰-111=0 (m,n )=dx x ⎰-11=1 (m,k)=dx x ⎰-112=0(n,k )=dx x ⎰-113=0。

数值分析练习题

数值分析练习题

数值分析练习题一、数值逼近1.1 利用泰勒公式求函数f(x) = e^x在x=0处的二阶近似表达式。

1.2 给定函数f(x) = sin(x),在区间[0, π]上,用插值法求三次多项式插值函数。

1.3 设已知点(0, 1),(1, 2),(2, 5),(3, 10),求通过这四个点的拉格朗日插值多项式。

x: 0, 1, 2, 3, 4y: 1, 3, 7, 11, 171.5 对于函数f(x) = e^(x^2),在区间[1, 1]上,求最佳平方逼近多项式。

二、数值积分与数值微分2.1 利用梯形公式计算定积分I = ∫(0, 1) e^x dx。

2.2 给定函数f(x) = x^3 3x,使用辛普森公式计算定积分I =∫(0, 2) f(x) dx。

2.3 对函数f(x) = 1/(1+x^2),在区间[5, 5]上,使用高斯勒让德求积公式计算定积分。

2.4 利用数值微分公式求函数f(x) = sin(x)在x=π/4处的导数。

2.5 给定数据点(x, y),其中x = 0, 1, 2, 3, 4, y = 1, 3, 7, 11, 17,求y在x=2处的导数。

三、常微分方程数值解法3.1 用欧拉法求解初值问题y' = x + y,y(0) = 1,步长h=0.1,计算y(0.5)的近似值。

3.2 对于初值问题y' = y + x^2,y(0) = 1,使用改进的欧拉法(梯形法)求解y(1)。

3.3 利用龙格库塔方法求解初值问题y' = 2xy,y(0) = 1,计算y(0.5)的近似值。

3.4 给定边值问题y'' + 4y = 0,y(0) = 0,y(π) = 1,使用有限差分法求解。

四、线性方程组数值解法4.1 利用高斯消元法求解线性方程组:3x + 4y z = 72x 3y + 5z = 8x + 2y + 3z = 35x + 2y z = 102x 6y + 3z = 4x + 0.5y + 4z = 74.3 给定矩阵A,使用共轭梯度法求解线性方程组Ax = b,其中:A = [[4, 1, 0], [1, 4, 1], [0, 1, 4]]b = [12, 9, 3]A = [[2, 1, 0], [1, 2, 1], [0, 1, 2]]b = [1, 0, 1]五、非线性方程数值解法5.1 使用二分法求解方程f(x) = x^3 2x 5 = 0在区间[2, 3]内的根。

