3.万兆以太网规范

合集下载

万兆光衰正常值范围

万兆光衰正常值范围

万兆光衰正常值范围1. 什么是光衰在光纤通信中,光信号在传输过程中会遇到一定的损耗,这种损耗被称为光衰。

光衰是指光信号强度随着传输距离的增加而逐渐减弱的现象。

光衰的大小直接影响到传输质量和距离。

2. 光衰的影响因素2.1 光纤本身的损耗由于材料和制造工艺等原因,光纤本身会对光信号产生一定的损耗。

这种损耗被称为固有损耗,通常在每公里几分贝左右。

2.2 连接器和适配器的损耗连接器和适配器是将不同设备或不同类型的光纤连接起来的重要组件。

它们之间存在一定的插入损耗,即当光信号通过连接器或适配器时会发生一定程度上的信号损失。

2.3 弯曲和扭曲导致的损耗当光纤被弯曲或扭曲时,会引起一部分光信号的散失,导致光衰。

这种损耗称为弯曲损耗或扭曲损耗。

2.4 其他因素除了以上几个主要因素外,还有一些其他因素也会对光衰产生影响,如光纤的质量、环境温度等。

3. 万兆光衰正常值范围万兆以太网是一种高速网络传输技术,其传输速率达到了10Gb/s。

在万兆以太网中,对于光衰的要求相对较高,需要保证信号的质量和距离。

根据相关标准和规范,万兆以太网中的光衰正常值范围通常为-7到-17分贝(dB)。

这个范围是在标准工作条件下经过测试和验证得出的。

在实际应用中,为了确保网络的稳定性和可靠性,通常会将光衰控制在-7到-15dB之间。

如果超过-15dB,则可能会导致传输错误率增加或连接中断。

4. 如何测量和控制光衰测量和控制光衰是确保网络传输质量的重要步骤。

以下是一些常用的方法和工具:4.1 光功率计光功率计是一种用于测量光信号强度的仪器。

通过连接光功率计到待测点,可以准确地测量出光信号的功率水平。

根据测量结果,可以判断光衰是否在正常范围内。

4.2 OTDROTDR(Optical Time Domain Reflectometer)是一种高精度的光纤测试仪器。

它可以通过发送脉冲光信号并分析反射和散射信号来确定光纤中的损耗情况。

利用OTDR可以检测到整条光纤中的各个位置的衰减情况。

「《深入理解计算机网络》习题集」

「《深入理解计算机网络》习题集」

第一章补充内容1.4.5定点数与浮点数计算机在处理实数时遇到了一个表示方法的难题,因为在计算机内存,或者叫寄存器中是没有专门的小数点位的,而在实际运算过程中却往往又是包括小数点的小数。

如果某种数据编码约定实数的小数点固定在某一个位上,则这个数称之为“定点数”(Fixed PointNumber)。

相反,如果某种编码约定实数的小数点位置是可变的,则这个数称之为“浮点数”(FloatingPoint Number)。

但是要注意的是,在寄存器中小数点的位置是隐含的,没有专门的小数点位。

1.定点数对于定点数来说,如有一种编码是用4位来表示实数的,并且约定小数点在中间位置,则可以得出这种编码所能表示的最大整数部分和小数部分均为99(假设用十进制表示)。

显然定点数这样的约定限制了编码所能表示数的范围。

根据小数点的位置的不同,定点数又分为“定点整数”和“定点小数”两种。

如果小数点在有效数值部分最低位之后,这样的数称之为“定点整数”(纯整数),如1110101.(其实这里的小数点在寄存器中是没有标注的,是隐含的)。

但要注意,计算机中的机器数都是带符号的,所以最高位都是符号位,不是实际的数值位。

正因如此,这里的“”所对应的数是-53,而不是+117。

如果小数点位置在符号位之后、有效数值部分最高位之前小数点在最高有效数值位之前(这里的小数点在寄存器中也是隐含的,没有小数点专门的位),这样的数称之“定点小数”(纯小数),如0.1010101(注意整数部分仅一位,而且是符号位,对应为)。

