2021年马鞍山市八年级数学上期末试卷及答案
2020-2021学年安徽省马鞍山市八年级(上)期末数学试卷(含解析)
2020-2021学年安徽省马鞍山市八年级第一学期期末数学试卷一.选择题(每小题3分)1.在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)2.下列四个函数中,y随x的增大而减小的是()A.y=3x B.y=1+2x C.y=1﹣2x D.y=﹣1+x3.下列命题中,假命题的是()A.直角三角形的两个锐角互余B.等腰三角形的两底角相等C.面积相等的两个三角形全等D.有一个角是60°的等腰三角形是等边三角形4.已知一次函数y=kx+6的图象经过A(2,﹣2),则k的值为()A.1B.4C.﹣4D.﹣15.下列条件中,不能确定△ABC的形状和大小的是()A.AB=5,BC=6,AC=7B.AB=5,BC=6,∠B=45°C.AB=5,AC=4,∠B=45°D.AB=5,AC=4,∠C=90°6.小芳有长度分别为4cm和8cm的两根木条,桌上有下列长度的四根木条,她要用其中的一根与原有的两根木条钉成一个首尾相接的三角形木框,则这根木条的长度为()A.3cm B.5cm C.12cm D.17cm7.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,∠DAC=25°,则∠BAE的度数为()A.55°B.75°C.105°D.115°8.如图,P是△ABC的三条角平分线的交点,连接PA、PB、PC,若△PAB、△PBC、△PAC的面积分别为S1、S2、S3,则()A.S1<S2+S3B.S1=S2+S3C.S1>S2+S3D.无法确定S1与(S2+S3)的大小9.若直线y=mx﹣3和y=2x+n相交于点P(﹣2,3),则方程组的解为()A.B.C.D.10.如图,△PBC的面积为15cm2,PB为∠ABC的角平分线,作AP垂直BP于P,则△ABC 的面积为()A.25cm2 B.30cm2C.32.5cm2D.35cm2二、填空题(每小题3分)11.使函数y=有意义的x的取值范围是.12.如图,在平面直角坐标系中,AB平行于x轴,点A坐标为(4,3),B在A点的左侧,AB=a,若B点在第二象限,则a的取值范围是.13.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB=.14.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠ACB的度数是°.15.已知一次函数y=﹣x+3,当﹣3≤x≤4时,y的最大值是.16.在平面直角坐标系中,一块等腰直角三角板如图放置,其中A(2,0),B(0,1),则点C的坐标为.17.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC于点E,交AD于点F,若AD=9,则DF长为.18.如图,四边形ABCD中,AC⊥BC,AD∥BC.若AB=a,AD=2BC=b,M为BD的中点,则CM的长为.三、解答题:本大题共6题,共46分。
安徽省马鞍山市2020-2021学年度八年级数学第一学期期末考试试题 沪科版(1)
安徽省马鞍山市2020-2021学年度第一学期期末考试八年级数学试题考生注意:本卷共6页,总分值100分.一、选择题(本大题共10小题,每题3分,共30分.每题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.以下图形别离是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ) 2.函数=y 1-x 的自变量x 的取值范围是( )A .0≥xB .0>xC .1≥xD .1>x3.将一副三角板按图中方式叠放,那么∠α等于( )A .75°B .60°C .45°D .30°4.工人师傅经常使用角尺平分一个任意角.作法如图:∠AOB是一个任意角,在边OA 、OB 上别离取OM=ON ,移动角尺,使角尺两边相同的刻度别离与M 、N 重合.由此可得△MOC≌△NOC.过角尺极点C 的射线OC 即是∠AOB 的平分线,在这种作法中,判定△MOC≌△NOC 的依据是( )A .AASB .SASC .ASAD .SSS第4题图第3题图 45°30°5.已知一次函数b kx y +=,当2<x 时,0>y ,则以下判定正确的选项是( ) A .图象通过第一、二、四象限 B .图象通过第一、二、三象限 C .图象通过第一、三、四象限D .图象通过第二、三、四象限6.假设点 P (a ,a -2)在第四象限,那么a 的取值范围是( ) A .-2<a <0 B .0<a <2 C .a >2D .a <07.各边长均为整数、周长为10的三角形有( )A .1个B .2个C .3个D .4个8.在平面直角坐标系中,把直线x y =向左平移一个单位长度后,其解析式为( ) A .1+=x y B .x y = C .1-=x yD .2-=x y9.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时刻(时)转变的图象(全程)如下图.有以下说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先抵达终点;④两人都跑了20千米.其中正确的说法有( ) A .1 个 B .2 个C .3 个D .4个10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1) →(1,1) →(1,0)→(2,0)→(2,1)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B . (5,5)C .(0,5)D .(5,0)二、填空题(本大题共8小题,每题3分,共24分.请将答案直接填在题后的横线上.)时第9题图第10题图O xy1 2 33 2 111.点P 关于x 轴对称的点是(2,-1),那么P 点的坐标是 .12.命题“若是0>ab ,那么a 、b 都是正数”是 .(填“真命题”或“假命题”) 13.如下图,请用不等号“<”或“>”表示∠一、∠二、∠3的大小关系: .14.垂直平分边AC ,交BC 于点D ,交AC 于点E ,连接AD ,假设AE=4cm ,15升,工作时平均每小时耗油5升,那么工作时,油箱中剩余油量Q (升)与工作时刻t (时)之间的函数关系式是 . 16.假设△ABC 的一个外角等于140°,且∠B=∠C,那么∠A= .17.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0),那么以下说法:①y 随x 的增大而减小;②b >0;③关于x 的方程0kx b +=的解为2x =;④0<+b kx 的解集是2<x .其中说法正确的有 .(把你以为说法正确的序号都填上). 18.如图,在平面直角坐标系中,已知A (3,4)、B (0,2),在x 轴上有一动点C ,当△ABC 的周长最小时,C 点的坐标为 .三、解答题(本大题共6小题,共46分.)19.(此题总分值6分)如图,点A 、C 、B 、D 在同一条直线上,BE ∥DF ,∠A=∠F ,AB=FD .求证:AE=FC .【证明】20.(此题总分值8分) 与一次函数正比例函数x y 2=的图象k x y +-=3的图象交于点P (1,m ).第17题图第18题图EA BDFC第13题图 EA B C D第14题图(1)求k 的值;(2)求两直线与y 轴围成的三角形面积.【解】21.(此题总分值8分)如图,已知CD AB 于点D ,BE ⊥AC 于点E ,BE ,CD 交于点O ,且OB =OC .求证:AO 平分∠BAC .【证明】22.(此题总分值8分)如图,一艘船从A 处动身,以每小时10海里的速度向正北航行,从A 处测得礁石C 在北偏西30°方向上,若是这艘船上午8:00从A 处动身,10:00抵达B 处,从B 处测得礁石C 在北偏西60°方向上,问: (1)12:00时这艘船距离礁石多远? (2)这艘船在什么时刻距离礁石最近?【解】23.(此题总分值8分)如图,在△ABC 中,AB=AC ,N 是AB 上任一点(不与A 、B 重合),过N 作NM⊥AB交BC 所在直线于M ,(1)假设∠A=30°.求∠NMB 的度数;(2)若是将(1)中∠A 的度数改成68°,其余条件不变,求∠NMB 的度数; (3)综合(1)(2),你发觉有什么样的规律性,试证明之; (4)假设将(1)中的∠A 改成直角或钝角,你发觉的规律是不是仍然成立?【解】ABCDEOCABD ABMN24.(此题总分值8分)某商业集团新进了40台空调机,60台电冰箱,打算调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,而且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大? 【解】安徽省马鞍山市2020—2020学年度第一学期期末考试 八年级数学试题参考答案一、选择题(本大题共10小题,每题3分,共30分.)1.D 2.C 3.A 4.D 5.A 6.B 7.B 8.A 9.C 10.D 二、填空题(本大题共8小题,每题3分,共24分.)11.(2,1); 12.假命题; 13.∠3<∠2<∠1; 14.22cm ; 15.t Q 560-=;16.40°或100°;17.①②③; 18.(1,0); 三、解答题(本大题共6小题,共46分) 19.证明:∵BE ∥DF ,∴∠ABE =∠D , ……………2分 在△ABC 和△FDC 中, ∠ABE =∠D ,AB =FD ,∠A=∠F∴△A BE ≌△FDC (ASA ), ……………5分 ∴AE =FC .……………6分20.解:(1)当1=x 时,2=m ,因此P (1,2), ……………2分 将2,1==y x 代入k x y +-=3,得k +-=32,得:k =5, ……………4分(2)该一次函数解析式为53+-=x y ,与y 轴交点坐标为(0,5) 因此两直线与y 轴围成的三角形面积是5.25121=⨯⨯ ……………8分 21.(8分)证明:∵OD ⊥AB ,OE ⊥AC ,∴∠ODB =∠OEC=90°,在△BDO 和△CEO 中∵∠DOB =∠EOC , OB =OC ,∴△BDO≌△CEO(AAS ). …………4分 ∴OD=OE,∴AO 平分∠BAC .(在一个角的内部,到角的两边距离相等的点在那个角的平分线上) …………8分 22.解:(1) 依照题意,得:∠CAD=30°,∠CBD=60°,∴∠C=∠CBD-∠CAD=30° ∴∠C=∠CAD,∴BC=AB=10×2=20(海里)设12:00时这艘船所在位置为F ,连接FC , 那么BF=10×(12-10)=20(海里) ∴BF=BC∴△CBF 是等边三角形(有一个角是60°的等腰三角形是等边三角形) ∴FC=BF=20 …………4分 (2) 作CG⊥AB 于G ,那么这艘船行至G 处距离礁石最近,∵△BCF 为等边三角形,∴G 为BF 的中点。
安徽省马鞍山市2021年八年级上学期数学期末考试试卷(I)卷
安徽省马鞍山市2021年八年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2018九上·大洼月考) 下列根式中,属于最简二次根式的是()A .B .C .D .2. (2分)(2017·广东模拟) 已知3是方程x2﹣mx+n=0的一个根,则3﹣ m+ n=()A . 2B . 3C . 4D . 53. (2分)(2014·盐城) 如图,反比例函数y= (x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A .B .C .D .4. (2分) (2019八下·松北期末) 若线段a,b,c组成直角三角形,则它们的比可以为()A . 2∶3∶4B . 7∶24∶25C . 5∶12∶14D . 4∶6∶105. (2分) (2020八上·江阴月考) 下列说法正确的是()A . 两角及一边分别相等的两个三角形全等B . 到角两边距离相等的点在角的平分线上C . 角的对称轴是角的平分线D . 三角形三内角平分线的交点到三个顶点的距离相等6. (2分) (2019八上·陵县期中) 下列结论正确的是()A . 有两个锐角相等的两个直角三角形全等;B . 顶角和底边对应相等的两个等腰三角形全等C . 一条斜边对应相等的两个直角三角形全等;D . 两个等边三角形全等.二、填空题 (共12题;共12分)7. (1分)(2019·南县模拟) 把化成最简二次根式为________.8. (1分) (2020九上·大石桥月考) 已知与的值相等,则的值是________.9. (1分) (2020八下·江阴期中) 二次根式中x的取值范围是________.10. (1分)(2020·扬州模拟) 同一温度的华氏度数y()与摄氏度数x()之间的函数表达式是 .若某一温度的摄氏度数值恰好是华氏度数值5倍,则此温度的华氏度数为________ .11. (1分) (2020九上·芜湖月考) 已知关于的方程有两个实根,并且这两个实数根的平方和比两个根的积大21,则 ________.12. (1分) (2019八上·松江期中) 在实数范围内分解因式: =________.13. (1分) (2019九上·萧山开学考) 设点A(x1,y1),B(x2,y2)位于函数 . 的图像上,当x1 >x2>0必有0<y1 <y2,则k________0.(选“>”,“<”,“=”中的一个填写)14. (1分)(2019·婺城模拟) 小明一月底时每分钟120次,因为很快就要体育中考,所以他有意加强训练结果到三月底时每分钟已经达到180次.设二、三月份每月的平均增长率为x,根据题意列出的方程是________.15. (1分)命题“等角的余角相等”的逆命题是________命题.16. (1分) (2019八上·潮南期中) 两块完全一样的含30°角的直角三角板,将它们重叠在一起并绕其较长直角边的中点M转动,使上面一块三角板的斜边刚好过下面一块三角板的直角顶点C,如图所示,已知AC=6,则这两块直角三角板顶点A、A′之间的距离等于________.17. (1分)如图,在△ABC中,BD和CE是△ABC的两条高线,若∠A=65°,则∠1+∠2的度数为________.18. (1分) (2019九上·郑州期中) 如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A′,当△A′FC为以FC为直角边的直角三角形时,对应的MA的长为________.三、解答题 (共8题;共65分)19. (5分)计算:(1) 3 +2(2) + .20. (5分) (2020九上·大石桥月考) 解方程:(1) 4(x﹣2)2=9(2)(2x﹣1)2﹣3(2x﹣1)=0(3) 2x2+5x=3(4) x2- x+ =021. (5分) (2017八下·厦门期中) 如表中是正比例函数y=kx的自变量x与函数y的对应值, 点A(m, ),B(n, )(m< n <0)在正比例函数y=kx 的图像上,试求出p的值,并比较和的大小,并说明理由.x-21y4y122. (5分)(2020·莲湖模拟) 如图,在平行四边形ABCD 中,E、F 分别是 AD、BC 上的点,连接 AF、CE,且AF∥CE.求证:∠BAF=∠DCE.23. (10分) (2019八上·禹城期中) 如图,是等腰三角形,, .(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.24. (10分) (2019九上·未央期末) 如图,已知在正方形ABCD巾,点E足BC边上一点,F为AB延长线上一点,且BE=BF,连接AE、EF、CF.(1)若∠BAE=18°,求∠EFC的度数;(2)求证:AE⊥CF.25. (10分) (2019八下·东台月考) 如图1,已知点A(a,0),B(0,b),且a、b满足 , ▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;26. (15分) (2019九下·黄石月考) 如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP= ,求AD;(3)请猜想PF与FD的数量关系,并加以证明.参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共12题;共12分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共65分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、答案:20-3、答案:20-4、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、考点:解析:答案:26-1、。
2020-2021学年马鞍山市八年级上学期期末数学试卷(含解析)
2020-2021学年马鞍山市八年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列命题中,是假命题的是()A. 平行四边形的对角线互相平分B. 若√a2=a,则a≥0C. 三角形三边的垂直平分线相交于一点,这点到三角形三条边的距离相等D. 已知点P(1,−2)和点Q(−1,−2),则点P、Q关于y轴对称2.已知反比例函数的图象经过点P(,),则这个函数的图象位于()A. 第一,三象限B. 第二,三象限C. 第二,四象限D. 第三,四象限3.下列定理中有逆定理的个数是()①有两个角相等的三角形是等腰三角形;②在直角三角形中,斜边的平方等于两直角边的平方和;③角平分线上的点到这个角两边的距离相等;④对顶角相等.A. 1个B. 2个C. 3个D. 4个4.已知点A(1,a),B(m,n)(m>1)均在正比例函数y=2x的图象上,反比例函数y=kx 的图象经过点A,过点B作BD⊥x轴于D,交反比例函数y=kx的图象于点C,连接AC,则下列结论正确的是()A. 当m=2时,AC⊥OBB. 当AB=2OA时,BC=2CDC. 存在一个m,使得S△BOD=3S△OCDD. 四边形AODC的面积固定不变5.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A. △ABD≌△ACDB. △ABE≌△ACEC. △BED≌△CEDD. 以上都对 6. 一个等腰三角形的两边长分别是3和7,则它的周长为( )A. 17B. 15C. 13D. 13或17 7. 下列说法正确的是( )A. 周长和面积都相等的两个三角形全等B. 全等三角形周长和面积都相等C. 全等三角形是指形状相同的两个三角形D. 全等三角形的边都相等8. 如图所示,已知∠BAC 与∠ACD 的平分线交于点O ,OE ⊥AC 于点E ,且OE =3cm ,则点O 到AB ,CD 的距离之和是( )A. 3cmB. 6cmC. 9cmD. 12cm 9. 如图,一次函数y =kx +b 与y =x +2的图象相交于点P(m,4),则关于x ,y 的二元一次方程组{kx −y =−b,y −x =2的解是( ) A. {x =3y =4 B. {x =1.8y =4 C. {x =2y =4 D. {x =2.4y =4 10. 如图,在边长为1的小正方形网格中,已知AB 在网格格点上,在所有的16个格点中任选一点C ,恰好能使点A ,B ,C 构成面积为1的三角形的概率是( ) A. 316 B. 38C. 14D. 56二、填空题(本大题共8小题,共24.0分)+√5−x中自变量x的取值范围是______.11.函数y=1√x−312.已知在平面直角坐标系中,点A(a+5,a−3)的横坐标与纵坐标互为相反数,若点B的坐标为(3a+5,2a−2),则△ABO的面积为______.13.如图,在△ABC中,∠B=38°,∠C=40°,AB的垂直平分线交BC于D,AC的垂直平分线交BC于E,则∠DAE=______ .14.如图,在△ABC中,∠ACB=90°,将△ACD沿CD折叠,使点A恰好落在BC边上的点E处.若∠B=25°,则∠BDE=______度.15.已知函数y=−x+2,如果函数值y>3,那么相应的自变量x的取值范围是______ .16.男生人数的相当于女生人数,是把()的人数看作单位“1”.17.如图,等腰三角形ABC的面积为24,底边BC=6,腰AC的垂直平分线EF分别交边AC、AB于E、F两点,点M为线段EF上一动点,点D为BC的中点,连接CM、DM.在点M的运动过程中,△CDM的周长存在最______值(填入“大”或“小”),最值为______.18.如图,已知平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①∠A=∠BHE;②△BHE≌△DCE;③△BHE∽△GAB;④△BHD∽△BDG;其中正确的结论是______(只填写正确的序号).三、解答题(本大题共6小题,共46.0分)19.如图,DB是△ABC的高,AE是角平分线,∠BAE=26°,求∠BFE的度数.20.如图,点A(m,m+1),B(m+3,m−1)是反比例函数y=kx(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)当cosC=√55,BC=10时,求AEAB的值.22.如图,在等边△ABC中,点D为BC边上一点,请你用量角器,在AC边上确定点E,使AE=CD,简述你的作法,并说明理由.(k>0)的图象交于点A(4,2),23.如图,直线y=2x−6与反比例函数y=kx与x轴交于点B.(1)求k的值及点B的坐标;(k>0);(2)当x______ 时,2x−6>kx(3)在x轴上是否存在点C,使得△ABC为等腰三角形,且AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.24.已知:△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°.(1)如图1,摆放△ACD和△BCE时(点A、C、B在同一条直线上,点E在CD上),连接AE、BD.线段AE与BD的数量关系是,位置关系是.(直接写出答案)(2)如图2,摆放△ACD和△BCE时,连接AE、BD,(1)中的结论是否仍然成立?请说明理由;(3)如图3,摆放△ACD和△BCE时,连接AE、DE.若有AE2=DE2+2CE2,试求∠DEC的度数.。
(汇总3份试卷)2021年马鞍山市八年级上学期数学期末考试试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知11xy==-⎧⎨⎩是方程230x my--=的一个解,那么m的值是( )A.1 B.3 C.-3 D.-1 【答案】A【解析】把11xy==-⎧⎨⎩代入230x my--=得2+m-3=0,解得m=1故选A2.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25B.25或32C.32D.19【答案】C【解析】因为等腰三角形的两边分别为6和13,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;当6为腰时,其它两边为6和13,6、6、13不可以构成三角形.故选C.【点睛】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.3.下列说法正确的是()A.16的平方根是4 B.﹣1的立方根是﹣1C D 3【答案】B【分析】分别根据平方根的定义、立方根的定义、无理数的定义以及算术平方根的定义逐一判断即可.【详解】解:A.16的平方根是±4,故本选项不合题意;B.﹣1的立方根是﹣1,正确,故本选项符合题意;5,是有理数,故本选项不合题意;故选:B.【点睛】本题主要考查了算术平方根、平方根、立方根、无理数,熟记相关定义是解答本题的关键.4.下列长度的三条线段能组成三角形的是( )A .1,1,3cm cm cmB .1,2,3cm cm cmC .1,2,2cm cm cmD .1,4,2cm cm cm【答案】C【分析】根据三角形的三边关系:在一个三角形中,两边之和大于第三边,两边之差小于第三边进行判断即可得解.【详解】A.113+<,不满足三边关系,A 选项错误;B.123+=,不满足三边关系,B 选项错误;C.满足三边关系,C 选项正确;D.124+<,不满足三边关系,D 选项错误,故选:C.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形三边关系的知识是解决本题的关键.5.把21y x =+的图像沿y 轴向下平移5个单位后所得图象的关系式是( )A .25y x =+B .26y x =+C .24y x =-D .24y x =+ 【答案】C【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将一次函数y=2x+1的图象沿y 轴向下平移5个单位,那么平移后所得图象的函数解析式为:y=2x+1-5,化简得,y=2x-1.故选:C .【点睛】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ【答案】D【解析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.7.已知112a b -=,则代数式232a ab b a ab b+---的值是( ) A .12 B .12- C .13 D .13- 【答案】C 【分析】先将112a b-=化简得到a-b=-2ab ,再代入代数式进行计算. 【详解】∵112a b -=, ∴a-b=-2ab , ∴2322()3432a ab b a b ab ab ab a ab b a b ab ab ab +--+-+===------13, 故选:C.【点睛】此题考查分式的化简计算,将代数式的值整体代入计算是求分式值的方法.8.关于x 的方程253+x-5255ax x x =-+有增根则a= ( ) A .-10或6B .-2或-10C .-2或6D .-2或-10或6 【答案】A【分析】先将分式方程化为整式方程,再根据增根的定义求出分式方程的增根,将增根代入整式方程即可求出a 的值. 【详解】解:253+x-5255ax x x =-+ ()()55+35x ax x +=-①∵关于x 的方程253+x-5255ax x x =-+有增根 ∴0252=-x解得:x=±5将x=5代入①,得a=-10;将x=-5代入①,得a=6综上所述:a=-10或6故选A.【点睛】此题考查的是根据分式方程有增根,求方程中的参数,掌握分式方程的解法和增根的定义是解决此题的关键.9.如果一个正多边形的内角和是外角和的3倍,那么这个正多边形的边数为()A.5 B.6 C.7 D.8【答案】D【分析】设正多边形的边数为n,利用多边形的内角和公式和外角和定理即可解答.【详解】设正多边形的边数为n,由题意得:(n-2)·180º=3×360º,解得:n=8,故选:D.【点睛】本题考查多边形的内角(和)与外角(和),熟记多边形的内角和公式及外角和为360º是解答的关键.10.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.217B.25C.42D.7【答案】A【解析】试题解析:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE ,{BAD CBEAB BC ADB BEC∠=∠=∠=∠,∴△ABD ≌△BCE∴BE=AD=3在Rt △BCE 中,根据勾股定理,得BC=25+9=34,在Rt △ABC 中,根据勾股定理,得AC=342=217⨯.故选A .考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.二、填空题11.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,大正方形的面积为13,则小正方形的面积为________.