激光多普勒测速

合集下载

激光多普勒测速技术..

激光多普勒测速技术..
统和信号处理器方面有了很大的发展。光束扩展,空 间滤波,偏振分离,频率分离,光学频移等近代光学 技术相继应用到激光测速仪中。 (3)1981年至今。在此期间,应用研究得到快速发 展。
福建农林大学交通学院 2007级物流管理2班 徐建福
激光多普勒测速技术的原理
激光测速的原理大致是这样:激光束 射向流动着的粒子,粒子发出的散射光的
在测纯净的水或空气速度时,必须由人 工掺入适当的粒子作散射中心。 被测流体要有一定的透明度,管道要有透明 窗口。
激光多普勒测速技术的特点
尽管如此,这种测速方法所具有的优越性,使它在许多场合成为一种
必不可少的检测手段。多年的研究使多普勒测速仪技术得以迅速发展,从
不能辨别流向到可以辨别流向,从一维测量发展到多维测量,围绕这一技 术的基本原理、设计方法和应用技术,学者们曾在有关杂志及重大国际会 议上发表了许多论文。早在七十年代就有重要著作面世,而且它的应用面 也不断扩大,从流体测速到固体测速,从单相流到多相流,从流体力学实 验室速度场测量到实际上较远距离的大气风速测量,从一般气、液体速度 测量到人体血管中血流速度测量,其应用范围有了极大的扩展。反过来, 各类应用对这一测速技术及测速仪器也提出许多更新更高的要求。
频率改变了,通过光电装置测出频率的变
化,就测得了粒子的速度,也就是流动的
速度。
5
激光多普勒测速技术的原理
6
激光多普勒测速技术的原理
7
激光多普勒测速技术的特点
优 点
速度方向的灵敏度好 测量精度高
空间分辨率极高,测量量程大 属于非接触测量,动态响应快
激光多普勒测速技术的特点
(1)属于非接触测量:激光束的交点就是测
激光多普勒测速技术
学院:机械工程学院

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry),是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA),或激光测速仪或激光流速仪(Laser Velocimetry,LV)的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。

图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度)/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。

图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。

3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术激光多普勒测速,简称LDV or LDA ,通常是用来进行流体速度的测量,所以也简称LD 。

多普勒频移由于观察者和被观察者之间有相对运动,使观察者接收到的光波频率发生变化的现象,称Doppler 频移。

例如,一个光源相对于观察者以速度v 运动,速度v与光源到观察者联线(即光传播方向)之间的夹角是θ,而光源发出频率为0ν的光波,在观察者看来,由于存在着相对运动,观察者接收到的光频率为:21/2102(1)/(1cos )v v ccννθ=--0(1cos )v cνθ+其中,c 是光在介质中的传播速度,0/c c n =.在检测中,我们通常用一个位置固定的光源照射一个运动的粒子,用一个位置固定的探测器来接收运动粒子散射的光波来探测粒子的运动速度。

如图所示,粒子以速度v 运动,速度v与粒子和光源联线的夹角是1θ,光源频率为0ν,则在粒子看来所接收的频率是 21/21012(1)/(1cos )v vc cννθ=-- 探测器与粒子联线和粒子速度v21/22122(1)/(1cos )v v ccννθ=--考虑到粒子速度比光速小得多,则可以求得散射光的多普勒频移的表达式为:2012(1(cos cos ))v cννθθ++频率检测多普勒频移通常用来测量粒子的速度,只要测得频移量20D ννν=-,即可求得物体的运动速度。

但是,由于光的频率太高,迄今尚无直接测量光频率的可能,故而通常采用光混频技术,用混频后的差频信号来获取多普勒频移量。

设一束待测的散射光的频率为'ν,而另一束参考光的频率为ν,光探测器分别接收到它们的电场(振幅)强度为:QQS1011cos(2')E E t πνϕ=+ 2022cos(2)E E t πνϕ=+将两束光在探测器表面处混频后,得到的合成电场强度为:12011022cos(2')cos(2)E E E E t E t πνϕπνϕ=+=+++光强度为22122011022222201102201021222220110220102120102()(cos(2')cos(2))cos (2')cos (2))2cos(2')cos(2)cos (2')cos (2))cos(2('))co I E E E E t E t E t E t E E t t E t E t E E t E E πνϕπνϕπνϕπνϕπνϕπνϕπνϕπνϕπννϕϕ==+=+++=++++++=++++++++12s(2('))t πννϕϕ-+-实际测得的是光强度的时间平均值222010*********cos(2('))22I E E E E E t πννϕϕ<>=<>=++-+-在光探测器上输出的电流值是22010********()()cos(2('))2i t k E E kE E t πννϕϕ=++-+-其中,k 是电流转换系数,是一个确定的比例常数。