当然还可以既有整数部分,又有小数部分的定点数(当然,此时不能直接说它们是“定点整数”,也不能说它们是“定点小数”)。

以人民币为例,我们日常经常看到的¥125.10,¥873.25之类的数就是一个定点数,约定小数点后面有两位小数,用来表示角与分。

【经验之谈】这时可能就有读者问,没有标点符号位,那计算机怎么确定数值的大小?这就是前面说到的“约定”了。

以太网规范

以太网规范

以太网规范以太网(Ethernet)是一种广泛应用于计算机网络的局域网技术。

它是由Xerox、Digital和Intel在20世纪70年代合作开发的,并在20世纪80年代被标准化为IEEE 802.3。

以太网规范包括了物理层和数据链路层两个部分,它定义了网络的传输介质、数据传输的方式以及网络设备之间的通信规则。

在物理层方面,以太网规范定义了几种不同的传输介质,如双绞线、同轴电缆和光纤等。

其中,最常见和广泛使用的是双绞线。

以太网使用双绞线作为传输介质的优点是成本低廉、易于安装和维护,并且具有较高的传输速度和较低的信号损耗。

在数据链路层方面,以太网规范定义了帧的格式、地址的分配、数据的传输方式等。

以太网帧的格式由目的MAC地址、源MAC地址、类型字段和数据字段组成。

其中,MAC地址是用于唯一标识网络设备的物理地址。

以太网规范还定义了一种称为CSMA/CD(Carrier Sense Multiple Access with Collision Detection)的介质访问控制方式,用于避免多个设备同时访问网络介质而产生冲突。

以太网规范还规定了不同速率的以太网,包括10 Mbps的Ethernet、100 Mbps的Fast Ethernet和1000 Mbps的Gigabit Ethernet。

这些不同速率的以太网可以互操作,即可以在同一网络中同时使用。

不同速率的以太网主要通过改变传输介质的速率、电平和编码方式来实现。

以太网规范还定义了一些其他的技术,如虚拟局域网(VLAN)和链路聚合(Link Aggregation)。

虚拟局域网允许将一个物理局域网划分为多个逻辑上的局域网,提供更好的网络管理和安全性。

链路聚合允许将多个以太网链路绑定在一起,形成一个更高带宽的链路,提供更好的网络性能和冗余备份。

总体而言,以太网规范为计算机网络提供了一个灵活、可靠和高性能的局域网技术。

它的发展和标准化为互联网的发展做出了重要贡献,并且在现代网络中仍然得到广泛应用。

以太网规范及体系结构

以太网规范及体系结构

使用的传输介质 50Ω粗同轴电缆 50Ω细同轴电缆 75Ω同轴电缆 双绞线 光纤(与 FOIRL 协同工作/纯单段光纤) 光纤 无源光纤
有效距离 500m 180m 3.8km 100m 1000/2000m 2000m 500m
快速以太网采用 IEEE802.3u 标准,采用的传输介质为双绞线(5 类或超五类屏 蔽双绞线或者非屏蔽双绞线),其对应表如下:
万兆以太网规范 10GBase-SR 10GBase-LR 10GBase-LRM 10GBase-ER 10GBase-ZR 10GBase-LX4 10GBase-CX4 10GBase-T 10GBase-KX4 10GBase-KR 10GBase-SW 10GBase-LW 10GBase-EW 10GBase-ZW
使用的传输介质 850nm 多模光纤,50um 的 OM3 光纤 1310nm 单模光纤 62.5um 多模光纤,OM3 光纤 1550nm 单模光纤 1550nm 单模光纤 1300nm 单模光纤或多模光纤 屏蔽双绞线 6 类,6a 类双绞线 铜线(并行接口) 铜线(串行接口) 850nm 多模光纤,50um 的 OM3 光纤 1310nm 单模光纤 1550nm 单模光纤 1550nm 单模光纤
标准以太网
快速以太网
千兆以太网
万兆以太网
标准以太网采用了 IEEE802.3,IEEE802.3A,IEEE802.3B,IEEE802.3I, IEEE802.3J 等标准,采用的传输介质有同轴电缆,光纤,双绞线,其对应表如 下:
标准以太网规范 10Base5 10Base2 10Broad36 10Base-T 10Base-FL 10Base-FB 10Base-FP
有效距离 300m 10km 260m 40km 80km 300m(多模)10km(单模) 15m 55m(6 类线)100m(6a 类线) 1m 1m 300m 10km 40km 80km

