最新必修一数学基础知识

合集下载

新高一数学必修一知识点梳理

新高一数学必修一知识点梳理

第一章〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x 为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集.【1.1.2】集合间的基本关系(6)子集、真子集、集合相等【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A→B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a≤g(x)≤b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数f(x)为奇函数,且在x=0处有定义,则f(0)=0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义【2.2.2】对数函数及其性质(5)对数函数〖2.3〗幂函数(1)幂函数的定义一般地,函数y=x a叫做幂函数,其中x为自变量,a 是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象②过定点:所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1)③单调性:如果a>0,则幂函数的图象过原点,并且在[0, +∞)上为增函数.如果a<0,则幂函数的图象在[0, +∞)上为减函数,在第一象限内,图象无限接近x轴与y轴.〖补充知识〗二次函数(1)二次函数解析式的三种形式(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.(3)二次函数图象的性质一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.第三章函数的应用一、方程的根与函数的零点。

(完整版)高中数学必修1全册知识点,推荐文档

(完整版)高中数学必修1全册知识点,推荐文档

第1 讲集合一、集合的相关概念1、集合(朴素集合论中的定义):集合就是“一堆东西”,记为A、B、C……集合里的“东西”,叫作元素,记为a、b、c……2、元素的 3 个特性:(1)确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一;(2)互异性:同一个集合中的元素是互不相同的;(3)无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。

3、集合与元素的关系(属于,不属于)符号:a∈A, a ∉ A 二者必居其一4、集合的分类:⑴有限集:含有有限个元素的集合.⑵无限集:含有无限个元素的集合.⑶空集:不含任何元素的集合.记作φ注意:(1){a}与{(a,b)}都是单元素集(2){0},{ },{φ}之区别{ }”符号具有全体之意()“()常用集合的专用字母:R:实数集Q:有理数集Z:整数集N:自然数集N*或N+:正整数集≠ () 二、集合的表示方法1、列举法形如{a , b , c , d }.2、描述法形如{x 中p 是(x )},表元素,是属性. p (x )3、Venn (文氏图):用一条封闭曲线围成的图形表示集合的方法。

三、集合间的基本关系1、子集定义: A ⊆ B ⇔∀x ∈ A 有 x ∈ B注意: A ⊄ B ⇔∃x ∈A 但 x ∉B显然:(1) A ⊆ A(2) Φ ⊆ A(3) 若 A ⊆ B , B ⊆ C 则 A ⊆ C2、集相等: A =B ⇔ A ⊆B 且 B ⊆A3、真子集:显然:(4若) 非A 空,则 Φ ⊂ A(5)A 的子集中除外,都是A 真子集6 A ⊂ B ⊂ C ⇒ A ⊂ C≠ ≠ ≠或结论:一个集合有n 元素,则它有个2n子集,有个真2n子-集1,个非空真2子n-集2。

第2 讲集合的运算一、交集:1、定义:且 B ={x x ∈A x ∈B}说明:(1且)x∈A B⇔x∈A x∈B(2)x ∉A B ⇔x ∉A或x ∉B(3)A B实质上是A、的B公共部分图示:2、性质A A=A,A ,B⊆A A =A B=A ⇒A ⊆BA U =A二、并集:1、定义:或 B ={x x ∈A x ∈B}说明:(1或)x∈A B⇔x∈A x∈B(2)x ∉A B ⇔x ∉A且x ∉B(3)A B实质上是A、凑B在一起图示:2、性质A A=A,A ,B⊇A A =A A U=UA B=B ⇒A ⊆B三、补集:全集:由(所考虑的)所有元素构成的集合。

高一数学必修一知识点总结全

高一数学必修一知识点总结全

高一数学必修一知识点总结全1. 直线与坐标1.1 直线的斜率直线的斜率是指直线上一点到另一点的纵坐标之差与横坐标之差的比值。

1.2 直线的截距直线在坐标系上与y轴的交点称为直线的截距。

1.3 直线的方程直线的方程可以用斜截式、两点式或点斜式来表示。

2. 二次函数与函数的图像2.1 二次函数的定义二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为常数。

2.2 二次函数的图像特征二次函数的图像是一条抛物线,其开口方向由二次项系数a的正负决定,开口向上为正,开口向下为负。

2.3 二次函数的平移与伸缩二次函数可以通过平移和伸缩变换图像的位置和形状。

3. 平面向量与坐标3.1 平面向量的定义平面向量是具有大小和方向的量,在坐标系中可以表示为有序数对。

3.2 平面向量的运算平面向量可以进行加法、减法、数乘和向量乘法运算。

3.3 平面向量的坐标表示平面向量的坐标表示可以用分量表示法或单位向量表示法。

4. 三角函数4.1 三角函数的定义三角函数是角的函数,包括正弦、余弦和正切等。

4.2 三角函数的基本关系式三角函数之间存在一些基本关系式,如正弦定理和余弦定理等。

4.3 三角函数的图像特征三角函数的图像具有周期性和对称性,可以通过坐标系表示。

5. 函数与方程5.1 函数的定义与性质函数是一种特殊的关系,具有输入与输出的对应关系。

5.2 方程的解与解集方程是含有未知数的等式,解是使方程成立的未知数的值。

5.3 一次函数与一次方程一次函数是函数的一种特殊形式,一次方程是一次函数的等式形式。

以上是高一数学必修一的一些重要知识点总结,这些知识点对于建立高中数学基础知识非常重要。

希望这份总结对你有所帮助!。

高一数学必修一课程知识梳理

高一数学必修一课程知识梳理

高一数学必修一课程知识梳理1. 数的性质与集合
- 自然数、整数、有理数、无理数的概念、性质及相互关系- 数轴上的数、绝对值的概念和性质
- 集合的概念、表示方法、集合间的关系和运算
2. 一次函数与方程
- 一次函数的概念、性质、图像和表示方法
- 一次方程的概念、解集及解的性质
- 一次方程的应用:问题的建立、方程的解法和解的验证3. 二次函数与方程
- 二次函数的概念、性质、图像和表示方法
- 二次方程的概念、求解方法及解的性质
- 二次方程的应用:问题的建立、方程的解法和解的验证
4. 平面直角坐标系与图形
- 平面直角坐标系的概念、性质和用途
- 点、线、线段、射线、角、多边形的概念和性质
- 常见图形的特征和性质:平行、垂直、相等、全等等
5. 几何变换
- 平移、旋转、翻折、对称等基本几何变换的概念和性质
- 几何变换的作用和应用:图形的位置关系、对称图形的性质等
6. 数据的收集整理与统计
- 数据的收集方法和整理方式:频数表、条形图、折线图等
- 数据的统计指标:平均数、中位数、众数等
- 数据的分析和应用:数据的比较、推断和预测
7. 概率与统计
- 随机事件的概念和性质
- 概率的计算方法和性质
- 统计实际问题中的概率计算应用
以上是高一数学必修一课程的主要知识点梳理,通过研究这些知识,可以建立起数学的基本概念和方法,为后续的研究打下坚实的基础。

