第6章习题解答
第06章-单片机串行通信系统-习题解答

第6章单片机串行通信系统习题解答一、填空题1.在串行通信中,把每秒中传送的二进制数的位数叫波特率。
2.当SCON中的M0M1=10时,表示串口工作于方式 2 ,波特率为 fosc/32或fosc/64 。
3.SCON中的REN=1表示允许接收。
4.PCON 中的SMOD=1表示波特率翻倍。
5.SCON中的TI=1表示串行口发送中断请求。
6.MCS-51单片机串行通信时,先发送低位,后发送高位。
7.MCS-51单片机方式2串行通信时,一帧信息位数为 11 位。
8.设T1工作于定时方式2,作波特率发生器,时钟频率为11.0592MHz,SMOD=0,波特率为2.4K时,T1的初值为 FAH 。
9.MCS-51单片机串行通信时,通常用指令 MOV SBUF,A 启动串行发送。
10.MCS-51单片机串行方式0通信时,数据从 P3.0 引脚发送/接收。
二、简答题1.串行口设有几个控制寄存器?它们的作用是什么?答:串行口设有2个控制寄存器,串行控制寄存器SCON和电源控制寄存器PCON。
其中PCON 中只有PCON.7的SMOD与串行口的波特率有关。
在SCON中各位的作用见下表:2.MCS-51单片机串行口有几种工作方式?各自的特点是什么?答:有4种工作方式。
各自的特点为:3.MCS-51单片机串行口各种工作方式的波特率如何设置,怎样计算定时器的初值? 答:串行口各种工作方式的波特率设置:工作方式O :波特率固定不变,它与系统的振荡频率fosc 的大小有关,其值为fosc/12。
工作方式1和方式3:波特率是可变的,波特率=(2SMOD/32)×定时器T1的溢出率 工作方式2:波特率有两种固定值。
当SM0D=1时,波特率=(2SM0D/64)×fosc=fosc/32当SM0D=0时,波特率=(2SM0D/64)×fosc=fosc/64计算定时器的初值计算:4.若fosc = 6MHz ,波特率为2400波特,设SMOD =1,则定时/计数器T1的计数初值为多少?并进行初始化编程。
第6章 习题答案

第六章 分子动理论6-1 一立方容器,每边长20cm 其中贮有,的气体,当把气体加热到时,容器每个壁所受到的压力为多大?解:根据理想气体状态方程NkT pV =得11kT Vp N =。
所以 6-2 一氧气瓶的容积是,其中氧气的压强是,规定瓶内氧气压强降到时就得充气,以免混入其他气体而需洗瓶,今有一玻璃室,每天需用氧气,问一瓶氧气能用几天。
解:一瓶氧的摩尔数为RT pV =ν,用完后瓶中还剩氧气的摩尔数为RTVp '='ν,实际能用的摩尔数为RTp p )(-'-='=ννν∆.每天所用氧气的摩尔数为RT V p ''''=''ν。
一瓶氧气能用的天数为6-3 有一水银气压计,当水银柱为0.76m 高时,管顶离水银柱液面0.12m ,管的截面积为2.0×10-4m 2,当有少量氦(He)混入水银管内顶部,水银柱高下降为0.6m ,此时温度为27℃,试计算有多少质量氦气在管顶(He 的摩尔质量为0.004kg ·mol -1)?解:当压强计顶部中混入氦气,其压强为)(21h h g p -=ρ,由理想气体状态方程得氦气的质量为6-4 在常温下(例如27℃),气体分子的平均平动能等于多少ev?在多高的温度下,气体分子的平均平动能等于1000ev?解:23.8810ev -⨯ ,301K6-5 计算下列一组粒子平均速率和方均根速率?21 4 6 8 210.0 20.0 30.0 40.0 50.0 解:s /m 7.2141.5020.4080.3060.2040.1021=⨯+⨯+⨯+⨯+⨯=υ 6-6 下列系统各有多少个自由度: (1)在一平面上滑动的粒子;(2)可以在一平面上滑动并可围绕垂直于平面的轴转动的硬币; (3)一弯成三角形的金属棒在空间自由运动.解:(1)确定平面上运动的粒子需要2个独立坐标,所以自由度数为2;(2)确定硬币的平动需要两个独立坐标,确定转动需要一个坐标,确定硬币位置共需3个坐标,所以自由度数为3;(3)这是一个自由刚体,有6个自由度,其中3个平动自由度和3个转动自由度。
发电厂电气部分第六章习题解答