万兆以太网技术

万兆以太网技术

万兆以太网技术目录1.基于光纤的局域网万兆以太网规范 (1)2.基于双绞线(或铜线)的局域网万兆以太网规范 (2)3.基于光纤的广域网万兆以太网规范 (3)4.万兆以太网物理层规格 (4)4.1万兆以太网物理层规格(PHY) (4)4.2相关物理介质层(PMD) (7)万兆以太网技术万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq和2007年的IEEE 802.3ap。

在规范方面,总共有10多个,总共可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。

下面分别予以介绍。

1. 基于光纤的局域网万兆以太网规范目前,基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。

(1)10GBase-SR10GBase-SR中的“SR”代表“短距离”(short range)的意思,该规范支持编码方式为64B/66B 的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。

10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。

(2)10GBase-LR10GBase-LR中的“LR”代表“长距离”(Long Range)的意思,该规范支持编码方式为64B/66B 的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。

1以太网介绍及工作原理

1以太网介绍及工作原理

以太网的解释以太网(EtherNet)以太网最早由Xerox(施乐)公司创建,在1980年,DEC、lntel和Xerox三家公司联合开发成为一个标准,以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3IEEE 802.3标准它规定了包括物理层的连线、电信号和介质访问层协议的内容。

以太网是当前应用最普遍的局域网技术。

它很大程度上取代了其他局域网标准,如令牌环、FDDI和ARCNET。

历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。

历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。

人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC 的老板写了一篇有关以太网潜力的备忘录。

但是梅特卡夫本人认为以太网是之后几年才出现的。

在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。

1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。

3com 对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。

这个通用的以太网标准于1980年9月30日出台。

当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。

而在此过程中,3Com也成了一个国际化的大公司。

梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。

Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。

受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。

以太网技术规范

以太网技术规范
梅特卡夫曾经开玩笑说,Jerry Saltzer 为 3Com 的成功作出了贡献。Saltzer 在一篇与 他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影 响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样 3com 才有 机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究, 只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下, 网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结 构才使局域网得以普及。梅特卡夫和 Saltzer 曾经在麻省理工学院 MAC 项目(Project MAC) 的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的 理论基础。
⒈ IEEE802.3z
IEEE802.3z 工作组负责制定光纤(单模或多模)和同轴电缆的全双工链路标准。 IEEE802.3z 定义了基于光纤和短距离铜缆的 1000Base-X,采用 8B/10B 编码技术,信道 传输速度为 1.25Gbit/s,去耦后实现 1000Mbit/s 传输速度。IEEE802.3z 具有下列千兆以太 网标准:
以太网技术规范
李良庭 1999 年 12 月整理
用同 10BASE-T 相同的 RJ-45 连接器。它的最大网段长度为 100 米。它支持全双工的数 据传输。
· 100BASE-FX:是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5 和 125um)。多模光纤连接的最大距离为 550 米。单模光纤连接的最大距离为 3000 米。 在传输中使用 4B/5B 编码方式,信号频率为 125MHz。它使用 MIC/FDDI 连接器、ST 连接 器或 SC 连接器。它的最大网段长度为 150m、412m、2000m 或更长至 10 公里,这与所 使用的光纤类型和工作模式有关,它支持全双工的数据传输。100BASE-FX 特别适合于有 电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。

以太网详解

以太网详解

以太网详解1.以太网是什么?以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。

虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。

以太网是应用最广泛的局域网技术。

根据传输速率的不同,以太网分为标准以太网(10Mbit/s)、快速以太网(100Mbis)千兆以太网(1000Mbs)和万兆以太网(10Gbit/s),这些以太网都符合IEEE 802.3是兼容的。

2、标准以太网标准以太网是最早期的以太网,其传输速率为10Mbts,也称为传统以太网。

此种以太网的组网方式非常灵活,既可以使用粗、细缆组成总线网络,也可以使用双绞线组成星状网络,还可以同时使用同轴电缆和双绞线组成混合网络。

这些网络都符合EE8023标准,EEE8023中规定的一些传统以太网物理层标准如下。

①10 Base-2:使用细同轴电缆,最大网段长度为185m。

②10 Base-5:使用粗同轴电缆,最大网段长度为500m。

③10 Base-T:使用双纹线,最大网段长度为100m。

④10 Boad-36:使用同轴电缆,最大网段长度为3600m。

⑤10 Base-F:使用光纤,最大网段长度为2000m,传输速率为10Mb/s。

以土标准中首部的数字代表传输速率,单位为Mbis;末尾的数字代表单段网线长度(基准单位为100m);Base表示基带传输,Broad表示宽带传输。

3、快速以太网随着网络的发展和各项网络技术的普及,标准以太网技术已难以满足人们对网络数据流量和速率的需求。

1993年10月以前,人们只能选择价格昂贵、基于100Mbs光缆的FDD技术组建高标准网络,1993年10月,Grand Junction 公司推出了世界上第一台快速以太网集线器FastSwitch10/100和百兆网络接口卡Fast NIC 100,快速以太网技术正式得到应用。