【答案】1【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知(a+b )2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【详解】解:如图所示:由题意可知:每个直角三角形面积为12ab ,则四个直角三角形面积为:2ab ;大正方形面积为a 2+b 2=13;小正方形面积为13-2ab∵(a+b )2=21,∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21-13=8,∴小正方形的面积为13-8=1.故答案为:1.【点睛】此题主要考查了勾股定理的应用,熟练应用勾股定理理解大正方形面积为a 2+b 2=13是解题关键. 12.分解因式:ab 2﹣4ab+4a= .【答案】a (b ﹣1)1.【解析】ab 1﹣4ab+4a=a (b 1﹣4b+4)﹣﹣(提取公因式)=a (b ﹣1)1.﹣﹣(完全平方公式)故答案为a (b ﹣1)1.13.如图,ABC ∆中,90ACB ∠=︒,//AC BD ,BC BD =,在AB 上截取BE ,使BE BD =,过点B 作AB 的垂线,交CD 于点F ,连接DE ,交BC 于点H ,交BF 于点G ,7,4BC BG ==,则AB =____________.【答案】658【解析】过点D 作DM ⊥BD ,与BF 延长线交于点M ,先证明△BHE ≌△BGD 得到∠EHB=∠DGB ,再由平行和对顶角相等得到∠MDG=∠MGD ,即MD=MG ,在△△BDM 中利用勾股定理算出MG 的长度,得到BM ,再证明△ABC ≌△MBD ,从而得出BM=AB 即可.【详解】解:∵AC ∥BD ,∠ACB=90°,∴∠CBD=90°,即∠1+∠2=90°,又∵BF ⊥AB ,∴∠ABF=90°,即∠8+∠2=90°,∵BE=BD ,∴∠8=∠1,在△BHE 和△BGD 中,8143BE BD ∠=∠∠=∠⎧⎪=⎨⎪⎩,∴△BHE ≌△BGD (ASA ),∴∠EHB=∠DGB∴∠5=∠6,∠6=∠7,∵MD ⊥BD∴∠BDM=90°,∴BC ∥MD ,∴∠5=∠MDG ,∴∠7=∠MDG∴MG=MD ,∵BC=7,BG=4,设MG=x ,在△BDM 中,BD 2+MD 2=BM 2,即()2227=4x x ++,解得x=338,在△ABC 和△MBD 中=8=1BC B ACB MDB D∠∠∠∠⎧⎪=⎨⎪⎩, ∴△ABC ≌△MBD (ASA )AB=BM=BG+MG=4+338=658. 故答案为:658.【点睛】本题考查了全等三角形的判定和性质,勾股定理,适当添加辅助线构造全等三角形,利用全等三角形的性质求出待求的线段,难度中等.14.在平面直角坐标系中,已知一次函数 y =2x+1 的图象经过 P 1(-1,y 1),P 2(2,y 2)两点,则 y 1_____y 2(填“>”或“<”或“=”)【答案】<【分析】根据函数的增减性即可得出答案.【详解】∵一次函数y=2x+1,k=2>0∴y随x的增大而增大,∵-1<2∴y1<y2故填:<.【点睛】本题考查一次函数的增减性,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 15.如图,在Rt△ABC中,平分交BC于D点,E,F分别是上的动点,则的最小值为__________.【答案】【分析】利用勾股定理先求出BA,再求到CH,由垂线段最短可得解.【详解】如图,在AB上取点F′,使AF′=AF,过点C作CH⊥AB,垂足为H.在Rt△ABC中,依据勾股定理可知BA=10,CH=.∵EF+CE=EF′+EC,∴当C、E、F′共线,且点F′与H重合时,FE+EC的值最小,最小值为.故答案为.16.4的平方根是_____;8的立方根是_____.【答案】±1 1【分析】依据平方根立方根的定义回答即可.【详解】解:∵(±1)1=4,∴4的平方根是±1.∵13=8,∴8的立方根是1.故答案为±1,1.考点:立方根;平方根.17.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.【答案】85°.【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC的度数.【详解】∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.三、解答题18.小李在某商场购买,A B两种商品若干次(每次,A B商品都买) ,其中前两次均按标价购买,第三次购买时,,A B商品同时打折.三次购买,A B商品的数量和费用如下表所示:购买A商品的数量/个购买B商品的数量/个购买总费用/元第一次65980第二次37940第三次98912、商品的标价各是多少元?(1)求A B、商品的折扣相同,则商场是打几折出售这两种商品的?(2)若小李第三次购买时A B、商品共花去了960元,则小李的购买方案可能有哪几种?(3)在(2)的条件下,若小李第四次购买A B【答案】(1)A商品标价为80元, B商品标价为100元.(2)商场打六折出售这两种商品.(3)有3种购买方案,分别是A商品5个,B商品12个;A商品10个,B商品8个;A商品15个,B商品4个. 【分析】(1)可设A商品标价为x元, B商品标价为y元,根据图表给的数量关系列出二元一次方程组解答即可.(2)求出第三次商品如果按原价买的价钱,再用实际购买费用相比即可.(3)求出两种商品折扣价之后,根据表中数量关系列出二元一次方程4860960x y +=,化简后讨论各种可能性即可.【详解】解: (1)设A 商品标价为x 元, B 商品标价为y 元,由题意得6598037940x y x y +=⎧⎨+=⎩, 解得80100x y =⎧⎨=⎩. 所以A 商品标价为80元, B 商品标价为100元.(2)由题意得,9898081001520x y +=⨯+⨯=元,91215200.6÷=60%=,所以商场是打六折出售这两种商品.(3)A 商品折扣价为48元, B 商品标价为60元由题意得,4860960x y +=,化简得, 4580x y +=, 5204x y =-, 由于x 与y 皆为正整数,可列表: x 1510 5 y4 8 12 所以有3种购买方案.【点睛】本题考查了二元一次方程组解决问题,理解题意,找到数量关系是解答关键.19.如图,AD 是△ABC 的外角平分线,∠B=35°,∠DAE=60°,求∠C 的度数.【答案】85°【解析】试题分析:先根据AD 是△ABC 的外角∠CAE 的角平分线,∠DAE=60°求出∠CAE 的度数,再根据三角形外角的性质即可得出结论.试题解析:∵AD 平分∠CAE ,∴∠DAE=∠CDA=60°∴∠CAE=120°∵∠CAE=∠B+∠C∴∠C=∠CAE -∠B=120°-35°=85°.20.甲、乙两车从A 城出发沿一条笔直公路匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.()1A ,B 两城相距______千米,乙车比甲车早到______小时;()2甲车出发多长时间与乙车相遇?()3若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?【答案】(1)300千米,1小时(2)2.5小时(3)1小时【解析】(1)根据函数图象可以直接得到A ,B 两城的距离,乙车将比甲车早到几小时;(2)由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,求得两函数图象的交点即可 (3)再令两函数解析式的差小于或等于20,可求得t 可得出答案.【详解】(1)由图象可知A 、B 两城市之间的距离为300km , 甲比乙早到1小时,(2)设甲车离开A 城的距离y 与t 的关系式为y 甲=kt ,把(5,300)代入可求得k=60,∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt+n ,把(1,0)和(4,300)代入可得04300m n m n +=⎧⎨+=⎩, 解得:100100m n =⎧⎨=-⎩, ∴y 乙=100t-100,令y甲=y乙,可得:60t=100t-100,解得:t=2.5,即甲、乙两直线的交点横坐标为t=2.5,∴甲车出发2.5小时与乙车相遇(3)当y甲- y乙=20时60t-100t+100=20,t=2当y乙- y甲=20时100t-100-60t=20,t=3∴3-2=1(小时)∴两车都在行驶过程中可以通过无线电通话的时间有1小时【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,特别注意t是甲车所用的时间.21.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC .(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(52,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的14?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)C(﹣3,1),直线AC:y=13x+2;(2)证明见解析;(3)N(﹣83,0).【分析】(1)作CQ⊥x轴,垂足为Q,根据条件证明△ABO≌△BCQ,从而求出CQ=OB=1,可得C(﹣3,1),用待定系数法可求直线AC的解析式y=13x+2;(2)作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,证明△BCH≌△BDF,△BOE≌△DGE,可得BE=DE;(3)先求出直线BC的解析式,从而确定点P的坐标,假设存在点N使△BPN的面积等于△BCM面积的14,然后可求出BN的长,比较BM,BN的大小,判断点N是否在线段BM上即可.【详解】解:(1)如图1,作CQ⊥x轴,垂足为Q,∴∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∵BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=13x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∵BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∵DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣12x﹣12,P(52,k)是线段BC上一点,∴P(﹣52,34),由y=13x+2知M(﹣6,0),∴BM=5,则S△BCM=52,则12BN·31=44×52,∴BN=53,ON=83,∴BN<BM,∴点N在线段BM上,∴N(﹣83,0).考点:1.等腰直角三角形的性质;2.全等三角形的判定与性质;3.待定系数法求解析式. 22.如图,已知∠1=∠2,∠C =∠D ,求证:∠A =∠F.【答案】详见解析【解析】先根据12∠=∠,23∠∠=得出13∠=∠,故//BD CE ,可得C ABD ∠=∠,再由C D ∠=∠可知//DF AC 即可得到.【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD ∥CE ,∴∠C =∠ABD ,∵∠C =∠D ,∴∠ABD =∠D ,∴DF ∥AC ,∴∠A =∠F.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行.23.如图,点O 是等边三角形ABC 内的一点,∠BOC=150°,将△BOC 绕点C 按顺时针旋转得到△ADC ,连接OD ,OA .(1)求∠ODC 的度数;(2)若OB=4,OC=5,求AO 的长.【答案】(1)60°;(241【分析】(1)根据旋转的性质得到三角形ODC 为等边三角形即可求解;(2)由旋转的性质得:AD=OB=1,结合题意得到∠ADO=90°.则在Rt △AOD 中,由勾股定理即可求得AO 的长.【详解】(1)由旋转的性质得:CD=CO ,∠ACD=∠BCO .∵∠ACB=∠ACO+∠OCB=60°,∴∠DCO=∠ACO+∠ACD=∠ACO+∠OCB=60°,∴△OCD为等边三角形,∴∠ODC=60°.(2)由旋转的性质得:AD=OB=1.∵△OCD为等边三角形,∴OD=OC=2.∵∠BOC=120°,∠ODC=60°,∴∠ADO=90°.在Rt△AOD中,由勾股定理得:AO=22224541AD OD+=+=.【点睛】本题考查旋转的性质、等边三角形的性质和勾股定理,解题的关键是掌握旋转的性质、等边三角形的性质和勾股定理.24.如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.(1)证明:BD=CE;(2)证明:BD⊥CE.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)要证明BD=CE,只要证明△ABD≌△ACE即可,两三角形中,已知的条件有AD=AE,AB=AC,那么只要再得出两对应边的夹角相等即可得出三角形全等的结论.我们发现∠BAD和∠EAC都是90°加上一个∠CAD,因此∠CAE=∠BAD.由此构成了两三角形全等中的(SAS)因此两三角形全等.(2)要证BD⊥CE,只要证明∠BMC是个直角就行了.由(1)得出的全等三角形我们可知:∠ABN=∠ACE,三角形ABC中,∠ABN+∠CBN+∠BCN=90°,根据上面的相等角,我们可得出∠ACE+∠CBN+∠BCN=90°,即∠ABN+∠ACE=90°,因此∠BMC就是直角.【详解】证明:(1)∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠CAE=∠BAD在△ABD和△ACE中AB ACCAE BAD AD AE=⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△ACE(SAS)∴BD=CE(2)∵△ABD≌△ACE∴∠ABN=∠ACE∵∠ANB=∠CND∴∠ABN+∠ANB=∠CND+∠NCE=90°∴∠CMN=90°即BD⊥CE.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定,利用全等三角形得出线段相等和角相等是解题的关键.25.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【答案】(1)见解析;(2)见解析.【分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【详解】(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点睛】本题考查旋转的性质、全等三角形的判定(SAS)与性质的运用,解题关键是掌握旋转的性质、全等三角形的判定(SAS)与性质的运用.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,2,4 C.2,3,4 D.2,4,8【答案】C【分析】根据三角形的三边关系进行分析判断.【详解】根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,2+2<4,不能组成三角形;C中,3+2>4,能够组成三角形;D中,2+4<8,不能组成三角形.故选:C.【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形任意两边的和大于第三边.2.下列各图中,a,b,c为三角形的边长,则甲,乙,丙三个三角形中和左侧ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【答案】B【分析】根据全等三角形的判定定理逐图判定即可.【详解】解:∵甲图为SSA不能全等;乙图为SAS;丙图为AAS∴乙、丙两图都可以证明.故答案为B.【点睛】本题考查了全等三角形的判定定理,牢记AAS、SAS、ASA、SSS可证明三角形全等,AAA、SSA不能证明三角形全等是解答本题的关键.3.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.【答案】B【分析】根据二次根式有意义的条件即可求出x 的范围.【详解】由题意可知:3010x x -≥⎧⎨+>⎩, 解得:3x ,故选B .【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件. 4.若把分式3x y xy+中的x 与y 都扩大3倍,则所得分式的值( ) A .缩小为原来的13 B .缩小为原来的19 C .扩大为原来的3倍D .不变 【答案】A【分析】根据分式的基本性质即可求出答案. 【详解】解:原式=33333x y x y +⨯⋅=33x y xy+⨯, 故选:A .【点睛】本题考查分式的基本性质,关键在于熟记基本性质.5.下列命题的逆命题为假命题的是( )A .如果一元二次方程()200a bx c a ++=≠没有实数根,那么240b ac -<.B .线段垂直平分线上任意一点到这条线段两个端点的距离相等.C .如果两个数相等,那么它们的平方相等.D .直角三角形两条直角边的平方和等于斜边的平方.【答案】C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】A 、逆命题为:如果一元一次方程20ax bx c ++=()0a ≠中240b ac -<,那么没有实数根,正确,是真命题;B 、逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,是真命题;C 、逆命题为:如果两个数的平方相等,那么这两个数相等,错误,因为这两个数也可能是互为相反数,是假命题;D 、逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,是真命题.【点睛】考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题,难度不大.6.两人在直线跑道上同起点、同终点、同方向匀速跑步400米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y (米)与乙出发的时间t (秒)之间的关系如图所示给出以下结论:①8a =;②72b =;③98c =.其中正确的是( )A .②③B .①②③C .①②D .①③【答案】B【分析】易得乙出发时,两人相距8m ,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙80s 跑完总路程400可得乙的速度,进而求得80s 时两人相距的距离可得b 的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,减2即为c 的值. 【详解】由函数图象可知,甲的速度为824÷=(米/秒),乙的速度为400805÷=(米/秒),8(54)8∴÷-=(秒),8a ∴=,故①正确;5804(802)400328b =⨯-⨯+=-72=(米)故②正确;4004298c =÷-=(秒)故③正确; ∴正确的是①②③.故选B .【点睛】本题考查了一次函数的应用,得到甲乙两人的速度是解决本题的突破点,得到相应行程的关系式是解决本题的关键.7.九年级二班45名同学在学校举行的“爱心涌动校园”募捐活动中捐款情况如下表 捐款数(元)10 20 30 40 50 捐款人数(人)8171622则全班捐款的45个数据,下列错误的 ( ) A .中位数是30元B .众数是20元C .平均数是24元D .极差是40元【解析】经计算平均数是24元,众数是20元,中位数是20元,极差是40元.所以A 选项错误. 8.若a x =3,a y =2,则a 2x+y 等于( ) A .18 B .8C .7D .6【答案】A【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案. 【详解】解:∵a x =3,a y =2, ∴a 2x+y =(a x )2×a y =32×2=1. 故选:A . 【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 9.下列句子中,不是命题的是( ) A .三角形的内角和等于180度 B .对顶角相等 C .过一点作已知直线的垂线 D .两点确定一条直线【答案】C【分析】判断一件事情的句子叫做命题,根据定义即可判断. 【详解】解:C 选项不能进行判断,所以其不是命题. 故选C 【点睛】本题考查了命题,判断命题关键掌握两点:①能够进行判断;②句子一般是陈述句. 10.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b <C .k 0<,0b >D .k 0<,0b <【答案】B【解析】由题意得,函数y=kx+b 的图象经过第一、三、四象限,k >0,b <0, 故选B .【点睛】本题考查了一次函数图象与系数的关系,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小. 二、填空题11有意义的x 的取值范围是 . 【答案】1x ≥-【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解即可. 【详解】根据二次根式的定义可知被开方数必须为非负数,列不等式得: x+1≥0, 解得x≥﹣1. 故答案为x≥﹣1. 【点睛】本题考查了二次根式有意义的条件12.已知等腰三角形的一个外角是80°,则它顶角的度数为______. 【答案】100°.【分析】三角形内角与相邻的外角和为180 ︒,三角形内角和为180 ︒,等腰三角形两底角相等,100 ︒只可能是顶角.【详解】等腰三角形一个外角为80 ︒,那相邻的内角为100 ︒, 三角形内角和为180 ︒,如果这个内角为底角,内角和将超过180 ︒, 所以100 ︒只可能是顶角. 故答案为:100 ︒. 【点睛】本题主要考查三角形外角性质、等腰三角形性质及三角形内角和定理;判断出80 ︒的外角只能是顶角的外角是正确解答本题的关键. 13.分解因式:x 3y-xy=______. 【答案】(1)(1)xy x x +- 【详解】原式=xy (x 2﹣1)=xy (x+1)(x ﹣1), 故答案为:xy (x+1)(x ﹣1)14.若一次函数y ax b =+、y cx d =+的图象相交于()1,3-,则关于x 、y 的方程组y ax by cx d =+⎧=+⎨⎩的解为______. 【答案】13x y =-⎧⎨=⎩【分析】关于x 、y 的二元一次方程组y ax by cx d =+⎧⎨=+⎩的解即为直线y=ax+b (a≠0)与y=cx+d (c≠0)的交点P(-1,3)的坐标.【详解】∵直线y=ax+b(a≠0)与y=cx+d(c≠0)相交于点P (-1,3),∴关于x、y的二元一次方程组y ax by cx d=+⎧⎨=+⎩的解是13xy=-⎧⎨=⎩.故答案为13 xy=-⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组),解题的关键是熟练的掌握一次函数与二元一次方程组的相关知识点.15.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.16.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为_____.【答案】2【详解】解:如图,延长BG交CH于点E,∵AG=CH=8,BG=DH=6,AB=CD=10,∴AG2+BG2=AB2,CH2+DH2=DC2,△ABG≌△CDH,∴∠AGB=∠CHD=90°,∠1=∠5,∠2=∠6,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3,∠2=∠4,又∵AB=BC,∴△ABG≌△BCE,∴BE=AG=8,CE=BG=6,∴GE=BE-BG=8-6=2,HE=CH-CE=8-6=2,BE2+CE2=CD2,∴∠BEC=90°,∴HG=224422GE HE +=+= 故答案为:2217.一次函数3y x =的图像沿y 轴向上平移3个单位长度,则平移后的图像所对应的函数表达为_____. 【答案】33y x =+【分析】根据”上加下减”的平移规律解答即可.【详解】解: 一次函数3y x =的图像沿y 轴向上平移3个单位长度,则平移后的图像所对应的函数表达为:33y x =+.故答案: 33y x =+ 【点睛】本题考查了一次函数图像与几何变换,求直线平移后的解析式要注意平移时候k 值不变,解析式变化的规律是:上加下减, 左加右减. 三、解答题18.如图,在Rt △ABC 中,(M 2,N 2),∠BAC=30°,E 为AB 边的中点,以BE 为边作等边△BDE ,连接AD ,CD .(1)求证:△ADE ≌△CDB ;(2)若BC=3,在AC 边上找一点H ,使得BH+EH 最小,并求出这个最小值.【答案】(1)证明见解析;(2)BH+EH 的最小值为1.【解析】(1)只要证明△DEB 是等边三角形,再根据SAS 即可证明;(2)如图,作点E 关于直线AC 点E',连接BE'交AC 于点H .则点H 即为符合条件的点.【详解】(1)在Rt △ABC 中,∠BAC=10°,E 为AB 边的中点,∴BC=EA ,∠ABC=60°, ∵△DEB 为等边三角形, ∴DB=DE ,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°, ∴∠DEA=∠DBC , ∴△ADE ≌△CDB ;(2)如图,作点E 关于直线AC 点E',连接BE'交AC 于点H ,则点H 即为符合条件的点, 由作图可知:EH=HE',AE'=AE ,∠E'AC=∠BAC=10°, ∴∠EAE'=60°,∴△EAE'为等边三角形, ∴E E'=EA=12AB , ∴∠AE'B=90°,在Rt △ABC 中,∠BAC=10°,BC=3, ∴AB=23,A E'=AE=3, ∴B E'=()()2222'233AB AE -=- =1,∴BH+EH 的最小值为1.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键.19.甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表: 学生 数与代数 空间与图形 统计与概率 综合与实践 平均成绩 方差 甲 87 93 91 85 89 ______ 乙89969180____________(1)将表格中空缺的数据补充完整,根据表中信息判断哪个学生数学综合素质测试成绩更稳定?请说明理由.(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按4:3:2:1,计算哪个学生数学综合素质测试成绩更好?请说明理由.【答案】(1)表格详见解析,甲数学综合素质测试成绩更稳定;(2)乙的成绩更好,理由详见解析. 【分析】(1)根据求平均数的公式和求方差的公式进行求解,即可得到答案;。