第6章导体和电气设备的原理与选择6-1什么是验算热稳定的短路计算时间t k以及电气设备的开断计算时间t br?答:演算热稳定的短路计算时间t k为继电保护动作时间t pr和相应断路器的全开断时间t br之和,而t br是指断路器分断脉冲传送到断路器操作机构的跳闸线圈时起,到各种触头分离后的电弧完全熄灭位置的时间段。
6-2开关电器中电弧产生与熄灭过程与那些因素有关?答:电弧是导电的,电弧之所以能形成导电通道,是因为电弧柱中出现了大量的自由电子的缘故。
电弧形成过程:⑴电极发射大量自由电子:热电子+强电场发射;⑵弧柱区的气体游离,产生大量的电子和离子:碰撞游离+热游离。
电弧的熄灭关键是去游离的作用,去游离方式有2种:复合:正负离子相互吸引,彼此中和;扩散:弧柱中的带电质点由于热运行逸出弧柱外。
开关电器中电弧产生与熄灭过程与以下因素有关:⑴电弧温度;⑵电场强度;⑶气体介质的压力;⑷介质特性;⑸电极材料。
6-3开关电器中常用的灭弧方法有那些?答:有以下几种灭弧方式:1)利用灭弧介质,如采用SF6气体;2)采用特殊金属材料作灭弧触头;3)利用气体或油吹动电弧,吹弧使带电离子扩散和强烈地冷却面复合;4)采用多段口熄弧;5)提高断路器触头的分离速度,迅速拉长电弧,可使弧隙的电场强度骤降,同时使电弧的表面突然增大,有利于电弧的冷却和带电质点向周围介质中扩散和离子复合。
6-4什么叫介质强度恢复过程?什么叫电压恢复过程?它与那些因素有关?答:弧隙介质强度恢复过程是指电弧电流过零时电弧熄灭,而弧隙的绝缘能力要经过一定的时间恢复到绝缘的正常状态的过程为弧隙介质强度的恢复过程。
弧隙介质强度主要由断路器灭弧装置的结构和灭弧介质的性质所决定,随断路器形式而异。
弧隙电压恢复过程是指电弧电流自然过零后,电源施加于弧隙的电压,将从不大的电弧熄灭电压逐渐增长,一直恢复到电源电压的过程,这一过程中的弧隙电压称为恢复电压。
电压恢复过程主要取决于系统电路的参数,即线路参数、负荷性质等,可能是周期性的或非周期性的变化过程。
第六章习题参考答案

第六章 MCS-51的定时/计数器1. 如果采用晶振的频率为3MHz ,定时器/计数器工作方式0、1、2下,其最大的定时时间为多少? 解答:因为机器周期)(410312126s f T OSC cy μ=⨯==, 所以定时器/计数器工作方式0下,其最大定时时间为)(768.321042261313ms T T C MAX =⨯⨯=⨯=-;同样可以求得方式1下的最大定时时间为262.144ms ;方式2下的最大定时时间为1.024ms 。
2. 定时/计数器用作定时器时,其计数脉冲由谁提供?定时时间与哪些因素有关?答:定时/计数器作定时时,其计数脉冲由系统振荡器产生的内部时钟信号12分频后提供。
定时时间与时钟频率和定时初值有关。
3. 定时/计数器用作定时器时,对外界计数频率有何限制?答:由于确认1次负跳变要花2个机器周期,即24个振荡周期,因此外部输入的计数脉冲的最高频率为系统振荡器频率的1/24。
4.采用定时器/计数器T0对外部脉冲进行计数,每计数100个脉冲后,T0转为定时工作方式。
定时1ms 后,又转为计数方式,如此循环不止。
假定MCS-51单片机的晶体振荡器的频率为6MHz ,请使用方式1实现,要求编写出程序。
解:定时器/计数器T0在计数和定时工作完成后,均采用中断方式工作。
除了第一次计数工作方式设置在主程序完成外,后面的定时或计数工作方式分别在中断程序完成,用一标志位识别下一轮定时器/计数器T0的工作方式。
编写程序如下:ORG 0000HLJMP MAINORG 000BHLJMP IT0PMAIN: M OV TMOD,#06H ;定时器/计数器T0为计数方式2 MOV TL0,#156 ;计数100个脉冲的初值赋值MOV TH0,#156SETB GATE ;打开计数门SETB TR0 ;启动T0,开始计数SETB ET0 ;允许T0中断SETB EA ;CPU开中断CLR F0 ;设置下一轮为定时方式的标志位W AIT: AJMP W AITIT0P: CLR EA ;关中断JB F0,COUNT ;F0=1,转计数方式设置MOV TMOD,#00H ;定时器/计数器T0为定时方式0MOV TH0,#0FEH ;定时1ms初值赋值MOV TL0,#0CHSETB EA RETICOUNT: MOV TMOD,#06HMOV TL0,#156SETB EARETI5. 定时器/计数器的工作方式2有什么特点?适用于哪些应用场合? 答:定时器/计数器的工作方式2具有自动恢复初值的特点,适用于精确定时,比如波特率的产生。
高等代数第6章习题参考答案

第六章 线性空间1.设,N M ⊂证明:,M N M M N N ==I U 。
证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M I ∈α即证M N M ∈I 。
又因,M N M ⊂I 故M N M =I 。
再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。
但,N M N Y ⊂所以M N N =U 。
2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。
证 ),(L N M x Y I ∈∀则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。
反之,若)()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ⊂于是)()()(L M N M L N M I Y I Y I =。
若x M N L M N L ∈∈∈UI I (),则x ,x 。
在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L )。
,,N L x M N X M L M N M M N M N ∈∈∈∈∈⊂U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。
习题答案(第六章)

1、R n 中分量满足下列条件的全体向量1(,,)n x x 的集合,是否构成R n的子空间?①10n x x ++=;②120n x x x ⋅⋅⋅=;③2211n x x ++=。
解:①是,设(){}111,,|0n n V x x x x =++=,显然V 1≠∅,1,,,a b F V ξη∀∈∀∈,设1212(,,),(,,)x x y y ξη==,则()()()1111,,,,,,n n n n a b a x x b y y ax by ax by ξη+=+=++,而1111()()()()000n n n n ax by ax by a x x b y y a b ++++=+++++=+=所以1a b V ξη+∈,所以V 1是R n 的子空间; ②不是,取(1,0,,0),(0,1,,1)αβ==,则(){}11,,,|0n n V x x x x αβ∈=⋅⋅=,但(1,1,,1)V αβ+=∉,所以V 不是R n 的子空间;③不是,取(1,0,,0),(0,1,0,,0)αβ==,则(){}2211,,,|1n n V x x x x αβ∈=++=,但(1,1,0,,0)V αβ+=∉,所以V 不是R n 的子空间。
2、子集{}1|,,V X AX XB A B n ==为已知的阶矩阵是否是()n M F 的子集?解:是()n M F 的子集;证:显然1V ≠∅,1,,,X Y V a b F ∀∈∈,有()()A aX bY aAX bAY aXB bYB aX bY B +=+=+=+,所以1aX bY V +∈,所以1V 是()n M F 的子集。
3、设12(1,0,1,0),(1,1,2,0)αα==-,求含12,αα的R 4的一组基。
解:因为101010101010112001100010⎛⎫⎛⎫⎛⎫→→⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,取34(0,0,1,0),(0,0,0,1)αα==,所以{}1234,,,αααα为R 4的一组基。
高等数学课后答案-第六章-习题详细解答