万兆以太网规范

万兆以太网规范

5.5.1 万兆以太网规范5.5.1 万兆以太网规范从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq 和2007年的IEEE 802.3ap;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。

在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。

下面分别予以介绍。

1.基于光纤的局域网万兆以太网规范就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。

10GBase-SR10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。

10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。

10GBase-LR10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。

10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。

万兆以太网方案

万兆以太网方案

万兆以太网方案简介以太网是一种局域网技术,广泛应用于各种规模的企业和组织中。

随着网络负载的增加和带宽需求的提高,传统的千兆以太网已经无法满足现代网络的要求。

在这种情况下,万兆以太网应运而生。

本文将介绍万兆以太网的概念、优势以及实施方案。

什么是万兆以太网万兆以太网,也称为10G以太网,是在以太网技术基础上实现了更高的传输速率。

它提供了每秒10亿位(10Gbps)的传输速度,比传统的千兆以太网快了十倍。

万兆以太网可以通过通用的RJ-45接口进行连接,因此可以在现有的网络设施上进行升级,而无需更换现有的网络设备。

万兆以太网的优势更高的带宽千兆以太网提供的1Gbps带宽已经无法满足现代网络的高带宽需求。

万兆以太网提供了10Gbps的传输速度,大大增加了网络的带宽,可以满足现代应用对高带宽的需求,如高清视频传输、虚拟化环境等。

更低的延迟万兆以太网的传输速度更快,可以减少数据传输的延迟。

这对于需要实时数据传输的应用非常重要,如在线游戏、视频会议等。

低延迟的优势可以提供更好的用户体验和更高的网络性能。

更大的扩展性万兆以太网支持更多的并发连接,能够同时处理更多的数据流。

这对于大型企业或机构来说非常重要,可以满足高负载网络环境下的需求。

万兆以太网的扩展性还能够支持未来的网络需求,帮助企业实现长期的网络规划。

实施万兆以太网的方案网络设备的升级要实施万兆以太网,首先需要升级现有的网络设备。

这包括交换机、路由器、服务器等网络设备。

新的万兆以太网设备需要支持10Gbps的传输速度,并提供兼容的接口,如SFP+或10GBASE-T。

网络电缆的升级为了支持万兆以太网的传输速度,网络电缆也需要进行升级。

传统的千兆以太网使用的是Cat 5e或Cat 6电缆,而万兆以太网需要使用更高级别的电缆,如Cat 6a或Cat 7。

这些高级别电缆可以提供更好的抗干扰能力和传输质量,以保证网络的稳定性和可靠性。

网络拓扑的优化相较于千兆以太网,万兆以太网对网络拓扑的要求更高。

以太网分类

以太网分类

一、标准以太网开始以太网只有10Mbps的吞吐量,使用的是CSMA/CD(带有碰撞检测的载波侦听多路访问)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。

以太网主要有两种传输介质,那就是双绞线和同轴电缆。

所有的以太网都遵循IEEE 802.3标准,下面列出是IEEE 802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是 100m),Base表示“基带”的意思,Broad代表“带宽”。

·10Base-5 使用粗同轴电缆,最大网段长度为500m,基带传输方法;·10Base-2 使用细同轴电缆,最大网段长度为185m,基带传输方法;·10Base-T 使用双绞线电缆,最大网段长度为100m;· 1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;·10Broad-36 使用同轴电缆(RG-59/U CATV),最大网段长度为3600m,是一种宽带传输方式;·10Base-F 使用光纤传输介质,传输速率为10Mbps;二、快速以太网随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。

在1993年10月以前,对于要求10Mbps以上数据流量的 LAN应用,只有光纤分布式数据接口(FDDI)可供选择,但它是一种价格非常昂贵的、基于100Mpbs光缆的LAN。