《试卷3份集锦》马鞍山市2020-2021年八年级上学期数学期末检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2) B.(3,0) C.(﹣1,3) D.(0,﹣4)【答案】B【分析】根据x轴上点的特点解答即可.【详解】在平面直角坐标系中x轴上点的特点是:所有点的纵坐标都为0,故选B.【点睛】本题是一道基础题,考查平面直角坐标系的特点,解题的关键是掌握平面直角坐标系的基本特征即可.2.如图,平行四边形ABCD中,AB = 6cm,AD=10 cm,点P在AD 边上以每秒1 cm的速度从点A向点D 运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次C.3次D.4次【答案】C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q在BC上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t,∴t=0,此时两点没有运动,∴点Q以后在BC上的每次运动都会有PD=QB,∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选C.【点睛】本题考查列了矩形的性质和平行线的性质. 解决本题的关键是理解以P、D、Q、B四点组成平出四边形的次数就是Q 在BC上往返运动的次数.3.9的算术平方根是( )A.3 B.9 C.±3 D.±9【答案】A【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.【详解】∵12=9,∴9的算术平方根是1.故选A.【点睛】此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.4.下列说法正确的是( )A.等腰直角三角形的高线、中线、角平分线互相重合 B.有两条边相等的两个直角三角形全等C.四边形具有稳定性D.角平分线上的点到角两边的距离相等【答案】D【分析】根据等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质判断即可.【详解】解:等腰三角形底边上的中线、高线和所对角的角平分线互相重合,A选项错误;有两条边相等的两个直角三角形全等,必须是对应直角边或对应斜边,B选项错误;四边形不具有稳定性,C选项错误;角平分线上的点到角两边的距离相等,符合角平分线的性质,D选项正确.故选D.【点睛】本题比较简单,考查的是等腰三角形的性质、全等三角形的判定、四边形的性质、角平分线的性质,需要准确掌握定理内容进行判断.5.在直角坐标系中,点P(3,1)关于x轴对称点的坐标是()A.(3,1) B.(3,﹣1) C.(﹣3,1) D.(﹣3,﹣1)【答案】B【分析】根据题意可设平面直角坐标系中任意一点P,其坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y).【详解】解:点P(3,1)关于x轴对称点的坐标是(3,﹣1).故选:B.【点睛】本题考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.6.如图,在ABC 中,AB AC =,点E 在AC 上,ED BC ⊥于点D ,DE 的延长线交BA 的延长线于点F ,则下列结论中错误的是( )A .AE CE =B .12DEC BAC ∠=∠ C .AF AE =D .1902B BAC ∠+∠=︒ 【答案】A 【分析】由题意中点E 的位置即可对A 项进行判断;过点A 作AG ⊥BC 于点G ,如图,由等腰三角形的性质可得∠1=∠2=12BAC ∠,易得ED ∥AG ,然后根据平行线的性质即可判断B 项;根据平行线的性质和等腰三角形的判定即可判断C 项; 由直角三角形的性质并结合∠1=12BAC ∠的结论即可判断D 项,进而可得答案. 【详解】解:A 、由于点E 在AC 上,点E 不一定是AC 中点,所以,AE CE 不一定相等,所以本选项结论错误,符合题意;B 、过点A 作AG ⊥BC 于点G ,如图,∵AB=AC ,∴∠1=∠2=12BAC ∠, ∵ED BC ⊥,∴ED ∥AG ,∴122DEC BAC ∠=∠=∠,所以本选项结论正确,不符合题意; C 、∵ED ∥AG ,∴∠1=∠F ,∠2=∠AEF ,∵∠1=∠2,∴∠F=∠AEF ,∴AF AE =,所以本选项结论正确,不符合题意;D 、∵AG ⊥BC ,∴∠1+∠B=90°,即1902B BAC ∠+∠=︒,所以本选项结论正确,不符合题意. 故选:A .【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.7.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣【答案】D【分析】由科学记数法知90.000000007710-=⨯;【详解】解:90.000000007710-=⨯;故选D .【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.8.把21y x =+的图像沿y 轴向下平移5个单位后所得图象的关系式是( )A .25y x =+B .26y x =+C .24y x =-D .24y x =+ 【答案】C【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将一次函数y=2x+1的图象沿y 轴向下平移5个单位,那么平移后所得图象的函数解析式为:y=2x+1-5,化简得,y=2x-1.故选:C .【点睛】此题主要考查了一次函数图象与几何变换,熟练记忆函数平移规律是解题关键.9.下列多项式中,不能用平方差公式分解的是( )A .221a b -B .240.25a -C .21x -+D .22a b --【答案】D【分析】根据平方差公式a 2-b 2=(a+b )(a-b ),分别判断得出即可.【详解】解:A 、a 2b 2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B 、4-0.25a 2=(2-0.5a )(2+0.5a ),可以用平方差公式分解因式,故此选项错误;C 、-x 2+1=(1+x )(1-x ),可以用平方差公式分解因式,故此选项错误;D 、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.10.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<-【答案】D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a 的范围. 【详解】解:1021x x x a -⎧<⎪⎨⎪+>⎩①②解①得1x <且0x ≠, 解②得12a x ->. 若不等式组只有1个整数解,则整数解是1-.1212a -∴-≤<- 所以31a -≤<-,故选:D .【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题11.我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用率,某住宅小区安装了循环用水装置. 经测算,原来a 天用水b 吨,现在这些水可多用4天,现在每天比原来少用水________吨. 【答案】244b a a+ 【分析】根据题意表示出原来每天的用水量,现在每天的用水量,两者相减,计算得出结果.【详解】∵原来a 天用水b 吨, ∴原来每天用水b a吨, 现在多用4天,则现在()4+a 天使用b 吨, ∴现在每天用水4+b a 吨, ∴现在每天比原来少用水()()244444+--==+++b a ab b b b a a a a a a吨, 故答案为244b a a +. 【点睛】本题考查分式的计算,根据题意列出表达式是关键.1212=3=4=,…则第n 个等式为_____.(用含n 的式子表示)1n + 【分析】探究规律后,写出第n 个等式即可求解.12=3=4= …则第n == 【点睛】 本题主要考查二次根式的应用,找到规律是解题的关键.13.如图,利用图①和图②的阴影面积相等,写出一个正确的等式_____.【答案】 (a+2)(a ﹣2)=a 2﹣1【分析】根据图形分别写出图①与图②中阴影部分面积,由阴影部分面积相等得出等式.【详解】∵图①中阴影部分面积=(a+2)(a ﹣2),图②中阴影部分面积=a 2﹣1,∵图①和图②的阴影面积相等,∴(a+2)(a ﹣2)=a 2﹣1,故答案为:(a+2)(a ﹣2)=a 2﹣1.【点睛】本题考查平方差公式的几何背景,结合图形得到阴影部分的面积是解题的关键.14.如图,点,D E 分别在线段,AB AC 上,CD 与BE 相交于O 点,已知AB AC =,若要判断,ABE ACD ≅则需添加条件__________.(只要求写出一个)【答案】答案不唯一,如AD AE =【分析】添加条件:AD=AE ,再由已知条件AB=AC 和公共角∠A 可利用SAS 定理证明△ABE ≌△ACD .【详解】解:添加条件:AD=AE ,在△ADC 和△AEB 中,AD AE A A AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD (SAS ),故答案为:AD=AE .(不唯一)【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .15.已知m+2n ﹣2=0,则2m •4n 的值为_____.【答案】1【分析】把2m •1n 转化成2m •22n 的形式,根据同底数幂乘法法则可得2m •22n =2m+2n ,把m+2n=2代入求值即可.【详解】由m+2n ﹣2=0得m+2n =2,∴2m •1n =2m •22n =2m+2n =22=1.故答案为:1.【点睛】本题考查了幂的乘方和同底数幂乘法,掌握幂的乘方和同底数幂乘法的运算法则是解题关键. 16.如图,已知Rt ABC ∆的三边长分别为6、8、10,分别以它们的三边作为直径向外作三个半圆,则图中阴影部分的面积为_______.【答案】24 【分析】根据图形关系可得阴影部分面积为:22261811101682222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【详解】因为已知Rt ABC ∆的三边长分别为6、8、10所以62+82=102由已知可得:图中阴影部分的面积为 22261811101682222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=24 故答案为:24【点睛】考核知识点:直角三角形性质.弄清图形的面积和差关系是关键.17.如图,在ABC ∆中,AB AC =,D 是BC 的中点,DE AC ⊥,垂足为E ,50BAC ∠=︒,则ADE ∠的度数是______.【答案】65【分析】首先根据三角形的三线合一的性质得到AD 平分∠BAC ,然后求得其一半的度数,从而求得答案.【详解】∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,∵∠BAC =50°,∴∠DAC =25°,∵DE ⊥AC ,∴∠ADE =90°−25°=65°,故答案为65°.【点睛】本题考查了等腰三角形的性质,解题的关键是了解等腰三角形三线合一的性质,难度不大.三、解答题18.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.【答案】(1)(0,3);(2)112y x =-. 【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=, ∴222213)OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.19.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克.()1该种干果的第一次进价是每千克多少元?()2如果超市将这种干果全部按每千克9元的价格出售,售完这种干果共盈利多少元?【答案】(1)该种干果的第一次进价是每千克5元;(2)售完这种干果共盈利6900元.【分析】(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克()120%x +元,根据第二次购进干果数量是第一次的2倍还多300千克列方程求出x 的值即可;(2)根据销售总额-进货总额即可得答案.【详解】(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克()120%x +元 ∵第二次购进干果数量是第一次的2倍还多300千克,∴()90003000212030%0x x +=⨯+, 解得5x =,经检验5x =是方程的解,答:该种干果的第一次进价是每千克5元.(2)()()3000900093000900055120%⎡⎤-⨯--⎢⎥⨯-⎣⎦ ()6001500912000=+⨯-=18900-120006900=(元). 答:超市销售这种干果共盈利6900元.【点睛】本题考查分式方程的应用,根据题意,正确得出等量关系是解题关键.20.如图,观察每个正多边形中α∠的变化情况,解答下列问题:(1)将下面的表格补充完整: 正多边形的边数 34 5 6 … 15 α∠的度数… (2)根据规律,是否存在一个正n 边形,使其中10α∠=?若存在,直接写出n 的值;若不存在,请说明理由; (3)根据规律,是否存在一个正n 边形,使其中11α∠=?若存在,直接写出n 的值;若不存在,请说明理由.【答案】(1)60°,45°,36°,30°,12°;(2)存在,n=18;(3)不存在,理由见解析.【分析】(1)根据多边形内角和公式求出每个内角的度数,再根据三角形内角和及等腰三角形的性质求解即可;(2)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可; (3)根据表中的结果得出规律,根据规律得出方程,求出方程的解即可.【详解】解:(1)根据正多边形的内角和公式可知,正n 边形的内角和=(n-2)×180°,故n 边形一个内角度数=(2)180n n︒-⨯, 当正多边形有3条边时,一个内角度数=(32)1803︒-⨯=60°,则∠α=180602-=60°; 当正多边形有4条边时,一个内角度数=(42)1804︒-⨯=90°,则∠α=180902-=45°; 当正多边形有5条边时,一个内角度数=(52)1805︒-⨯=108°,则∠α=1801082-=36°; 当正多边形有6条边时,一个内角度数=(62)1806︒-⨯=120°,则∠α=1801202-=30°;...当正多边形有15条边时,内角度数=(15152)180︒-⨯=156°,则∠α=1801562-=12°. 故答案为:60°,45°,36°,30°,12°;(2)存在.由(1)可知,()180********n n nα--∠==, 设存在正多边形使得10α∠=,则18010n =,18n =, ∴存在一个正多边形使10α∠=;(3)不存在,理由如下:设存在多边形使得11α∠=,则18011n =,18011n =(不是整数), ∴不存在一个多边形使11α∠=.【点睛】本题考查了多边形的内角和,等腰三角形的性质,能求出多边形的一个内角的度数是解此题的关键,注意:多边形的内角和=(n-2)×180°.21.如图,在平面直角坐标系中,四边形OABC 的顶点O 是坐标原点,点A 在第一象限,点C 在第四象限,点B 在x 轴的正半轴上.90OAB ∠=︒且OA AB =,OB ,OC 的长分别是二元一次方程组2328323x y x y +=⎧⎨-=⎩的解(OB OC >). (1)求点A 和点B 的坐标;(2)点P 是线段OB 上的一个动点(点P 不与点O ,B 重合),过点P 的直线l 与y 轴平行,直线l 交边OA 或边AB 于点Q ,交边OC 或边BC 于点R .设点P 的横坐标为t ,线段QR 的长度为m .已知4t =时,直线l 恰好过点C .①当03t <<时,求m 关于t 的函数关系式; ②当72m =时,求点P 的横坐标t 的值.【答案】(1)A (3,3),B (6,0);(2)当03t <<时,74mt ;(3)满足条件的P 的坐标为(2,0)或23(,0)5【分析】(1)解方程组得到OB ,OC 的长度,得到B 点坐标,再根据△OAB 是等腰直角三角形,解出点A 的坐标;(2)①根据坐标系中两点之间的距离,QR 的长度为点Q 与点R 纵坐标之差,根据OC 的函数解析式,表达出点R 坐标,根据△OPQ 是等腰直角三角形得出点Q 坐标,表达m 即可;②根据直线l 的运动时间分类讨论,分别求出直线AB ,直线BC 的解析式,再由QR 的长度为点Q 与点R 纵坐标之差表达出m 的函数解析式,当72m =时,列出方程求解. 【详解】解:(1)如图所示,过点A 作AM ⊥OB ,交OB 于点M ,解二元一次方程组2328323x y x y +=⎧⎨-=⎩,得:56x y =⎧⎨=⎩, ∵OB OC >,∴OB=6,OC=5∴点B 的坐标为(6,0)∵∠OAB=90°,OA=AB ,∴△OAB 是等腰直角三角形,∠AOM=45°,根据等腰三角形三线合一的性质可得116322OM OB ==⨯=, ∵∠AOM=45°,则∠OAM=90°-45°=45°=∠AOM ,∴AM=OM=3,所以点A 的坐标为(3,3)∴A (3,3),B (6,0)(2)①由(1)可知,∠AOM=45°,又PQ ⊥OP ,∴△OPQ 是等腰直角三角形,∴PQ=OP=t,∴点Q (t ,t )如下图,过点C 作CD ⊥OB 于点D ,∵4t =时,直线l 恰好过点C ,∴OD=4,OC=5在Rt △OCD 中,CD=223OC OD -=∴点C (4,-3)设直线OC 解析式为y=kx ,将点C 代入得-3=4k ,∴34k =-, ∴34y x =-, ∴点R (t ,34t -)∴37()44QR t t t =--= 故当03t <<时,74m t②设AB 解析式为y px q =+将A (3,3)与点B (6,0)代入得3360p q p q +=⎧⎨+=⎩,解得16p q =-⎧⎨=⎩所以直线AB 的解析式为6y x =-+,同理可得直线BC 的解析式为392y x =- 当03t <<时,若72m =,则7724t =,解得t=2,∴P (2,0) 当34t ≤<时,316()644m t t t =-+--=-+,若72m =,即71624t =-+,解得t=10(不符合,舍去) 当46t ≤<时,Q (t ,-t+6),R (t ,392t -) ∴356(9)1522m t t t =-+--=-+ 若72m =,即515272t -+=,解得235t =,此时23(,0)5P , 综上所述,满足条件的P 的坐标为(2,0)或23(,0)5. 【点睛】本题考查了一次函数与几何的综合问题,解题的关键是综合运用函数与几何的知识进行求解.22.定义ab cd =ad ﹣bc ,若1371x x x x --+-=10,求x 的值. 【答案】1 【分析】根据a b c d =ad ﹣bc 和1371x x x x --+-=10,可以得到相应的方程,从而可以得到x 的值. 【详解】解:∵a b c d =ad ﹣bc ,1371x x x x --+-=10, ∴(x ﹣1)(x ﹣1)﹣(x ﹣3)(x+7)=10,∴x 1﹣1x+1﹣x 1﹣7x+3x+11=10∴﹣6x+11=10,解得:x =1.【点睛】本题主要考查多项式乘多项式、解一元一次方程,根据新定义的运算法则列出方程是解题的关键.23.化简:2222111323x x x x x x x x ⎛⎫+-+-÷ ⎪---⎝⎭. 【答案】13x -【分析】根据分式的混合运算法则即可求解. 【详解】2222111323x x x x x x x x ⎛⎫+-+-÷ ⎪---⎝⎭=()()()22113311x x x x x x x x ⎡⎤+--⋅⎢⎥--++⎢⎥⎣⎦=()()()()()()()2211131311x x x x x x x x x x x x ⎡⎤++-⎢⎥-⋅-+-++⎢⎥⎣⎦=()()3321311x x x x x x x x x x +++-+⋅-++ =()()221311x x x x x x x ++⋅-++ =()()()21311x x x x x x +⋅-++ =13x -. 【点睛】此题主要考查分式的运算,解题的关键是熟知其运算法则.24.(110120162-⎛⎫+ ⎪⎝⎭; (2)求()21250x --=中的x 的值.【答案】(1)-3;(2)6x =或4-【分析】(1)根据负整数指数幂和零次幂的性质以及立方根的定义,即可求解,(2)根据直接开平方法,即可求解.【详解】(1)原式221=--+ 3=-;(2)∵()21250x --=,∴15x -=±,∴6x =或4-.【点睛】本题主要考查实数的混合运算以及解一元二次方程,掌握负整数指数幂和零次幂的性质以及直接开平方法,是解题的关键.25.已知一个多边形的内角和720,求这个多边形的边数.【答案】1n-⨯=,然后解方程即可.【解析】设这个多边形的边数为n,根据多边形的内角和定理得到()2180720【详解】解:设这个多边形的边数是n,n-⨯=,依题意得()2180720n-=,24n=.6答:这个多边形的边数是1.【点睛】n-⨯解答.考查了多边形的内角和定理,关键是根据n边形的内角和为()2180八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D ,若3CD =,10AB =,则ABD △的面积为( ).A .10B .15C .20D .30【答案】B 【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等, 过D 作DE AB ⊥于E ,则3DE DC ==,再根据三角形的面积公式即可求得.【详解】根据题中所作,AD 为BAC ∠的平分线,∵90C ∠=︒,∴DC AC ⊥,过D 作DE AB ⊥于E ,则3DE DC ==,∵10AB =,∴111031522ABD S AB DE =⋅=⨯⨯=△.选B . 【点睛】 本题的关键是根据作图过程明确AP 是角平分线,然后根据角平分线的性质得出三角形ABD 的高. 2.如果分式122x x -+的值为0,则x 的值是( ) A .1B .0C .﹣1D .±1 【答案】A【解析】试题解析:分式122x x -+的值为0,10x -=且220x +≠.解得1x =,故选A .点睛:分式值为零的条件:分子为零,分母不为零.3.如果把分式x y y x +中的x 、y 同时扩大为原来的2倍,那么该分式的值( ) A .不变B .扩大为原来的2倍C .缩小为原来的12D .缩小为原来的14 【答案】C【解析】∵把分式x y xy+中的x 、y 同时扩大为原来的2倍后变为: 2222x y x y +⨯=()24x y xy+=2x y xy +. ∴2222x y x y +⨯是x y xy +的12. 故选C.4.若关于x 的分式方程11m x --=2的解为非负数,则m 的取值范围是( ) A .m >﹣1B .m ≥1C .m >﹣1且m ≠1D .m ≥﹣1且m ≠1 【答案】D【解析】试题分析:去分母可得:m-1=2(x-1),解得:x=,根据解为非负数可得:且x≠1,即0且x≠1,解得:m≥-1且m≠1.考点:解分式方程5.一个多边形的各个内角都等于120°,则它的边数为( )A .3B .6C .7D .8 【答案】B【解析】试题解析:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=10°,∴边数n=310°÷10°=1.故选B .考点:多边形内角与外角.6.下列图象不能反映y 是x 的函数的是( ) A . B .C .D .【答案】C【详解】解:A .当x 取一值时,y 有唯一与它对应的值,y 是x 的函数,不符合题意;B .当x 取一值时,y 有唯一与它对应的值,y 是x 的函数,;不符合题意C .当x 取一值时,y 没有唯一与它对应的值,y 不是x 的函数,符合题意;D .当x 取一值时,y 有唯一与它对应的值,y 是x 的函数,不符合题意.故选C .7.下列命题中,真命题的个数是( ) ①若x y =,则x y =±;②()25-的平方根是-5;③若22a b =,则a b =;④所有实数都可以用数轴上的点表示.A .1个B .2个C .3个D .4个【答案】B【分析】根据各个选项中的说法可以判断是否为真命题,从而可以解答本题. 【详解】①若x y =,则x y =±,真命题;②()25-的平方根是5± ,假命题;③若22a b =,则a b =±,假命题;④所有实数都可以用数轴上的点表示,真命题.故答案为:B .【点睛】本题考查了真命题的定义以及判断,根据各个选项中的说法可以判断是否为真命题是解题的关键. 8.以下列各组线段为边,能组成三角形的是( )A .2、2、4B .2、6、3C .8、6、3D .11、4、6 【答案】C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】根据三角形的三边关系,知A 、2+2=4,不能组成三角形;B 、3+2=5<6,不能组成三角形;C、3+6>8,能够组成三角形;D、4+6<11,不能组成三角形.故选C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.9.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,38【答案】B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若DE=15cm,BE=8cm,则BC的长为()A.15cm B.17cm C.30cm D.32cm【答案】D【分析】先利用角平分线的性质得到DC=15,再根据勾股定理计算出BD,然后计算CD+BD即可.【详解】解:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE=15,在Rt△BDE中,BD2217,815∴BC=CD+BD=15+17=32(cm).故选:D.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.二、填空题11.将函数3y x =的图象沿y 轴向下平移2个单位,所得图象对应的函数表达式为__________.【答案】32y x =-【解析】直接利用一次函数平移规律,“上加下减”进而得出即可.【详解】将函数y =3x 的图象沿y 轴向下平移1个单位长度后,所得图象对应的函数关系式为:y =3x−1. 故答案为:y =3x−1.【点睛】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.12.如图,CD 是ABC 的角平分线,AE CD ⊥于E ,6,4BC AC ==,ABC 的面积是9,则AEC 的面积是_____.【答案】3【分析】延长AE 与BC 相交点H ,先用ASA 证明AEC ≌HEC ,则S HEC = S AEC ,求出BH ,CH 的长度,利用ABC 的面积为9,求出ACH 的面积为6,即可得到AEC 的面积.【详解】解:延长AE 与BC 相交点H ,如图所示∵CD 平分∠ACB∴∠ACD=∠BCD∵AE ⊥CD∴∠AEC=∠HEC 在AEC 和HEC 中ACE HCE EC ECAEC HEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEC ≌HEC(ASA)∴AC=CH∴S HEC = S AEC∵BC=6 ,AC=4∴BH=2 ,CH=4过A 作AK ⊥BC ,则 ∵192ABC S BC AK ∆=••=,BC=6, ∴AK=3,∴SHCA =1143622CH AK ••=⨯⨯=, ∴S HEC = SAEC =3; 故答案为:3.【点睛】本题考查了全等三角形的判定和性质,三角形的角平分线定义,以及三角形面积的计算,熟练掌握全等三角形的判定和性质,正确求出AK 的长度是解题的关键.13.关于x 的方程1x a x +-=2的解为正数,则a 的取值范围为_______. 【答案】a >﹣2且a ≠﹣1【解析】分式方程去分母转化为整式方程,表示出解,根据分式方程的解为整数,求出a 的范围即可.【详解】去分母得:22x a x +=-,解得:2x a =+,由分式方程的解为正数,得到20a +>,且21a +≠,解得:2a >-且1a ≠-.故答案为:2a >-且1a ≠-.【点睛】此题考查了解分式方程,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.下列关于x 的方程①153x -=,②141x x =-,③33x x -=-1,④11x a b =-中,是分式方程的是 (________)(填序号)【答案】②【解析】分式方程 分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程,等号两边至少有一个分母含有未知数。