习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。
6章 习题解答

第六章习题参考答案作业可选:6.1、6.2、6.3、6.5、6.6、6.8、6.9、6.106.1有一个线圈,其匝数N =1000,绕在由铸钢制成的闭合铁心上,铁心的截面积2F 20cm S e =,铁心的平均长度cm l Fe 50=。
如果要在铁心中产生磁通Wb 002.0=Φ,试问线圈中应该通入多大的直流电流?解答:真空的磁导率为H/m 10π470-⨯=μ。
铸钢的μ约为0μ的1000倍,44π10H/m μ-=⨯,磁场强度2440.0027.96104102010BH S μμπ--Φ===⨯=⨯⨯⨯⨯(A/m ) 根据磁路的基本定律可知:B lNi Hl l Sμμ===Φ24450100.0020.441020101000l i SN μπ---⨯=Φ=⨯=⨯⨯⨯⨯(A ) 6.2如果上题铁心中含有一个长度为δ=0.2cm 的空气隙(与铁心柱垂直),由于空气隙较短,磁通的边缘扩散可忽略不计,试问线圈中的电流必须多大才能使铁心中的磁感应强度保持上题中的数值?解答:40.00212010B S -Φ===⨯(T ) 空气隙的磁场强度50717.9610410BH μπ-===⨯⨯(A/m ) 磁路磁场强度27.9610H =⨯(A/m )各段磁压降为:22=7.961050-0.210396.4e F Hl H l δ-=⨯-⨯⨯⨯=()()(A )5207.96100.2101592H δ-=⨯⨯⨯=(A ) 总磁动势为:0396.415921988Ni Hl H δ=+=+=(A ) 电流 19881.9881000Ni i N ===(A ) 6.3为了求出铁心线圈的铁损,先将它接在直流电源上,测得线圈的电阻为1.71Ω;然后再接到交流电源上,测得电压120V =U ,功率W 70=P ,电流A 2=I ,求铁损和线圈的功率因数。
解答:由题可知 1.71R =Ω,221.712 6.84RI =⨯=(W )2Fe cos P UI RI P φ==+∆⇒铁损2Fe 70 6.8463.16P P RI ∆=-=-=(W )功率因素70cos 0.2921202P UI ϕ===⨯ 6.4有一个交流铁心线圈,接在Hz 50=f 的正弦电源上,在铁心中得到磁通的最大值为Wb 1025.22m -⨯=Φ。
大学物理第06章恒定磁场习题解答

第6章 恒定磁场习题解答1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的 ( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。
2. 下列关于磁感应线的描述,哪个是正确的 ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。
3. 磁场的高斯定理 0S d B说明了下面的哪些叙述是正确的 ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。
(A )ad ; (B )ac ; (C )cd ; (D )ab 。
4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量 和面上各点的磁感应强度B 将如何变化 ( D )(A ) 增大,B 也增大;(B ) 不变,B 也不变; (C ) 增大,B 不变; (D ) 不变,B 增大。
5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少 ( C )(A )0; (B )R I 2/0 ;(C )R I 2/20 ; (D )R I /0 。
6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 117、一带电粒子垂直射入磁场B后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–BI8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。
习题解答(第六章)

n
n
= X0 + Xi×2-i = -2Xs+ X0 + Xi×2-i
i 1
i 1
↓
↓
多项式表示法 → 配项
Copyright ©2012 Computer Organization Group. All rights reserved.
第六章 6.5
第六章 6.9
r 6.9 讨论若[X]补>[Y]补,是否有X>Y? 解: r 若[X]补>[Y]补,不一定有X>Y。 r 当 X > 0、Y > 0 时, [X]补 - [Y]补=X-Y
当 X < 0、Y< 0 时, [X]补 - [Y]补=2+X-(2+Y)=X-Y 所以,[X]补 > [Y]补时, X > Y成立。 r 当X>0、 Y<0 时,X>Y,但由于负数补码的符号位为 1,则[X]补<[Y]补。 r 当X<0、 Y >0 时,有X < Y,但[X]补>[Y]补。
补 码 [X]补 0 001 1010 1 001 1010 1 111 0001
原 码 [X]原 同补码
1 110 0110 1 000 1111
真值 同补码 -110 0110 -000 1111
Copyright ©2012 Computer Organization Group. All rights reserved.
Copyright ©2012 Computer Organization Group. All rights reserved.
第六章 6.10
r 6.10 设[X]补 = a0 .a1a2a3a4a5a6,其中ai取0或1,若要X>-0.5,求 a0,a1,a2,……,a6的取值。
第6章_课后习题答案1006