数值分析复习题及答案

数值分析复习题及答案

数值分析复习题P56 16.1716.试就f (x )=2x^3+5求商f (1,2,3,4),f (1,2,3,4,5)的值 解:根据n 阶差商定义递推展开式01102110),...,,(),...,,(),...,,(x x x x x f x x x f x x x f n n n n --=-原函数f (x )=2x^3+5,;令0x =1,1x =2,2x =3,...3)3,2,1()4,3,2()4,3,2,1(x x f f f --==2(n=3)同理对f (12345)进行递推可计算得出等于017.给定函数f (x )x^3—4x ,试建立关于节点Xi=i+1(i=0,1……,5)的差商表,并列出关于节点x0,x1,x2,x3的插值多项式p (x ) 解:因为x x x f i i x i 4)()5...,1,0(13-==+= 列出差商表如下: i x i y 一阶差商 二阶差商 三阶差商 四阶差商 五阶差商 1 -3 2 0 3 3 15 15 6 4 48 33 9 1 5 105 57 12 1 0 619287151插值多项式:p(x)=-3+3(x-1)+6(x-1)(x-2)+(x-1)(x-2)(x-3) P94 2.3.42.试判断下列求积公式的代数进度:)(41)31(43)(1x f f dx x f +≈⎰解:当f (x )=1时,左边=1,右边3/4+1/4=1,左边=右边当f (x )=x 时,左边=1/2,右边3/4X1/3+1/4X1=1/2,左边=右边 当f (x )=x^2时,左边=1/3,右边3/4x1/9+1/4x1=1/3,右边=右边当f (x )=x^3时,左边=1/6,右边3/4x1/27+1/4x1=5/18,左边于右边不相等根据代数精度定义求积公式对于mx 次多项式成立,对1+m x不成立则该求积公式具有m次代数精度,所以该求积公式的代数精度为2 次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一作者李欣指导邹曦数值分析复习习题第一章1. 下列各数都是经过四舍五入得到的近似值,试分别指出它们的绝对误差限,相对误差限和有效数字的位数.x1=5.420,x2=0.5420, x3=0.00542, x4=6000,x5=0.6 105.解绝对误差限分别为:1=0.5 10-3, 2=0.5 10-4,3=0.5 10-5, 4=0.5, 5=0.5 104 .相对误差限分别为:r1=0.5 10-3/5.420=0.00923%,「2=0.00923%,「3=0.0923%,「4=0.0083%,「5=8.3%.有效数位分别为:4位,4位,3位,4位,1位.第二章1. 讨论求解方程组Ax=b的J迭代法和G-S迭代法的收敛性.其中2 1 1 1 2 2(1)A 1 1 1 (2)A 1 1 11 12 2 2 1解(1) J迭代法和G-S迭代法的迭代矩阵分别为0 2 ? 0 2B D 1(L U) 1 0 1 , G (D L) 1U 0 g g* 舟0 0 0 g(B)= , (G)=1/2,故J迭代法不收敛,G-S迭代法收敛.2x y 4z 6x第一作者z李欣指导邹曦(2)类似可得(B)=0, (G)=2,故J迭代法收敛,G-S迭代法不收敛.2. 给定方程组第一作者李欣指导邹曦3x y z 2试建立一个收敛的迭代格式,并说明收敛的理由解可建立如下形式的迭代格式1) 2 1、, 1 (k)x —-y —z3 3 3、,1)3 1你)1y —x —z4 4 4(k 1) 3 1x(k)1 、,z —x —y2 2 4因为迭代矩阵为MM 3 1所以此迭代法收敛第三章1用列主元Gauss消元法解方程组3 2 6 x1 410 7 0 x275 1 5 x3 63 2 64 10 7 0 7 10 7 0 7「1 $ 消兀10 7 0 7 3 2 6 4 0 0.1 6 6.15 1 56 5 1 5 6 0 2.5 5 2.510 7 0 7 10 7 0 73 消元0 2.5 5 2.5 0 2.5 5 2.50 0.1 6 6.1 0 0 6.2 6.2回代得解x3=1, x2=-1, x1=02x y 4z 6x 第一作者z 李欣 指导邹曦2.对矩阵 A 进行LU 分解,并求解方程组 Ax=b,其中2 1 1 4A1 32 ,b 61 225解2 1 1 2 1 1 1 2 1 1A1 32 1 2 522 A 4 1 53 22 1 2 2123 5 3 54 i 13 51y 14 y 1 4解2 1y 26,得 y 2 41 23 51y 35y 33 52 1 1 X 14 X 1 1再解5 2 3 2 X 2 4,得 x 213 5X 33 5X 313. 对矩阵A 进行Crout 分解,其中2 1 2A45 6解6 15152 1 22 1~2 1 A4 5 64 3 2 ■3 6 15 15612 121 4 1故得 Crou it 分解:A431 16 12 114.对任意矩阵范:数,求证:(2) 1 I = AA-1 A A-1 ,故 IA 1 闪.