{3套试卷汇总}2021年马鞍山市八年级上学期数学期末复习检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,边长分别为a 和b 的两个正方形拼接在一起,则图中阴影部分的面积为( )A .22bB .()2b a -C .212bD .22b a -【答案】C 【分析】根据三角形和矩形的面积公式,利用割补法,即可求解.【详解】由题意得:11()22BCD S CD BC a b a =⋅⋅=⋅+⋅,21122DEF S DF EF b =⋅⋅=,11()22ABE SAB AE b a a =⋅⋅=-⋅,()ACDF S CD DF a b b =⋅=+⋅四边形, ∴S 阴影=BCD DEF ABE ACDF S S S S ---四边形=2111()()()222a b b a b a b b a a +⋅-⋅+⋅---⋅=212b . 故选C .【点睛】本题主要考查求阴影部分图形的面积,掌握割补法求面积,是解题的关键.2.在平面直角坐标系中,点P (3,﹣2)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】坐标系中的四个象限分别为第一象限(x >0, y >0);第二象限(x >0, y <0);第三象限(x <0, y <0);第四象限(x <0, y <0).所以P 在第四象限.3.已知28x x a -+可以写成一个完全平方式,则a 可为( )A .4B .8C .16D .16- 【答案】C【解析】∵28x x a -+可以写成一个完全平方式,∴x 2-8x+a=(x-4)2,又(x-4)2=x2-8x+16,∴a=16,故选C.4.下列二次根式中的最简二次根式是()A B C D【答案】A【分析】根据最简二次根式的概念判断即可.【详解】ABC,不是最简二次根式;D2故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例【答案】B【详解】解:设该直角三角形的两直角边是a、b,面积为S.则S=12 ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选B.6.在平面直角坐标系中,点(2,5)P 所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】利用各象限内点的坐标特征解题即可.【详解】P点的横坐标为正数,纵坐标为负数,故该点在第四象限.【点睛】本题考查点位于的象限,解题关键在于熟记各象限中点的坐标特征.7.已知实数a 、b 满足等式x=a 2+b 2+20,y=a(2b -a),则x 、y 的大小关系是( ).A .x ≤ yB .x ≥ yC .x < yD .x > y 【答案】D【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20,2()0a b -≥,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.8.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:头、爱、我、汕、丽、美,现将222222()()x y a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美B .汕头美C .我爱汕头D .汕头美丽【答案】C【分析】先提取公因式(22x y -),然后再利用平方法公式因式分解可得. 【详解】2222222222()()=()()=()()()()x y a x y b x y a b x y x y a b a b -----+-+-故对应的密码为:我爱汕头故选:C【点睛】本题考查因式分解,注意,当式子可提取公因式时,我们在因式分解中,往往先提取公因式.9.下列图形中,由∠1=∠2,能得到AB ∥CD 的是( )A .B .C .D .【答案】C【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A 、由∠1+∠2=180°,得到AB ∥CD ,故本选项错误;B 、∠1=∠2不能判定AB ∥CD ,故本选项错误;C 、由∠1=∠2,得AB ∥CD ,符合平行线的判定定理,故本选项正确;D 、∠1=∠2不能判定AB ∥CD ,故本选项错误.故选:C .【点睛】本题主要主要考查平行线的判定定理,掌握“同位角相等,两直线平行”,“内错角相等,两直线平行”,“同旁内角互补,两直线平行”是解题的关键.10.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为( )A .10000x ﹣90005x -=100 B .90005x -﹣10000x =100 C .100005x -﹣9000x =100 D .9000x ﹣100005x -=100 【答案】B 【解析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x 元,则可列方程为:9000x 5-﹣10000x=100, 故选B .【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.二、填空题11. 在实数范围内分解因式35x x -=___________. 【答案】(55x x x【解析】提取公因式后利用平方差公式分解因式即可,即原式=2(5)(5)(5)x x x x x -=+-.故答案为(55.x x x +12.纳米是一种长度单位,1纳米=-910米,已知某种植物花粉的直径约为46 000纳米,用科学记数法表示表示该种花粉的直径为____________米.【答案】4.6×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:46000纳米×10-9=4.6×10-1米.故答案为:4.6×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.将长方形纸片ABCD沿EF折叠,如图所示,若∠1=48°,则∠AEF=_____度.【答案】114°【分析】根据折叠性质求出∠2和∠3,根据平行线性质求出∠AEF+∠2=180°,代入求出即可.【详解】根据折叠性质得出∠2=∠3=12(180°-∠1)=12×(180°-48°)=66°,∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF+∠2=180°,∴∠AEF=114°,故答案为:114°.【点睛】本题考查了矩形性质,平行线性质,折叠性质的应用,关键是求出∠2的度数和得出∠AEF+∠2=180°.14.如图,点E在正方形ABCD内,且∠AEB=90°,AE=5,BE=12,则图中阴影部分的面积是___________.【答案】139【解析】利用勾股定理可求出正方形的边长,根据S 阴影=S 正方形ABCD -S △AEB 即可得答案.【详解】∵AE=5,BE=12,∠AEB=90°,∴AB=22512+=13,∴S 阴影=S 正方形ABCD -S △AEB =13×13-12×5×12=139. 故答案为:139【点睛】本题考查勾股定理,直角三角形中,斜边的平分等于两条直角边的平方的和,熟练掌握勾股定理是解题关键.15.如图,ABC ∆中,AD 平分BAC ∠,3ACB B ∠=∠,CE AD ⊥,8AC =,74BC BD =,则CE =__________.【答案】43【分析】根据题意延长CE 交AB 于K ,由 CE AD ⊥,AD 平分BAC ∠,由等腰三角形的性质,三线合一得8AK AC ==,利用角平分线性质定理,分对边的比等于邻边的比,结合外角平分性质和二倍角关系可得.【详解】如图,延长CE 交AB 于K ,CE AD ⊥,AD 平分BAC ∠,等腰三角形三线合一的判定得8AC AK ∴==,ACK AKC ∠=∠, AC CD AB DB∴=, 74BC BD =,34CD BD ∴=, 323AB ∴=, 83KB ∴=, 3ACB B ∠=∠,KCB B ∴∠=∠,83KC KB ==, 1423CE KC ==, 故答案为:43.【点睛】考查了三线合一判定等腰三角形,等腰三角形的性质,角平分线定理,外角的性质,以及二倍角的角度关系代换,熟记几何图形的性质,定理,判定是解题的关键.16.在△ABC 中,AB =AC ,AB 的垂直平分线交AC 于D ,交AB 于E ,连接BD ,若∠ADE =40°,则∠DBC =_____.【答案】15°.【解析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE=∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE=∠ADE ,∵∠ADE=40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB=AC,∴∠ABC=118050652︒-︒=︒,∴∠DBC=∠ABC-∠ABD=15︒.故答案为:15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.17.116的算术平方根为________.【答案】1 4【分析】根据算术平方根的概念,可求解.【详解】因为(±14)2=116,∴1 16的平方根为±14,∴算术平方根为14,故答案为1 . 4【点睛】此题主要考查了求一个数的算术平方根,关键是明确算术平方根是平方根中的正值.三、解答题18.已知a,b,c=|c﹣17|+b2﹣30b+225,(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.【答案】(1)a=8,b=15,c=17;(2)能,2【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a、b、c的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a,b,c|c﹣17|+b2﹣30b+225,21||7(15)c b+-﹣,∴a﹣8=0,b﹣15=0,c﹣17=0,∴a=8,b=15,c=17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=1.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=2. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.19.计算(1)()()()23222223222---+-÷xy y xy xy xy(2)()()22a b a b -+++(3)22455511045+-⨯【答案】(1)24x y ;(2)2244a a b ;(3)100 【分析】(1)先根据幂的乘方运算法则和同底数幂的乘除法法则计算原式中的乘方运算,再根据同底数幂的加法法则算加法即可;(2)利用平方差公式进行计算即可;(3)利用完全平方公式进行计算即可.【详解】解:(1)原式=223246229482--÷x yy x y x y xy =242442944--x y x y x y=24x y(2)原式=()()22++-+a b a b=()()22+⎡⎤⎡⎤+-+⎣⎦⎣⎦a b a b=()222-+a b=2244a a b(3)原式=2245+55-25545⨯⨯=()255-45=100【点睛】本题主要考查了实数的运算,整式的化简求值,完全平方公式和平方差公式,掌握实数的运算,整式的化简求值,完全平方公式和平方差公式是解题的关键.20.如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______;(3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______.【答案】(1)3;(2)63761;(3)0,1,0,5【分析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答;(2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x−3|=6,即|x−3|=2,所以x =5或x =1,即可解答.【详解】(1)∵C (−1,−3),∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3),∴AB =4−(−2)=6, AC 221637+=BC 225661+(3)(3)设点P 的坐标为(0,y ),∵△ABP 的面积为6,A (−2,3)、B (4,3), ∴12。
∥3套精选试卷∥2021年马鞍山市八年级上学期数学期末质量跟踪监视试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有A.3种B.4种C.5种D.6种【答案】D【分析】设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤1.【详解】解:∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<5;当x=3,y=4时,7×3+5×4=41<1;当x=3,y=5时,7×3+5×5=46<1;当x=3,y=6时,7×3+5×6=51>1舍去;当x=4,y=3时,7×4+5×3=43<1;当x=4,y=4时,7×4+5×4=4<1;当x=4,y=5时,7×4+5×5=53>1舍去;当x=5,y=3时,7×5+5×3=1=1.综上所述,共有6种购买方案.故选D.2.四边形ABCD中,若∠A+∠C=180°且∠B:∠C:∠D=3:5:6,则∠A为().A.80°B.70°C.60°D.50°【答案】A【解析】试题分析:由∠A+∠C=180°根据四边形的内角和定理可得∠B+∠D=180°,再设∠B=3x°,∠C=5x°,∠D=6x°,先列方程求得x的值,即可求得∠C的度数,从而可以求得结果.∵∠B:∠C:∠D=3:5:6∴设∠B=3x°,∠C=5x°,∠D=6x°∵∠A+∠C=180°∴∠B+∠D=180°∴3x+6x=180,解得x=20∴∠C=100°∴∠A=180°-100°=80°故选A.考点:四边形的内角和定理点评:四边形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.3.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角.③三角形的一个内角大于任何一个外角.④如果0x > ,那么20x > .A .1 个B .2 个C .3 个D .4 个【答案】A【分析】正确的命题是真命题,根据定义解答即可.【详解】①两条直线被第三条直线所截,内错角相等,是假命题;②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角,是假命题;③三角形的一个内角大于任何一个外角,是假命题;④如果0x > ,那么20x > ,是真命题,故选:A.【点睛】此题考查真命题,熟记真命题的定义,并熟练掌握平行线的性质,对顶角的性质,三角形外角性质,不等式的性质是解题的关键.4.若x y >,则下列式子正确的是( )A .11y x +>-B .33x y >C .11x y ->-D .33x y ->- 【答案】B【分析】根据不等式的性质判断即可.【详解】解:由x y >,不能判断1y +与1x -的大小,A 错误;由x y >,可知33x y >,B 正确;由x y >,可知x y -<-,∴11x y -<-,C 错误;由x y >,可知33x y -<-,D 错误.故选:B .【点睛】本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.5.下列结论正确的是( )A .有两个锐角相等的两个直角三角形全等;B .顶角和底边对应相等的两个等腰三角形全等C .一条斜边对应相等的两个直角三角形全等;D .两个等边三角形全等. 【答案】B【解析】试题解析:A 两个锐角相等的两个直角三角形不全等,故该选项错误;B 中两角夹一边对应相等,能判定全等,故该选项正确;C 一条斜边对应相等的两个直角三角形不全等,故该选项错误;D 中两个等边三角形,虽然角相等,但边长不确定,所以不能确定其全等,所以D 错误.故选B .6.若把代数式222x x +-化为2()x m k ++的形式(其中m 、k 为常数),则+m k 的值为( ) A .4-B .2-C .4D .2【答案】B【分析】根据完全平方式配方求出m 和k 的值即可.【详解】由题知()222213x x x +-+-=,则m=1,k=-3,则m+k=-2,故选B.【点睛】本题是对完全平方公式的考查,熟练掌握完全平方公式是解决本题的关键.7.下列命题中是假命题的是( ▲ )A .对顶角相等B .两直线平行,同旁内角互补C .同位角相等D .平行于同一条直线的两条直线平行 【答案】C【分析】根据对顶角的性质、平行线的性质、平行公理的推论逐项判断即可.【详解】A 、对顶角相等,则此项是真命题B 、两直线平行,同旁内角互补,则此项是真命题C 、同位角不一定相等,则此项是假命题D 、平行于同一条直线的两条直线平行,则此项是真命题故选:C .【点睛】本题考查了对顶角的性质、平行线的性质、平行公理的推论,掌握相交线与平行线的相关知识是解题关键. 8.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形 【答案】C【解析】依据三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形.【详解】解:∵三角形的一个外角与它相邻的内角和为180°,而这个外角小于它相邻的内角,∴与它相邻的这个内角大于90°,∴这个三角形是钝角三角形.故选:C.【点睛】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.9.如图,AB=AC,AE=AD,要使△ACD≌△ABE,需要补充的一个条件是( )A.∠B=∠C B.∠D=∠E C.∠BAC=∠EAD D.∠B=∠E【答案】C【解析】解:∠BAC=∠EAD,理由是:∵∠BAC=∠EAD,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ACD和△ABE中,∵AC=AB,∠CAD=∠BAE,AD=AE,∴△ACD≌△ABE(SAS),选项A,选项B,选项D的条件都不能推出△ACD≌△ABE,只有选项C的条件能推出△ACD≌△ABE.故选C.【点睛】本题考查了全等三角形的判定定理的应用,能正确运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.在式子1a,2xyπ,2334a b c,56x+,7x+8y,9 x +10y,中,分式的个数是()A.5 B.4 C.3 D.2 【答案】C【详解】2xyπ、2334a b c 、7x +8y 分母中均不含有字母,因此它们是整式,而不是分式,1a 、56x +、9x +10y分母中含有字母,因此是分式.故选C 二、填空题11.已知()()212x p x q x mx ++=++,其中,p q 为正整数,则m =__________.【答案】7、8或13【分析】已知等式左边利用多项式乘以多项式法则变形, 利用多项式相等的条件确定出m 的值即可 .【详解】解:22()()()12x p x q x p q x pq x mx ++=+++=++, 12pq ∴=, p ,q 均为正整数,123426112∴=⨯=⨯=⨯,又m p q =+7m ∴=,8,13.故答案为:7、8或13.【点睛】此题考查了多项式乘以多项式,以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解本题的关键12.利用分式的基本性质填空:(1)35a xy =()10axy,(a≠0) (2)224a a +-=()1. 【答案】6a ; a ﹣2【解析】试题解析:第一个中,由前面分式的分母变成后面分式的分母乘以2a ,因而分母应填:2326.a a a ⋅= 第二个式子,分子由第一个式子到第二个式子除以2a +,则第二个空应是:()()2422a a a -÷+=-. 故答案为26.a 2a -.点睛:分式的基本性质是:在分式的分子、分母上同时乘以或除以同一个非0的数或式子,分式的值不变. 13.如图,直线y=x+1与直线y=mx-n 相交于点M(1,b),则关于x ,y 的方程组1x y mx y n+⎧⎨-⎩==的解为:________.【答案】12x y ==⎧⎨⎩【分析】首先利用待定系数法求出b 的值,进而得到M 点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】∵直线y=x+1经过点M (1,b ),∴b=1+1,解得b=2,∴M (1,2),∴关于x 的方程组1x y mx y n +⎧⎨-⎩== 的解为12x y ==⎧⎨⎩, 故答案为12x y ==⎧⎨⎩. 【点睛】此题考查二元一次方程组与一次函数的关系,解题关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.14.一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.【答案】1【分析】先求出体育优秀的占总体的百分比,再乘以360°即可. 【详解】解:圆心角的度数是:1636012048︒︒⨯= 故答案为:1.【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.15.如图(1),在三角形ABC 中,38A ∠=︒72C ∠=︒,BC 边绕点C 按逆时针方向旋转1(080)αα︒≤≤︒,在旋转过程中(图2),当//CB AB '时,旋转角为__________度;当CB '所在直线垂直于AB 时,旋转角为___________度.【答案】70 1【分析】在三角形ABC中,根据三角形的内角和得到∠B=180°-38°-72°=70°,如图1,当CB′∥AB时,根据平行线的性质即可得到结论;如图2,当CB′⊥AB时根据垂直的定义即可得到结论.【详解】解:∵在三角形ABC中,∠A=38°,∠C=72°,∴∠B=180°-38°-72°=70°,如图1,当CB′∥AB时,旋转角=∠B=70°,∴当CB′∥AB时,旋转角为70°;如图2,当CB′⊥AB时,∠BCB″=90°-70°=20°,∴旋转角=180°-20°=1°,∴当CB′⊥AB时,旋转角为1°;故答案为:70;1.【点睛】本题考查了三角形的内角和,平行线的性质,正确的画出图形是解题的关键.16.请用“如果…,那么…”的形式写一个命题______________【答案】答案不唯一【解析】本题主要考查了命题的定义任何一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.答案不唯一,例如:如果两个角是同位角,那么这两个角相等.17.点M (3,﹣1)到x 轴距离是_____.【答案】1【分析】点到x 轴的距离是该点纵坐标的绝对值,根据点坐标即可得到答案.【详解】解:M (3,﹣1)到x 轴距离是 1.故答案为:1.【点睛】此题考查点到坐标轴的距离,正确理解距离与点坐标的关系是解题的关键.三、解答题18.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队共同工作了半个月,总工程全部完成.哪个队的施工速度快?【答案】乙队的施工进度快.【详解】设乙的工作效率为x .依题意列方程:(13+x )×12=1-13. 解方程得:x=1.∵1>13, ∴乙效率>甲效率,答:乙队单独施工1个月可以完成总工程,所以乙队的施工进度快.19.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式____________________________________(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++=_________.【答案】(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)见解析;(3)1【分析】(1)图2的面积一方面可以看作是边长为(a +b +c )的正方形的面积,另一方面还可以看成是3个边长分别为a 、b 、c 的正方形的面积+2个边长分别为a 、b 的长方形的面积+2个边长分别为a 、c 的长方形的面积+2个边长分别为b 、c 的长方形的面积,据此解答即可;(2)根据多项式乘以多项式的法则计算验证即可;(3)将所求的式子化为:()()22222a a b c b c ab ac bc +++-++=+,然后整体代入计算即得结果.【详解】解:(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc ;所以(1)中的等式成立;(3)()()2222221023530a b c a b c ab ac bc ++=++-++=-⨯=.故答案为:1.【点睛】本题是完全平方公式的拓展应用,主要考查了对三数和的完全平方的理解与应用,正确理解题意、熟练掌握完全平方公式是解题的关键.20.计算:()20192020122⎛⎫-⨯ ⎪⎝⎭=________.【答案】2【分析】利用同底数幂的乘法运算将原式变形,再利用积的乘方求出结果. 【详解】解:(-2)202012⨯()2019 =2202012⨯()2019 =2⨯2201912⨯()2019 =2122⨯⨯()2019 =21⨯=2【点睛】此题考察整式乘法公式的运用,准确变形是解题的关键.21.如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ∆≅∆;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.【答案】 (1)见解析;(2)65︒【分析】(1)由角平分线定义得出ABE DBE ∠∠=,由SAS 证明ABE DBE ∆≅∆即可;(2)由三角形内角和定理得出30ABC ∠=︒,由角平分线定义得出1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,由三角形内角和定理即可得出答案.【详解】(1)证明:BE 平分ABC ∠,∴ABE DBE ∠∠=,在ABE ∆和DBE ∆中,AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DBE SAS ∆≅∆;(2)100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,BE 平分ABC ∠,∴1152ABE DBE ABC ∠∠∠︒===, 在ABE ∆中,1801801001565AEB A ABE ∠=︒∠∠=︒︒︒=︒----.【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.22.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =CD .(1)求证:△BCE ≌△DCF ;(2)若AB =21,AD =9,BC =CD =10,求AC 的长.【答案】(1)见解析;(2)AC 的长为1.【分析】(1)首先根据垂线的意义得出∠CFD=∠CEB=90°,然后根据角平分线的性质得出CE=CF ,即可判定Rt △BCE ≌Rt △DCF ;(2)首先由(1)中全等三角形的性质得出DF=EB ,然后判定Rt △AFC ≌Rt △AEC ,得出AF=AE ,构建方程得出CF ,再利用勾股定理即可得出AC.【详解】(1)∵AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,∴∠CFD=90°,∠CEB=90°(垂线的意义)∴CE=CF (角平分线的性质)∵BC=CD (已知)∴Rt △BCE ≌Rt △DCF (HL )(2)由(1)得,Rt △BCE ≌Rt △DCF∴DF=EB ,设DF=EB=x∵∠CFD=90°,∠CEB=90°,CE=CF ,AC=AC∴Rt △AFC ≌Rt △AEC (HL )∴AF=AE即:AD+DF=AB ﹣BE∵AB=21,AD=9,DF=EB=x∴9+x=21﹣x 解得,x=6在Rt △DCF 中,∵DF=6,CD=10∴CF=8∴Rt △AFC 中,AC 2=CF 2+AF 2=82+(9+6)2=289∴AC=1答:AC 的长为1.【点睛】此题主要考查角平分线、全等三角形的判定与性质以及勾股定理的运用,熟练掌握,即可解题. 23.