第6章 习题解答6-1 指出下列各类型的触发器中那些能组成移位寄存器,哪些不能组成移位寄存器,如果能够,在()内打√,否则打×。
(1)基本RS 触发器 ( ); (2)同步RS 触发器 ( ); (3)主从结构触发器 ( ); (4)维持阻塞触发器 ( );(5)用CMOS 传输门的边沿触发器 ( );(6)利用传输延迟时间的边沿触发器( )。
解答:(1)×;(2)×;(3)√;(4)√;(5)√;(6)√;6-2 试分析图6-79所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,并且说明电路能够自启动。
解答: 驱动方程:113J K Q ==;221J K Q ==;312J Q Q =、33K Q = 状态方程:111111313113n Q J Q K Q Q Q Q Q Q Q +=+=+=e 122222121212n Q J Q K Q Q Q QQ Q Q +=+=+=⊕13333312333123n Q J Q K Q QQ Q Q Q QQ Q +=+=+=输出方程:123CO QQ Q =状态转换表如下:5 100 000 1 101 011 1 110 010 11110011状态转换图如下:此电路为能自启动的同步五进制加法计数器。
6-3 试分析图6-80所示时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。
A 为输入逻辑变量。
解答: 驱动方程:12D AQ =;21212()D AQ Q A Q Q ==+ 状态方程:1112n Q D AQ +==12212()n Q D A Q Q +==+输出方程:12CO AQQ = 状态转换表如下:脉冲数 A 初态21Q Q次态1121n n Q Q ++输出CO1 0 00 00 02 0 01 00 03 0 10 00 04 0 11 00 0100011 01 11 0 1 11 10 1110101状态转换图如下:此电路为串行数据检测器,当输入4个或4个以上的1时输出为1,其他输入情况下输出为0。
发电厂电气部分第六章习题解答

第6章导体与电气设备的原理与选择6-1什么就是验算热稳定的短路计算时间t k以及电气设备的开断计算时间t br?答:演算热稳定的短路计算时间t k为继电保护动作时间t pr与相应断路器的全开断时间t br 之与,而t br就是指断路器分断脉冲传送到断路器操作机构的跳闸线圈时起,到各种触头分离后的电弧完全熄灭位置的时间段。
6-2开关电器中电弧产生与熄灭过程与那些因素有关?答:电弧就是导电的,电弧之所以能形成导电通道,就是因为电弧柱中出现了大量的自由电子的缘故。
电弧形成过程:⑴电极发射大量自由电子:热电子+强电场发射;⑵弧柱区的气体游离,产生大量的电子与离子:碰撞游离+热游离。
电弧的熄灭关键就是去游离的作用,去游离方式有2种:复合:正负离子相互吸引,彼此中与;扩散:弧柱中的带电质点由于热运行逸出弧柱外。
开关电器中电弧产生与熄灭过程与以下因素有关:⑴电弧温度;⑵电场强度;⑶气体介质的压力;⑷介质特性;⑸电极材料。
6-3开关电器中常用的灭弧方法有那些?答:有以下几种灭弧方式:1)利用灭弧介质,如采用SF6气体;2)采用特殊金属材料作灭弧触头;3)利用气体或油吹动电弧,吹弧使带电离子扩散与强烈地冷却面复合;4)采用多段口熄弧;5)提高断路器触头的分离速度,迅速拉长电弧,可使弧隙的电场强度骤降,同时使电弧的表面突然增大,有利于电弧的冷却与带电质点向周围介质中扩散与离子复合。
6-4什么叫介质强度恢复过程?什么叫电压恢复过程?它与那些因素有关?答:弧隙介质强度恢复过程就是指电弧电流过零时电弧熄灭,而弧隙的绝缘能力要经过一定的时间恢复到绝缘的正常状态的过程为弧隙介质强度的恢复过程。
弧隙介质强度主要由断路器灭弧装置的结构与灭弧介质的性质所决定,随断路器形式而异。
弧隙电压恢复过程就是指电弧电流自然过零后,电源施加于弧隙的电压,将从不大的电弧熄灭电压逐渐增长,一直恢复到电源电压的过程,这一过程中的弧隙电压称为恢复电压。
第6章 气体动理论习题解答

第6章习题解答6-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为[ B ]A. /pV m .B. /pV kT . C . /pV RT . D. /pV mT .6-2 两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[ A ] A. 两种气体分子的平均平动动能相等. B. 两种气体分子的平均动能相等. C . 两种气体分子的平均速率相等. D. 两种气体的内能相等.6-3 两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则[ B ]A .压强相等,温度相等.B .温度相等,压强不相等.C .压强相等,温度不相等.D .压强不相等,温度不相等.6-4 温度,压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε有如下关系 [ A ] A. k ε相等,而ε不相等. B. ε相等,而k ε不相等. C .ε和k ε都相等.D.ε和k ε都不相等.6-5 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,在x 方向分子速度的分量平方的平均值为[ D ]A. 2x =v B. 2x =v C . 23x kT m =v . D. 2x kT m =v .6-6 若()f v 为气体分子速率分布函数,N 为气体分子总数,m 为分子质量,则2121()d 2m Nf υυ⎰v v v 的物理意义是[ A ] A. 速率处在速率间隔12~v v 之间的分子平动动能之和. B. 速率处在速率间隔12~v v 间的分子平均平动动能.C . 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之和. D. 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之差.6-7在A 、B 、C 三个容器中装有同种理想气体,其分子数密度n 相同,方均根速率之比为1:2:4=,则其压强之比::A B C p p p 为[ C ]A. 1:2:4B. 4:2:1 C . 1:4:16 D. 1:4:86-8 题6-8图所示的两条曲线,分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H pv 分别表示氧气和氢气的最概然速率,则[ B ]A .图中a表示氧气分子的速率分布曲线,()()22O H/4p p =v v .B .图中a表示氧气分子的速率分布曲线,()()22O H1/4p p =v v . 题6-8图 C .图中b表示氧气分子的速率分布曲线,()()22O H1/4pp =v v . D .图中b表示氧气分子的速率分布曲线,()()22O H/4pp =v v .6-9 题6-9图是在一定的温度下,理想气体分子速率分布函数曲线。
第6章_静电场习题解答1