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪介绍(LDV)讲解

激光多普勒测速仪
1 激光多普勒测速仪概念
激光多普勒测速仪(LDV: Laser Doppler Velocimetry,是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种
仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风
速仪(Laser Doppler Anemometer,LDA,或激光测速仪或激光流速仪(Laser Velocimetry,LV的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速
度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空
气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性
和LDV测量的要求。

激光多普勒测速[仅供参考]

激光多普勒测速[仅供参考]

医疗模板
3
激光在工程中的应用
激光得到越来越广泛的应用。例如,在工艺制 造方面,微孔的加工,激光切割,焊接,精密 测长、定位等等。在计量科学方面,激光用于 测长基准、激光测速、测距、测扭、测压、测 角、测温等。在国防科学方面,激光雷达、激 光制导、激光通讯、引爆、致盲、激光炮、激 光枪等。在全息摄影、光学信号处理、流场显
通过双曝光将两幅粒子场记录在同一 块胶片或干版上,
再利用逐点分析或全场分析求出粒子 对的位移场,最后转换成速度场。
医疗模板
12
当流速很快时,可用连续片光照 明,用高速摄影机拍摄一系列粒 子图。
再通过相关运算求出位移场,进 而求出各粒子场的速度。
散斑法只能记录一个平面内的粒 子场速度信息。
医疗模板
13
医疗模板
8
光学速度测试技术具有测量灵敏 度高,不干扰流场等优点,有着 很强的应用前景。
光学测速技术主要有全息干涉法、 散斑照相法、激光多普勒测速法 和激光双焦点测速法等。
医疗模板
9
2. 全息干涉测速法
在被测流体中掺粒子示踪剂,通常用 双脉冲激光作光源,通过双曝光拍摄 相隔t的两幅粒子图于同一块干版上。 利用再现粒子场的实像图,求出粒子 对间的位移大小和方向,再由 v=s/t求出速度场。
§8.2 激光多普勒测速法(LDV)
60年第一台氦-氖激光器诞生,64年 世界上就出现了激光多普勒测速仪。 20多年来,激光多普勒测速技术有了 很大的发展,这是测量技术上的一个 重大突破。
医疗模板
14
多普勒测速是通过检测流体中运动微粒 散射光的多普勒频移来测定速度的。
激光多普勒测速属于非接触测量,激光 作为测量探头不干扰流场。
16

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术王素红多普勒效应多普勒效应是由于波源或观察者的运动而出现观测频率与波源频率不同的现象。

由澳大利亚物理学家J. Doppler1842年发现的。

声波的多普勒效应在日常生活中,我们都会有这种经验:当一列鸣着汽笛的火车经过某观察者时,他会发现火车汽笛的声调由高变低。

为什么会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,如果频率高,声调听起来就高;反之声调听起来就低。

这种现象称为多普勒效应。

为了理解这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,好像波被压缩了。

因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被拉伸了。

光波的多普勒效应当单频的激光源与探测器处于相对运动状态时,探测器所接收到的光频率是变化的。

当光源固定时,光波从运动的物体散射或反射并由固定的探测器接收时,也可观察到这一现象,这就是光学多普勒效应。

它又被称为多普勒-斐索效应,是因为法国物理学家斐索(1819—1896)于1848年独立地对来自恒星的波长偏移做了解释,指出了利用这种效应测量恒星相对速度的办法。

光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化。

如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移;如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。

20世纪20年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,首先发现了光谱的红移,认识到了旋涡星云正快速远离地球而去。

1929年哈勃根据光谱红移总结出著名的哈勃定律:星系的远离速度υ与距地球的距离r成正比,即υ = Hr, H 为哈勃常数。

根据哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时间内一直在膨胀,物质密度一直在变小。

由此推知,宇宙结构在某一时刻前是不存在的,它只能是演化的产物. 因而1948年伽莫夫(G. Gamow)和他的同事们提出大爆炸宇宙模型。

激光多普勒测速

激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪介绍(LDV)

激光多普勒测速仪1 激光多普勒测速仪概念激光多普勒测速仪(LDV: Laser Doppler Velocimetry),是应用多普勒效应,利用激光的高相干性和高能量测量流体或固体流速的一种仪器,它具有线性特性与非接触测量的优点,并且精度高、动态响应快。

由于它大多数用在流动测量方面,国外习惯称它为激光多普勒风速仪(Laser Doppler Anemometer,LDA),或激光测速仪或激光流速仪(Laser Velocimetry,LV)的。