已知:如图,,,,ACB DCE AC BC CD CE AD ∠=∠==交BC 于点F ,连结BE .(1)求证:≌ACD BCE .(2)延长AD 交BE 于点H ,若30ACB ∠=︒,求BHF ∠的度数.【答案】(1)见解析;(2)30【分析】(1)根据题意,利用公共角的条件通过边角边的证明方法求解即可得解;(2)根据三角形全等的性质及内角和定理进行计算即可得解.【详解】(1)ACB DCE ∠=∠ACB DCB DCE DCB ∴∠+∠=∠+∠即ACD BCE ∠=∠CA CB CD CE ==,()ACD BCE SAS ∴∆≅∆;(2)如下图:ACD BCE ∆≅∆A B ∴∠=∠BFH AFC ∠=∠,30ACB ∠=︒30BHF ACB ∴∠=∠=︒.【点睛】本题主要考查了全等三角形的判定与形式,熟练掌握全等三角形的证明是解决本题的关键.24.已知:如图,AB =AD ,BC =ED ,∠B =∠D .求证:∠1=∠1.【答案】见解析【分析】证明△ABC ≌△ADE (SAS ),得出∠BAC =∠DAE ,即可得出∠1=∠1.【详解】解:证明:在△ABC 和△ADE 中,AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (SAS ),∴∠BAC =∠DAE ,∴∠1=∠1.【点睛】本题考查了全等三角形的判定与性质,证明三角形全等是解题的关键.25.(1)先化简,再求值:()22(34)(2)(2)x y x x y y x y x -----+,其中3,1x y ==.(2)分解因式22a b ab b ++【答案】(1)2223x y -,3;(2)2(1)b a +.【分析】(1)先将原式去掉括号再化简,最后代入求值即可;(2)先提取公因式,然后利用完全平方公式进一步因式分解即可.【详解】(1)()22(34)(2)(2)x y x x y y x y x -----+=2222244344x xy y x xy y x -+-+-+=2223x y -,∵1x y ==,∴原式=2223x y -=63-=3;(2)22a b ab b ++=2(21)b a a ++=2(1)b a +.【点睛】本题主页面考查了整式的化简求值与因式分解,熟练掌握相关方法是解题关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在下列数字宝塔中,从上往下数,2018在_____层等式的______边.1+2=34+5+6=7+89+10+11+12=13+14+1516+17+18+19+20=21+22+23+24......正确的答案是( )A .44,左B .44,右C .45,左D .45,右 【答案】B【详解】试题解析:∵第1层的第1个数为211=,第2层的第1个数为242=,第3层的第1个数为293=,∴第44层的第1个数为2441936=,第45层的第1个数为2452025=,∴2018在第44层,这一层共有99个数,左边45个数,右边44个数.∴2018在第44层的右边.故选B.2.当分式21x x +-的值为0时,字母x 的取值应为( ) A .﹣1B .1C .﹣2D .2 【答案】C【分析】解分式方程,且分式的分母不能为0.【详解】解:由题意,得x+2=0且x ﹣1≠0,解得x=﹣2,故选:C .【点睛】掌握分式方程的解法为本题的关键.3.如果214x kx ++是完全平方式,则k 的值是( )A .12B .±1C .12±D .1.【答案】B【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可求出k 的值.【详解】解:∵214x kx ++是完全平方式, ∴22222211114222x kx x kx x x x ==⎛⎫⎛⎫⎛⎫++=++±±+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴k= ±1故选B .【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键. 4.①实数和数轴上的点一一对应.②不带根号的数一定是有理数.③一个数的立方根是它本身,这样的数有两个.④81的算术平方根是1.其中真命题有( )A .1个B .2个C .3个D .4个【答案】A【分析】根据数轴的性质与实数的性质及二次根式的性质依次判断即可.【详解】实数和数轴上的点一一对应,①是真命题;不带根号的数不一定是有理数,例如π是无理数,②是假命题;一个数的立方根是它本身,这样的数有±1,0,共3个,③是假命题;81的算术平方根是3,④是假命题; 综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了命题真假的判断,熟练掌握各章节的相关概念是解题关键.5.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?( ).A .0根B .1根C .2根D .3根【答案】B 【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B6.若a 8a 在数轴上对应的点的位置表示出来,可能正确的是( )A.B.C.D.【答案】C【分析】先根据实数意义判断a的取值范围,再确定答案.【详解】因为2=4<a=8<9=3所以a更接近3所以把实数a在数轴上对应的点的位置表示出来,只有C正确故选:C【点睛】考核知识点:实数和数轴上的点.确定无理数的取值范围是关键.7.如果分式22444xx x--+的值为0,则x的值为()A.2-B.2C.2±D.不存在【答案】A【分析】根据分式的值为0的条件:分子等于0,分母不为0解答即可.【详解】∵分式22444xx x--+的值为0,∴x2-4=0且x2-4x+4≠0,解得:x=-2.故选A.【点睛】本题考查的是分式的值为0的条件,即分子等于零且分母不等于零.8.计算,得()A.B.C.D.【答案】C【解析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m+2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.9.如图,是我们学过的用直尺和三角板画平行线的方法示意图,画图的原理是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.内错角相等,两直线平行D.同旁内角互补,两直线平行【答案】B【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【详解】解:如图:∵∠DPF=∠BAF,∴a∥b(同位角相等,两直线平行).故选:B.【点睛】本题考查了平行线的判定方法,熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键.10.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.【答案】B【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.二、填空题11.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=12AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为_____.513【分析】根据12•BC•AH=12•AB•AC,可得AH=1313,根据12AD•BO=12BD•AH,得OB=1313,再根据BE=2OB=1313,运用勾股定理可得EC.【详解】设BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∠BAC=90°,AB=2,AC=3,由勾股定理得:BC13∵点D是BC的中点,∴AD=DC=DB 13,∵12•BC•AH=12•AB•AC,∴AH 613,∵AE=AB,DE=DB,∴点A在BE的垂直平分线上,点D在BE的垂直平分线上,∴AD垂直平分线段BE,∵12AD•BO =12BD•AH , ∴OB =61313, ∴BE =2OB =121313, ∵DE =DB=CD ,∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°, ∴在Rt △BCE 中,EC =22BC BE - =221213(13)()13-=513. 故答案为:513. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.12.因式分解:a 3-a=______.【答案】a (a -1)(a + 1)【解析】分析:先提取公因式a ,再对余下的多项式利用平方差公式继续分解.解答:解:a 3-a ,=a (a 2-1),=a (a+1)(a-1).13.分解因式32a b b -结果是______.【答案】()()b a b a b +-【分析】首先提取公因式b ,然后利用平方差公式即可得解.【详解】()()()3222b a b a b b a b b b a =-=+--故答案为:()()b a b a b +-.【点睛】此题主要考查分解因式的运用,熟练掌握,即可解题.14.已知x 、y 1|2|0x y -++=,则24x y -的平方根为________.【答案】3±【分析】利用算术平方根及绝对值的非负性求出x 、y 的值,即可代入求出24x y -的平方根. 【详解】∵1|2|0x y -++=,∴x-1=0,y+2=0,∴x=1,y=-2,∴24x y -=1+8=9,∴24x y -的平方根为3±,故答案为:3±.【点睛】此题考查算术平方根及绝对值的非负性,求一个数的平方根,能根据题意求出x 、y 的值是解题关键. 15.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,则△ABC 周长的最小值是_____.【答案】513+【分析】作AD ⊥OB 于D ,则∠ADB =90°,OD =1,AD =3,OB =3,得出BD =2,由勾股定理求出AB 即可;由题意得出AC +BC 最小,作A 关于y 轴的对称点A ',连接A B '交y 轴于点C ,点C 即为使AC +BC 最小的点,作A E x '⊥轴于E ,由勾股定理求出A B ',即可得出结果.【详解】解:作AD ⊥OB 于D ,如图所示:则∠ADB =90°,OD =1,AD =3,OB =3,∴BD =3﹣1=2,∴AB 222+3=13要使△ABC 的周长最小,AB 一定,则AC +BC 最小,作A 关于y 轴的对称点A ',连接A B '交y 轴于点C ,点C 即为使AC +BC 最小的点,作A E x '⊥轴于E ,由对称的性质得:AC =A C ',则AC +BC =A B ',A E '=3,OE =1,∴BE =4,由勾股定理得:A B '5=,∴△ABC ..【点睛】本题主要考查最短路径问题,关键是根据轴对称的性质找到对称点,然后利用勾股定理进行求解即可. 16.点(2+a ,3)关于y 轴对称的点的坐标是(﹣4,2﹣b ),则a b =_____. 【答案】12. 【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵点(2+a ,3)关于y 轴对称的点的坐标是(-4,2-b ),∴2+a=4,2-b=3,解得a=2,b=-1,所以,a b =2-1=12 , 故答案为12 【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.17.如图,在ABC ∆中,90ACB ∠=︒,4AC = ,BC =,点D 在AB 上,将ACD ∆ 沿CD 折叠,点A 落在点1A 处,1A C 与AB 相交于点E ,若1//AD BC ,则1A D 的长是__________.【答案】2【分析】利用平行线的性质及折叠的性质得到1190A A DB ∠+∠=,即AB ⊥CE ,再根据勾股定理求出2232AB BC AC +=,再利用面积法求出CE.【详解】∵1//AD BC ,∴1A DB B ∠=∠,由折叠得: 1A A ∠=∠,∵90ACB ∠=︒,∴90A B ∠+∠=,∴1190A A DB ∠+∠=,∴AB ⊥CE ,∵90ACB ∠=︒,4AC = ,2BC =, ∴2232AB BC AC +=, ∵1122AB CE AC BC ⋅⋅=⋅⋅, ∴11324222CE ⨯=⨯∴CE=43, ∴148433A E =-=, ∵1cosA cosA =, 18332A D=, ∴122A D =, 故答案为:2.【点睛】此题考查平行线的性质,折叠的性质,勾股定理,利用面积法求三角形的高线,题中求出AB⊥CE是解题的关键.三、解答题18.阅读材料:实数的整数部分与小数部分由于实数的小数部分一定要为正数,所以正、负实数的整数部分与小数部分确定方法存在区别:⑴对于正实数,如实数9.1,在整数9—10之间,则整数部分为9,小数部分为9.1-9=0.1.⑵对于负实数,如实数-9.1,在整数-10—-9之间,则整数部分为-10,小数部分为-9.1-(-10)=0.2.依照上面规定解决下面问题:(1的整数部分为a,小数部分为b,求a、b的值.(2)若x、y分别是8(x y+的值.(3)设,a是x的小数部分,b是- x的小数部分.求222a b ab++的值.【答案】(1)a=2 2;(2)5;(3)1【分析】(1的取值范围,然后根据题意即可求出a和b的值;(2的取值范围,然后根据不等式的基本性质即可求出8x、y 的值,代入求值即可;(3)将x化简,然后分别求出x的取值范围和-x的取值范围,根据题意即可求出a和b的值,代入求值即可.【详解】解:(1)∵2<3的整数部分a=2,小数部分2-;(2)∵3 4∴-4<-3∴4<<5∴x=4,小数部分y=-4=4-∴(x y+)=5(3)∵ x= 1=,∴-x=1-∵1<2,∴2<21+<3,-3<21--<-2∴21+的整数部分为2,小数部分a =21-21--的整数部分为-3,小数部分b=2-2∴原式 = 2()a b +=1 【点睛】此题考查的是求一个数的整数部分和小数部分,掌握一个数算术平方根的取值范围的求法是解决此题的关键.19.如图所示,B C D 、、三点在同一条直线上,ABC 和CDE △为等边三角形,连接,AD BE .请在图中找出与ACD 全等的三角形,并说明理由.【答案】△ACD ≌△BCE ,理由见解析.【分析】由题意根据全等三角形的判定与性质结合等边三角形的性质从而证明△ACD ≌△BCE 即可.【详解】解:△ACD ≌△BCE ,理由如下:∵△ABC 和△CDE 是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠ECD=60°,∵∠BCE=180°-∠ECD=120°,∠ACD=180°-∠ACB=120°,∴∠BCE=∠ACD ,在△ACD 和△BCE 中,AC BC BCE ACD CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE .【点睛】本题考查了全等三角形的判定与性质的运用,解答时结合等边三角形的性质的运用证明三角形全等是解答的关键.20.某地长途汽车公司规定旅客可随身携带一定质量的行李,如果超过规定质量,则需要购买行李票,行李票y 元是行李质量xkg 的一次函数,如图所示:(1)求y 与x 之间的表达式(2)求旅客最多可免费携带行李的质量是多少?【答案】 (1)0.26y x =-;(2)旅客最多可免费携带行李的质量是30kg .【分析】(1)由图,已知两点,可根据待定系数法列方程,求函数关系式;(2)旅客可免费携带行李,即y=0,代入由(1)求得的函数关系式,即可知质量为多少.【详解】解:(1)设y 与x 之间的表达式为y kx b =+,把()(6068010),,,代入 y kx b =+,得: 6068010k b k b +=⎧⎨+=⎩, 解方程组,得0.26k b =⎧⎨=-⎩y ∴与x 之间的表达式为0.26y x =-.(2)当0y =时,0.260x -=,30x ∴=∴旅客最多可免费携带行李的质量是30kg .【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.21.已知直线y kx b =+经过点()3,3和()1,1-,求该直线的解析式. 【答案】1322y x =+ 【分析】已知直线y kx b =+经过点()3,3和()1,1-,利用待定系数法即可求得直线解析式.【详解】解:设y kx b =+把(3,3),(1,1)-代入得:331k b k b +=⎧⎨-+=⎩,解得1232 kb⎧=⎪⎪⎨⎪=⎪⎩∴该直线的解析式为1322y x=+故答案为:1322y x=+【点睛】本题考查了用待定系数法求一次函数解析式,已知直线上两点坐标即可用待定系数法求出一次函数解析式.22.如图,Rt ABC∆中,90,6,8C AC BC∠===.(1)在BC边求作一点D,使点D到AB的距离等于CD(尺规作图,保留作图痕迹);(2)计算(1)中线段CD的长.【答案】(1)见解析;(2)1【分析】(1)根据角平分线上的点到角的两边的距离相等可知,作出∠A的平分线即可;(2)设CD x=,然后用x表示出DB、DE、BF,利用勾股定理得到有关x的方程,解之即可.【详解】(1)如图所示:(2)设CD x=,作DE AB⊥于E,如图所示:则DE CD x ==,∵90,6,8C AC BC ∠=︒==,∴10AB =,∴1064EB =-=,∵222DE BE DB∴()22248x x +=-,解得3x =,即CD 长为1.【点睛】此题考查了尺规作图角平分线以及勾股定理的运用,解题关键是利用其列出等量关系.23.某工厂需要在规定时间内生产1000个某种零件,该工厂按一定速度加工6天后,发现按此速度加工下去会延期4天完工,于是又抽调了一批工人投入这种零件的生产,使工作效率提高了40%,结果如期完成生产任务.(1)求该工厂前6天每天生产多少个这种零件;(2)求规定时间是多少天.【答案】(1)该工厂前6天每天生产50个零件;(2)规定的时间为16天.【分析】(1)根据计划的天数可以列出相应的分式方程,从而可以解答本题;(2)根据(1)中的结果可以求得规定的天数,本题得以解决.【详解】解:(1)设该工厂前6天每天生产x 个零件,由题意,列方程10001000646(140%)x x x --=++ 方程两边乘(140%)x +,得1000(140%)10(140%)(10006)x x +=++-即14001410006x x =+-解之,得50x =检验:当50x =时,(140%)0x +≠所以原方程的解为50x =故该工厂前6天每天生产50个零件.(2)规定的时间为:10001000441650x -=-=。
[试卷合集3套]马鞍山市2021年八年级上学期数学期末统考试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄,如图是兴庆公园的一角,有人为了抄近道而避开横平竖直的路的拐角∠ABC,而走“捷径AC’于是在草坪内走出了一条不该有的“路AC”,已知AB=40米,BC=30米,他们踩坏了___米的草坪,只为少走___米路()A.20、50 B.50、20 C.20、30 D.30、20【答案】B【分析】根据勾股定理求出AC即可解决问题.【详解】在Rt△ABC中,∵AB=40米,BC=30米,∴AC223040=+=50,30+40﹣50=20,∴他们踩坏了50米的草坪,只为少走20米的路.故选:B.【点睛】本题考查了勾股定理,解题的关键是理解题意,属于中考基础题.2.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2 B.2、1 C.2、2 D.2、3【答案】D【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴需要正方形2块,正三角形3块.故选D.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.3.如图,点P是∠AOB 平分线OC上一点,PD⊥OB,垂足为D,若PD=3,则点P到边OA的距离是()A .1B .2C .3D .4【答案】C 【分析】作PE ⊥OA 于E ,根据角平分线的性质解答.【详解】解:作PE ⊥OA 于E ,∵点P 是∠AOB 平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,∴PE=PD=3,故选:C .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键. 4.下列计算中正确的是( )A .(ab 3)2=ab 6B .a 4÷a =a 4C .a 2•a 4=a 8D .(﹣a 2)3=﹣a 6 【答案】D【分析】分别根据积的乘方运算法则、同底数幂的除法和同底数幂的乘法运算法则依次计算即可得出答案.【详解】解:A 、(ab 3)2=a 2b 6≠ab 6,所以本选项错误;B 、a 4÷a =a 3≠a 4,所以本选项错误;C 、a 2•a 4=a 6≠a 8,所以本选项错误;D 、(﹣a 2)3=﹣a 6,所以本选项正确.故选:D .【点睛】本题考查了幂的运算性质,属于基础题型,熟练掌握幂的运算法则是解题的关键.5.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交BC 于点D ,则下列说法中:①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S =.其中正确的个数是( )A .1B .2C .3D .4【答案】D 【分析】①连接NP ,MP ,根据SSS 定理可得ANP AMP ≌,故可得出结论;②根据三角形的外角的性质即可得出结论;③先根据三角形内角和定理求出CAB ∠的度数,再由AD 是BAC ∠的平分线得出30BAD CAD ∠=∠=︒,根据BAD B =∠∠可知AD BD =,故可得出结论;④先根据直角三角形的性质得出30CAD ∠=︒,12CD AD =,再由三角形的面积公式即可得出结论. 【详解】解:①证明:连接NP ,MP ,在ANP 与AMP 中,AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩, ()ANP AMP SSS ∴△≌△,则CAD BAD ∠=∠,故AD 是BAC ∠的平分线,故此结论正确;②在ABC 中,90C ∠=︒,30B ∠=︒,60CAB ∴∠=︒.AD 是BAC ∠的平分线,1302BAD CAD CAB ∴∠=∠=∠=︒, ∴60ADC BAD B ∠=∠+∠=︒,故此结论正确;③1302BAD CAD CAB ∠=∠=∠=︒, 30BAD B ∴∠=∠=︒,AD BD ∴=,∴点D 在AB 的垂直平分线上,故此结论正确;④在Rt ACD △中,30CAD ∠=︒,12CD AD ∴=, 1322BC BD CD AD AD AD ∴=+=+=,1124DAC S AC CD AC AD =⋅=⋅△, 11332224ABC S AC BC AC AD AC AD ∴=⋅=⋅=⋅△, :1:3DAC ABC S S ∴=△△,故此结论正确;综上,正确的是①②③④.故选:D .【点睛】本题考查的是角平分线的性质,线段垂直平分线的性质,作图-基本作图等,熟知角平分线的作法是解答此题的关键.6.满足-2<x≤1的数在数轴上表示为( )A .B .C .D .【答案】B【分析】-2<x≤1表示不等式x >﹣2和不等式x≤1的公共部分。
〖汇总3套试卷〗马鞍山市2021年八年级上学期数学期末调研试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段1l 、2l 分别表示小敏、小聪离B 地的距离()y km 与已用时间()x h 之间的关系,则小敏、小聪行走的速度分别是()A .3/km h 和4/km hB .3/km h 和3/km hC .4/km h 和4/km hD .4/km h 和3/km h【答案】D【解析】设小敏的速度为:m ,则函数式为,y=mx+b , 由已知小敏经过两点(1.6,4.8)和(2.8,0), 所以得:4.8=1.6m+b ,0=2.8m+b , 解得:m=-4,b=11.2,小敏离B 地的距离y (km )与已用时间x (h )之间的关系为:y=-4x+11.2; 由实际问题得小敏的速度为4km/h ;设小聪的速度为:n ,则函数图象过原点则函数式为,y=nx , 由已知经过点(1.6,4.8), 所以得:4.8=1.6n , 则n=3,即小聪的速度为3km/h , 故选D .2.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长acm ,宽34acm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品所占的面积是( ) A .237442a a -+ B .237164a a -+ C .237442a a ++ D .237164a a ++ 【答案】D【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案. 【详解】根据题意可知,这幅摄影作品占的面积是34a 2+4(a +4)+4(34a +4)−4×4=237164a a ++ 故选:D . 【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子. 3.要反映我市某一周每天的最高气温的变化趋势,宜采用( ) A .条形统计图 B .扇形统计图C .折线统计图D .统计表【答案】C【解析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【详解】折线统计图表示的是事物的变化情况,石城县一周内每天的最高气温的变化情况,宜采用折线统计图. 故选:C 【点睛】此题考查统计图的选择,解题关键在于熟练掌握各种统计图的应用. 4.若分式33x +在实数范围内有意义,则x 的取值范围是( ) A .3x <- B .3x >-C .3x ≠-D .3x =-【答案】C【分析】根据分式的分母不等于零,可得答案. 【详解】解:由题意,得: x+3≠0, 解得x≠-3, 故选C . 【点睛】本题考查了分式有意义的条件,利用分母不等于零得出不等式是解题关键. 5.下列说法不正确的是( )A .调查一架“歼20”隐形战机各零部件的质量,应采用抽样调查B .一组数据2,2,3,3,3,4的众数是3C .如果x 1与x 2的平均数是4,那么x 1+1与x 2+5的平均数是7D .一组数据1,2,3,4,5的方差是2,那么数据11,12,13,14,15的方差也是2 【答案】A【分析】根据抽样调查和全面调查的区别、众数、平均数和方差的概念解答即可.【详解】A、调查一架隐形战机的各零部件的质量,要求精确度高的调查,适合普查,错误;B、一组数据2,2,3,3,3,4的众数是3,正确;C、如果x1与x2的平均数是4,那么x1+1与x2+5的平均数(x1+1+x2+5) ÷2=(4+1+4+5) ÷2=7,正确;D、一组数据1,2,3,4,5的方差是2,那么把每个数据都加同一个数后得到的新数据11,12,13,14,15的方差也是2,正确;故选A【点睛】本题考查了抽样调查和全面调查的区别、众数、平均数和方差的意义,熟练掌握各知识点是解答本题的关键.选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D【分析】利用平均数和方差的意义进行判断.【详解】解:丁的平均数最大且方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.【点睛】本题考查平均数和方差在数据统计中的意义,理解掌握它们的意义是解答关键.7.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4 B.5 C.6 D.7【答案】B【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】①长度分别为1、3、4,能构成三角形,且最长边为1;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形; ④长度分别为6、3、3,不能构成三角形; 综上所述,得到三角形的最长边长为1. 