40 第6章 静电场6-1两个电量都是+q 的点电荷,相距a 2,连线中心为O ,今在它们连线的垂直平分线上放置另一点电荷'q ,'q 与O 相距r ,求(1)'q 所受的力;(2)'q 放在哪一点时所受的力最大,是多少?解 如解用图,以O 点为原点,建立直角坐标系oxy(1)点电荷'q 所受的力21F F F+='1222014πqq F F r a ε==+12121212sin sin cos cos x x x yy y F F F F F F F F F F αααα=+=-⎧⎪⎨=+=+⎪⎩ 将'1222014πqq F F r a ε==+ ,cos α=,代入上式并化简0x F = '322202πy qq r F r a ε=+()故 '322202πqq rF j r a ε=+ ()(2)若点电荷'q 在r 处受力最大,则d 0d rFr=即 223/2221/22223/22233()()2d 20d ()()r a r a r r r r a r a +-+⎡⎤==⎢⎥++⎣⎦ 解得 2ra =此时 ''max32222002π9πr qq r F a r a εε==+()6-2 三个点电荷的带电量均为Q ,分别位于边长为a 的等边三角形的三个角上,求在三角形重心应习题6—1解用图α1F 2Fy41放置一电量为多少的点电荷,系统处于平衡状态。
解 如解用图,以电荷a 为例来讨论,设放置的电荷为q ,b 对a 的作用力为ba F,c 对a 的作用力为ca F ,ba F 和ca F 的合力为bc F,q 对a 的作用力为q F ,则2204πba ca Q F F aε==, 20202cos3024π2bc ba Q F F a ε==⨯⨯q F =,由0=+q bc F F得2201204πQ a ε= 解得 Q q 33-= 不难看出,三个顶点上的点电荷对q 的合力为零,所以整个系统处于平衡状态。
第6章 习题参考答案

习题六一、用适当内容填空1.数据结构是指具有相同特征、相互关联的数据集合。
2.数据结构主要研究数据的逻辑结构、数据的存储结构,以及算法。
3.数据之间有四种逻辑结构,分别是集合、线性、树形和图形。
4.根据数据结构中数据元素之间前件与后件关系的复杂程度,将数据的逻辑结构分为线性结构和非线性结构。
5.在数据的存储结构中,不仅要存放各个数据元素,还要存放数据元素之间前后件关系信息。
数据的存储结构是逻辑结构在计算机存储器中的表示。
6.数据元素在计算机中通常有4种存储方式,即顺序、链式、索引和散列。
7.顺序存储结构是指在内存中开辟一块连续的单元用于存放数据,逻辑上相邻的结点在物理位置上也邻接,结点之间的逻辑关系由存储单元的相邻关系来体现。
8.在链式存储结构中,结点由两部分组成:一部分用于存放数据元素的值,称为数据域;另一部分用于存放前件或后件的存储地址,称为指针域。
链式存储结构是通过指针反映出数据元素之间的逻辑关系。
9.算法的设计基于数据的逻辑结构,而算法的实现依赖于数据的存储结构。
10.一个算法应该具有的基本特征有可行性、确定性、有穷性、输入性和输出性。
11.算法的复杂度有时间复杂度和空间复杂度。
12.栈是在表的同一端进行插入运算和删除运算的线性表。
将允许进行插入运算和删除运算的一端称为栈顶,另一端称为栈底。
栈遵循先进后出或后进先出的原则。
13.队列是在一端进行插入运算,而在另一端进行删除运算的线性表。
允许删除的一端称为队头,允许插入一端称为队尾。
队列遵循先进先出或后进后出的原则。
14.所谓循环队列是将队列的存储空间想象成一个首尾相连的环状空间。
15.判断循环队列为满的条件是(rear+1)%n = front 。
16.判断循环队列为空的条件是front = rear 。
17.树是一种常用的非线性结构,树结构中结点之间即具有分支关系又具有层次关系。
18.在树结构中,有且只有一个根结点,根结点有0 个前件,其他结点有 1 个前件。
第6章热学性能 习题解答

第6章 热学性能 习题解答名词解释:格波:晶格振动波。
声子:晶格振动波的量子化,严格意义上是晶格简谐振动的量子化。
光子:光波的量子化。
声频支振动:晶格振动波的振动频率在声频范围。
光频支振动:晶格振动波的振动频率在声频范围。
热容: “当一系统由于加给一微小的热量dQ 而温度升高dT 时,dQ/dT 这个量即是该系统的热容。
”(GB3102.4-93)即单位温度升高时所需要的热量。
杜隆—珀替定律:无论晶体属于何种类型,其比热容(单位焦耳/(开尔文·千克))均为3R/MM ,其中R 为普适气体常数(单位焦耳/(开尔文·摩尔))MM 为摩尔质量(单位千克/摩尔)。
热膨胀系数:实际应用中,有两种主要的热膨胀系数,分别是:线性热膨胀系数(CLTE):体积热膨胀系数:热导率:单位温度梯度下,单位时间内通过单位垂直面积的热量。
热应力:温度改变时,物体由于外在约束以及内部各部分之间的相互约束,使其不能完全自由胀缩而产生的应力。
又称变温应力。
综合题:1. 热容的本质是什么?dT dx Q t S λ∆×∆×∆=−答案:物体分子对热量的敏感程度和反应强度。
敏感程度决定吸收多少热;反应强度决定升高多少温度。
这些与分子结构,分子间距离有关。
2. 阐述晶态固体的热容随温度的变化规律。
用经典理论解释热容的经验理论。
答案:高温下: C V =3N A K B=3R;低温下: C V正比于 T3。
能量均分3.德拜热容理论取得了什么成功?讨论德拜热容理论在实际应用中的优点及不足。
答案:高温下: C V =3N A K B=3R;低温下: C V正比于 T3。
理论与实验数据符合得比较好。
计算复杂。
4.影响热容的因素有哪些?答案:过程,等温过程,等压过程。
5.什么是非简谐振动?由于非简谐振动,引起声子发生怎样的变化?答案:非简谐振动,引起声子导热。
6.阐述固体材料的热膨胀机理。
答案:固体材料中原子受力不对称,导致热膨胀。
第6章 习题解答