示踪粒子是利用运动微粒散射光的多普勒频移来获的速度信息的。

因此它实际上测的是微粒的运动速度,同流体的速度并不完全一样。

幸运的是,大多数的自然微粒(空气中的尘埃,自来水中的悬浮粒子)在流体中一般都能较好地跟随流动。

如果需要人工播种,微米量级的粒子可以同时兼顾到流动跟随性和LDV测量的要求。

图1 德国elovis激光多普勒测速仪2 激光多普勒测速仪组成(1)激光器(2)入射光学单元(3)频移系统(4)接受光学单元(5)数据处理器3 激光多普勒测速仪基本原理仪器发射一定频率的超声波,由于多普勒效应的存在,当被测物体移动时(不管是靠近你还是远离你)反射回来波的频率发生变化,回收的频率是(声速±物体移动速度)/波长,由于和波长都可以事先测出来(声速会随温度变化有所变化,不过可以依靠数学修正),只要将回收的频率经过频率-电压转换后,与原始数据进行比较和计算后,就可以推断出被测物体的运动速度。

图2 激光多普勒测速仪基本原理图4 激光多普勒测速仪特点和应用1)激光多普勒测量仪应用多普勒频差效应的原理,结构紧凑、重量轻、容易安装操作、容易对光调校;2)激光多普勒测量仪可以在恒温,恒湿,防震的计量室内检定量块,量杆,刻尺和坐标测量机等。

3)激光多普勒测量仪既可以对几十米甚至上百米的大量程进行精密测量,也可以对手表零件等的微小运动进行精密测量;既可以对几何量如长度、角度、直线度、平行度、平面度、垂直度等进行测量,也可以用于特殊场合,诸如半导体光刻技术的微定位和计算机存储器上记录槽间距的测量等等。

激光多普勒测速实验教程

激光多普勒测速实验教程

激光多普勒测速实验教程
一、实验概述
激光多普勒测速实验是一种常用的测速方法,通过测量目标物体表面反射回来的激光光束频率变化,从而得出目标物体的速度。

本实验将介绍激光多普勒测速的原理、实验装置搭建、实验步骤及注意事项。

二、实验原理
激光多普勒效应是指当激光束照射到运动的物体表面时,反射回来的光束频率会因为物体运动而发生变化。

根据多普勒效应公式,可以得出:
$$f_r = f_0 \\cdot \\left(1 + \\frac{v}{c} \\cdot \\cos\\theta\\right)$$
其中,f r为接收到的激光频率,f0为激光发射频率,v为物体运动速度,c为光速,$\\theta$为激光与物体运动方向的夹角。

三、实验装置
该实验所需装置包括: - 激光发射器 - 激光接收器 - 反射镜 - 运动平台 - 计算机
四、实验步骤
1.将激光发射器和激光接收器固定在实验台上,使其间距一定。

2.在运动平台上放置反射镜,调整反射镜位置,使激光光束正好反射回
激光接收器。

3.启动激光发射器,发射激光光束照射到运动平台上的反射镜。

4.记录激光接收器接收到的频率数据,并测量反射镜在运动平台上的速
度。

5.利用多普勒效应公式计算出反射镜的运动速度,与实际测得的速度进
行对比。

五、注意事项
1.实验中需注意激光光束安全,避免直接照射眼睛。

2.反射镜位置调整需准确,确保激光正好反射回激光接收器。

3.实验过程中要小心操作,避免损坏实验装置。

通过本实验,可以深入了解激光多普勒测速的原理与应用,提高实验操作能力和理论水平。

激光多普勒测速课件

激光多普勒测速课件
信号处理与控制系统的性能直接影响测速结果的准确性和实时性,是整 个测速系统的关键部分。
03
激光多普勒测速技术实验方法
实验准备与操作流程
实验设备
激光多普勒测速仪、水槽、电源、信号发生器、示波器等。
实验材料
水、透明玻璃或有机玻璃板、测量尺等。
实验准备与操作流程
操作步骤
1
2
1. 安装激光多普勒测速仪,确保其稳定运行。
材料科学、纳米技术等领域。
在材料表面形貌测量中,激光多普勒测速技术可以测 量材料表面的粗糙度、形貌和纹理等信息,提供材料
表面的三维形貌和表面动力学特征。
激光多普勒测速技术还可以用于测量材料表面的应力 、应变和热流等参数,为表面工程和材料科学研究提
供重要数据。
06
结论与展望
技术总结
激光多普勒测速技术是一种非接触、无损、高 精度、高分辨率的测量 技术,具有广泛的应用 前景。
在流体速度测量中,激光多普勒测速技术可以测量液体、气体和等离子体等流体的速度,具有广泛的应 用范围。
激光多普勒测速技术可以测量流体的平均速度和瞬时速度,提供流场的速度分布和流速矢量等信息,为 流体力学研究和工程应用提供重要数据。
粒子速度测量
激光多普勒测速技术在粒子速度测量中 具有高精度、非接触和实时性的优点, 广泛应用于气溶胶、燃烧颗粒、生物细 胞等领域。
未来,激光多普勒测速技术将不断优化,提高测量精度和 稳定性,拓展应用范围,为科学研究和技术创新提供更多 可能性。
同时,随着技术的进步和应用需求的增加,激光多普勒测 速技术的成本将逐渐降低,使得更多的领域和行业能够受 益于该技术的应用。
THANKS
感谢观看
在粒子速度测量中,激光多普勒测速技术可 以测量粒子在气体或液体中的速度,提供粒 子的运动轨迹和速度分布等信息。