故选:B . 【点睛】此题考查构成三角形的条件,三角形的三边关系,解题中运用不同情形进行讨论的方法,注意避免遗漏构成的情况. 8.把226,3c c a b ab 通分,下列计算正确的是( ) A .22222266,33c bc c aca b a b ab a b == B .222222618,333c bc c aca b a b ab a b == C .22222618,33c c c aca b a b ab a b == D .2222618,333c c c ca b a b ab ab == 【答案】B【分析】根据分式通分的方法即可求解. 【详解】把226,3c c a b ab通分,最简公分母为223a b , 故222222618,333c bc c ac a b a b ab a b == 故选B . 【点睛】此题主要考查分式通分,解题的关键是熟知分式通分的方法. 9.将一元二次方程 251=4x x 化成一般形式后,二次项系数和一次项系数分别为( ).A .5,-1B .5,4C .5,-4D .25,4x x【答案】C【分析】先化成一般式,再根据二次项系数与一次项系数的定义即可求解. 【详解】解:化成一元二次方程的一般式得:25410x x --=, 故二次项系数为:5,一次项系数为:-4, 故选:C . 【点睛】此题主要考查了一元二次方程的一般形式,正确把握相关定义是解题关键. 10.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF【答案】B【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得. 【详解】根据三角形中线的定义知:线段AD 是△ABC 的中线. 故选B . 【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线. 二、填空题11.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m )这六次成绩的平均数为7.7m ,方差为160.如果李阳再跳一次,成绩为7.7m .则李阳这7次跳远成绩的方差_____(填“变大”、“不变”或“变小”). 【答案】变小【分析】根据平均数的求法121()n x x x x n=+++ 先求出这组数据的平均数,再根据方差公式2222121[()()()]n s x x x x x x n=-+-++- 求出这组数据的方差,然后进行比较即可求出答案.【详解】解:∵李阳再跳一次,成绩为7.7m , ∴这组数据的平均数是7.767.77⨯+=7.7,∴这7次跳远成绩的方差是: S 2=17[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2]=170<160,∴方差变小; 故答案为:变小. 【点睛】本题主要考查平均数和方差,掌握平均数和方差的求法是解题的关键.12.直线y =1x ﹣1沿y 轴向上平移1个单位,再沿x 轴向左平移_____个单位得到直线y =1x+1. 【答案】2【分析】根据直线平移的规律:“左加右减,上加下减”,即可得到答案. 【详解】直线y =2x ﹣2沿y 轴向上平移2个单位得到直线:y =2x ﹣2+2=2x , 再沿x 轴向左平移 2个单位得到直线y =2(x+2),即y =2x+2.故答案为:2.【点睛】本题主要考查直线的平移规律,掌握“左加右减,上加下减”的平移规律,是解题的关键.13.等腰三角形一腰上的高与另一腰的夹角为45 ,则其顶角为________.【答案】135°或45°【分析】根据题意可知等腰三角形需要分类讨论,分为锐角三角形和钝角三角形,画出图形解答即可.【详解】解:①如图1所示,当等腰三角形是锐角三角形时,根据题意,∠ABM=45°,又∵BM是AC边上的高,∴∠AMB=90°,∴∠A=90°-45°=45°,②如图2,当等腰三角形是钝角三角形时,根据题意,∠DEN=45°,∵EN是DF边上的高∴∠N=90°,∴∠EDN=90°-45°=45°,∴∠EDF=180°-45°=135°故顶角为:135°或45°.【点睛】本题考查了等腰三角形的分类讨论问题,解题的关键是能够画出图形,根据数形结合的思想求出答案.14.有两个正方形,A B,现将B放在A的内部得图甲,将,A B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B的边长之和为________.【答案】1【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =, ∴22()()412425+=-+=+=a b a b ab , ∵a+b >0, ∴a+b=1, 故答案为:1. 【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型.15.一组数据1,2,a 的平均数为2,另一组数据,1,,1,2a -的中位数为___________. 【答案】32【分析】先根据平均数的定义求出a 的值,再根据中位数的定义求解即可. 【详解】解:∵一组数据1,2,a 的平均数为2, ∴a=3,∴另一组数据-1,a ,1,2为-1,3,1,2,∴中位数为12322+=, 故答案为:32.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.16.若02018a =,2201720192018b =⨯-,201720184554c ⎛⎫⎛⎫=-⨯ ⎪⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系用“<"连接为________. 【答案】c b a <<【分析】根据零指数幂得出a 的值,根据平方差公式运算得出b 的值,根据积的乘方的逆应用得出c 的值,再比较大小即可.【详解】解:∵020118a ==,2222201720192018(20181)(20181)20182018120181b =⨯-=-+-=--=-,20172018201720172017454554555545445444c ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯=-⨯=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⨯⎝=⎝⎭⎭⨯54-<-1<1 ∴c b a << . 故答案为:c b a <<. 【点睛】本题考查了零指数幂,平方差公式的简便运算,积的乘方的逆应用,解题的关键是根据上述运算法则计算出a ,b ,c 的值.17.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABCS=_________________.【答案】1【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD=∠CDB , ∵BD 平分ADC ∠,∴∠ADB=∠CDB , ∴∠CBD=∠ADB ,∴AD ∥BC ,∴∠CAD=∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD=∠CDB , ∴ACB ADC ∠=∠,∴CAD ADC ∠=∠, ∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC=∠CED=90°,CB=CD , ∴△BCF ≌△CDE (AAS ),∴CF=DE=5, ∴11451022ABCSAB CF =⋅=⨯⨯=. 故答案为:1.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.三、解答题18.先化简,再求值:12xx-+·22421xx x--+,其中|x|=2.【答案】21xx--;0【分析】根据分式的各个运算法则化简,然后求出x的值,再将使原分式有意义的x的值代入即可.【详解】解:原式=12xx-+·2(2)(2)(1)x xx-+-=21xx--.∵|x|=2∴x=±2当x=-2时,原分式无意义;当x=2时,原式=2221--=0【点睛】此题考查的是分式的化简求值题,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.19.在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)连接BD,根据角平分线的性质可得∠BAD=60°,又因为AD=AB,即可证△ABD是等边三角形;(2)由△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠BDE=∠ADF,由ASA证明△BDE ≌△ADF ,得出BE =AF. 【详解】(1)证明:连接BD , ∵∠BAC =120°,AD 平分∠BAC ∴∠BAD =∠DAC =12×120°=60°, ∵AD =AB ,∴△ABD 是等边三角形;(2)证明:∵△ABD 是等边三角形, ∴∠ABD =∠ADB =60°,BD =AD , ∵∠DAC =12∠BAC =60°, ∴∠DBE =∠DAF , ∵∠EDF =60°, ∴∠BDE =∠ADF , 在△BDE 与△ADF 中,DBE DAF BD ADBDE ADF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△BDE ≌△ADF (ASA ), ∴BE =AF .【点睛】本题主要考查等边三角形的判定和性质、全等三角形的判定和性质,熟练掌握相关知识点,掌握数形结合的思想是解题的关键.20.解不等式组20312123x x x +≥⎧⎪-+⎨<⎪⎩,并把解集在数轴上表示出来.【答案】﹣2≤x <1,见解析【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】20 312123x x x +≥⎧⎪⎨-+<⎪⎩①② 解不等式①得:x≥﹣2,解不等式②得:x<1,∴不等式组的解集是﹣2≤x<1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组)和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.21.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?【答案】(1)黄瓜和茄子各30千克、10千克;(2)23元【分析】(1)设当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【详解】(1)设采摘黄瓜x千克,茄子y千克.根据题意,得+y=40+1.2y=42 xx⎧⎨⎩,解得30 y=10x=⎧⎨⎩,答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.22.目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3800元购进节能灯120只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯30 40乙种节能灯35 50(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?【答案】(1)甲、乙两种节能灯各进80只,40只;(2)该商场获利1400元【分析】(1)根据题意可以列出相应的方程组,从而可以求得甲、乙两种节能灯各进了多少只; (2)根据(1)中的答案和表格中的数据可以求得该商场获得的利润.【详解】(1)设甲种节能灯进了x 只,乙种节能灯进了y 只,依题意得:12030353800x y x y +=⎧⎨+=⎩, 解得:8040x y =⎧⎨=⎩, 答:甲、乙两种节能灯各进80只,40只;(2)由题意可得,该商场获利为:(40-30)×80+(50-35)×40=800+600=1400(元),答:该商场获利1400元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.23.如图,△ABC 中,∠ACB=90°,AB=10cm ,BC=6cm ,若点P 从点A 出发以每秒1cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0).(1)若点P 在AC 上,且满足PA=PB 时,求出此时t 的值;(2)若点P 恰好在∠BAC 的角平分线上(但不与A 点重合),求t 的值.【答案】(1)254t = ;(2)323t =. 【分析】(1)根据中垂线性质可知,作AB 的垂直平分线,与AC 交于点P ,则满足PA=PB ,在Rt △ABC 中,用勾股定理计算出AC=8cm ,再用t 表示出PA=t cm ,则PC=()8t -cm ,在Rt △PBC 中,利用勾股定理建立方程求t ;(2)过P 作PD ⊥AB 于D 点,由角平分线性质可得PC=PD ,由题意PC=()t 8-cm ,则PB=()()6t 8=14t ---cm ,在Rt △ABD 中,利用勾股定理建立方程求t.【详解】(1)作AB 的垂直平分线交AB 于D ,交AC 于P ,连接PB ,如图所示,由垂直平分线的性质可知PA=PB ,此时P 点满足题意,在Rt △ABC 中,2222AC=AB BC =106=8--cm ,由题意PA= t cm ,PC=()8t -cm ,在Rt △PBC 中,222PC +BC =PB ,即()2228t +6=t -,解得25t=4(2)作∠CAB 的平分线AP ,过P 作PD ⊥AB 于D 点,如图所示∵AP 平分∠CAB ,PC ⊥AC ,PD ⊥AB ,∴PC=PD在Rt △ACP 和Rt △ADP 中,AP=AP PC=PD ⎧⎨⎩∴()Rt ACP Rt ADP HL ≅∴AD=AC=8cm∴BD=AB-AD=10-8=2cm由题意PD=PC=()t 8-cm ,则PB=()()6t 8=14t ---cm ,在Rt △ABD 中,222PD +BD =PB即()()222t 8+2=14t --解得32t=3【点睛】本题考查了勾股定理的动点问题,熟练运用中垂线性质和角平分线性质,找出线段长度,利用勾股定理建立方程是关键.24.如图,ABC ∆是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE AB ⊥于E ,连接PQ 交AB 于D .(1)若1AE =时,求AP 的长;(2)当30BQD ∠=︒时,求AP 的长;(3)在运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果发生变化,请说明理由.【答案】(1)2(2)2(3)DE =3为定值,理由见解析【分析】(1)根据等边三角形的性质得到∠A =60︒,根据三角形内角和定理得到∠APE =30︒,根据直角三角形的性质计算;(2)过P 作PF ∥QC ,证明△DBQ ≌△DFP ,根据全等三角形的性质计算即可;(3)根据等边三角形的性质、直角三角形的性质解答.【详解】(1)∵△ABC 是等边三角形,∴∠A =60︒,∵PE ⊥AB ,∴∠APE =30︒,∵AE =1,∠APE =30︒,PE ⊥AB ,∴AP =2AE =2;(2)解:过P 作PF ∥QC ,则△AFP 是等边三角形,∵P 、Q 同时出发,速度相同,即BQ =AP ,∴BQ =PF ,在△DBQ 和△DFP 中,DQB DPF QDB PDF BQ PF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBQ ≌△DFP ,∴BD =DF ,∵∠BQD =∠BDQ =∠FDP =∠FPD =30︒,∴BD =DF =FA =13AB=2, ∴AP =2;(3)解:由(2)知BD =DF ,∵△AFP 是等边三角形,PE ⊥AB ,∴AE =EF ,∴DE =DF +EF =12BF +12FA =12AB =3为定值,即DE 的长不变. 【点睛】本题考查的是全等三角形的判定和性质、等边三角形的判定和性质以及平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.如图,在等腰直角三角形ABC 中,∠ACB=90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD=3,求BF 的长.【答案】BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.a 、b 在数轴上的位置如图所示,那么化简2b a b --的结果是( )A .21b -B .aC .a -D .2b a -+ 【答案】B【分析】先根据数轴确定出a,b 的正负,进而确定出b a -的正负,再利用绝对值的性质和二次根式的性质化简即可.【详解】由数轴可知0,0a b ><∴0b a -<∴原式=()()b a b b a b a ----=-++=故选:B .【点睛】本题主要结合数轴考查绝对值的性质及二次根式的性质,掌握绝对值的性质及二次根式的性质是解题的关键.2.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ) A .2003503x x =- B .2003503x x =+ C .2003503x x =+ D .2003503x x=- 【答案】B【解析】试题分析:设每个笔记本的价格为x 元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程3.9的平方根是( )A .3-B .3C .3±D .81 【答案】C 【解析】∵±3的平方是9,∴9的平方根是±3故选C4.若把分式2x y x y+-中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍B .不变C .缩小10倍D .缩小20倍【答案】B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案.【详解】解:分式2x yx y+-中的x和y都扩大10倍可得:1021010(2)2101010()x y x y x yx y x y x y+⨯++==---,∴分式的值不变,故选B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.5.如图,AE垂直于∠ABC的平分线交于点D,交BC于点E,CE=13BC,若△ABC的面积为2,则△CDE的面积为()A.13B.16C.18D.110【答案】A【解析】先证明△ADB≌△EBD,从而可得到AD=DE,然后先求得△AEC的面积,接下来,可得到△CDE的面积.【详解】解:如图∵BD平分∠ABC,∴∠ABD=∠EBD.∵AE⊥BD,∴∠ADB=∠EDB.在△ADB和△EDB中,∠ABD=∠EBD,BD=BD,∠ADB=∠EDB,∴△ADB≌△EBD,∴AD=ED.∵CE=13BC,△ABC的面积为2,∴△AEC的面积为23.又∵AD=ED,∴△CDE 的面积=12△AEC 的面积=13 故选A .【点睛】 本题主要考查的是全等三角形的判定,掌握等高的两个三角形的面积比等于底边长度之比是解题的关键. 6.下列函数中,y 随x 增大而减小的是( )A .1y x =-B .12y x =C .21y x =-D .23y x =-+ 【答案】D【分析】根据一次函数的性质逐一判断即可得出答案.【详解】A. 1y x =-,10k => ,y 随x 增大而增大,不符合题意; B. 12y x =,102k => ,y 随x 增大而增大,不符合题意; C. 21y x =-,20k => ,y 随x 增大而增大,不符合题意;D. 23y x =-+,20k =-< ,y 随x 增大而减小,符合题意;故选:D .【点睛】本题主要考查一次函数的性质,掌握一次函数的图象和性质是解题的关键.7的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 【答案】B【分析】利用”夹逼法“+1的范围.【详解】∵4 < 6 < 9 , ∴<<23<,∴34<<,故选B.8.点()4,3-到y 轴的距离是( ).A .3B .4C .3-D .4- 【答案】B【分析】根据平面直角坐标系内的点到y 轴的距离就是横坐标的绝对值,即可得到结果.【详解】解:∵点()4,3-的横坐标为-4,∴点()4,3-到y 轴的距离是4,故选:B .【点睛】本题考查了平面直角坐标系内点的坐标,属于基础题目.9.眉山市某初级中学连续多年开设第二兴趣班.经测算,前年参加的学生中,参加艺术类兴趣班的学生占48%,参加体育类的学生占29%,参加益智类的学生占23%;去年参加的学生中,参加艺术类兴趣班的学生占36%,参加体育类的学生占33%,参加益智类的学生占31%(如图).下列说法正确的是( )A .前年参加艺术类的学生比去年的多B .去年参加体育类的学生比前年的多C .去年参加益智类的学生比前年的多D .不能确定参加艺术类的学生哪年多【答案】D 【分析】在比较各部分的大小时,必须在总体相同的情况下才能比较,所以无法确定参加艺术类的学生哪年多.【详解】解:眉山市某初级中学参加前年和去年的兴趣班的学生总人数不一定相同,所以无法确定参加各类活动的学生哪年多.故选D .【点睛】本题考查了扇形统计图.扇形统计图直接反映部分占总体的百分比大小,但是在比较各部分的大小时,必须在总体相同的情况下才能比较.10.把分式方程21=x+4x 转化为一元一次方程时,方程两边需同乘以( ) A .xB .2xC .x +4D .x(x +4)【答案】D【分析】根据各分母寻找公分母x(x +4),方程两边乘最简公分母,可以把分式方程转化为整式方程.【详解】解:方程两边同乘x(x +4),得2x=1故选D .二、填空题11.新型冠状病毒是一种形状为冠状的病毒,其直径大约为0.000000102m ,将0.000000102用科学记数法表示为______.【答案】71.0210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000102=1.02×10-1,故答案为:1.02×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.如图,在ABC ∆中,E 是BC 上的一点,2EC EB =,点D 是AC 的中点,,AE BD 交于点F ,3AF FE =.若ABC ∆的面积为18,给出下列命题:①ABE ∆的面积为16;②ABF ∆的面积和四边形DFEC 的面积相等;③点F 是BD 的中点;④四边形DFEC 的面积为152;其中,正确的结论有_____________.【答案】③④【分析】①根据等高的三角形面积比等于底边比即可求解;②先分别得出△ABE 的面积与△BCD 的面积的关系,然后进一步求解即可;③过点D 作DG ∥BC ,通过三角形中位线性质以及全等三角形的判定和性质进一步求解即可;④根据题意将该四边形面积计算出来即可.据此选出正确的选项从而得出答案.【详解】① ∵2EC EB =,∴EB=13BC , ∴ABE ∆的面积=11863⨯=,故①错误;② ∵2EC EB =,点D 为AC 的中点,∴△ABE 的面积≠△BCD 的面积,∴ABF ∆的面积和四边形DFEC 的面积不相等,故②错误;③ 如图,过点D 作DG ∥BC ,∵D 是AC 中点,DG ∥BC ,∴DG=12EC , ∵2EC EB =, ∴DG=EB ,∵DG ∥BC ,∴∠DGF=∠BEF ,∠GDF=∠EBF ,在△DGF 与△BEF 中,∵∠DGF=∠BEF ,DG=EB ,∠GDF=∠EBF ,∴△DGF ≌△BEF(ASA),∴DF=BF ,∴点F 是BD 的中点,故③正确;④ 四边形DFEC 的面积=111151818183222-⨯-⨯⨯=, 故④正确;综上所述,正确的结论有:③④,故答案为:③④.【点睛】本题主要考查了三角形的基本性质与全等三角形的判定及性质的综合运用,熟练掌握相关概念是解题关键.13.若12x y y -=,则x y=___________. 【答案】32 【解析】由x y 1y 2-=,得x−y=12y ,即x=32y ,故x y =32. 故答案为32. 14.如图:在ABC ∆中,D ,E 为边AB 上的两个点,且BD BC =,AE AC =,若108ACB ∠=︒,则DCE ∠的大小为______.【答案】036【分析】根据三角形内角和求出∠A+∠B,再根据AC=AE,BC=BD ,用∠A 表示∠AEC,用∠B 表示∠BDC,然后根据内角和求出∠DCE 的度数.【详解】∵∠ACB=1080,∴∠A+∠B=1800-1080=720,∵AC=AE,BC=BD,∴∠ACE=∠AEC,∠BCD=∠BDC, ∴01(180)2AEC A ∠=-∠01902A =-∠ 01(180)2BDCB ∠=-∠=01902B -∠ ∵∠DCE+∠CDE+∠DEC=1800,∴0180DCE CDE CED ∠=-∠-∠ = 00011180(90)(90)22A B --∠--∠ =1122A B ∠+∠ =1()2A B ∠+∠ =360【点睛】此题考察等腰三角形的性质,注意两条等边所在三角形,依此判断对应的两个底角相等.15.若不等式(m-2)x >1的解集是x <12m -,则m 的取值范围是______. 【答案】m <1【解析】根据不等式的性质和解集得出m-1<0,求出即可.【详解】∵不等式(m-1)x >1的解集是x <12m -, ∴m-1<0,即m <1.故答案是:m <1.【点睛】考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质和解集得出m-1<0是解此题的关键.16.用“如果…,那么…”的形式,写出“对顶角相等”的逆命题:_____________________________.【答案】如果两个角相等,那么这两个角是对顶角.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式,再利用把一个命题的题设和结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”的逆命题写成“如果…那么…”的形式为:“如果两个角相等,那么它们是对顶。