第六章 习题解答(部分)[1]数字滤波器经常以图P6-1描述的方式来处理限带模拟信号,在理想情况下,通过A/D 变换把模拟信号转变为序列)()(nT x n x a =,然后经数字滤波器滤波,再由D/A 变换将)(n y 变换成限带波形)(n y a ,即有∑∞-∞=-⎥⎦⎤⎢⎣⎡-=n a nT t nT t n y t y )(Tπ)(T πsin )()( 这样整个系统可等效成一个线性时不变模拟系统。
如果系统)(n h 的截止角频率是rad 8/π,ms T 01.0=,等效模拟滤波器的截止频率是多少? 设s T μ5=,截止频率又是多少?解:对采样数字系统,数字频率ω与模拟角频率Ω之间满足线性关系T Ω=ω。
因此,当ms T 01.0=时,T T cc 8πω==Ω,Hz T f c c 6251612==Ω=π当s T μ5=时, TT c c 8πω==Ω,Hz T f c c 125001612==Ω=π[2]已知模拟滤波器的系统函数为()22)(b a s bs H a ++=,试用冲激响应不变法将)(s H a 转换为)(z H 。
其中抽样周期为T ,式中a 、b 为常数,且)(s H a 因果稳定。
解:)(s H a 的极点为:jb a s +-=1,jb a s --=1将)(s H a 部分分式展开: )(21)(21)(jb a s j jb a s j s H a +---+---= 所以有1)(1)(121121)(-+------+-=z e j zej z H T jb a Tjb a通分并化简整理得:TT T ez bT e z bTe z z H ααα2211cos 21sin )(------+-= [3]设计一个模拟带通滤波器,要求其幅度特性为单调下降(无波纹),通带带宽s rad B /2002⨯=π,中心频率s rad /10020⨯=Ωπ,通带最大衰减dB p 2=δ,s rad s /80021⨯=Ωπ,s rad s /124022⨯=Ωπ,阻带最小衰减dB s 15=δ。
6习题解答

(2)由于G为自补图,所以 G G
m1=m2,记m1=m2=m,有 m1+m2=2m=n(n-1)/2 m=n(n-1)/4
2
第六章 习题解答
P201: T6.12设G为n(n≥2)阶无向简单图,证明:若G为自
补图,则n=4k或n=4k+1,其中k为正整数。
(6) 长度等于4的回路共有多少条?
(7) 长度小于等于4的通路共有多少条?其中回路共有多少条?
(8) 写出D的可达矩阵, 并问D是强连通的吗?
解
1200 0010 A= 1 0 0 1
v1
v4
0010
v2
v3
6
1200 0010 A= 1 0 0 1 0010
1220
3222
1001
1210
A2= 1 2 1 0 A3= 2 2 2 1 A4=
9
第六章 习题解答 甲 乙 丙
T6.31解:
a
b
c
甲 乙丙
a
b
c
甲 乙丙
a
b
c
甲 乙丙
a
b
c
10
证: m=n(n-1)/4
(3)由于n和n-1是连续的自然数,一奇一偶,又因m 是整数,必有以下两种情况:
情况1:n=4k 情况2:n-1=4k n=4k+1
3
第六章 习题解答
P201: T6.19设无向图G如图6.51所示, (1)G中最短的圈长为几?最长的圈长为几? (2)G中最短的简单回路长度为几?最长的简单回路长
1001
1210
(1) v1到v4, 长度为1,2,3,4的通路各有0,0,2,2条
概率论第六章习题解答(全)