希望同学们能够认真研究,掌握这些知识,提高数学素养和解题能力。

高中数学必修一知识点总结(全)

高中数学必修一知识点总结(全)

高中数学必修一知识点总结(全)一、数与式1、常数、变量和运算符号:常数是除变量外的有限定义的数量,变量是可以任意取值的量,而运算符号则是进行数学运算的符号。

2、十进制及其他进制:十进制是分别使用0~9十个数字、以及逢十进一的一种进制制度,而其他进制则有二进制、八进制、十六进制等。

3、有理数的表示及其运算:有理数可以使用两个整数的商和余数的形式来表示,其中余数可以是负数,而有理数的运算则有加减乘除求倒数等。

4、无理数及其后结果:无理数是不能用有理数恒等式表达的数,通常用∞或“无穷不等式”来表示。

结果表明,无理数不是有理数的整数倍。

5、算术表达式的因式分解:分解因式是把一个多项式拆分成几个不同的因式的过程,在因式分解得到的两个因子可以进行乘、除、幂数运算,从而继续分解多项式,直到把多项式分解成几个不可继续分解的因式。

二、等差数列1、等差数列的定义:等差数列是一系列数按照一定规律等间隔排列而成的数列,在其中数字之间的差值成等差数列,可以表示为a1,a2,…, an,an+1,…,其中,a2-a1=a3-a2=…an+1-an=d,可以看出所有数之间都是等差的。

2、等差数列的求和:求和是求等差数列所有数字的和,其求和的公式为Sn=(n)(2a1+d(n-1))/2,在给定等差数列第一项和项数的情况下,即可直接求出等差数列的求和。

三、函数与方程1、定义域和值域:所谓“定义域”是指函数中可以取什么值,而“值域”则是指函数的值能够到达的最小和最大结果。

2、函数的定义及其基本性质:函数是定义域和值域之间的关系,函数的基本性质有单调性、统一性、性质等,其中单调性指函数上升或是下降,统一性指当定义域多于值域时,将多余的值合并为一个值。

3、折线图:折线图是一种表达定义域与值域变化关系的图表,用折线就能清楚地反映函数的变化,而其反映出的变化规律可以帮助我们分析函数的特性。

4、一元一次方程的求解:一元一次方程是一个有一个未知数的一元一次方程,其求解的方法有解析解法和求根解法,在一元一次方程求解得到未知数的值之后,可以利用求根解法把它带回原方程,验算正确性。

最新高中数学必修1-2知识点归纳优秀名师资料

最新高中数学必修1-2知识点归纳优秀名师资料

必修1数学知识点第一章、集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、只要构成两个集合的元素是一样的,就称这两个集合相等。

3、常见集合:正整数集合:或,整数集合:,有理数集合:,实数集合:.4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。

记作.2、如果集合,但存在元素,且,则称集合A是集合B的真子集.记作:AB.3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、如果集合A中含有n个元素,则集合A有个子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:.2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:.3、全集、补集?§1.2.1、函数的概念1、设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,记作:.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、注意函数单调性证明的一般格式:解:设且,则:=…§1.3.2、奇偶性(先判断定义域是否关于原点对称)1、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、一般地,如果,那么叫做的次方根。