1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。

随后 Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。

与此同时,IEEE802工程组亦对 100Mbps以太网的各种标准,如100BASE-TX、100BASE-T4、MII、中继器、全双工等标准进行了研究。

关于万兆以太网标准

关于万兆以太网标准

万兆以太网标准关于万兆以太网标准万兆以太网物理层规格在IEEE 中定义了万兆以太网物理层规格(PHY)和支持光模块,如下图所示(左)。

在以太网标准中,光模块被正式定义为一种物理媒体依赖接口(PMD)。

右图显示了PMD、PHY和MAC(媒体访问控制)在交换路由器板卡上的逻辑设计。

万兆以太网MAC(右图)在服务接口(向PHY)以10Gb/s的速率运行,在MAC PHY层之间适应速率,通过调试Inter-Packet Gaps (IPG)以适应LAN PHY 和WAN PHY的略有不懂的数据速率。

速率适应机制在IEEE 中叫做Open Loop Control。

Stack Diagram of 10GE PHYS & PMDs Typical Switch Card Layout万兆以太网物理层规格(PHY)为:连续LAN PHY连续物理层由64b/66b多媒体数字信号编解码器(译码/解码)配置和serializer/deserializer (SerDes)组成。

64b/66b多媒体数字信号编解码器配置是执行包描绘的块状编码配置。

SerDes为连续光模块或PMD,在传送器上将16- bit并行数据路径(每个644 Mb/s)排序到一个s的连续数据流,并将一个s的连续数据流去序列化到16-bit并行数据路径(每个644Mb/s)。

连续WAN PHY连续WAN PHY由WAN接口子层(WIS)、64b/66b多媒体数据信号编解码器配置(与上文描述一样)、和SerDes组成,SerDes也与上文描述一样,除了连续数据流的速度为s(OC-192),每个16-bit并行数据路径为622Mb/s。

WIS 为SONET framing和X7+ X6 + 1 scrambling专门设计。

与SONET OC-192速度结合,连续WAN PHY使万兆以太网能在现有SONET OC-192设施和10Gb/s Dense Wavelength Division Multiplexing (DWDM)光学网络上无中断运行。

以太网技术规范

以太网技术规范
3 分类和发展
标准以太网
第 2 页 共 21 页
以太网技术规范
李良庭 1999 年 12 月整理
以太网
开始以太网只有 10Mbps 的吞吐量,使用的是带有冲突检测的载波侦听多路访问 (CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法。这种 早期的 10Mbps 以太网称之为标准以太网,以太网可以使用粗同轴电缆、细同轴电缆、非 屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接。并且在 IEEE 802.3 标准中,为 不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是 “Mbps”,最后的一个数字表示单段网线长度(基准单位是 100m),Base 表示“基带”的意 思,Broad 代表“宽带”。
为了能够侦测到 64Bytes 资料框的碰撞,千兆以太网(Gigabit Ethernet)所支持的距 离更短。Gigabit Ethernet 支持的网络类型,如下表所示:
传输介质 距离
1000Base-CX Copper STP 25m
1000Base-T Copper Cat 5 UTP 100m
· 100BASE-T4:是一种可使用 3、4、5 类无屏蔽双绞线或屏蔽双绞线的快速以太网 技术。100Base-T4 使用 4 对双绞线,其中的三对用于在 33MHz 的频率上传输数据,每一 对均工作于半双工模式。第四对用于 CSMA/CD 冲突检测。在传输中使用 8B/6T 编码方式, 信号频率为 25MHz,符合 EIA586 结构化布线标准。它使用与 10BASE-T 相同的 RJ-45 连接器,最大网段长度为 100 米。
1000Base-SX Multi-mode Fiber 500m