1 P{0.3 2 ( X Y ) 2 0.3 2} 1 (0.3 2) (0.3 2) 2 2 (0.3 2) 2 2 (0.42) 2(1 0.6628) 2 0.3372 0.6744
4、 (1) 设 X 1 , X 2 , , X 6 样本是来自总体 N (0,1) , Y ( X1 X 2 X 3 ) ( X 4 X 5 X 6 ) ,
(
1 10 i1 2 2 ) e 2
( xi )2
10
又
X
1 10 1 10 1 10 X i , E( X ) E( X i ) E( X i ) 10 i 1 10 i 1 10 i 1 1 10 1 D( X ) D( X i ) 2 10 i 1 10
i 1 5 i 1 5 5
1 (1 P{
i 1 5
X i 12 10 12 }) 2 2
5
1 (1 (1)) 1 (1)
i 1 i 1
1 (0.8413)5 1 04215 0.5285
3、求总体 N (20,3) 的容量分别为 10,15 的两个独立样本均值差的绝对值不超过 0.3 的概率。 解 则 设容量为 10 的样本均值为 X ,样本容量为 15 的样本均值为 Y ,
且
X1 X 2 2 2 2 , X 3 X 4 X 5 相互独立,于是由 t 分布的定义知 2 X1 X 2 X1 X 2 3 2 t (3) 2 2 2 2 X3 X4 X5 2 ( X X 2 X 2 ) 12 3 4 5 3
因此所求常数为
C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章习题解答一、填空1.信号量的物理意义是当信号量值大于零时表示可分配资源的个数;当信号量值小于零时,其绝对值为等待使用该资源的进程的个数。
2.所谓临界区是指进程程序中需要互斥执行的程序段。
3.用P、V操作管理临界区时,一个进程在进入临界区前应对信号量执行 P 操作,退出临界区时应对信号量执行 V 操作。
4.有m个进程共享一个临界资源。
若使用信号量机制实现对临界资源的互斥访问,则该信号量取值最大为 1 ,最小为−(m−1)。
注意,无论有多少个进程,只要它们需要互斥访问同一个临界资源,那么管理该临界资源的信号量初值就是1。
当有一个进程进入临界区时,信号量的值就变为0。
随后再想进入的进程只能等待。
最多的情况是让一个进程进入后,其余(m−1)个进程都在等待进入。
于是这时信号量取到最小值:−(m−1)。
5.对信号量S的P操作原语中,使进程进入相应信号量队列等待的条件是V s<0 。
6.死锁是指系统中多个进程无休止地等待永远不会发生的事件出现。
7.产生死锁的4个必要条件是互斥、非剥夺、部分分配和循环等待。
8.在银行家算法中,如果一个进程对资源提出的请求将会导致系统从安全的状态进入到不安全的状态时,就暂时拒绝这一请求。
9.信箱在逻辑上被分为信箱头和信箱体两部分。
10.在操作系统中进程间的通信可以分为低级通信与高级通信两种。
二、选择1.P、V操作是 A 。
A.两条低级进程通信原语B.两条高级进程通信原语C.两条系统调用命令D.两条特权指令2.进程的并发执行是指若干个进程 B 。
A.共享系统资源B.在执行的时间上是重叠的C.顺序执行D.相互制约3.若信号量S初值为2,当前值为−1,则表示有 B 个进程在与S相关的队列上等待。
A.0 B.1 C.2 D.34.用P、V操作管理相关进程的临界区时,信号量的初值应定义为 C 。
A.−1 B.0 C.1 D.随意5.用V操作唤醒一个等待进程时,被唤醒进程的状态变为 B 。
A.等待 B.就绪C.运行D.完成6.若两个并发进程相关临界区的互斥信号量MUTEX现在取值为0,则正确的描述应该是 B 。
A.没有进程进入临界区B.有一个进程进入临界区C.有一个进程进入临界区,另一个在等待进入临界区D.不定7.在系统中采用按序分配资源的策略,将破坏产生死锁的 D 条件。
A.互斥 B.占有并等待 C.不可抢夺D.循环等待8.某系统中有3个并发进程,都需要4个同类资源。
试问该系统不会产生死锁的最少资源总数应该是 B 。
A.9 B.10 C.11 D.129.银行家算法是一种 A 算法。
A.死锁避免 B.死锁防止C.死锁检测D.死锁解除10.信箱通信是进程间的一种 B 通信方式。
A.直接 B.间接C.低级D.信号量三、问答1.试说出图6-1(即教材中第2章的图2-2)所给出的监视程序A和计数程序B之间体现出一种什么关系,是“互斥”还是“同步”?为什么?程序A:程序B:while(1) while(1){ {A1: 收到监视器的信号; B1: 延迟半小时;A2: COUNT=COUNT+1; B2: 打印COUNT的值;} B3:COUNT=0;}图6-1 对两个程序的描述答:图6-1(即教材中第2章的图2-2)所给出的监视程序A和计数程序B之间体现出的是一种互斥关系,因为在监视程序A里,要对共享变量COUNT进行操作:COUNT=COUNT+1;在计数程序B里要对共享变量COUNT进行操作:打印COUNT的值;COUNT=0;这两段程序是不能交叉进行的,不然就会出现与时间有关的错误。
2.模仿教材中的图6-4,画出COPY和PUT之间的直接依赖关系。
然后把两个图汇集在一起,体会它们三者之间正确的同步关系。
再模仿教材中的图6-8,能用信号量及P、V操作来正确处理GET、COPY和PUT三者之间的协同工作关系吗?答:图6-2给出了GET、COPY和PUT三者间正确的同步关系:GET在向COPY发“可以拷贝”的消息后,要等待COPY发来“拷贝结束”的消息。
因为这个消息意味着输入缓冲区R已经被COPY腾空,GET可以再次向里面存放从文件F里取出的记录了;COPY在等到GET 发来的“可以拷贝”的消息后,才能够把输入缓冲区R里的记录拷贝到输出缓冲区T中。
完成这个动作后,表示输入缓冲区R已经被COPY腾空,因此应该立即向GET发消息,告诉它输入缓冲区R又可以使用了。
随后,向PUT发送“可以打印”的消息,等待PUT发来“打印结束”的消息;PUT在等到COPY发来“可以打印”的消息后,才能够从输出缓冲区T里取出记录打印。