┃精选3套试卷┃2021届马鞍山市八年级上学期数学期末预测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在一条笔直的公路上有A B ,两地,甲,乙两辆货车都要从A 地送货到B 地,甲车先从A 地出发匀速行驶,3小时后乙车从A 地出发,并沿同一路线匀速行驶,当乙车到达B 地后立刻按原速返回,在返回途中第二次与甲车相遇,甲车出发的时间记为t (小时),两车之间的距离记为y (千米),y 与t 的函数关系如图所示,则乙车第二次与甲车相遇是甲车距离A 地( )千米.A .495B .505C .515D .525【答案】A 【分析】根据题意列出方程组,得出甲乙的速度,再由路程关系确定第二次相遇的时间,进而求出乙车第二次与甲车相遇是甲车距离A 地的距离.【详解】解:设甲的速度为v 甲,甲的速度为v 乙,由题意可知,当t=4.5时,乙车追上甲车,第一次相遇,当t=7时,乙车到达B 地,故(73)7300(4.53) 4.5v v v v --=⎧⎨-=⎩乙甲乙甲,解得:60/180/v km h v km h =⎧⎨=⎩甲乙, ∴总A 、B 之间总路程为:(73)4180720v km -=⨯=乙,当t=7时,甲离B 地还有:720760300km -⨯=,∴(60+180)t=300 解得54t =, 即再经过54t =小时后,甲乙第二次相遇, 此时甲车距离A 地的距离为:560(7)4954⨯+=(千米) 故答案为:A【点睛】本题考查了函数图象与行程的问题,解题的关键是准确把握图象与实际行程的关系,确定甲乙的速度. 2.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多【答案】C【解析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.3.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【答案】B【解析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.4.甲、乙两种盐水,若分别取甲种盐水240g,乙种盐水120g,混合后,制成的盐水浓度为8%;若分别取甲种盐水80g,乙种盐水160g,混合后,制成的盐水浓度为10%,求甲、乙两种盐水的浓度各是多少?如果设甲种盐水的浓度为x,乙种盐水浓度为y,根据题意,可列出下方程组是()A.240120(240120)880160(80160)10x y xx y x+=+⎧⎨+=+⎩B.240120(240120)880160(80160)10x y xx y x+=+⎧⎨+=+⎩C.240120(240120)880160(80160)10x y xx y x-=-⎧⎨-=-⎩D.240120()880160()10x y x y xx y x y x+=+⎧⎨+=+⎩【答案】A【分析】根据题意可知本题的等量关系有,240克的甲种盐水的含盐量+120克的乙种盐水的含盐量=浓度为8%的盐水的含盐量,80克的甲种盐水的含盐量+160克的乙种盐水的含盐量=浓度为10%的盐水的含盐量.根据以上条件可列出方程组.【详解】解:甲种盐水的浓度为x,乙种盐水的浓度为y,依题意有240120(240120)8 80160(80160)10x y xx y x+=+⎧⎨+=+⎩,故选:A.【点睛】考查了由实际问题抽象出二元一次方程组的知识,解题关键是要弄清题意,找出合适的等量关系,列出方程组,再求解.注意:盐水浓度=含盐量÷盐水重量=含盐量÷(含盐量+水的重量).5.如图若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.5 【答案】B【分析】根据全等三角形的对应边相等解答即可.【详解】∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC-AE=5-2=3.故答案为:B.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.6.如图,在△ABC中,∠A=80°,边AB,AC的垂直平分线交于点O,则∠BCO的度数为()A .10°B .20°C .30°D .40°【答案】A 【分析】连接OA 、OB ,根据三角形内角和定理求出∠ABC+∠ACB=100°,根据线段的垂直平分线的性质得到OA=OB ,OA=OC ,根据等腰三角形的性质计算即可.【详解】解:如图,连接OA ,OB ,∵∠BAC=80°,∴∠ABC+∠ACB=100°,∵点O 是AB ,AC 垂直平分线的交点,∴OA=OB ,OA=OC ,∴∠OAB=∠OBA ,∠OCA=∠OAC ,OB=OC ,∴∠OBA+∠OCA=80°,∴∠OBC+∠OCB=100°-80°=20°,∵OB=OC ,∴∠BCO=∠CBO=10°,故选:A .【点睛】此题考查垂直平分线的性质,解题关键在于利用三角形内角和的性质.7.下列因式分解正确的是( )A .22()()m n m n m n +=+-B .()222824x x -=-C .2(1)-=-a a a aD .221(2)1a a a a ++=++ 【答案】C【分析】分别利用公式法和提公因式法对各选项进行判断即可.【详解】解:A .22m n +无法分解因式,故此选项错误;B .()2228242(2)(2)x x x x -=-=+-,故此选项错误;C .2(1)-=-a a a a ,故此选项正确;D .2221(1)a a a ++=+,故此选项错误.故选:C .【点睛】本题主要考查了公式法以及提取公因式法分解因式,一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.8.如图,在平面直角坐标系中,点A坐标为(2,23),作AB⊥x轴于点B,连接AO,绕原点B将△AOB 逆时针旋转60°得到△CBD,则点C的坐标为()A.(﹣1,3)B.(﹣2,3)C.(﹣3,1)D.(﹣3,2)【答案】A【分析】首先证明∠AOB=60°,∠CBE=30°,求出CE,EB即可解决问题.【详解】解:过点C作CE⊥x轴于点E,∵A(2,3,∴OB=2,AB=3∴Rt△ABO中,tan∠AOB233,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴BC=AB=3∠CBE=30°,∴CE=12BC3BE3=3,∴OE=1,∴点C的坐标为(﹣1,故选:A.【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.9.下列命题中,属于假命题的是()A.相等的两个角是对顶角B.两直线平行,同位角相等C.同位角相等,两直线平行D.三角形三个内角和等于180°【答案】A【分析】利用对顶角的性质、平行线的性质及判定及三角形的内角和等知识分别判断后即可确定答案.【详解】A、相等的两个角不一定是对顶角,故错误,是假命题;B、两直线平行,同位角相等,正确,是真命题;C、同位角相等,两直线平行,正确,是真命题;D、三角形三个内角和等于180°,正确,是真命题;故选:A.【点睛】此题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及判定及三角形的内角和,难度不大.10.下列各式从左到右的变形正确的是()A.x yx y-+-= -1 B.xy=11xy++C.+xx y=11y+D.23()xy-=223xy【答案】A【解析】x yx y-+-=x yx y---()=-1,A选项正确;x y ≠11xy++,B选项错误;xx y +≠11y+,C选项错误;(-3xy)2=229xy,D选项错误.故选A.点睛:掌握分式的性质.二、填空题11.如图,折叠长方形ABCD,使顶点D与BC边上的点F重合,已知长方形ABCD的长度为10,宽为8,则DE=______.【答案】1【分析】由长方形ABCD沿AE折叠后,D点恰与BC边上的F重合,可得AF=AD=10,DE=EF,然后设EC=x,则DE=EF=CD−E C=8−x,首先在Rt△ABF中,利用勾股定理求得BF的长,继而可求得CF的长,然后在Rt△CEF中,由勾股定理即可求得方程:x2+42=(8−x)2,解此方程即可求得答案.【详解】∵四边形ABCD是长方形,∴∠B=∠C=90︒,AD=BC=10,CD=AB=8,∵△ADE折叠后得到△AFE,∴AF=AD=10,DE=EF,设EC=x,则DE=EF=CD−EC=8−x,∵在Rt△ABF中,AB2+BF2=AF2,∴82+BF2=102,∴BF=6,∴CF=BC−BF=10−6=4,∵在Rt△EFC中,EC2+CF2=EF2,∴x2+42=(8−x)2,解得:x=3,∴DE=1故答案为1.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.12.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为_____.【答案】12【分析】作C 关于AB 的对称点E ,连接ED ,易求∠ACE=60°,则AC=AE ,且△ACE 为等边三角形,CP+PD=DP+PE 为E 与直线AC 之间的连接线段,其最小值为E 到AC 的距离=AB=12,所以最小值为12.【详解】作C 关于AB 的对称点E ,连接ED ,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE ,∴△ACE 为等边三角形,∴CP+PD=DP+PE 为E 与直线AC 之间的连接线段,∴最小值为C'到AC 的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键. 13.如图,长方形ABCD 中,AD =8,AB =4,BQ =5,点P 在AD 边上运动,当BPQ 为等腰三角形时,AP 的长为_____.【答案】3或52或2或1 【分析】根据矩形的性质可得∠A =90°,BC =AD =1,然后根据等腰三角形腰的情况分类讨论,根据勾股定理和垂直平分线等知识即可求解.【详解】解:∵四边形ABCD 是矩形,∴∠A =90°,BC =AD =1,分三种情况:①BP =BQ =5时,AP 22BP AB -2254-3;②当PB =PQ 时,作PM ⊥BC 于M ,则点P 在BQ 的垂直平分线时,如图所示:∴AP =12BQ =52; ③当QP =QB =5时,作QE ⊥AD 于E ,如图所示:则四边形ABQE 是矩形,∴AE =BQ =5,QE =AB =4,∴PE =22QP QE -=2254-=3,∴AP =AE ﹣PE =5﹣3=2;④当点P 和点D 重合时,∵CQ=3,CD=4,∴根据勾股定理,PQ=5=BQ ,此时AP=AD=1,综上所述,当BPQ 为等腰三角形时,AP 的长为3或52或2或1; 故答案为:3或52或2或1. 【点睛】此题考查的是矩形的性质、等腰三角形的性质和勾股定理,掌握矩形的性质、等腰三角形的性质、分类讨论的数学思想和勾股定理是解题关键.14.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若225∠=,则1∠的度数为__________.【答案】35︒【分析】延长AB 交CF 于E ,求出∠ABC ,根据平行线性质得出∠AEC=∠2=25°,再根据三角形外角性质求出∠1即可.【详解】解:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH ∥EF ,∴∠AEC=∠2=25°,∴∠1=∠ABC-∠AEC=35°.故答案为:35°.【点睛】本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.1564___________.【答案】1 648,根据立方根的定义即可求解. 648=,8的立方根是1,故答案为:1.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.16.某种病菌的形状为球形,直径约是0.000000102m ,用科学记数法表示这个数为______.【答案】71.0210-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】0.000000102的小数点向右移动7位得到1.02,所以0.000000102用科学记数法表示为71.0210-⨯,故答案为71.0210-⨯.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.分解因式:229x y -=__.【答案】(3)(3)x y x y +-.【解析】直接利用平方差公式进行分解即可.【详解】原式(3)(3)x y x y =+-,故答案为:(3)(3)x y x y +-.【点睛】本题主要考查了公式法分解因式,熟练掌握平方差公式是解题的关键.三、解答题18.如图,在ABC ∆中,∠90C =︒.(1)尺规作图:作BAC ∠的平分线交BC 于点D ;(不写作法,保留作图痕迹)(2)已知AD BD =,求B 的度数.【答案】(1)见解析;(2)30°【分析】(1)首先以A 为圆心,小于AC 长为半径画弧,交AC 、AB 于H 、F ,再分别以H 、F 为圆心,大于12HF 长为半径画弧,两弧交于点M ,再画射线AM 交CB 于D ; (2)先根据角平分线定义和等腰三角形的性质得:∠B=∠BAD=∠CAD ,则∠B=30°.【详解】解:(1)如图所示:AD 即为所求;(2)∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∵AD =BD ,∴∠B =∠BAD ,∴∠B =∠BAD =∠CAD ,∵∠C =90°,∴∠B =30°.【点睛】此题主要考查了角平分线的基本作图,以及等腰三角形的性质和三角形的内角和,熟练掌握角平分线的基本作图是关键.19.已知34(1)(2)12x A Bx x x x-=+----,求实数A和B的值.【答案】A=1,B=1【分析】首先对等式的右边进行通分相加,然后根据分母相同,得到分子相同.根据两个多项式相等,则其同次项的系数应当相等,得到关于A,B的方程,进行求解.【详解】∵34(2)(1)()(2) (1)(2)(1)(2)(1)(2)x A x B x A B x A Bx x x x x x--+-++--==------,∴3x﹣4=(A+B)x+(﹣1A﹣B),比较两边分子的系数,3{24A BA B+=--=-,∴A=1,B=1.【点睛】掌握分式的加法运算,能够根据两个多项式相等得到关于A,B的方程.20.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、C分布对应A1、C1);(2)请在y轴上找出一点P,满足线段AP+B1P的值最小.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:(2)如图所示:点P即为所求.【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,两个大正方形和两个小正方形的面积和为58cm2,试求m+n的值(3)②图中所有裁剪线(虚线部分)长之和为cm.(直接写出结果)【答案】(1)(2m+n)(m+2n);(2)1;(3)2【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10平方厘米,得出等式求出m+n,(3)根据m+n的值,进一步得到图中所有裁剪线(虚线部分)长之和即可.【详解】解:(1)由图形可知,2m2+5mn+2n2=(2m+n)(m+2n),故答案为(2m+n)(m+2n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∴(m+n)2=m2+n2+2mn=29+20=49,∴m+n=1,故答案为1.(3)图中所有裁剪线段之和为1×6=2(cm).故答案为2.【点睛】本题考查了因式分解的应用,正确用两种方法表示图形面积是解题的关键.22.列二元一次方程组解决问题:某校八年级师生共466人准备参加社会实践活动,现已预备了,A B两种型号的客车共10辆,每辆A种型号客车坐师生49人,每辆B种型号客车坐师生37人,10辆客车刚好坐满,求,A B两种型号客车各多少辆?【答案】A种型号客车8辆,B种型号客车2辆【分析】设A型号客车用了x辆,B型号客车用了y辆,根据两种客车共10辆正好乘坐466人,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】设A种型号客车x辆,B种型号客车y辆,依题意,得10 4937466 x yx y+=⎧⎨+=⎩解得82 xy=⎧⎨=⎩答:A种型号客车8辆,B种型号客车2辆.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.【答案】(1)k+b=3;(2)y=﹣x+4;(3)点Q的坐标为:(4±2,0)或Q(﹣2,0)或(1,0).【分析】(1)将点P的坐标代入y=x+2并解得m=3,得到点P(1,3);将点P的坐标代入y=kx+b,即可求解;(2)由y=kx+b与两坐标轴围成一等腰直角三角形可求出直线的k值为﹣1,然后代入P点坐标求出b即可;(3)分AP=AQ、AP=PQ、PQ=AQ三种情况,分别求解即可.【详解】解:(1)将点P的坐标代入y=x+2可得:m=1+2=3,故点P(1,3),将点P的坐标代入y=kx+b可得:k+b=3;(2)∵y =kx+b 与两坐标轴围成一等腰直角三角形,∴设该直线的函数图象与x 轴,y 轴分别交于点(a ,0),(0,a ),其中a >0,将(a ,0),(0,a ),代入得:ak+b=0,b=a ,∴ak+a=0,即a(k+1)=0,∴k =﹣1,即y =﹣x+b ,代入P (1,3)得:﹣1+b =3,解得:b =4,∴直线l 2的表达式为:y =﹣x+4;(3)设点Q (m ,0),而点A 、P 的坐标分别为:(4,0)、(1,3),∴AP =当AP =AQ 时,则点Q (,0);当AP =PQ 时,则点Q (﹣2,0);当PQ =AQ 时,即(1﹣m )2+9=(4﹣m )2,解得:m =1,即点Q (1,0);综上,点Q 的坐标为:(0)或Q (﹣2,0)或(1,0).【点睛】此题把一次函数与等腰三角形的性质相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目,其中(3),要注意分类求解,避免遗漏.24.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】 (1)计划36座的新能源客车6辆,共有218名志愿者;(2)调配36座新能源客车3辆,22座新能源客车5辆.【分析】(1)设计划调配36座新能源客车x 辆,该大学共有y 名志愿者.列方程组,得362,22(4) 2.x y x y +=⎧⎨+=+⎩解方程组可得;(2)设调配36座新能源客车a 辆,22座新能源客车b 辆,根据题意,得3622218a b +=,求正整数解;【详解】解:(1)设计划调配36座新能源客车x 辆,该大学共有y 名志愿者.列方程组,得362,22(4) 2.x y x y +=⎧⎨+=+⎩解得6,218.x y =⎧⎨=⎩∴计划36座的新能源客车6辆,共有218名志愿者.(2)设调配36座新能源客车a 辆,22座新能源客车b 辆,根据题意,得3622218a b +=,正整数解为3,5.a b =⎧⎨=⎩∴调配36座新能源客车3辆,22座新能源客车5辆.【点睛】考核知识点:二元一次方程组的运用.理解题意是关键.25.若一次函数y kx b =+,当26x -≤≤时,函数值的范围为119y -≤≤,求此一次函数的解析式?【答案】y=52x-6或y=-52x+1 【分析】根据函数自变量的取值范围,分两种情况用待定系数法求函数解析式.【详解】解:设所求的解析式为y=kx+b ,分两种情况考虑:(1)将x=-2,y=-11代入得:-11=-2k+b ,将x=6,y=9代入得:9=6k+b ,∴21169k b k b -+=-⎧⎨+=⎩, 解得:k=52,b=-6, 则函数的解析式是y=52x-6; (2)将x=6,y=-11代入得:-11=6k+b ,将x=-2,y=9代入得:9=-2k+b ,∴29611k b k b -+=⎧⎨+=-⎩, 解得:k=-52,b=1, 则函数的解析式是y=-52x+1. 综上,函数的解析式是y=52x-6或y=-52x+1. 故答案为:y=52x-6或y=-52x+1.【点睛】本题考查了一次函数的图像与性质,待定系数法求函数解析式,要注意利用一次函数自变量的取值范围,来列出方程组,求出未知数,写出解析式.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.将△ABC 的三个顶点坐标的横坐标都乘以-1,并保持纵坐标不变,则所得图形与原图形的关系是( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .将原图形沿x 轴的负方向平移了1个单位【答案】B 【解析】平面直角坐标系中任意一点P (x ,y ),分别关于x 轴的对称点的坐标是(x ,﹣y ),关于y 轴的对称点的坐标是(﹣x ,y ).【详解】根据对称的性质,得三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,就是 横坐标变成相反数.即所得到的点与原来的点关于y 轴对称.故选B .【点睛】这一类题目是需要识记的基础题.考查的侧重点在于学生的识记能力,解决的关键是对知识点的正确记忆.2.已知实数133,π,-2,0.020020002……其中无理数出现的个数为( ) A .2个B .4个C .3个D .5个 【答案】C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】实数133,π,-2,0.020020002……3π,0.020020002…… 故选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π 等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.若()()221x y x ky +--的结果中不含xy 项,则k 的值为( )A .2B .-4C .0D .4 【答案】D【分析】由()()221x y x ky +--的结果中不含xy 项,可知,结果中的xy 项系数为0,进而即可求出答案.【详解】∵()()221x y x ky +--=222422x kxy x xy ky y --+--=222(4)22x k xy ky x y +----,又∵()()221x y x ky +--的结果中不含xy 项,∴1-k=0,解得:k=1.故选D .【点睛】本题主要考查多项式与多项式的乘法法则,利用法则求出结果,是解题的关键.4.下列各式从左到右的变形,一定正确的是( )A .0.220.22a b a b a b a b ++=++B .a b a b c c -++=-C .2242(2)2a a a a -+=--D .22b bc a ac= 【答案】C【分析】根据分式的基本性质逐项分析可得出正确选项.【详解】解:A.0.22100.2102a b a b a b a b++=++,故错误; B. a b a b c c -+-=-,故错误; C. ()()()()222242(2)222a a a a a a a a +--+==----,故正确; D. 当0c时,2bc ac无意义,故错误; 故选:C【点睛】本题主要考查分式的基本性质,解题的关键是掌握分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.分子、分母、分式本身同时改变两处的符号,分式的值不变.5.如图:等腰△ABC 的底边BC 长为6,面积是18,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .6B .8C .9D .10【答案】C 【解析】连接AD ,AM ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点A 关于直线EF 的对称点为点C ,MA =MC ,推出MC+DM =MA+DM≥AD ,故AD 的长为BM+MD 的最小值,由此即可得出结论.【详解】连接AD ,MA .∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∴S △ABC BC•AD 1×AD =18,解得:AD=1.∵EF 是线段AC 的垂直平分线,∴点A 关于直线EF 的对称点为点C ,MA =MC ,∴MC+DM =MA+DM≥AD ,∴AD 的长为CM+MD 的最小值,∴△CDM 的周长最短=(CM+MD )+CD =ADBC =11=1+3=2. 故选C .【点睛】本题考查了轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.6.如图,点A 坐标为()1,0,点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为( )A .11,22⎛⎫- ⎪⎝⎭B .11,22⎛⎫ ⎪⎝⎭C .112,222⎛⎫- ⎪⎝⎭D .112,222⎛⎫ ⎪⎝⎭【答案】A【分析】当AB 与直线y=-x 垂直时,AB 最短,则△OAB 是等腰直角三角形,作B 如图,点A 坐标为()1,0,点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为BC ⊥x 轴即可求得OD ,BD 的长,从而求得B 的坐标.【详解】解析:过A 点作垂直于直线y x =-的垂线AB ,点B 在直线y x =-上运动,45AOB ∴∠=︒,AOB ∴∆为等腰直角三角形,过B 作BC 垂直x 轴垂足为C ,则点C 为OA 的中点, 则12OC BC ==, 作图可知B 在x 轴下方,y 轴的右方. ∴横坐标为正,纵坐标为负.所以当线段AB 最短时,点B 的坐标为11,22⎛⎫-⎪⎝⎭. 故选A .【点睛】本题考查了正比例函数的性质,等腰三角形的性质的综合应用,正确根据垂线段最短确定:当AB 与直线y=-x 垂直时,AB 最短是关键.7.下列图形中对称轴只有两条的是( ) A . B . C . D .【答案】C【分析】根据对称轴的定义,分别找出四个选项的中的图形的对称轴条数,即可得到答案.【详解】圆有无数条对称轴,故A 不是答案;等边三角形有三条对称轴,故B 不是答案;长方形有两条对称轴,故C 是答案;等腰梯形只有一条对称轴,故D 不是答案.故C 为答案.【点睛】本题主要考查了对称轴的基本概念(如果沿着某条直线对折,对折的两部分是完全重合的,那么这条直线就叫做这个图形的对称轴),熟记对称轴的概念是解题的关键.8.已知△ABC 的三边为a ,b ,c ,下列条件能判定△ABC 为直角三角形的是( )A .::3a b c =B .::2a b c =C .::2:2:3a b c =D .::325a b c =【答案】B【分析】利用勾股定理的逆定理逐项判断即可.【详解】解:A 、设a =x ,则b =x ,c x ,∵(x )2+(x )2≠)2,∴此三角形不是直角三角形,故本选项不符合题意;B 、设a =x ,则b =x ,c x ,∵(x )2+(x )2x )2,∴此三角形是直角三角形,故本选项符合题意;C 、设a =2x ,则b =2x ,c =3x ,∵(2x )2+(2x )2≠(3x )2,∴此三角形不是直角三角形,故本选项不符合题意;D 、设a x ,则b =2x ,c ,)2+(2x )2≠)2,∴此三角形不是直角三角形,故本选项不符合题意;故选B .【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.9.两个三角形如果具有下列条件:①三条边对应相等;②三个角对应相等;③两条边及它们的夹角对应相等;④两条边和其中一边的对角相等;⑤两个角和一条边对应相等,那么一定能够得到两个三角形全等的是( )A .①②③④B .①③④⑤C .①③⑤D .①②③④⑤【答案】C【解析】根据三角形全等的判定定理SSS 、SAS 、ASA 、AAS 分别进行分析即可.【详解】①三条边对应相等,可利用SSS 定理判定两个三角形全等;②三个角对应相等,不能判定两个三角形全等;③两条边及它们的夹角对应相等,可以利用SAS 定理判定两个三角形全等;④两条边和其中一边的对角相等,不能判定两个三角形全等;⑤两个角和一条边对应相等利用AAS 定理判定两个三角形全等.故选:C.【点睛】本题考查的是全等三角形的判定,熟练掌握判定定理是解题的关键.10.函数2y ax b =+-的图象如图所示,则函数y ax b =--的大致图象是( )A.B.C.D.【答案】B【分析】根据一次函数的图象的性质确定a和b的符号,进而解答即可.【详解】解:由函数y=ax+b-2的图象可得:a<0,b-2=0,∴a<0,b=2>0,所以函数y=-ax-b的大致图象经过第一、四、三象限,故选:B.【点睛】本题考查了一次函数的性质,关键是根据一次函数的图象的性质确定a和b的符号.二、填空题111x-x的取值范围是_______.【答案】1x≥【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵1x-∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.12.一个多边形的内角和比四边形的内角和多540°,并且这个多边形的各内角都相等,这个多边形的每个内角等于______度.【答案】900 7【分析】设这个多边形的边数是n,根据内角和得到方程,求出边数n及内角和的度数即可得到答案. 【详解】设这个多边形的边数是n,180(2)(42)180540n-=-⨯+,解得n=7,内角和是(42)180540900-⨯+=,∴每个内角的度数是9007度,故答案为:900 7.【点睛】此题考查多边形的内角和公式,熟记公式并运用解题是关键.13.如图△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,若∠A = 100°,则∠BOC = ____o .【答案】1【分析】根据三角形内角和定理得80ABC ACB ∠+∠=︒,再根据角平分线的性质可得40OBC OCB +=︒∠∠,最后根据三角形内角和定理即可求出∠BOC 的度数.【详解】∵∠A = 100°∴18080ABC ACB A +=︒-=︒∠∠∠∵∠ABC 、∠ACB 的平分线相交于点O ∴()1402OBC OCB ABC ACB +=⨯+=︒∠∠∠∠ ∴180140BOC OBC OCB =︒--=︒∠∠∠故答案为:1.【点睛】本题考查了角平分线相关的计算题,掌握三角形内角和定理、角平分线的性质是解题的关键. 14.如图,已知Rt ABC ∆的三边长分别为6、8、10,分别以它们的三边作为直径向外作三个半圆,则图中阴影部分的面积为_______.【答案】24【分析】根据图形关系可得阴影部分面积为:22261811101682222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【详解】因为已知Rt ABC ∆的三边长分别为6、8、10所以62+82=102由已知可得:图中阴影部分的面积为 22261811101682222222πππ⎛⎫⎛⎫⎛⎫⨯+⨯+⨯⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=24 故答案为:24【点睛】。