高中数学必修一知识点归纳

高中数学必修一知识点归纳

高中数学必修一知识点归纳一、函数的概念与性质1. 函数的定义- 函数:从一个数集A(定义域)到另一个数集B(值域)的映射。

- 函数的表示:f(x) = y,其中x∈A,y∈B。

2. 函数的性质- 单调性:函数值随自变量增加而增加或减少。

- 奇偶性:f(-x) = f(x)(偶函数),f(-x) = -f(x)(奇函数)。

- 周期性:存在最小正数T,使得f(x+T) = f(x)。

- 有界性:函数的值在某个范围内。

3. 函数的图像- 坐标轴:x轴和y轴。

- 函数图像:表示函数关系的图形。

二、基本初等函数1. 幂函数- 定义:f(x) = x^n,n为实数。

- 性质:正整数幂、负整数幂、分数幂。

2. 指数函数- 定义:f(x) = a^x,a>0且a≠1。

- 性质:增长速度、指数律。

3. 对数函数- 定义:f(x) = log_a(x),a>0且a≠1。

- 性质:对数律、换底公式。

4. 三角函数- 正弦、余弦、正切函数:sin(x), cos(x), tan(x)。

- 性质:周期性、奇偶性、最值。

三、函数的运算1. 函数的四则运算- 加法、减法、乘法、除法。

2. 复合函数- 定义:f(g(x))。

- 性质:复合函数的值域。

3. 反函数- 定义:f(x)的反函数为g(x),满足f(g(x)) = x。

- 求法:通过解方程。

四、方程与不等式1. 一元一次方程- 解法:移项、合并同类项、系数化为1。

2. 一元二次方程- 解法:因式分解、配方法、公式法、图像法。

3. 不等式- 解法:移项、合并同类项、系数化为1。

- 性质:不等式的基本性质。

五、数列的概念与表示1. 数列的定义- 数列:按照一定顺序排列的一列数。

2. 等差数列- 定义:相邻两项之差为常数的数列。

- 通项公式:an = a1 + (n-1)d。

3. 等比数列- 定义:相邻两项之比为常数的数列。

- 通项公式:an = a1 * q^(n-1)。

数学必修一必考知识点归纳

数学必修一必考知识点归纳

数学必修一必考知识点归纳数学必修一通常涵盖了高中数学的基础知识点,以下是一些必考的知识点归纳:1. 集合与函数:- 集合的概念、运算(交集、并集、补集、差集)。

- 函数的定义、性质(单调性、奇偶性、周期性)。

- 函数的图像与变换(平移、伸缩、对称)。

2. 不等式:- 不等式的基本性质和解法(一元一次不等式、一元二次不等式、分式不等式)。

- 绝对值不等式的解法。

3. 数列:- 数列的概念、分类(等差数列、等比数列)。

- 数列的通项公式和求和公式。

- 数列的极限和无穷等比数列的求和。

4. 三角函数:- 三角函数的定义、图像和性质。

- 三角恒等变换(和差化积、积化和差、倍角公式、半角公式)。

- 反三角函数及其应用。

5. 解析几何:- 直线的方程(点斜式、斜截式、两点式、一般式)。

- 圆的方程(标准式、一般式)。

- 椭圆、双曲线、抛物线的标准方程及其性质。

6. 立体几何:- 空间直线与平面的位置关系。

- 空间几何体的表面积和体积计算(正方体、长方体、圆柱、圆锥、球)。

7. 概率与统计:- 随机事件的概率计算。

- 条件概率和独立事件。

- 统计数据的收集、整理和描述(频率分布表、直方图)。

8. 复数:- 复数的概念、代数形式和几何意义。

- 复数的四则运算。

- 复数的共轭、模和辐角。

9. 导数与微分:- 导数的定义和几何意义。

- 基本初等函数的导数公式。

- 复合函数、反函数、隐函数的导数。

10. 积分:- 不定积分和定积分的概念。

- 积分的基本公式和计算方法。

- 定积分在几何和物理中的应用。

这些知识点是高中数学必修一课程的基础,掌握这些知识点对于进一步学习数学至关重要。

在复习时,建议结合课本、习题和历年真题进行系统性的学习和练习,以加深理解和应用能力。

高中数学新教材必修第一册知识点总结

高中数学新教材必修第一册知识点总结

高中数学新教材必修第一册知识点总结第一章 集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合的三个特性:(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”、“线”、“面”等概念一样,都只是描述性地说明.(2)整体性:集合是一个整体,暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物等.3.集合中元素的三个特性:(1)确定性:对于给定的集合,它的元素必须是确定的.即按照明确的判断标准(不能是模棱两可的)判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一.(2)互异性:一个给定的集合中的元素是互不相同的.也就是说集合中的元素是不能重复出现的.(3)无序性:集合中的元素排列无先后顺序,任意调换集合中的元素位置,集合不变.4.集合的符号表示通常用大写的字母,,,…表示集合,用小写的字母,,表示集合中的元素.5.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合与集合相等记作.6.元素与集合之间的关系(1)属于:如果是集合中的元素,就说属于集合,记作,读作属于.(2)不属于:如果不是集合中的元素,就说不属于集合,记作,读作不属于.7.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式的解组成的集合.8.常用数集及其记法(1)正整数集:全体正整数组成的集合叫做正整数集,记作或.(2)自然数集:全体非负整数组成的集合叫做自然数集,记作.(3)整数集:全体整数组成的集合叫做整数集,记作.(4)有理数集:全体有理数组成的集合叫做有理数集,记作.(5)实数集:全体实数组成的集合叫做实数集,记作.9.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为太平洋,大西洋,印度洋,北冰洋,把“方程的所有实数根”组成的集合表示为.(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为,其中是集合中的元素代表,则表示集合中的元素所具有的共同特征.例如,不等式的解集可以表示为.1.2集合间的基本关系1. 子集一般地,对于两个集合,,如果集合中任意一个元素都是集合中的元素,我们就说这两个集合有包含关系,称集合为集合的子集,记为或()读作集合包含于集合(或集合包含集合).集合是集合的子集可用图表示如下:A(B)4或关于子集有下面的两个性质:(1)反身性:;(2)传递性:如果,且,那么.2.真子集如果集合,但存在元素,且,我们称集合是集合的真子集,记为(或),读作集合真包含于集合(或集合真包含集合).集合是集合的真子集可用图表示如右.B A53.集合的相等如果集合,且,此时集合与集合的元素是一样的,我们就称集合与集合相等,记为 .集合与集合相等可用图表示如右.4.空集我们把不含任何元素的集合叫做空集,记为.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即(1)(是任意一个集合);(2)().1.3集合的运算1.并集自然语言:一般地,由所有属于集合或属于集合的元素组成的集合,称为集合与的并集,记A (B )6作(读作“并”).符号语言: .图形语言:A (B )AB BA(5) A =BA (4)B B(3)A (2)A 与B 没有有公共元素BA BA(1)A 与B 有公共元素,相互不包含理解:或包括三种情况:且;且;且.并集的性质:(1);(2);(3);(4);(5),;(6).2.交集自然语言:一般地,由属于集合且属于集合的所有元素组成的集合,称为与的交集,记作(读作“交”).符号语言:.图形语言:A(B)BAB A BA(5)A=B,A B=A=B(4)B A,A B=B(3)A B,A B=AA B(2)A 与B 没有公共元素,A B=(1)A 与B 有公共元素,且互不包含理解:当与没有公共元素时,不能说与没有交集,只能说与的交集是.交集的性质:(1);(2);(3);(4);(5),;(6).3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作.(2)补集的概念自然语言:对于一个集合,由属于全集且不属于集合的所有元素组成的集合称为集合相对于全集的补集,记为.符号语言:图形语言:A10补集的性质(1);(2);(3);(4).1.4充分条件与必要条件1.充分条件与必要条件一般地,“若,则”为真命题,是指由通过推理可以得出.这时,我们就说,由可推出,记作,并且说是的充分条件,是的必要条件.在生活中, 是成立的必要条件也可以说成是: (表示不成立),其实,这与是等价的.但是,在数学中,我们宁愿采用第一种说法.如果“若,则”为假命题,那么由推不出,记作.此时,我们就说不是的充分条件,不是的必要条件.2.充要条件如果“若,则”和它的逆命题“若则”均是真命题,即既有,又有就记作.此时,我们就说是的充分必要条件,简称为充要条件.显然,如果是的充要条件,那么也是的充要条件.概括地说,如果,那么与互为充要条件.“是的充要条件”,也说成“等价于”或“当且仅当”等.1.5全称量词与存在量词1.全称量词与存在量词(1)全称量词短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.全称量词命题“对中的任意一个,有成立”可用符号简记为,,读作“对任意属于,有成立”.(2)存在量词短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等.含有存在量词的命题,叫做存在量词命题.存在量词命题“存在中的元素,使成立”可用符号简记为,,读作“存在中的元素,使成立”.2.全称量词命题和存在量词命题的否定(1)全称量词命题的否定全称量词命题:,,它的否定:,.全称量词命题的否定是存在量词命题.(2)存在量词命题的否定存在量词命题:,,它的否定:,.存在量词命题的否定是全称量词命题.第二章 一元二次函数、方程和不等式2.1等式性质与不等式性质1.比较原理;;.2.等式的基本性质性质1 如果,那么;性质2 如果,,那么;性质3 如果,那么;性质4 如果,那么;性质5 如果,,那么.3.不等式的基本性质性质1 如果,那么;如果,那么.即性质2 如果,,那么.即,.性质3 如果,那么.由性质3可得,.这表明,不等式中任何一项可以改变符号后移到不等号的另一边.性质4 如果,,那么;如果,,那么.性质5 如果,,那么.性质6 如果,,那么.性质7 如果,那么(,).2.2 基本不等式1.重要不等式,有,当且仅当时,等号成立.2.基本不等式如果,,则,当且仅当时,等号成立.叫做正数,的算术平均数,叫做正数,的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.3.与基本不等式相关的不等式(1)当时,有,当且仅当时,等号成立.(2)当,时,有,当且仅当时,等号成立.(3)当时,有,当且仅当时,等号成立.4.利用基本不等式求最值已知,,那么(1)如果积等于定值,那么当时,和有最小值;(2)如果和等于定值,那么当时,积有最大值.2.3 二次函数与一元二次方程、不等式1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.二次函数与一元二次方程、不等式的解的对应关系第三章 函数的概念与性质3.1 函数的概念及其表示1.函数的概念设,是非空的实数集,如果对于集合中的任意一个数,按照某种确定的对应关系,在集合中都有唯一确定的的数和它对应,那么就称为从集合到集合的一个函数,记作,.