(3) A-1-B-1 = A-1(B-A)B-1A-1 B-1 A-B(1) I证明 1A3)11AB(1)因为 I = AI5.证明:⑴如果A为正交矩阵,贝U Cond2(A)=1;(2)如果A为对称正定矩阵,则Cond2(A)= 1/ n, 1 和n分别为A的最大和最小特征值.证明⑴A 正交,则ATA=AAT=l,Cond2(A)= A 2 A-1 2=1.(2) A 对称正定,ATA=A2, A 2= 1. A-1 2=1/ n. 第七章1. 设(x)=cosx,证明:任取x0,迭代式xk+1= (xk),k=0,1,2, •均收敛于方程x= (x)的根.证明因为对任意x0,都有x仁cosxO [-1,1],所以只需证明迭代式在区间[-1,1]收敛.因为(x)=cosx 连续可导,| (x)|=|sinx| sin1<1,所以(x)是区间[-1,1]上的压缩映射,因此结论成立.2. 验证区间[0,2]是方程x3+2x-5=0的有根区间,并建立一个收敛的迭代格式,使对任何初值x0 [0,2]都收敛,并说明理由.解记(x)=x3+2x-5 C[0,2],且(0)= -5<0, ⑵=7>0, 所以方程在区间[0,2]内有根,建立迭代格式X k 1 35 2x k ,k 0,1,2,这里迭代函数(x)= 3 5 2x,由于0<1 (x) 3 5<2 , x [0,2]2 2且 |(x)|= 3(5 2x)2/3<1 , x [0,2]所以(x)是区间[0,2]上的压缩映射,故迭代式收敛. 3.给定函数 (x),设对一切 x, (x)存在且 0<m (x)M,证明对任意 (0,2/M),迭代式X k 1 X k f (x k ),k 0,1,2,均收敛于(x)=0的根 .证明这里(x)=x- (x),由于对任意(0,2/M)-1=1 -2v (x)=1-(x)<1所以| ( )|<1,故迭代法收敛 4.已知1.3是 4 3的一个近似值 ,用Newton 迭代法求 4 3的更好近似值,要求准确到小数点后五位.解 对方程(x)=x4-3=0建立Newton 迭代格式,则有所以取x3=1.3160740,已精确到小数点后 6位. 第四章1. 当x=1,-1,2时,(x)分别为0,-3,4,求(x)的二次插值多项式k 01 23xk 1.3 1.3163746 1.3160741 1.3160740 |xk+1-xk|0.0163746 0.0003005 0.0000001取 x0=1. X k i X k 34X k算结3P2(x).解法一.基函数法:p2(x)= IO(x)yO+11(x)y1 + I2(x)y2=-3 I1(x)+4l2(x) l i(x) ,(x x0)(x x2)、1(x 1)(x 2)(X i X o)(X i X2) 6(x X 0)(Xxi)11)(x 1)(X2 X o)(X2 xj 3p2(x)=-3I1(x)+4I2(x)1 4尹1)(x 2)尹1)(x 1)^(x 1)(5x 14)6解法二.待定系数法,设p2(x)=(x-1)(ax+b),则有2(a-b)=-3, 2a+b=4 ,解得,a=5/6, b=7/3,所以p2(x)=1/6(x-1)(5x+14)解法三.牛顿插值法,构造差商表2. 设I0(x),I1(x), --I,(x)是以x0,x1, --xn 为节点的n 次Lagrange插值基函数,求证:n k k(1) X j l j(x) X , k 0,1, ,n.j 0nk(2) (X j x) l j(x) 0, k 0,1, ,n.j 0证明⑴记(x)=xk,则yj= (xj)= xjk,j=0,1, …于是n f (n 1)()nx k f (x) y j l j(x) - :「n 1(X)x j|j(x)j 0 (n 1)! j 0⑵记(t)=(t-x)k,则yj= (xj)=(xj-x)k,j=0,1, …于是n - (n 1) ( ) n(t x)k f(t) y j l j(t)- 辟n l(t) (X j x)k|j(t)j 0 (n 1)! j 0n取t=x,则有(X j x)k|j(x) 0j 03. 设(x) C2[a,b],且(a)= (b)=0,证明f(x) 1(b a)2M2, a x b其中,M 2 max f (x).a x b证明以a,b为节点作(x)的线性插值有L1(x)=0,故| (x)| = | (x)-L1(x)| —2^(x a)(x b) 8(b a) M24. 设(x)=x4+2x3+5,在区间[-3,2]上,对节点x0=-3,x1=-1,求出(x)的分段三次Hermite插值多项式在小区间[x0, x1]上的表达式及误差公式解在[-3,-1]上,由y0=32,y1=4,y0 =-54,y1 =2, h=2,得H3(x)=32 0(x)+4 1(x)-54 0(x)+2 1(x)令0(x)=(x+1)2(ax+b), 可得a=1/4,b=1, 所以0(x)=(x+1)2(x+4)/4同理可得:1(x)=-(x+3)2x/40(x)=(x+3)(x+1)2/41(x)=(x+3)2(x+1)/4所以有H3(x)=8(x+1)2(x+4)-(x+3)2x-13.5(x+3)(x+1)2+0.5(x+3)2(x+1) 二6x3-22x2-24x-4误差为R(x)=(x+3)2(x+1)25.