光子多普勒测速和激光多普勒测速

光子多普勒测速和激光多普勒测速

光子多普勒测速和激光多普勒测速
光子多普勒测速和激光多普勒测速是现代科技中常用的速度测量方法。

它们通过不同的原理和技术手段来实现对目标物体的速度测量,具有高精度、高灵敏度的特点,被广泛应用于交通运输、航空航天、物理实验等领域。

光子多普勒测速是一种利用光子的多普勒效应来测量目标物体速度的技术。

当光线照射到运动的物体上时,由于物体的运动会引起光的频率发生变化,即频率偏移。

根据多普勒效应的原理,我们可以通过测量光的频率偏移来计算目标物体的速度。

光子多普勒测速具有非接触式测量、高精度、高灵敏度等优点,适用于对速度变化较快的目标进行测量。

激光多普勒测速是一种利用激光束的多普勒效应来测量目标物体速度的技术。

它通过发射一束激光束并接收被目标物体散射回来的激光信号,利用多普勒效应的原理来计算目标物体的速度。

激光多普勒测速具有高分辨率、高测量精度、快速响应等特点,被广泛应用于交通监控、雷达测速等领域。

虽然光子多普勒测速和激光多普勒测速有着不同的原理和技术手段,但它们都能够准确地测量目标物体的速度。

在实际应用中,我们可以根据需求选择合适的测速方法。

无论是光子多普勒测速还是激光多普勒测速,都能够为我们提供准确可靠的速度数据,以保障交通安全、提高科研实验的精度,为人类的生活和发展做出重要贡献。

光子多普勒测速和激光多普勒测速是现代科技中常用的速度测量方法。

它们通过不同的原理和技术手段来实现对目标物体的速度测量,具有高精度、高灵敏度的特点,被广泛应用于交通运输、航空航天、物理实验等领域。

无论是光子多普勒测速还是激光多普勒测速,都能够为我们提供准确可靠的速度数据,以推动人类社会的发展。

激光多普勒速度测试技术

激光多普勒速度测试技术

一.绪论1.1 运动物体速度测试技术现状1.1.1 激光多普勒速度测试技术(1)多普勒效应多普勒效应是由于波源或观看者的运动而显现观测频率与波源频率不同的现象。

由澳大利亚物理学家J. Doppler1842 年发觉的。

声波的多普勒效应在日常生活中,咱们都会有这种体会:当一列鸣着汽笛的火车通过某观看者时,他会发觉火车汽笛的声调由高变低。

什么缘故会发生这种现象呢?这是因为声调的高低是由声波振动频率的不同决定的,若是频率高,声调听起来就高;反之声调听起来就低。

这种现象称为多普勒效应。

为了明白得这一现象,就需要考察火车以恒定速度驶近时,汽笛发出的声波在传播时的规律.其结果是声波的波长缩短,仿佛波被紧缩了。

因此,在一按时刻距离内传播的波数就增加了,这确实是观看者什么缘故会感受到声调变高的缘故;相反,当火车驶向远方时,声波的波长变大,仿佛波被拉伸了。

光波的多普勒效应当单频的激光源与探测器处于相对运动状态时,探测器所接收到的光频率是转变的。

当光源固按时,光波从运动的物体散射或反射并由固定的探测器接收时,也可观看到这一现象,这确实是光学多普勒效应。

它又被称为多普勒-斐索效应,是因为法国物理学家斐索(1819—1896)于1848 年独立地对来自恒星的波长偏移做了说明,指出了利用这种效应测量恒星相对速度的方法。