其中,叫做自变量,的取值范围叫做函数的定义域,与的值相对应的值叫做函数值,函数值的集合叫做函数的值域,显然,值域是集合的子集.2.区间:设,是两个实数,而且,我们规定:(1)满足不等式的实数的集合叫做闭区间,表示为;(2)满足不等式的实数的集合叫做开区间,表示为;(3)满足不等式或的实数的集合叫做半开半闭区间,分别表示为: , .这里的实数,都叫做相应区间的端点.这些区间的几何表示如下表所示.(4)实数集可以表示为,“”读作“无穷大”,“”读作“负无穷大”,“”读作“正无穷大”.满足,,,的实数的集合,用区间分别表示为 ,,.这些区间的几何表示如下表所示.注意:(1)“”是一个趋向符号,表示无限接近,却永远达不到,不是一个数. (2)以“”或“”为区间的一端时,这一端点必须用小括号.3.函数的三要素(1)定义域;(2)对应关系;(3)值域.值域随定义域和对应关系的确定而确定.4.函数的相等如果两个函数的定义域和对应关系分别相同,那么就说这两个函数是同一个函数.5.函数的表示方法(1)解析法用数学表达式表示两个变量之间的对应关系的方法叫做解析法.解析法是表示函数的一种重要的方法,这种表示法从“数”的方面简明、全面地概括了变量之间的数量关系.(2)图象法用图象表示两个变量之间的对应关系的方法叫做图象法.图象法直观地表示了函数值随自变量值改变的变化趋势,从“形”的方面刻画了变量之间的数量关系.说明:将自变量的一个值作为横坐标,相应的函数值作为纵坐标,就得到坐标平面上的一个点.当自变量取遍函数的定义域中的每一个值时,就得到一系列这样的点,所有这些点组成的图形就是函数的图象.函数的图象在轴上的射影构成的集合就是函数的定义域,在轴上的射影构成的集合就是函数的值域.函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等.(3)列表法通过列表来表示两个变量之间的对应关系的方法叫做列表法.例如,初中学习过的平方表、立方表都是表示函数关系的.6.分段函数(1)分段函数的概念有些函数在其定义域内,对于自变量的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.如(1) , (2).说明:①分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.②分段函数在书写时用大括号把各段函数合并写成一个函数的形式.并且必须指明各段函数自变量的取值范围.③分段函数的定义域是自变量所有取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.④分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.(2)分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分段函数的图象.3.2 函数的基本性质函数的性质是指在函数变化过程中的不变性和规律性.1.单调性与最大(小)值(1)增函数设函数的定义域为I,区间D I.如果,,当时,都有,那么就称函数在区间D上单调递增.特别地,当函数在它的定义域上单调递增时,我们就称它是增函数.(2)减函数设函数的定义域为I,区间D I.如果,,当时,都有,那么就称函数28在区间D上单调递增.特别地,当函数在它的定义域上单调递减时,我们就称它是减函数.(3)单调性、单调区间、单调函数如果函数在区间D上单调递增或单调递减,那么就说函数在区间D上具有(严格的)单调性,区间D叫做的单调区间.如果函数在某个区间上具有单调性,那么就称此函数在这个区间上是单调函数.(4)证明函数在区间D上单调递增或单调递减,基本步骤如下:①设值:设,且 ;②作差: ;③变形:对变形,一般是通分,分解因式,配方等.这一步是核心 ,要注意变形到底;④判断符号,得出函数的单调性.(5)函数的最大值与最小值①最大值:设函数的定义域为I,如果存在实数M满足:(1)对于任意的,都有;(2)存在,使得.那么我们称M是函数的最大值.②最小值:设函数的定义域为I,如果存在实数m满足:(1)对于任意的,都有;(2)存在,使得.那么我们称是函数的最小值.2.奇偶性(1)偶函数设函数的定义域为,如果,都有,且,那么函数就叫做偶函数.关于偶函数有下面的结论:①偶函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为偶函数的一个必要条件;②偶函数的图象关于轴对称.反之也成立;③偶函数在关于原点对称的两个区间上的增减性相反.(2)奇函数设函数的定义域为,如果,都有,且,那么函数就叫做奇函数.关于奇函数有下面的结论:①奇函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为奇函数的一个必要条件;②奇函数的图象关于坐标原点对称.反之也成立;③如果奇函数当时有意义,那么.即当有意义时,奇函数的图象过坐标原点;④奇函数在关于原点对称的两个区间上的增减性相同.3.3幂函数1.幂函数的概念一般地,形如(,为常数)的函数称为幂函数.对于幂函数,我们只研究,,,,时的图象与性质.2.五个幂函数的图象和性质x 1 2xx-132递减在上数上递减定点3.4函数的应用(一)略.第四章 指数函数与对数函数4.1 指数1.n次方根与分数指数幂(1)方根如果,那么叫做的次方根,其中,且.①当是奇数时,正数的次方根是正数,负数的方根是负数.这时,的方根用符号表示.②当是偶数时,正数的次方根有两个,这两个数互为相反数.这时,正数的正的次方根用符号表示,负的次方根用符号表示. 正的次方根与负的次方根可以合并写成().负数没有偶次方根.0的任何次方根都是0,记作.式子叫做根式,这里叫做根指数,叫做被开方数.关于根式有下面两个等式:;.2.分数指数幂(1)正分数指数幂(,,,).0的正分数指数幂等于0.(2)负分数指数幂(,,,).0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①(,,);②(,,);③(,,).3. 无理数指数幂及其运算性质(1)无理数指数幂的概念当是无理数时,是无理数指数幂.我们可以通过有理数指数幂来认识无理数指数幂.当的不足近似值和过剩近似值逐渐逼近时,和都趋向于同一个数,这个数就是.所以无理数指数幂(,是无理数)是一个确定的数.(2)实数指数幂的运算性质整数指数幂的运算性质也适用于实数指数幂,即对于任意实数,,均有下面的运算性质.①(,,);②(,,);③(,,).4.2 指数函数1.指数函数的概念函数(,且)叫做指数函数,其中指数是自变量,定义域是.2.指数函数的图象和性质一般地,指数函数(,且)的图象和性质如下表所示:时,4.3 对数1.对数的概念一般地,如果,那么数叫做以为底的对数,记作x=logN.a其中叫做对数的底数,叫做真数.当,且时,.2. 两个重要的对数(1)常用对数:以10为底的对数叫做常用对数,并把记为.(2)自然对数:以(是无理数,…)为底的对数叫做自然对数,并把记作.3. 关于对数的几个结论(1)负数和0没有对数;(2);(3).4. 对数的运算如果,且,,,那么(1);(2);(3)().5. 换底公式(,且,,,).4.4 对数函数1. 对数函数的概念一般地,函数(,且)叫做对数函数,其中是自变量定义域是.2.对数函数的图象和性质3. 反函数指数函数(,且)与对数函数(,且)互为反函数,它们的定义域与值域正好互换.互为反函数的两个函数的图象关于直线对称.4. 不同函数增长的差异对于对数函数()、一次函数()、指数函数()来说,尽管它们在上都是增函数,但是随着的增大,它们增长的速度是不相同的.其中对数函数()的增长速度越来越慢;一次函数()增长的速度始终不变;指数函数()增长的速度越来越快.总之来说,不管(),(),()的大小关系如何,()的增长速度最终都会大大超过()的增长速度;()的增长速度最终都会大大超过()的增长速度.因此,总会存在一个,当时,恒有.4.5 函数的应用(二)1. 函数的零点与方程的解(1)函数零点的概念对于函数,我们把使的实数叫做函数的零点.函数的零点就是方程的实数解,也是函数的图象与轴的公共点的横坐标.所以方程有实数解函数有零点函数的图象与轴有公共点.(2)函数零点存在定理如果函数在区间上的图象是一条连续不断的曲线,且有,那么,函数在区间内至少有一个零点,即存在,使得,这个也就是方程的解.2. 用二分法求方程的近似解对于在区间上图象连续不断且的函数,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精确度,用二分法求函数零点的近似值的一般步骤如下:(1)确定零点的初始区间,验证.(2)求区间的中点.(3)计算,并进一步确定零点所在的区间:①若(此时),则就是函数的零点;②若(此时),则令;③若(此时),则令.(4)判断是否达到精确度:若,则得到零点的近似值(或);否则重复步骤(2)~(4).由函数零点与相应方程解的关系,我们可以用二分法来求方程的近似解.3. 函数模型的应用用函数建立数学模型解决实际问题的基本过程如下:这一过程包括分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”);根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题;通过运算、推理、求解函数模型;用得到的函数模型描述实际问题的变化规律,解决有关问题.在这一过程中,往往需要利用信息技术帮助画图、运算等.第五章 三角函数5.1 任意角和弧度制1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.射线的端点叫做角的顶点,射线在起始位置和终止位置分别叫做角的始边和终边.(2)正角、负角、零角按逆时针方向旋转所成的角叫正角;按顺时针方向旋转所成的角叫负角;一条射线没有作任何旋转而形成的角叫零角.这样,我们就把角的概念推广到了任意角.(3)象限角当角的顶点与坐标原点重合,角的始边与轴的非负半轴重合,那么角的终边(除端点外)在第几象ABO 44限,就说这个角是第几象限角.如果角的终边落在坐标轴上,这时这个角不属于任何象限.(4)终边相同的角所有与角终边相同的角,连同角在内,可构成一个集合即任一与角终边相同的角,都可以表示成角与整数个周角的和.终边相同的角不一定相等,但相等的角,终边一定相同;终边相同的角有无数多个,它们相差的整数倍;象限角的表示:第一象限角的集合第二象限角的集合第三象限角的集合第四象限角的集合终边落在坐标轴上的角在以后的学习中很重要,它们的表示如下表.位 置表 示终边在轴非负半轴终边在轴非正半轴终边在轴终边在轴非负半轴终边在轴非正半轴终边在轴终边在坐标轴2. 弧度制(1)弧度的概念长度等于半径长的圆弧所对的圆心角叫做1弧度的角.在半径为的圆中,弧长为的弧所对的圆心角为,那么.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)弧度与角度的换算(3)关于扇形的几个公式设扇形的圆心角为(),半径为,弧长为,则有①;②; ③.5.2 三角函数的概念1. 三角函数的概念(1)三角函数的定义一般地,任意给定一个角,它的终边48与单位圆相交于点.把点的纵坐标叫做的正弦函数,记作,即;把点的横坐标叫做的余弦函数,记作,即;把点的纵坐标与横坐标的比值叫做的正切函数,记作,即().正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为:正弦函数 ,;余弦函数 ,;49正切函数 ,().设是一个任意角,它的终边上任意一点(不与原点重合)的坐标为,点与原点的距离为.可以证明:;;.(2)几个特殊角的三角函数值,,,的三角函数值如下表所示:。