以太网标准3

以太网标准3

以太网标准3以太网标准3是指IEEE 802.3标准,它是以太网技术的一种标准化规范。

以太网是一种局域网技术,它使用CSMA/CD协议来控制数据包的传输。

以太网标准3是对以太网技术的一种规范化,它包括了物理层和数据链路层的标准,以及一些其他的规范。

首先,以太网标准3规定了以太网的物理层标准。

物理层标准规定了以太网的传输介质、传输速率、传输距离等参数。

在以太网标准3中,常用的传输介质包括双绞线、光纤和同轴电缆。

传输速率常见的有10Mbps、100Mbps、1000Mbps等不同的速率。

传输距离则取决于传输介质和传输速率,一般可以达到几百米到几十公里不等。

这些物理层标准的规定,为以太网的实际应用提供了基础支持。

其次,以太网标准3还规定了以太网的数据链路层标准。

数据链路层标准规定了以太网的帧格式、MAC地址、流控制等内容。

以太网的帧格式包括了前导码、目的地址、源地址、长度/类型、数据和校验序列等字段。

MAC地址是以太网设备的唯一标识,用于在局域网中唯一标识一个设备。

流控制则是通过CSMA/CD协议来实现,它能够有效地避免数据包的冲突和碰撞,保证数据的可靠传输。

此外,以太网标准3还包括了一些其他的规范,比如对网络设备的性能要求、对网络管理的规定等。

这些规范的制定,使得不同厂商生产的以太网设备能够互通互用,保证了以太网技术的广泛应用和发展。

总的来说,以太网标准3是对以太网技术的一种标准化规范,它包括了物理层和数据链路层的标准,以及一些其他的规范。

这些规范的制定,为以太网技术的应用和发展提供了基础支持,保证了不同厂商生产的设备能够互通互用,从而推动了以太网技术的广泛应用和发展。

在未来,随着网络技术的不断发展,以太网标准3也将不断进行更新和完善,以适应新的需求和新的应用场景。

万兆以太网接口的命名规范

万兆以太网接口的命名规范

万兆以太网接口的命名规范
自从IEEE 802.3ae标准于2002年中获得批准以来,万兆以太网端口的售货量已经从每季度几百个端口增加到了每季度几万个端口。

万兆以太网的物理层接口通常使用下列命名规范:
前缀= “10GBASE-”= 10Gbps基带通信
首个后缀= 介质类型或者波长(如果介质类型是光纤的话)
第二个后缀= PHY编码类型
第三个后缀= 宽波分复用(WWDM)波长或者XAUI通道个数
编码,4个WWDM波长。

10GBASE-SR光传输模块使用一个串行850nm的激光束,LAN PHY (64B/66B)编码,1个波长。

IEEE 802.3an任务组计划在2006年的稍晚些时候,确定基于双绞线铜缆的万兆以太网(10GBASE-T)的标准。

下表总了可在企业环境中使用的万兆以太网接口所支持的传输范围和介质类型。

关于万兆以太网标准

关于万兆以太网标准

万兆以太网标准关于万兆以太网标准万兆以太网物理层规格在IEEE 802.3ae中定义了万兆以太网物理层规格(PHY)和支持光模块,如下图所示(左)。

在以太网标准中,光模块被正式定义为一种物理媒体依赖接口(PMD)。

右图显示了PMD、PHY和MAC(媒体访问控制)在交换路由器板卡上的逻辑设计。

万兆以太网MAC(右图)在服务接口(向PHY)以 10Gb/s的速率运行,在MAC PHY层之间适应速率,通过调试Inter-Packet Gaps (IPG)以适应LAN PHY和WAN PHY的略有不懂的数据速率。

速率适应机制在IEEE 802.3ae中叫做Open Loop Control。

Stack Diagram of 10GE PHYS & PMDs Typical Switch Card Layout万兆以太网物理层规格(PHY)为:连续LAN PHY连续物理层由64b/66b多媒体数字信号编解码器(译码/解码)配置和serializer/deserializer (SerDes)组成。

64b/66b多媒体数字信号编解码器配置是执行包描绘的块状编码配置。

SerDes为连续光模块或PMD,在传送器上将16- bit并行数据路径(每个644 Mb/s)排序到一个10.3Gb/s的连续数据流,并将一个10.3Gb/s的连续数据流去序列化到16-bit并行数据路径(每个644Mb/s)。

连续WAN PHY连续WAN PHY由WAN接口子层(WIS)、64b/66b多媒体数据信号编解码器配置(与上文描述一样)、和SerDes组成,SerDes也与上文描述一样,除了连续数据流的速度为9.95Gb/s(OC-192),每个16-bit并行数据路径为622Mb/s。

WIS为SONET framing和X7+ X6 + 1 scrambling专门设计。

与SONET OC-192速度结合,连续WAN PHY使万兆以太网能在现有SONET OC-192设施和10Gb/s Dense Wavelength Division Multiplexing (DWDM)光学网络上无中断运行。