光波与声波的不同的地方在于,光波频率的转变令人感觉到是颜色的转变。

若是恒星远离咱们而去,那么光的谱线就向红光方向移动,称为红移;若是恒星朝向咱们运动,光的谱线就向紫光方向移动,称为蓝移。

20 世纪20 年代,美国天文学家斯莱弗在研究远处的旋涡星云发出的光谱时,第一发觉了光谱的红移,熟悉到了旋涡星云正快速远离地球而去。

1929年哈勃依照光谱红移总结出闻名的哈勃定律:星系的远离速度υ与距地球的距离r 成正比,即υ = Hr, H为哈勃常数。

依照哈勃定律和后来更多天体红移的测定,人们相信宇宙在长时刻内一直在膨胀,物质密度一直在变小。

激光多普勒测速剖析

激光多普勒测速剖析

23/23
激光多普勒测速技术
姓名: 学号: 学院:能源与动力工程 专业:工程热物理
1/23
主要内容
1.激光多普勒测速.激光多普勒测速的信号处理 4.激光多普勒测速的技术应用
5.扩展光束型多普勒测量系统
2/23
1.激光多普勒测速的基本原理
光学多普勒效应就是:当光源与光接收器之间存在相对运动时, 发射光波与接收光波之间会产生频率偏移,其大小与光源和光接收 器之间的相对速度有关。 运动粒子P以速度u 通过测量区域时,粒子相对于入射光来说是 运动的,即光源静止,接收器运动;而相对于光电探测器来说,运 动粒子的散射光相对于探测器是运动的,即光源运动,接收器静止。
r ----费米能级
图10 不同材料能带分布图
13/23
4.激光多普勒测速的技术应用
激光多普勒测速具有许多优点,它广泛地应用于空气动力学和流体力 学,用来测量风洞、水筒、水工模型、射流元件等各场合中流体的流场分 布和有关的物理参量,它也适用于边界层流体的测量和二相流的测量。近 来, 已能测量亚音速、超音速喷气流的速度,所以被用来研究喷气过程、 燃烧过程,为燃气轮机、气缸、锅炉、原子能反应堆等方面的设计研究提 供了实验数据和测试结果。
特点:参考光模式的光学单元具有结构紧凑、调节方便和使用灵活的优点。
7/23
图中所示是单光束一双散射模式, 一束人射激光束直接聚焦于测量点 上,该入射光束在两个不同方向上散射,两束散射光进行光外差而得到多 普勒频移。如图3所示,两支对称的散射光束通过置于大透镜前的双孔光阑, 其余的散射光则被遮挡住,然后,两支散射光被光束分离器结合成单光束, 然后在光电检测器中进行光外差。
图16 信号处理结构图
21/23

激光多普勒测速

激光多普勒测速

激光多普勒测速1.引言激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

激光多普勒测速技术

激光多普勒测速技术

激光多普勒测速技术(LDV)1.引言多普勒效应是19世纪奥地利物理科学家多普勒.克里斯琴.约翰(Doppler,Christian Johann)发现的声学效应。

在声源和接收器之间发生相对运动时,接收器收到的声音频率不会等于声源发出的原频率,于是称这一频率差为多普勒频差或频移。

1905年,爱因斯坦在狭义相对论中指出,光波也具有类似的多普勒效应。

只要物体产生散射光,就可利用多普勒效应测量其运动速度。

所谓光学多普勒效应就是:当光源与光接收器之间发生相对运动时,发射光波与接收光波之间会产生频率偏移,其大小与光源和光接收器之间的相对速度有关。

二十世纪六十年代,激光器得以发明。

激光的出现大力地促进了各个学科的发展。

由于激光具有优异的相干性、良好的方向性等特点,因此在精密计量,远距离测量等方面获得了广泛的应用。

伴随着激光在光学领域的应用,一门崭新的技术诞生了,这就是多普勒频移测量技术。

1964年,杨(Yeh)和古明斯(Cummins首次证实了可利用激光多普勒频移技术来测量确定流体的速度,激光多普勒测速仪(LDV)以其测速精度高、测速范围广、空间分辨率高、动态响应快、非接触测量等优点在航空、航天、机械、生物学、医学、燃烧学以及工业生产等领域得到了广泛应用和快速发展。

激光多普勒测速仪是利用运动微粒散射光的多普勒频移来获得速度信息的。

2. 激光多普勒测速原理激光多普勒测速原理即为激光多普勒效应:当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度、入射光和速度方向的夹角都有关系。

图1. 激光多普勒效应的示意图激光多普勒效应的示意图如图1所示,其中,o为光源,p为运动物体,s为观察者的位置。

激光的频率为f ,运动物体的速度为V ,那么物体运动产生的多普勒频移量可表示为:()D s o f f V e e c=⋅- (1) 式中:e o 为入射光单位向量,e s 是散射光的单位向量,c 是光速。

激光多普勒测速..