高一必修一数学全册知识点

高一必修一数学全册知识点

高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。

高一必修一数学知识点考点

高一必修一数学知识点考点

高一必修一数学知识点考点第一章:集合与常用逻辑1. 集合及其表示方法- 集合的定义和基本概念- 集合的表示方法:列举法、描述法和定语从句法- 包含关系与相等关系2. 集合的运算- 交集、并集和差集的含义与计算- 互斥事件与对立事件的关系- 集合的运算律:交换律、结合律、分配律3. 常用逻辑符号与命题- 命题的概念与性质- 非、与、或、异或等逻辑运算符号的意义与运算规则 - 命题的合取范式与析取范式第二章:函数与方程1. 函数的概念与性质- 函数的定义及其基本性质- 定义域、值域和象集的概念- 函数的分类:一次函数、二次函数、指数函数、对数函数等2. 初等函数的图像与性质- 一次函数、二次函数、指数函数、对数函数等常用函数的图像特征- 函数的单调性、奇偶性和周期性等性质- 函数与方程的关系:函数方程、隐函数、显函数等3. 方程与不等式- 方程与等式的概念及其解的求解方法和性质- 一元一次方程和一元二次方程的解法- 不等式的概念和性质,不等式的解集表示方法第三章:平面几何1. 平面内的基本图形与性质- 点、线、线段、射线和角的概念与基本性质- 直线的分类:平行线、垂直线、相交线等- 三角形的分类:等边三角形、等腰三角形、直角三角形等2. 三角形的面积和周长- 三角形的面积公式及其推导- 三角形的周长计算方法- 与三角形相关的重要定理:海伦公式、正弦定理、余弦定理等3. 圆的性质与圆的应用- 圆的定义及其基本性质- 弧的概念与弧长、弦长的计算方法- 圆的切线与切点的概念及其性质第四章:立体几何1. 空间几何体的基本概念- 简单体与复合体的概念与区别- 空间直线、平面、立体角等的定义和性质- 空间几何体的分类与性质:球体、柱体、锥体等2. 直线与平面的位置关系- 平行关系、垂直关系和斜率关系的概念- 平面与平面的位置关系:相交、平行、垂直等- 平面与直线的交点的分类:内交点、外交点等3. 空间几何体的表面积和体积- 立体几何体的表面积计算方法- 立体几何体的体积计算方法- 相似立体几何体的表面积和体积的比较第五章:数据统计与概率1. 数据的收集与整理- 数据的概念与数据的收集方法- 数据的整理与分析方法:频数分布表、频率分布直方图等- 分类数据与数值数据的概念和处理方法2. 数据的图表表示与分析- 数据的图表表示方法及其选择技巧- 直方图、折线图、饼图等常用图表的绘制和分析- 统计指标(平均数、中位数、众数、四分位数等)的计算和比较3. 概率与统计- 随机事件与样本空间的概念- 概率的定义和性质- 古典概型、几何概型和统计概型的应用以上是高一必修一数学知识点的考点概述,希望能对你有所帮助。