给出函数表试分别作出线性,二次曲线拟合,并给出均方误差. 解线性拟合,即形如y=a+bx的拟合曲线.构造向量0=(1,1,1,1,1,1)T, 1=(-1,-0.5,0,0.25,0.75,1)T,=(0.22,0.8,2,2.5,3.8,4.2)T.贝U得正贝U方程组:6a+0.5b=13.52a 2.078971b 2.0923530.5a+2.875b=7.055所以,线性拟合曲线为:y=2.078971+2.092353x均方误差为:II * II 2= (a bx i y i)2=0.38659 二次拟合,即形如y=a+bx+cx2的拟合曲线.构造向量0=(1,1,1,1,1,1)T, 1=(-1,-0.5,0,0.25,0.75,1)T,2=(1,0.25,0,0.0625,0.5625,1)T , =(0.22,0.8,2,2.5, 3.8,4.2)T. 则得正则方程组:6a+0.5b+2.875c=13.520.5a+2.875b+0.3125c=7.0552.875a+0.3125b+2.3828125c=6.91375解得:a=1.94448,b=2.0851,c=0.28191二次拟合曲线为:y=1.94448+2.0851x+0.28191x2.均方误差为:II * II 2= J (a bX i c2 yj2=0.06943.第五章1.确定下列积分公式中的待定参数,使其代数精度尽可能高,并说明代数精度是多少?h(1) h f (x)dx A/( h) A o f(O) Af(h)解令公式对(x)=1,x,x2都精确成立,则有A- 1+A0+A1=2h-hA -1+hA1=0h2A -1+h2A1=2h3/3解得:A- 1=A1=h/3,A0=4h/3hL*求积公式为:h f(x)dx -[f( h) 4f(0) f(h)](x)=x3时,左=右=0,公式也精确成立(x)=x4时,左=2h5/5,右=2h5/3,公式不精确成立 所以公式的代数精确为 3. 2•用辛普森公式计算积分1x 4dx的近似值,并估计结点误差113.对积分oln -f (x)dx,导出两点Gauss 型求积公式 入解 区间[0,1]上权函数为ln(1/x)的正交多项式为 P0(x)=1, p1(x)=x-1/4, p2(x)=x2-(5/7)x+17/252第六章1.用梯形方法和四阶标准 R-K 方法求解初值问题y +y=0 , 0<x 1 y(0)=i令 p2(x)=0 ,解出Gauss 点为:x 115 -1064215 -10642再令公式对(x)=1, x 精确成立,可得A1+A2=1,A1x1+A2x2=1/4 ,由此解出1 92 4、106A 2丄 9 2 4、106所以两点Gauss 型求积公式为11Jn f (x)dx1 9 */15 .106 19 */15 .106、2 4J09)f(^^)(2 4、109)f(^^)取步长h=0.1,并与精确解y=e-x相比较.解这里(x,y)=-y ,故梯形公式为:yn+仁yn-0.05(yn+yn+1), 也就yn+1=(0.95/1.05)yny0=1四阶标准R-K公式为:yn+仁yn+(0.1/6)(K1+2K2+2K3+K4)K仁-yn,K2=-(yn+0.05K1),K3=-(yn+0.05K2),K4=-(yn+0.1K3)就是:yn+1=0.9048375yny0=1计算结果为第八章1•利用Jacobi方法求矩阵A的所有特征值,其中解记4 2 1A(0'2 4 21 2 4取i=1,j=2,则有d(0) (0) ai1a22 2諧0,cos sin 0 0.7071 0.7071 0 R 1 R 12()sin cos 0 0.7071 0.7071 00 1 016 0 2.12132A ⑴R 1T A (0)R20.707112.12132 0.707114类似地有7.34521 0.37868 0 7.34521 0.32583 0.19295A ⑵0.37868 20.59716A ⑶0.32583 1.64638 00.59716 2.654790.192953.008411 7.37228 ,2 2.99991 ,3 1.627812. 设矩阵H = l-2xxT,向量x 满足xTx=1,证明:(1)H 为对称矩阵,即HT=H;⑵H 为正交矩阵,即HTH = I; (3)H 为对合矩阵,即H2=l.证明 ⑴因为HT=(l-2xxT)T= I-2xxT=H,故H 对称. (2)因为 HTH=(I-2xxT)T( I-2xxT)= I-4xxT+4xxTxxT= I, 故H 正交.⑶由⑴和⑵即得,H 是对合矩阵.cos =(1+t2)-1/2=0.7071,sin =tcos =0.70717.36378 0 0.19264 A ⑷1.627810.010980.19264 0.01098 3.008417.37228 0.00048 0A (5)0.00048 1.62781 0.010970 0.01097 2.99991所以取。

相关文档
最新文档