激光多普勒测速..
6/23
2.激光多普勒测速的光路模式
图中所示是参考光模式,激光经分光镜分成两束光,其中一束是弱 光用作参考光,另一束是强光用作照射光束, 它们聚焦到测量区。光电 检测器接受参考光, 同时接受另一束照射光束经过粒子散射在同一方向 上的散射光,它们在光电检测器件中进行光外差,从而得到多普勒频移。 为了使参考光和散射光强度基本相近,必须使参考光减弱。通常参考光 束和照射光束的光强比为1:9左右,这里可以用中性滤光片来减弱参考 光,或者选择合适的分光镜的分光比来实现。
f D f S fo fo 1

u (es e0 ) c
4/23



u (es eo )
当入射光、散射光和速度方向布置成如图所示的那样,就可以 得到简单的多普勒平移表达式:
fD
2 sin / 2

uy
图2 多普勒测速特殊布置 图中θ为入射光方向与接收光方向的夹角,粒子的速度投影到该夹 5/23 角一半的垂直线方向上即得到 u y 。

图1 运动粒子的散射光
3/23
根据相对论,运动微粒P接收到的光波频率fP与光源频率fo之间的关系为

f P f o (1
u e0 ) c
静止的光检测器接收到粒子散射光的频率fS为
f S f P (1
u es ) c

光检测器接收到的光波频率与入射光波频率之差称为多普勒频移,用 fD表示,则
特点:双光束一双散射模式是目前应用最广泛的光路模式。它的多普勒 频移只取决于两束入射光方向,而与散射光方向无关,这是该模式的重 要特点。因为光接收器可以放在任意位置,而且可以采用大的收集立体 角以提高散射光功率。入射光系统可制成集成化光学单元, 大大提高了 9/23 光学系统的稳固性和易调准性。

激光多普勒测速实验报告

激光多普勒测速实验报告

一、实验目的1. 了解激光多普勒测速的原理和基本方法;2. 掌握激光多普勒测速仪的使用和操作;3. 学会分析实验数据,验证实验结果。

二、实验原理激光多普勒测速(Laser Doppler Velocimetry,LDV)是一种非接触式、高精度的速度测量技术。

其原理基于多普勒效应,当激光束照射到运动物体上时,反射光或散射光的频率会发生变化,这种变化与物体运动速度成正比。

实验中,激光多普勒测速仪发射一束激光,经透镜聚焦后照射到被测流体上。

被测流体中的微小颗粒对激光产生散射,散射光经过透镜聚焦到光电探测器上,光电探测器将散射光转换成电信号。

通过比较散射光与发射光的频率差异,即可计算出被测流体的速度。

三、实验仪器与设备1. 激光多普勒测速仪(LDV);2. 透镜;3. 光电探测器;4. 计算机及数据采集软件;5. 实验用流体(如水);6. 实验用颗粒(如尘埃、气泡等)。

四、实验步骤1. 将激光多普勒测速仪安装好,确保仪器稳定;2. 在实验容器中注入实验用流体,并加入实验用颗粒;3. 调整透镜和光电探测器的位置,使激光束能够照射到流体中的颗粒上;4. 打开激光多普勒测速仪,设置测量参数,如测量频率、采样频率等;5. 启动实验,观察数据采集软件显示的实验数据;6. 记录实验数据,包括测量时间、颗粒速度等;7. 关闭实验,整理实验器材。

五、实验结果与分析1. 实验数据记录:测量时间:2023年3月15日测量频率:1MHz采样频率:10kHz颗粒速度:v1 = 0.3m/s,v2 = 0.5m/s,v3 = 0.7m/s2. 实验结果分析:(1)实验结果显示,颗粒速度与测量频率、采样频率等参数密切相关。

通过调整测量参数,可以实现对不同速度范围颗粒的测量。

(2)实验数据表明,激光多普勒测速技术具有较高的测量精度。

在实验条件下,颗粒速度的测量误差小于±0.1m/s。

(3)实验过程中,激光多普勒测速仪表现稳定,无故障现象。

激光多普勒测速

激光多普勒测速

因此,两迭加光波相位差固定不变是产生干涉的必要条件。
此外,还要求两列光波的光程差最大不超过光波的波列长度,
这也是两束光相干的条件。
两束入射光的 相交区域叫控 制体积,光检 测器接收到的 散沙光区域叫 测量体。控制 体是一个椭球 体,这是由于 两束入射的激 光光强按高斯 分布的结果。 控制体的几何 参数决定了 LDV的空间分 辨率。关系。fsfp
(1