高一数学必修一必背知识点

高一数学必修一必背知识点

高一数学必修一必背知识点一、集合。

1. 集合的概念。

- 集合是由一些确定的、互不相同的对象所组成的整体。

这些对象称为集合的元素。

- 集合中的元素具有确定性(给定一个集合,任何一个对象是不是这个集合的元素是确定的)、互异性(集合中的元素互不相同)、无序性(集合中的元素没有顺序要求)。

2. 集合的表示方法。

- 列举法:把集合中的元素一一列举出来,写在大括号内。

例如{1,2,3}。

- 描述法:用集合所含元素的共同特征表示集合的方法。

形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述元素x特征的条件。

例如{xx > 0且x∈ R}表示正实数集。

- 区间表示法:对于数集,还可以用区间表示。

- 开区间(a,b)={xa < x < b}。

- 闭区间[a,b]={xa≤slant x≤slant b}。

- 半开半闭区间(a,b]={xa < x≤slant b},[a,b)={xa≤slant x < b}。

3. 集合间的基本关系。

- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。

- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。

- 相等:如果A⊆ B且B⊆ A,那么A = B。

- 空集varnothing是任何集合的子集,是任何非空集合的真子集。

4. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B ={xx∈ A或x∈ B}。

- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

二、函数。

1. 函数的概念。

- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{yy = f(x),x∈ A}叫做函数的值域。

必修一数学知识点归纳

必修一数学知识点归纳

必修一数学知识点归纳一、集合与函数的概念1. 集合的定义与表示- 集合是具有某种特定性质的事物的全体。

- 常用符号表示集合,如 A = {x | x 是偶数}。

2. 集合之间的关系- 子集:集合 A 的所有元素都属于集合 B,则 A 是 B 的子集。

- 真子集:若 A 是 B 的子集且 A 不等于 B,则 A 是 B 的真子集。

- 并集与交集:集合 A 和集合 B 的所有元素组成的集合称为并集,两集合共同元素组成的集合称为交集。

3. 函数的定义与性质- 函数是将一个集合中的元素映射到另一个集合中的元素的规则。

- 函数的表示方法:y = f(x)。

- 函数的域与值域:定义域是函数中所有可能的 x 值的集合,值域是函数中所有可能的 y 值的集合。

4. 函数的运算- 加法、减法、乘法、除法:(f ± g)(x) = f(x) ± g(x),(f * g)(x) = f(x) * g(x),(f / g)(x) = f(x) / g(x)。

- 复合函数:(f * g)(x) = f(g(x))。

二、基本初等函数1. 幂函数- 定义:y = x^n,其中 n 是实数。

- 性质:当 n > 0 时,x 轴是幂函数的一条渐近线。

2. 指数函数- 定义:y = a^x,其中 a > 0 且a ≠ 1。

- 性质:指数函数的图像总是通过点 (0, 1)。

3. 对数函数- 定义:y = log_a(x),其中 a > 0 且a ≠ 1。

- 性质:对数函数的图像总是通过点 (1, 0)。

4. 三角函数- 正弦函数:y = sin(x)- 余弦函数:y = cos(x)- 正切函数:y = tan(x)- 性质:周期性、奇偶性、单调性。

三、函数的极限与连续性1. 极限的概念- 极限描述了函数在某一点附近的行为。

- 极限的表示方法:lim (x→a) f(x) = L。

2. 极限的性质- 唯一性、局部有界性、保号性。

高一必修一数学全章知识点

高一必修一数学全章知识点

高一必修一数学全章知识点一、集合与函数1. 集合的概念和表示方法2. 集合的基本运算3. 集合的关系和判定方法4. 函数的概念和表示方法5. 函数的性质和基本类型二、数与式1. 实数的概念和性质2. 整式与分式的概念和性质3. 代数式的运算规则和性质4. 同类项与合并同类项5. 因式分解的方法和应用6. 分式的运算和应用三、方程与不等式1. 方程的概念和解的概念2. 一元一次方程的解法和应用3. 一元二次方程的解法和应用4. 一元一次不等式的解法和应用5. 一元二次不等式的解法和应用6. 绝对值方程与不等式的解法和应用四、平面几何与立体几何1. 点、线、面的基本概念与性质2. 直线与线段的性质3. 角的概念与性质4. 三角形的分类与性质5. 四边形的分类与性质6. 圆的性质与定理7. 三维图形的基本概念与性质五、函数与图像1. 二次函数的图像与性质2. 一次函数的图像与性质3. 反比例函数的图像与性质4. 幂函数的图像与性质5. 指数函数的图像与性质6. 对数函数的图像与性质六、实数与三角函数1. 整式的值域与最值问题2. 三角函数的概念与性质3. 三角函数的图像与变化规律4. 三角函数的同角关系5. 三角函数的基本公式与应用七、数列与数学归纳法1. 数列的概念与表示2. 等差数列与等差数列的性质3. 等比数列与等比数列的性质4. 递推数列与递推数列的性质5. 数学归纳法的原理与应用八、概率与统计1. 随机事件与概率的概念2. 概率的运算与应用3. 组合与排列的概念与性质4. 统计图表的制作与分析5. 平均数与波动范围的计算以上是高一必修一数学全章的知识点,希望对你的学习有所帮助。

高一数学必修一知识点整理大全

高一数学必修一知识点整理大全

高一数学必修一知识点整理大全
一、数集与复数
1、数集:实数集、整数集、有理数集、自然数集、负数集和无理数集等
2、复数:复数由实数部分和虚数部分组成,表示形式为a+bi,其中a 为实数部分,b为虚数部分;以及其实部和虚部计算方法,共轭数,复数的乘法和除法等
二、方程与不等式
1、一元一次方程的解法:唯一解法、无解法,以及利用求根公式求解等
2、不等式:不等式的解法、绝对值不等式、二次不等式和向量不等式
三、集合与函数
1、集合:一个集合由若干元素组成,可用于天空符号来表示,以及运算符号的应用;
2、函数:体景函数的定义、反函数的概念、一元函数的性质、复合函数和函数的变换
四、直线与圆
1、直线:斜率的概念,相交点的求解、两条直线的垂直关系、直线的标准方程和点斜式;
2、圆:圆的性质,圆的中点、半径和圆心的关系,同心圆的特点,圆的标准方程,圆上一点到圆心的弧长。

五、三角函数
1、三角函数的定义:余弦函数、正切函数,以及三角函数的四象性理论;
2、三角函数的应用:三角形的基本概念、余弦定理、正弦定理,以及用于解三角形的其他定理。

六、分数与比例
1、分数:基本分数的概念,真分数、假分数,特殊分数及其转换,带分数的基本运算等;
2、比例:比例具有多重性,比例的初始情况和分级表,比例的连续变化、列比较法求不确定比例等。