万兆以太网的标准是

万兆以太网的标准是

万兆以太网的标准是
万兆以太网是指网络中传输速率达到10Gbps的以太网。

它是目前最先进的以太网标准之一,被广泛应用于数据中心、企业网络和高性能计算环境。

万兆以太网的标准化工作由IEEE(电气和电子工程师协会)进行,其标准为IEEE 802.3ae。

万兆以太网的标准化工作始于2002年,当时IEEE发布了802.3ae标准。

该标准定义了万兆以太网的物理层和数据链路层规范,包括光纤传输介质、MAC(媒体访问控制)协议、数据帧格式等。

与此同时,IEEE还发布了相关的光纤以太网标准,用于支持万兆以太网的光纤传输。

在万兆以太网的标准化过程中,IEEE考虑了多种因素,如成本、功耗、传输距离、兼容性等。

最终确定的标准旨在提供高速、高效、可靠的网络连接,以满足不断增长的数据传输需求。

万兆以太网的标准还包括了一系列的物理介质接口(PHY)规范,以支持不同的传输介质和连接方式。

这些规范涵盖了铜缆、光纤、无线等多种传输介质,使得万兆以太网可以适应各种不同的网络环境和应用场景。

随着技术的不断发展,万兆以太网的标准也在不断更新和完善。

IEEE发布了多个扩展标准,如IEEE 802.3an用于支持千兆以太网的双绞线传输、IEEE 802.3bj 用于支持高速串行连接等。

这些扩展标准为万兆以太网的部署和应用提供了更多的选择和灵活性。

总的来说,万兆以太网的标准是一个不断演进的过程,它不仅代表了最先进的网络技术,也反映了对于高速、高效、可靠网络连接的不断追求。

随着数字化时代的到来,万兆以太网的标准将继续发挥重要作用,推动着网络技术的进步和创新。

万兆以太网规范

万兆以太网规范

5.5.1 万兆以太网规范从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq和2007年的IEEE 802.3ap;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。

在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。

下面分别予以介绍。

1.基于光纤的局域网万兆以太网规范就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。

10GBase-SR10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm 线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm的光纤称为OM1光纤)。

10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。

10GBase-LR10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。

10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.5.1 万兆以太网规范
从前面的介绍可以得出,就目前来说,万兆以太网标准和规范都比较繁多,在标准方面,有2002年的IEEE 802.3ae,2004年的IEEE 802.3ak,2006年的IEEE 802.3an、IEEE 802.3aq和2007年的IEEE 802.3ap;在规范方面,总共有10多个(是一比较庞大的家族,比千兆以太网的9个又多了许多)。

在这10多个规范中,可以分为三类:一是基于光纤的局域网万兆以太网规范,二是基于双绞线(或铜线)的局域网万兆以太网规范,三是基于光纤的广域网万兆以太网规范。

下面分别予以介绍。

1.基于光纤的局域网万兆以太网规范
就目前来说,用于局域网的基于光纤的万兆以太网规范有:10GBase-SR、
10GBase-LR、10GBase-LRM、10GBase-ER、10GBase-ZR和10GBase-LX4这六个规范。

10GBase-SR
10GBase-SR中的"SR"代表"短距离"(short range)的意思,该规范支持编码方式为64B/66B的短波(波长为850nm)多模光纤(MMF),有效传输距离为2~300m,要支持300m传输需要采用经过优化的50μm线径OM3(Optimized Multimode 3,优化的多模3)光纤(没有优化的线径50μm光纤称为OM2光纤,而线径为62.5μm 的光纤称为OM1光纤)。

10GBase-SR具有最低成本、最低电源消耗和最小的光纤模块等优势。

10GBase-LR
10GBase-LR中的"LR"代表"长距离"(Long Range)的意思,该规范支持编码方式为64B/66B的长波(1310nm)单模光纤(SMF),有效传输距离为2m到10km,事实上最高可达到25km。

10GBase-LR的光纤模块比下面将要介绍的10GBase-LX4光纤模块更便宜。

10GBase-LRM
10GBase-LRM中的"LRM"代表"长度延伸多点模式"(Long Reach Multimode),对应的标准为2006年发布的IEEE 802.3aq。

在1990年以前安装的FDDI 62.5?m多
模光纤的FDDI网络和100Base-FX网络中的有效传输距离为220m,而在OM3光纤中可达260m,在连接长度方面,不如以前的10GBase-LX4规范,但是它的光纤模块比10GBase-LX4规范光纤模块具有更低的成本和更低的电源消耗。