U
es c
)
fP f0

c
c
2

U
e0
(U e0
)
2

f0

1

U

e0 /
c
1 (U e0 )2
c
图8-1 静止光源、运动微粒、 和静止光检测器
• 根据相对论变换,运动微粒P接收
到的光波频率fp近似为:
( 5 - 1 ) fP f0
Processor Detector
Flow with particles d (known)
Signal t (measured)
Time
Bragg Cell
Laser
后散射光
intensity points
DL
F
1
0 1/e 2 z
x
y
X
Transmitting System
Z
Y X Intensity
Distribution
Z Measurement Volume Y
Measurement Volume
Length:
4F

z


E
DL
sin

激光多普勒测速和激光测距

激光多普勒测速和激光测距

动,在媒质中产生一个完整波形;同时在T内,波源前进了
v2T距离,波长变为
' v2T vT v2T (v v2 )T
则,频率为 f ' v v v f
' (v v2 )T v v2
同理,声源背离观测者运动有 f ' v f v v2
2023/9/16
9
激光多普勒测速技术
激光多普勒测速技术基础 观测者向着声源
31

A
B
• 利用激光进行远距离(几千米)测量的λ 技术,通常有激光相
位测距和脉冲激光测距两种。
L
• 1 激光相位测距 • 1.激光相位测距原理
相位的调制波形
• 相位测距是通过对光的强度进行调制来实现的。光波从A点 传播到B点的相移可表示为
2mπ 2π(m m)
• 若光从A点传到B点所用时间为t,则A、B两点之间的距离
2023/9/16
30
激光测距技术
• 脉冲激光测距 • 基本原理如图所示
L cN 2 f0
发射光束
A 激光器
A
B 光电接收器
参考信号取样 回波
发射 B
放大器
干涉滤光片
整形电路 触发器 C
时钟脉冲振荡器
E
计数器
D
K
C D E 计数
a)原理图
b)各点波形图
脉冲激光测距原理图示
2023/9/16
激光测距技术
• 目前,采用的测距技术主要有直接测尺频率和间接测尺频 率两种。
2023/9/16
34
激光测距技术
• 激光相位测距
• 2.激光相位测距技术 • 1)直接测尺频率
• 由测尺量度Ls可得光尺的调制频率 f s c / 2Ls
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光多普勒测速
1.引言
激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用
激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。

激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。

由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。

激光测速技术的发展大体上可分为三个阶段[1-3]。

第一个阶段是1964 – 1972 年,这是激光测速发展的初期。

在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便;
第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。

光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。

从1980年到现在,激光测速进入了第三个阶段。

在此期间,应用研究得到快速发展。

在发表的论文中,有关流动研究的论文急剧增加。

多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。

此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。

激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。

下文中将详细介绍。

2.激光多普勒测速原理
在激光多普勒测速仪中,依靠运动微粒散射光与照射光之间光波的频差(或称频移)来获得速度信息。

这里存在着光波从(静止)光源(运动)微粒(静止)光检测器三者之间的传播关系。

当一束具有单一频率的激光照射到一个运动微粒上时,微粒接受到的光波频率与光源频率会有差异,其增减的多少与微粒运动速度以及照射光与速度方向之间的夹角有关。

如果用一个静止的光检测器来接收运动威力的散射光,那么观察到的光波频率就经历了两次多普勒效应。

下面来推导多普勒总频移量的关系式。

设光源o ,运动微粒P 和静止光检测器S 之间的相对位置如图1所示。

照射光的频率为0f ,粒子P 的运动速度为U 。

根据相对论变换公式,经多普勒效应后粒子接收到的光波频率为:
(1) 式中:0e 是入射光单位向量;c 是介质中的光速。

当0*U e << c 时,可得近似式为:
这就是在静止的光源和运动的粒子条件下,经过一次多普勒效应的频率关系式。

运动的微粒被静止的光源照射,就如同一个新的光源一样向四周发出散射光。

当静止的观察者(或光检测器)从某个方向上观察粒子的散射光时,由于它们之间又有相对运动,接收到的散射光频率又会同粒子接收到的光波频率不同,其大小为: 式中,s e 是粒子散射光单位向量。

括号中 *s U e 取正号时因为选择s e 由粒子指向光检测器。

它与光源频率之间的差值叫做多普勒频移: 式中:λ是介质中的激光波长。

由上式可知,如果已知光源,粒子和光检测器三者之间的相对位置,就能确定速度U 在0()s e e -方向的投影大小。

图1. 光源,微粒和光检测器之间的相对位置
'020*1**1()U e c f f U e c
-=-'00**(1)U e f f c
=-*'*(1)s s
U e f f c =+001
|*()|
D s s f f f U e e λ=-=-
3.激光多普勒测速基本模式
激光多普勒测速的检测方法主要有两种:直接检测和外差检测。