数学高中基础知识必修一

数学高中基础知识必修一

数学高中基础知识必修一一、集合与函数1. 集合的概念在数学中,集合是由各种对象或元素组成的一个整体。

集合可以用大括号{}表示,其中的元素用逗号分隔。

2. 集合的运算•并集:集合A和B的并集是包含所有A和B中元素的集合,记作$A \\cup B$。

•交集:集合A和B的交集是A和B共有的元素组成的集合,记作$A \\cap B$。

•差集:集合A与B的差集是在A中但不在B中的元素组成的集合,记作A−B。

3. 函数的概念函数是一种特殊的关系,它是一个或多个自变量输入到一个或多个因变量中的运算规则。

4. 函数的性质•定义域:一个函数的定义域是所有合法输入值的集合。

•值域:一个函数的值域是所有可能输出值的集合。

•一一对应:如果每个自变量对应唯一的因变量,那么这个函数是一一对应的。

二、代数与方程1. 一次方程一次方程是指最高次项为一次的代数方程,例如ax+b=0。

解一元一次方程可以使用移项和分项解方程的方法。

2. 二次方程二次方程是指最高次项为二次的代数方程,一般表示为ax2+bx+c=0。

解二次方程可以使用公式法、配方法或完全平方式等方法。

3. 不等式不等式是数学中的一类关系,用来表示比较两个数量的大小。

常见的不等式包括小于、小于等于、大于、大于等于等。

4. 多项式多项式是由多项(单项式)相加或相乘得到的代数表达式。

一般表示为$f(x) =a_nx^n + a_{n-1}x^{n-1} + \\ldots + a_1x + a_0$。

三、平面几何1. 直线与角•直线:是一种无限延伸的几何图形,由无数个点组成。

•角:由两条射线共同端点构成的图形,角的大小通常用度数表示。

2. 三角形•三角形是有三条边和三个角的几何形状。

根据边长或角度的不同,可以分为等边三角形、等腰三角形、直角三角形等多种类型。

3. 四边形•四边形是有四条边的几何形状,如矩形、正方形、平行四边形等。

4. 圆•圆是平面上各点到一个固定点的距离相等的点的集合。

高一数学必修一全册知识点(定义公式定理)

高一数学必修一全册知识点(定义公式定理)

高一数学必修一全册知识点(定义、公式、定理)第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同注意:B一集合。

⊆/B反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交 集 并 集 补 集 定 义由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A B (读作‘A 交B ’),即A B={x|x ∈A ,且x ∈B }. 由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’),即A B ={x|x ∈A ,或x ∈B}).设S 是一个集合,A 是S 的一个子集,由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集) 记作A C S ,即 C S A=},|{A x S x x ∉∈且韦 恩 图 示A B图1AB图2性质 A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆B A A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。

常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。

集合与元素之间的关系可以表示为a∈M或a∉M。

集合的表示法有自然语言法、列举法、描述法和图示法。

集合可以分为有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。

子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。

已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。

1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。

交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。

补集的性质为A∪A的补集=全集,A∩A的补集=空集。

2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。

一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。

1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。

2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。

3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。

数学高一必修一知识点

数学高一必修一知识点

数学高一必修一知识点1. 集合的概念与运算- 集合的定义:集合是由一些确定的、互不相同的元素所组成的整体。

- 元素与集合的关系:属于(∈)和不属于(∉)。

- 集合的表示法:列举法和描述法。

- 集合的分类:有限集合和无限集合,空集。

- 集合的运算:并集(∪)、交集(∩)、差集(-)、补集(C)、子集(⊆)和真子集(⊂)。

2. 函数的概念与性质- 函数的定义:函数是定义域到值域的映射关系。

- 函数的三要素:定义域、值域和对应法则。

- 函数的表示法:解析式、图象和列表。

- 函数的性质:单调性、奇偶性、周期性和有界性。

- 函数的运算:函数的四则运算和复合函数。

3. 指数与对数- 指数的定义:a^n表示a的n次方。

- 指数的性质:指数的乘法法则、指数的幂的乘方、指数的加减法。

- 对数的定义:如果a^x=b,则x是b的以a为底的对数,记作x=log_a(b)。

- 对数的性质:对数的换底公式、对数的四则运算。

- 指数函数和对数函数:指数函数y=a^x和对数函数y=log_a(x)的性质和图象。

4. 三角函数- 三角函数的定义:正弦、余弦、正切、余切、正割、余割。

- 三角函数的性质:周期性、奇偶性、单调性。

- 三角函数的图象:正弦函数、余弦函数的图象。

- 三角恒等式:和差公式、倍角公式、半角公式、和差化积、积化和差。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

5. 不等式- 不等式的概念:表示不等关系的式子。

- 不等式的性质:不等式的基本性质。

- 不等式的解法:一元一次不等式、一元二次不等式、绝对值不等式。

- 一元二次不等式的解集:数轴上的表示法。

- 基本不等式:算术平均数-几何平均数不等式。

6. 数列- 数列的概念:按照一定规律排列的一列数。

- 数列的表示法:通项公式和递推关系式。

- 数列的分类:等差数列、等比数列、递推数列。

- 数列的求和:等差数列求和公式、等比数列求和公式、分组求和法、错位相减法。

数学必修一知识点

数学必修一知识点

数学必修一知识点
一、函数与方程
1.函数的概念及性质
2.一次函数
3.二次函数
4.绝对值函数
5.无理函数
6.指数函数
7.对数函数
8.三角函数
9.反函数
二、平面解析几何
1.直线的方程
2.圆的方程
3.曲线的方程
4.空间解析几何
三、不等式与不等式组
1.不等式的性质及解法
2.一元一次不等式
3.一元二次不等式
4.一元有理不等式
5.一元无理不等式
6.一元绝对值不等式
7.不等式组的概念及求解
四、数列与数列的应用
1.数列的概念及性质
2.等差数列
3.等比数列
4.通项公式与前n项和公式
5.数列的应用
五、平面向量
1.平面向量的概念及性质
2.平面向量的运算
3.平面向量的坐标表示及相互关系
4.平面向量的应用
六、排列组合与概率
1.排列组合的基本概念及应用
2.概率的基本概念及性质
3.事件的概念及运算
4.条件概率与独立事件
5.排列组合与概率的应用
七、三角函数与立体几何
1.三角函数的基本概念及性质
2.三角函数的基本关系式
3.三角函数的图像与性质
4.三角函数的解析式与换元法
5.立体几何的基本概念及性质
6.立体几何中的空间图形
八、数学推理与证明
1.数学推理的基本方法及技巧
2.数学证明的基本方法及思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八套试卷的精华~突破期中考试在此一举~
大家好~~我又来啦~~这次带来的是期中考试知识点总结~~O(∩_∩)O~~
这段时间找了南外、南师附中、金陵中学等几个学校的八套期中考试试卷,认真做了一下恩恩,
感觉考察的知识点还是有很多共通之处的,现在和大家分享一下,看看期中考试到底是怎么考的
~~
一、试卷结构
08年以后,南京本地高一上期中考试试卷结构基本上都与高考统一,14道填空题,6道解答题,考试时间可能是120分钟也有是100分钟的。

大家第一次期中考试一定要把控好时间,与高考类似,做填空题时间要控制在25分钟到35分钟比较好,这样才能保证大题有足够的思考时间,填空题如果最后一两题有点卡可以先跳过,不要
影响到后面做大题的节奏。

大题前三题一般难度不会太大,一定要保证拿全分~时间大概控制在10分钟左右一题,给最后压轴题留出足够思考时间。

对试卷有了宏观的了解之后,我们看一下填空和解答分别会考什么~~
二、知识框架
知识点详见之前的两个帖子(*^__^*)
三、填空题考点总结
1.集合
集合在填空题中大致考察2到4题,考得最多的是以下三类。