打印完毕后,向COPY发送“打印完毕”的消息。
这个消息意味着输出缓冲区T已经被PUT腾空,COPY又可以再次去等待GET发送的“可以拷贝”的消息,从输入缓冲区R里取出记录存入输出缓冲区T了。
图6-2 GET、COPY和PUT三者间的工作关系于是,GET、COPY和PUT三者间有4个同步问题:在GET的标号为3的地方是一个同步点;在COPY的标号为1和5的地方是两个同步点;在PUT的标号为1的地方是一个同步点。
因此,共要设置4个同步信号量:S1——控制COPY与GET取得同步,初值=0;S2——控制GET与COPY取得同步,初值=0;S3——控制PUT与COPY取得同步,初值=0;S4——控制COPY与PUT取得同步,初值=0。
图6-3表述了用信号量及P、V操作来正确处理GET、COPY和PUT三者之间的协同工作关系。
图6-3 用P、V操作保证GET、COPY和PUT三者的正确协作3.在图6-4(a)(即教材中图6-8)GET里,是先安放V(S1),再安放P(S2)的。
能把它们两个的安放顺序颠倒过来变成图6-4(b)吗?为什么?(a) (b)图6-4 安放V(S1)和P(S2)的两种方法答:图6-4(b)里是先安放P(S2), 再安放V(S1)。
这种安放顺序是不行的。
因为安放P(S2),表示要在此等待COPY发来的消息(即希望COPY执行V(S2)操作),在接到了COPY 的消息后,才执行V(S1)(即向COPY发消息)。
但是,根据COPY的安排,不接到GET发来的消息(即执行P(S1)操作),是不会向COPY发消息的(即执行V(S2)操作)。
于是,GET和COPY就陷入了循环等待:GET等待COPY发消息,COPY等待GET发消息。
产生两个死锁了。
4.进程A和B共享一个变量,因此在各自的程序里都有自己的临界区。
现在进程A在临界区里。
试问进程A的执行能够被别的进程打断吗?能够被进程B打断吗(这里,“打断”的含义是调度新进程运行,使进程A暂停执行)?答:当进程A在自己的临界区里执行时,能够被别的进程打断,没有任何的限制。
当进程A在自己的临界区里执行时,也能够被进程B打断,不过这种打断是有限制的。
即当进程B执行到要求进入自己的临界区时,就会被阻塞。
这是因为在它打断进程A时,A正在临界区里还没有出来,既然A在临界区,B当然就无法进入自己的临界区。
5.信号量上的P、V操作只是对信号量的值进行加1或减1操作吗?在信号量上还能够执行除P、V操作外的其他操作吗?答:根据信号量的定义可知,P、V操作并非只是对信号量进行减1或加1操作,更重要的是在减1或加1后,还要判断运算的结果。
对于P操作,判定后调用进程自己有可能继续运行,也可能阻塞等待。
对于V操作,判定后调用进程自己最后总是继续运行,但之前可能会唤醒在信号量队列上等待的进程。
在信号量上除了能执行P、V操作外,不能执行其他任何操作。
6.系统有输入机和打印机各一台,均采用P-V操作来实现分配和释放。
现在有两个进程都要使用它们。
这会发生死锁吗?试说明理由。
答:采用信号量上的P、V操作,只能正确地完成对设备的申请与释放,但不能控制进程对设备的申请、释放顺序。
因此,当进程申请和释放设备的顺序不当时,仍会发生死锁。
例如,进程A使用输入机和打印机的顺序是:请求打印机(Ar1)→请求输入机(Ar2)→释放打印机(Ar3)→释放输入机(Ar4)进程B使用输入机和打印机的顺序是:请求输入机(Br1)→请求打印机(Br2)→释放输入机(Br3)→释放打印机(Br4)其中圆括号里标注的字母,表示某进程对设备的某种使用。
例如,Ar1表示进程A请求打印机。
由于A和B都是进程,它们的执行可以交叉进行。
执行顺序:Ar1→Ar2→Ar3→Ar4→Br1→Br2→Br3→Br4或Ar1→Ar2→Br1→Ar3→Ar4→Br2→Br3→Br4都是合理的交叉。
但是,以Ar1→Br1开始的执行就无法再往下进行了。
因为进程A 执行了Ar1,表明它占用了打印机。
接着进程B 执行了Br1,表明它占用了输入机。
这样一来,不管后面是执行Ar2(进程A 申请输入机)还是执行Br2(进程B 申请打印机),都不可能得到满足,两个进程先后被阻塞:进程A 占据着打印机而等待输入机,进程B 占据着输入机而等待打印机。
这就产生了死锁。
7.现有4个进程A 、B 、C 、D ,共享10个单位的某种资源。
基本数据如图6-5(即教材中的图6-28)所示。
试问如果进程D 再多请求一个资源单位,所导致的是安全状态还是不安全状态?如果是进程C 提出同样的请求,情况又会是怎样呢?答:若进程D 多请求一个资源,资源的使用情况如图6-6(a )所示。
这时,系统剩余1个资源,4个进程各自还需要的资源数是5、4、2、2,资源剩余数无法保证任何一个进程运行结束。
所以D 多请求一个资源单位,会导致不安全状态。
若是进程C 提出同样的请求,那么系统资源的使用情况如图6-6(b )所示。
这时,整个系统虽然也只剩余1个资源,但却能够保证4个进程都完成。
所以,C 再多请求一个资源单位,系统将处于安全状态。
进程最大需求已有量 系统剩余数:10(a)进程 最大需求已有量 系统剩余数:2(b)图6-5 第7题的基本数据进程最大需求已有量 还需量 系统剩余数:1(a)进程 最大需求已有量 还需量 系统剩余数:1(b)图6-6 不安全与安全状态示意图8.假定图6-7(即教材中的图6-21)里的进程A 申请最后一台磁带机,会引起死锁吗?进程 (a)(资源总数) E [ ]6 3 4 2 磁带机 绘图仪 打印机 CD-ROM进程 (b)磁带机 绘图仪 打印机 CD-ROM (已分配数) P [ ] 5 3 2 2 (剩余数)A [ ] 1 0 2 0 (c)图6-7 多种资源的银行家算法答:进程A 申请了最后一台磁带机后,系统资源的使用情况由图6-7变为图6-8。
按照多种资源的银行家算法,这时系统资源的剩余数可以满足进程D 的要求,于是系统资源剩余数矩阵A 变为A [1 1 2 1];这样的剩余数,可以满足进程A 的要求,于是系统资源剩余数矩阵A 变为A [5 1 3 2];这样的剩余数,可以满足进程B 、C 、E 三个进程中任何一个的需要,例如给E 。