但可见光波的频率
通常在1014 Hz 左右,而有实用意义的多普勒频移最高也不过108 - 109 Hz。

因为常用的光电器件不能响应光波的频率,直接检测对探测器的光电器件性能要求太高,所以基本不用。

光学外差检测是一种更通用的激光多普勒检测技术。

利用同一相干光源的两束光按一定条件投射到光检测器上,进行干涉并通过光电转换器的平方率效应(即光强变化)得到其频差,这就是所需要的多普勒频移。

其他与光频接近或更高的的频率信息都因为远远超过光电器件的频率响应而被滤去。

在激光测速中有三种常见的外差检测基本模式:参考光模式,单光束-双散射模式和双光束-双散射模式。

3.1 参考光模式
将一束参考光直接照射到光检测器上,同散射光束进行光学外差。

这束参考光必须取自同一个激光源,但并不一定要与照射光束相交。

之所以使它通过测量点并与照射光相交是出于光学上的调准方便,这样可以比较容易实现参考光束与散射光束的共轴对准。

这种光路模式叫做参考光模式。

图3.1 参考光模式
图3.1(a)所示情况下,测得的速度分量垂直于照射光束同参考光束交角的平分线,这一平分线通常也就是入射光学单元的光轴。

图3.1(b)所示的布置,可以实现并行于光轴速度分量的测量。

由上图可知,参考光模式的结构简单,但其光路对准很麻烦。

3.2 单光束- 双散射模式
这种工作模式利用一束光在两个不同方向上的散射光进行光外差而获得多普勒频
移。

将一束经过聚焦的光束照射到流体中,在与系统轴线对称的两个方向上收集粒子的散射光。

当这两束光合成时,他们波前的相对相位取决于粒子到各收集光阑的距离。

所以,当粒子运动穿过光束时,这两束散射光束干涉相长或相消,导致载光阴极上得到以多普勒频率脉动的光强。

这个系统除了能在两个互相垂直平面中利用收集到的一对散射光测量两个瞬时速度分量以外,与条纹模式相比没有明显的优点。

光学装置如图3.2
图3.2 单光束 – 双散射模式光路
入射光束在12,s s e e 两个方向上的散射光频率分别是 10101
*()s s f f U e e λ=+-,
20201
*()s s f f U e e λ=+-。

将这两个方向的散射光汇集在一起,在光检测器中进行光学外
差,可得到多普勒频移 12121|*()|D s s s s f f f U e e λ=-=-。

可见,单光束 – 双散射模式仅利用一束入射光,多普勒频移只决定于两束散射光的方向,而与入射光的方向无关。

但由于两束散射光由探测器接收,而多普勒频移与散射光的散射角直接相关,所以精度要求越高的情况下,探测器的收集立体角要求越小。

3.3 双光束 – 双散射模式
这种模式利用两束不同方向的入射光在同一方向上的散射光汇聚到光电探测器中进行外差而获得多普勒频移。

双光束或条纹系统应用两束等强度的相交光束,在它们的相交体积中得到一组条纹图形。

每个离子穿过条纹图形时,光电检测器上的散射光强度发生强弱的变化,变化率与速度成正比,如下图3.3.1 所示
(a )垂直光轴方向速度测量 (b )平行光轴方向速度测量
图3.3.1 双光束 – 双散射模式
光束1和光束2在同一方向的散射光的频率分别为:10011
*()s s f f U e e λ=+-,
20021*()s s f f U e e λ
=+-。

所以两者相干频差(即多普勒频移)为:1201021
|*()|D s s f f f U e e λ=-=-。

可见,双光束 – 双散射模式的频移只决定于两束入射光方向,而与散射光方向无关。

从而可以采用大的收集立体角以提高散射光功率。

综上所述,在实际应用中,双光束–双散射因为收集立体角较大,对探测器响应速度较低而得到广泛发展。

下文将重点介绍双光束- 双散射系统的原理图,具体装置如下图3.3.2所示。

激光发射出激光信号,经分束器分成均匀等大的两束信号光,再经传输透镜聚焦到运动物体上,相干散射,产生多普勒频移信号,再经接收透镜接收,经透镜聚焦到探测器上,探测器将光信号转换成电信号,传输到频率与相位信号处理器进行处理,最后经显示器显示。

参考文献:
[1]沈熊,激光多普勒测速技术及应用[M],北京:清华大学出版社,2004;
[2]Julien Perchoux,Thierry Bosch,Multimode VSCELs for selfmixing velocity measurements[C],2007 IEEE sensors,2007:419-422;
[3]。

相关文档
最新文档