10GBase-ER
10GBase-ER中的"ER"代表"超长距离"(Extended Range)的意思,该规范支持超长波(1550nm)单模光纤(SMF),有效传输距离为2m到40km。

10GBase-ZR
几个厂商提出了传输距离可达到80km超长距离的模块接口,这就是
10GBase-ZR规范。

它使用的也是超长波(1550nm)单模光纤(SMF)。

但80km的物理层不在EEE 802.3ae标准之内,是厂商自己在OC-192/STM-64 SDH/SONET规范中的描述,也不会被IEEE 802.3工作组接受。

10GBase-LX4
10GBase-LX4采用波分复用技术,通过使用4路波长统一为1300 nm,工作在3.125Gb/s的分离光源来实现10Gb/s传输。

该规范在多模光纤中的有效传输距离为2~300m,在单模光纤下的有效传输距离最高可达10km。

它主要适用于需要在一个光纤模块中同时支持多模和单模光纤的环境。

因为10GBase-LX4规范采用了4路激光光源,所以在成本、光纤线径和电源成本方面较前面介绍的10GBase-LRM规范有不足之处。

2.基于双绞线(或铜线)的局域网万兆以太网规范
在2002年发布的几个万兆以太网规范中并没有支持铜线这种廉价传输介质的,但事实上,像双绞线这类铜线在局域网中的应用是最普遍的,不仅成本低,而且容易维护,所以在近几年就相继推出了多个基于双绞线(6类以上)的万兆以太网规范包括10GBase-CX4、10GBase-KX4、10GBase-KR、10GBase-T。

下面分别予以简单介绍。

10GBase-CX4
10GBase-CX4对应的就是2004年发布的IEEE 802.3ak万兆以太网标准。

10GBase-CX4使用802.3ae中定义的XAUI(万兆附加单元接口)和用于InfiniBand
中的4X连接器,传输介质称之为"CX4铜缆"(其实就是一种屏蔽双绞线)。

它的有效传输距离仅15m。

10GBase-CX4规范不是利用单个铜线链路传送万兆数据,而是使用4台发送器和4台接收器来传送万兆数据,并以差分方式运行在同轴电缆上,每台设备利用
8B/10B编码,以每信道3.125GHz的波特率传送2.5Gb/s的数据。

这需要在每条电缆组的总共8条双同轴信道的每个方向上有4组差分线缆对。

另外,与可在现场端接的5类、超5类双绞线不同,CX4线缆需要在工厂端接,因此客户必须指定线缆长度。

线缆越长一般直径就越大。

10GBase-CX4的主要优势就是低电源消耗、低成本、低响应延时,但是接口模块比SPF+的大。

10GBase-KX4 和10GBase-KR
10GBase-KX4 和10GBase-KR所对应的是2007年发布的IEEE 802.3ap标准。

它们主要用于背板应用,如刀片服务器、路由器和交换机的集群线路卡,所以又称之为"背板以太网"。

万兆背板目前已经存在并行和串行两种版本。

并行版(10GBase-KX4规范)是背板的通用设计,它将万兆信号拆分为4条通道(类似XAUI),每条通道的带宽都是3.125Gb/s。

而在串行版(10GBase-KR规范)中只定义了一条通道,采用64/66B 编码方式实现10Gb/s高速传输。

在10GBase-KR规范中,为了防止信号在较高的频率水平下发生衰减,背板本身的性能需要更高,而且可以在更大的频率范围内保持信号的质量。

IEEE 802.3ap标准采用的是并行设计,包括两个连接器的1m长铜布线印刷电路板。

10GBase-KX4使用与10GBase-CX4规范一样的物理层编码,
10GBase-KR使用与10GBase-LR/ER/SR三个规范一样的物理层编码。

目前,对于具有总体带宽需求或需要解决走线密集过高问题的背板,有许多家供应商提供的SerDes芯片均采用10GBase-KR解决方案。

10GBase-T
10GBase-T对应的是2006年发布的IEEE 802.3an标准,可工作在屏蔽或非屏蔽双绞线上,最长传输距离为100m。

这可以算是万兆以太网一项革命性的进步,因为在此之前,一直认为在双绞线上不可能实现这么高的传输速率,原因就是运行在这。

相关文档
最新文档