(1)集合概念:
判断数是否属于特定数集(N、R、Q等)
例:(南外)下列四个判断正确的个数是 .
①√2∈N ②0?Z ③-3∈Q ④π∈R
解析:③④,注意几个常用数集的表示要记住.
(2)集合运算:
1)求交集、并集、补集
例:(仙外)若A=[2,5),B=(3,7],则A∩B= .
解析:(3,5),集合的基本运算是考察重点.
2)已知两集合关系,求参数值
例:(南外)A={y|y=x^2-2x+a,x∈R},B={x|2≤2^(2-x)≤8,x∈Z},如果A∩B=B,则a 的取值范围是 .
解析:A=[a-1,+∞),B=[-1,1],由A∩B=B得B是A的子集,即a≤0.
此类题型需要找好集合间的包含关系,确定区间端点范围.
2.函数的基本概念与基本初等函数
大多数是与指对数函数综合起来考,这部分我举得例子都比较简单基础的,希望大家能够把
基础掌握牢固.
(1)函数三要素:定义域、值域、对应关系
1)求定义域
例:(南外)函数f(x)=√(1-2x) +1/(x+2) 的定义域为 .
解析:(-∞,-2)∪(-2,0.5).
函数求定义域注意分母不为0、被开方数非负、对数真数为正.
2)求值域
例:(仙外)函数f(x)=1/x,x∈{1,2,3}值域为 .
解析:{1,1/2,1/3}.
求值域注意定义域范围.
3)求解析式
例:(南外)若f(x-1)=x^2+2x,则f(x)= .
解析:令t=x-1,则x=t+1
f(t)=(t+1)^2+2(t+1)=t^2+4t+3
则f(x)=x^2+4x+3
求解析式一般换元代入即可,也可用配凑法.
(2)单调性
1)求单调区间
例:(鼓楼)函数y=ln(4-2x)的单调递减区间是 .
解析:(-∞,2)
需要熟悉一些基本函数的单调性,如二次函数、一次函数、反比例函数、指数函数、对数函数.
2)已知单调区间求参数值
例:(一中)设指数函数f(x)=(a-1)^x在R上的减函数,则a的取值范围是 .
解析:0<a-1<1,1<a<2
依然需要对基本函数的单调性熟悉,在此基础上把参数代入对应范围内.
3)比较大小
例:(附中)将三个数6^0.7,0.7^6,log 0.7 6按从小大的顺序排列 .
解析:log 0.7 6<0<0.7^6<1<6^0.7
此类题型一般利用指对数函数单调性求解,一般做法有统一底数、统一指数、统一真数、找中间值(0,1等).
(3)奇偶性
1)根据奇偶性求参数值
例:(附中)若函数y=(2^(x+2))/(2^x+1)-a为奇函数,则a的值为 .
解析:利用f(0)=0,则a=2
此类题型填空题可以取特殊值,奇函数一般用f(0)=0,偶函数可以f(1)=f(-1)等.
2)知道一般求另一半
例:(南外)已知定义域为R的偶函数f(x),当x≥0时f(x)=2-x,则当x<0时,
f(x)= .
解析:x<0时,f(x)=f(-x)=2-(-x)=2+x
此类题型需要利用奇函数f(x)=-f(-x),偶函数f(x)=f(-x)代入已知解析式求解.
(4)函数与方程
1)求方程解、函数零点所在区间
例:(南外)方程lgx=3-x的解x0∈(k,k+1),k∈Z,则k= .
解析:令f(x)=lgx+x-3,f(x)递增,f(2)<0,f(3)>0,则x0∈(2,3),则k=2
此类题型通常转化为函数零点问题,根据函数单调性配合零点存在性定理求解.
2)根据零点个数求参数值
例:若函数y=2x^2-4x+k只有一个零点,则k= .
解析:y=2(x-1)^2+k-2,k=2
如果是二次函数,需要注意二次项系数是否为0,如果是指对数函数,可以通过画出函数图像草图来判断.
基本上考得比较多的是上面一些题型,但是可能各张试卷的填空题有一两题会比较特别,有
可能会涉及到分类讨论、复合函数、探究类问题,这些就要靠大家平时的积累了.
四、解答题考点分析
有部分考点是与填空部分重复的,只是综合性会变强.
六道题一般是集合1题,指对数运算1题,函数模型及其应用1题,其他三题是含参的函数的单调性、奇偶性等性质的综合题.
(1)集合
例:(南外)已知集合A={2,a,b},B={0,2,b^2-2},若A=B,求a,b的值.
解析:①若a=0,则A={2,0,b},B={0,2,b^2-2},则b^2-2=b,由于b≠0,2,则b=-1 则a=0,b=-1
②若b=0,则A={2,0,a},B={2,0,-2},则a=-2,
则a=-2,b=0
综上a=0,b=-1或a=-2,b=0
此类题型通常涉及到多个参数,或是和方程结合,需要注意集合中元素的互异性,集合考察的重
点还是交并部运算.
(2)指对数运算
例:(仙外)4lg2+3lg5-lg0.2
解析:原式=4lg2+3lg5+lg5
=4(lg2+lg5)=4
一般会是简单粗暴的两道小题,指数运算一题,对数运算一题,需要对幂的运算、对数的基本运
算、换底公式牢固掌握.
(3)函数模型及其应用
例:(金陵)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时可全部租出;当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
①当每辆车的月租金为3600元时,能租出多少辆车?
②当每辆车的月租金定为多少元时,租赁公司的月效益最大?最大效益是多少?
解析:
①3600-3000=600(元)
600÷50=12(辆)
100-12=88(辆)
答:当每辆车的月租金为3600元时,能租出88辆.
②设每辆车的月租金定为(3000+50x)元时,租赁公司的月效益为y元,
则y=(100-x)(3000+50x-150)-50x,其中x∈N,
对于y=(100-x)(3000+50x-150)-50x
=-50(x-21)^2+307050,
当x=21时,此时月租金为3000+50×21=4050(元),ymax=307050(元).
答:当每辆车的月租金定为4050元时,租赁公司的月效益最大,为307050元.
不仅是期中考试必考,高考大题也是必考一题函数应用题.通常是建立函数模型再求最值,期中考试一般是利用二次函数最值,等到高考时大多数情况可能是用导数或三角函数了.
(4)函数综合题
此类题型大多是有好几小问,每小问其实都和之前的填空题的考点类似,这里就不赘述了,要注
意的一点事压轴题大多涉及到参数的分类讨论,需要考虑完整.
五、总结一下
期中考试考查的重点是函数部分,重点的重点是指对数函数.
①集合部分,需要重点掌握集合运算;
②函数部分,需要重点掌握基本函数的单调性、奇偶性,尤其是指对数函数;
③必考的指对数运算一定要多练;
④函数应用题必考,但是难度不大,需要认真读题,函数建立准确.
恩恩,就是这样,最后祝大家期中考试取得好成绩!!!!!
撒花~~~bow~~~。

相关文档
最新文档