安徽省马鞍山市2021届数学八年级上学期期末试卷模拟卷一
安徽省马鞍山市2021届数学八年级上学期期末试卷模拟卷一一、选择题1.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A.m >-6B.m <-6且m≠-4C.m <-6D.m >-6且m≠-4 2.如果关于x 的分式方程1222x m x x++=--有非负整数解,且一次函数2y x m =++不经过四象限,则所有符合条件的m 的和是( ). A.0 B.2C.3D.5 3.某中学为了创建“最美校园图书屋”新购买了一批图书,其中科普类图书平均每本的价格是文学类图书平均每本书价格的1.2倍,已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买图书平均每本书的价格是( )A .20元B .18元C .15元D .10元4.下列因式分解,错误的是( )A .x 2+7x+10=(x+2)(x+5)B .x 2﹣2x ﹣8=(x ﹣4)(x+2)C .y 2﹣7y+12=(y ﹣3)(y ﹣4)D .y 2+7y ﹣18=(y ﹣9)(y+2) 5.若()2231x m x +-+是完全平方式,x n +与2x +的乘积中不含x 的一次项,则m n 的值为A .-4B .16C .4或16D .-4或-16 6.下列多项式中,能用提公因式法因式分解的是( )A. B. C. D. 7.将一个有45°角的三角板的直角顶点C 放在一张宽为5cm 的纸带边沿上,另一个顶点B 在纸带的另一边沿上,测得∠DBC=30°,则三角板的最大边的长为( )A .5cmB .10cmC .102cmD .52cm 8.等腰三角形的一边长是8,另一边长是12,则周长为( ) A .28B .32C .28或32D .30或32 9.如图,△ABC 中,AB=AC ,BC=5,,于D ,EF 垂直平分AB ,交AC 于F ,在EF 上确定一点P 使最小,则这个最小值为( )A.3B.4C.5D.610.如图,已知AE=CF ,∠A=∠C ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A.∠D=∠BB.AD=CBC.BE=DFD.∠AFD=∠CEB11.下列四个图形中,轴对称图形的个数是( )\A .1个B .2个C .3个D .4个12.如图,已知点A 、D 、C 、F 在同一直线上,且AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需要添加的一个条件是( )A .∠B =∠E B .∠A =∠EDFC .∠BCA =∠FD .BC ∥EF13.如图,在正方形ABCD 中,E 是对角线BD 上一点,且满足BE =AD ,连接CE 并延长交AD 于点F ,连接AE ,过B 点作BG ⊥AE 于点G ,延长BG 交AD 于点H .在下列结论中:①AH =DF ;②∠AEF =45°;③S 四边形EFHG =S △DEF +S △AGH ;④BH 平分∠ABE .其中不正确的结论有( )A .1个B .2个C .3个D .4个 14.多边形每一个外角都是45︒,那么这个多边形是( ) A .六边形B .七边形C .八边形D .九边形 15.如图,点A ,O ,B 在同一条直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC ,图中哪两个角不是..互为余角 ( )A .∠AOD 和∠BOEB .∠AOD 和∠COEC .∠DOC 和∠COED .∠AOC 和∠BOC二、填空题16.几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x 人,则根据题意可列方程___________________________ .17.化简:(a+1)2-(a+1)(a-1)=____.【答案】2a+218.如图,DE 是ΔABC 边AC 的垂直平分线,若BC 8=,AD 3=,则BD =__________.19.如图,在△ABC 中,若D 、E 、F 分别是AB 、AC 、CD 边上的中点,S △DEF =4,则S △ABC =________________20.如图,在Rt △ABC 中,∠ABC =90°,∠ACB =30°,AB =2cm ,E 、F 分别是AB 、AC 的中点,动点P 从点E 出发,沿EF 方向匀速运动,速度为1cm/s ,同时动点Q 从点B 出发,沿BF 方向匀速运动,速度为2cm/s ,连接PQ ,设运动时间为ts (0<t <1),则当t =___时,△PQF 为等腰三角形.三、解答题21.计算:221001001113(0.25)4236-⎛⎫⎛⎫-+-⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭22.因式分解(1)3a(x -y)-5b(y -x) ; (2)32+23a b a b ab -23.如图,在△ABC 中,AC =BC =2,∠A =∠B =30°,点D 在线段AB 上运动(点D 不与A 、B 重合),连接CD ,作∠CDE =30°,DE 交BC 于点E .(1)AB = ;(2)当AD 等于多少时,△ADC ≌△BED ,请说明理由;(3)在点D 的运动过程中,△CDE 的形状可以是等腰三角形吗?若可以,求出AD 的长;若不可以,说明理由.24.已知:如图,在△ABC 中,∠BAC 的平分线AP 与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PM ⊥AC 于点M ,PN ⊥AB 交AB 延长线于点N ,连接PB ,PC .求证:BN=CM .25.如下几个图形是五角星和它的变形.(1)图甲是一个五角星 ABCDE ,则∠A +∠B +∠C +∠D +∠E 的度数为 ;(不必 写过程)(2)如图乙,如果点 B 向右移动到 AC 上时,则∠A +∠EBD +∠C +∠D +∠E 度数为 ;(不必写过程)(3)如图丙,点 B 向右移动到 AC 的另一侧时,(1)的结论成立吗?为什么?(4)如图丁,点 B ,E 移动到∠CAD 的内部时,结论又如何?(不必写过程)【参考答案】***一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 D B A D C B C C D C B A A C D16.18018032x x -=+ 17.无18.519.20.2﹣或.三、解答题21.-222.(1)(-)3a+5x y b ()(2)(+3)(1)ab a a -23.(1)2;(2)当AD 等于2-2时,△ADC ≌△BED ,理由见解析;(3)△CDE 可以是等腰三角形,此时AD 的长为2-2或. 【解析】【分析】(1)过C 作CM ⊥AB 于M ,求出CM ,根据勾股定理求出AM ,代入AB=2AM 求出即可.(2)根据全等三角形的性质和判定得出BD=AC ,求出BD ,即可求出答案.(3)分类讨论:当CD=DE 时;当DE=CE 时;当EC=CD 时;然后利用等腰三角形的性质结合三角形内角和定理求出∠ADC或∠ACD的度数,继而根据勾股定理进行求解即可得. 【详解】(1)过C作CM⊥AB于M,∵AC=BC,∴AB=2AM,∠AMC=90°,∵AC=2,∠A=30°,∴CM=AC=1,由勾股定理得:AM=,∴AB=2AM=2,故答案为:2;(2)当AD等于2-2时,△ADC≌△BED,理由是:∵∠A=∠CDE=∠B=30°,∴∠ACD+∠ADC=150°,∠ADC+∠EDB=150°,∴∠ACD=∠EDB,∴当AC=BD时,△ADC≌△BED,即BD=AC=2,∴AD=AB-BD=2-2,即得AD=2-2时,△ADC≌△BED;(3)△CDE可以是等腰三角形,∵△CDE是等腰三角形,①如图1,当CD=DE时,∵∠CDE=30°,∴∠DCE=∠DEC=75°,∴∠ADC=∠B+∠DCE=105°,过点D作DF⊥AC,垂足为F,则∠AFD=∠CFD=90°∵∠A=30°,∴∠ADF=60°,AD=2DF,∴∠CDF=45°,∴∠FCD=45°=∠FDC,∴CF=DF,在Rt△ADF中,AF=,∵AF+CF=AC=2,∴DF+DF=2,∴DF=,∴AD=2-2;②如图2,当DE=CE时,∵∠CDE=30°,∴∠DCE=∠CDE=30°,∴∠ACD=120°-30°=90°,∵∠A=30°,∴CD=AD,在Rt△ACD中,AD2=AC2+CD2,即AD2=22+(AD)2,∴AD=;③当EC=CD时,∠BCD=180°-∠CED-∠CDE=180°-30°-30°=120°,∵∠ACB=180°-∠A-∠B=120°,∴此时,点D与点A重合,不合题意,综上,△ADC可以是等腰三角形,此时AD的长为2-2或AD=.【点睛】本题考查了全等三角形的判定与性质、直角三角形的判定、等腰三角形的判定与性质、外角的性质,勾股定理等,关键在于运用数形结合的思想,熟练地运用相关的性质定理,认真地进行计算.24.见解析【解析】【分析】根据角平分线上的点到角的两边距离相等可得PM=PN,线段垂直平分线上的点到线段两端点的距离相等可得PB=PC,然后利用“HL”证明Rt△PBN和Rt△PCM全等,根据全等三角形对应边相等证明即可.【详解】∵AP是∠BAC的平分线,PM⊥AC,PN⊥AB,∴PM=PN,∵PQ是线段BC的垂直平分线,∴PB=PC,在Rt△PBN和Rt△PCM中,PB PCPM PN=⎧⎨=⎩,∴Rt△PBN≌Rt△PCM(HL),∴BN=CM.【点睛】本题考查了全等三角形的判定与性质,主要利用了角平分线上的点到角的两边距离相等的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,熟记各性质并准确确定出全等三角形是解题的关键.25.(1)180°;(2)180°;(3)成立;(4)∠A+∠B+∠C+∠D+∠E=180°..。
马鞍山市和县2020—2021学年初二上期末数学试卷含答案解析
马鞍山市和县2020—2021学年初二上期末数学试卷含答案解析一、选择题(共10小题,每小题4分,满分40分)1.下列图形中是轴对称图形的是( )A.B.C.D.2.如图,在△ABC中,D是AB上的一点,E是AC上一点,BE,CD相交于F,∠A=70°,∠ACD=20°,∠ABE=28°,则∠CFE的度数为( )A.62°B.68°C.78°D.90°3.在下列条件中:①∠A=∠C﹣∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°﹣∠B,④∠B﹣∠C=90°中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个4.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个(1)DA平分∠EDF;(2)△EBD≌△FCD;(3)△AED≌△AFD;(4)AD垂直BC.( )A.1个B.2个C.3个D.4个5.如图,△ABC中,AB=AC,以AB、AC为边在△ABC的外侧作两个等边三角形△ABE 和△ACD,且∠EDC=45°,则∠ABC的度数为( )A.75°B.80°C.70°D.85°6.下列运算正确的是( )A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a27.如图,阴影部分的面积是( )A.xy B.xy C.4xy D.2xy8.下列分式是最简分式的是( )A.B.C.D.9.某厂同意为四川灾区生产活动板房的任务,打算在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原打算每天生产多少套板房?设原打算每天生产x套,列方程式是( )A. B.C.D.10.如图,在△ABC中,AB=AC,∠BAC=90°,AD⊥BC,则下列结论不正确的是( )A.∠BAD=45°B.△ABD≌△ACD C.AD=BC D.AD=AB二、填空题(共4小题,每小题5分,满分20分)11.运算:=__________.12.若分式的值为0,则a=__________.13.如图,等腰△ABC中,AB=AC,∠DBC=18°,AB的垂直平分线MN交AC于点D,则∠A的度数是__________.14.如图,等边△ABC中,AB=2,D为△ABC内一点,且DA=DB,E为△ABC外一点,BE=AB,且∠EBD=∠CBD,连接DE,CE,则下列结论:①∠DAC=∠DBC;②BE⊥AC;③∠DEB=30°;④若EC∥AD,则S△EBC=1,其中正确的有__________.三、解答题(共3小题,满分24分)15.先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.16.(1)分解因式:9a2(x﹣y)+4b2(y﹣x)(2)化简:÷(2+)17.解关于的方程:.四、解答题(共2小题,满分20分)18.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2020年春运将迎来“高铁时代”.甲、乙两个都市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时刻缩短了11小时,大大方便了人们出行.已知高铁行使速度是原先火车速度的3.2倍,求高铁的行驶速度.19.已知:在Rt△ABC中,∠C=90°.(1)请在线段BC上作一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若AC=6,BC=8,要求出CD的长度.五、作图解答题(共1小题,满分10分)20.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为__________.提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.六、证明题(共1小题,满分12分)21.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.七、(共1小题,满分10分)22.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的__________.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否完全__________.(填“完全”或“不完全”)若不完全,请直截了当写出因式分解的最后结果__________.(3)请你仿照以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.八、(共1小题,满分14分)23.(14分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时动身,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后连续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.2020-2021学年安徽省马鞍山市和县八年级(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下列图形中是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】依照轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是查找对称轴,图形两部分沿对称轴折叠后可重合.2.如图,在△ABC中,D是AB上的一点,E是AC上一点,BE,CD相交于F,∠A=70°,∠ACD=20°,∠ABE=28°,则∠CFE的度数为( )A.62°B.68°C.78°D.90°【考点】三角形内角和定理.【分析】依照三角形的一个外角等于与它不相邻的两个内角的和可得∠BDF=∠A+∠ACD,再依照三角形的内角和定理求出∠BFD,然后依照对顶角相等解答.【解答】解:∵∠A=70°,∠ACD=20°,∴∠BDF=∠A+∠ACD=70°+20°=90°,在△BDF中,∠BFD=180°﹣∠BDF﹣∠ABE=180°﹣90°﹣28°=62°,∴∠CFE=∠BFD=62°.故选A.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.3.在下列条件中:①∠A=∠C﹣∠B,②∠A:∠B:∠C=2:3:5,③∠A=90°﹣∠B,④∠B﹣∠C=90°中,能确定△ABC是直角三角形的条件有( )A.1个B.2个C.3个D.4个【考点】三角形内角和定理.【分析】依照直角三角形的判定方法对各个选项进行分析,从而得到答案【解答】解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,因此△ABC是直角三角形;②因为∠A:∠B:∠C=2:3:5,设∠A=2x,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,因此△ABC是直角三角形;③因为∠A=90°﹣∠B,因此∠A+∠B=90°,则∠C=180°﹣90°=90°,因此△ABC是直角三角形;④因为∠B﹣∠C=90°,则∠B=90°+∠C,因此三角形为钝角三角形.因此能确定△ABC是直角三角形的有①②③.故选:C.【点评】此题考查三角形的内角和定理:三角形的内角和为180°;明白得三角形内若有一个内角为90°,则△ABC是直角三角形.4.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个(1)DA平分∠EDF;(2)△EBD≌△FCD;(3)△AED≌△AFD;(4)AD垂直BC.( )A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】在等腰三角形中,顶角的平分线即底边上的中线,垂线.利用三线合一的性质,进而可求解,得出结论.【解答】解:(1)如图,∵AB=AC,BE=CF,∴AE=AF.又∵AD是角平分线,∴∠1=∠2,∴在△AED和△AFD中,,∴△AED≌△AFD(SAS),∴∠3=∠4,即DA平分∠EDF.故(1)正确;∵如图,△ABC中,AB=AC,AD是角平分线,∴△ABD≌△ACD.又由(1)知,△AED≌△AFD,∴△EBD≌△FCD.故(2)正确;(3)由(1)知,△AED≌△AFD.故(3)正确;(4)∵如图,△ABC中,AB=AC,AD是角平分线,∴AD⊥BC,即AD垂直BC.故(4)正确.综上所述,正确的结论有4个.故选:D.【点评】本题考查了全等三角形的判定和性质;熟练把握三角形的性质,明白得等腰三角形中线,角平分线,垂线等线段之间的区别与联系,会求一些简单的全等三角形.做题时,要结合已知条件与全等的判定方法对选项逐一验证.5.如图,△ABC中,AB=AC,以AB、AC为边在△ABC的外侧作两个等边三角形△ABE 和△ACD,且∠EDC=45°,则∠ABC的度数为( )A.75°B.80°C.70°D.85°【考点】全等三角形的判定与性质.【分析】第一利用等边三角形的性质以及等腰三角形的性质得出各角度数,进而利用四边形内角和定理得出即可.【解答】解:∵AB=AC,以AB、AC为边在△ABC的外侧作两个等边三角形△ABE和△ACD,∴∠ABC=∠ACB,AE=AD,∠AEB=∠ADC=60°,∠3=∠4=60°,∵∠EDC=45°∴∠1=∠2=45°,∴∠1+∠2+∠3+∠4+2∠ABC=360°,∴2∠ABC=360°﹣45°﹣45°﹣60°﹣60°=150°,∴∠ABC的度数为75°.故选:A.【点评】此题要紧考查了等边三角形的性质以及等腰三角形的性质和四边形内角和定理等知识,依照已知得出∠1=∠2=45°是解题关键.6.下列运算正确的是( )A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】依照幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,合并同类项法则对各选项分析判定利用排除法求解.【解答】解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.【点评】本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,合并同类项法则,熟记各性质并理清指数的变化情形是解题的关键.7.如图,阴影部分的面积是( )A.xy B.xy C.4xy D.2xy【考点】整式的混合运算.【专题】应用题.【分析】假如延长AF、CD,设它们交于点G.那么阴影部分的面积能够表示为大长方形ABCG的面积减去小长方形DEFG的面积.大长方形的面积为2x×2y,小长方形的面积为0.5x(2y﹣y),然后利用单项式乘多项式的法则运算.【解答】解:阴影部分面积为:2x×2y﹣0.5x(2y﹣y),=4xy﹣xy,=xy.故选A.【点评】本题考查了单项式的乘法,单项式乘多项式,是整式在生活的应用,用代数式表示出阴影部分的面积是求解的关键.8.下列分式是最简分式的是( )A.B.C.D.【考点】最简分式.【分析】要判定分式是否是最简分式,只需判定它能否化简,不能化简的即为最简分式.【解答】解:A、=﹣1;B、=;C、分子、分母中不含公因式,不能化简,故为最简分式;D、=.故选:C.【点评】本题考查最简分式,是简单的基础题.9.某厂同意为四川灾区生产活动板房的任务,打算在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原打算每天生产多少套板房?设原打算每天生产x套,列方程式是( )A. B.C.D.【考点】由实际问题抽象出分式方程.【分析】设原打算每天生产x套,先求出实际25天完成的套数,再求出实际的工作效率=,最后依据工作时刻=工作总量÷工作效率解答.【解答】解:由分析可得列方程式是:=25.故选B.【点评】此题要紧考查工作时刻、工作效率、工作总量三者之间的数量关系,解答时要注意从问题动身,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题.10.如图,在△ABC中,AB=AC,∠BAC=90°,AD⊥BC,则下列结论不正确的是( )A.∠BAD=45°B.△ABD≌△ACD C.AD=BC D.AD=AB【考点】等腰直角三角形.【分析】依照等腰三角形三线合一的性质可得AD平分∠BAC,从而判定A正确;依照SAS得出△ABD≌△ACD,从而判定B正确;由直角三角形斜边中线的性质可判定C正确;依照已知条件不能判定D正确.【解答】解:∵RT△ABC中,AB=AC,D是BC中点,∴∠BAD=∠CAD=∠BAC=45°,AD=BC故A、C两项正确;在△ABD与△ACD中,,∴△ABD≌△ACD(SAS),故B正确;当△ABC是直角三角形时,AD=AB,故D错误.故选D.【点评】本题考查了等腰三角形性质,直角三角形的性质,全等三角形的性质和判定,要紧考查学生的推理能力.其中灵活运用所给的已知条件,从而对各个选项进行逐一验证进而确定答案是解题的关键.二、填空题(共4小题,每小题5分,满分20分)11.运算:=﹣a3b6.【考点】幂的乘方与积的乘方.【专题】运算题.【分析】利用积的乘方以及幂的乘方法则即可求解.【解答】解;原式=﹣a3b6.故答案是:﹣a3b6.【点评】本题考查了积的乘方,幂的乘方,理清指数的变化是解题的关键.12.若分式的值为0,则a=﹣2.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此能够解答本题.【解答】解:由分式的值为0,得|a|﹣2=0且a2+a﹣6≠0,解得a=﹣2,故答案为:﹣2.【点评】此题要紧考查了分式值为零的条件,关键是把握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”那个条件不能少.13.如图,等腰△ABC中,AB=AC,∠DBC=18°,AB的垂直平分线MN交AC于点D,则∠A的度数是48°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】设∠A的度数为x°,依照等腰三角形的性质和三角形内角和定理求出∠ABC和∠C,依照线段垂直平分线的性质得到DA=DB,求出∠DBA,依照题意列出方程,解方程即可.【解答】解:设∠A的度数为x°,∵AB=AC,∴∠ABC=∠C=90°﹣x°,∵MN是AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=x°,则90°﹣x°﹣x°=18°,解得,x=48,故答案为:48°.【点评】本题考查的是线段垂直平分线的性质,把握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.如图,等边△ABC中,AB=2,D为△ABC内一点,且DA=DB,E为△ABC外一点,BE=AB,且∠EBD=∠CBD,连接DE,CE,则下列结论:①∠DAC=∠DBC;②BE⊥AC;③∠DEB=30°;④若EC∥AD,则S△EBC=1,其中正确的有①③④.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】连接DC,证△ACD≌△BCD得出①∠DAC=∠DBC;再证△BED≌△BCD,得出∠BED=∠BCD=30°;其它两个条件运用假设成立推出答案即可.【解答】证明:连接DC,∵△ABC是等边三角形,∴AB=BC=AC,∠ACB=60,∵DB=DA,DC=DC,在△ACD与△BCD中,,∴△ACD≌△BCD (SSS),∴∠BCD=∠ACD=∠ACB=30°,∵BE=AB,∴BE=BC,∵∠DBE=∠DBC,BD=BD,在△BED与△BCD中,,∴△BED≌△BCD (SAS),∴∠BED=∠BCD=30°.由此得出①③正确.∵EC∥AD,∴∠DAC=∠ECA,∵∠DBE=∠DBC,∠DAC=∠DBC,∴设∠ECA=∠DBC=∠DBE=∠1,∵BE=BA,∴BE=BC,∴∠BCE=∠BEC=60°+∠1,在△BCE中三角和为180°,∴2∠1+2(60°+∠1)=180°∴∠1=15°,∴∠CBE=30,这时BE是AC边上的中垂线,结论②才正确.BE边上的高位BC=1,∴S△EBC=1,结论④是正确的.故答案为:①③④【点评】本题考查了全等三角形的性质和判定的应用,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.三、解答题(共3小题,满分24分)15.先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.【考点】整式的混合运算—化简求值.【分析】第一利用完全平方公式和平方差公式对括号内的式子进行化简,然后进行整式的除法运算即可化简,然后代入求值.【解答】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,则当x=3,y=1时,原式=3﹣1=2.【点评】本题要紧考查平方差公式的利用,熟记公式并灵活运用是解题的关键.16.(1)分解因式:9a2(x﹣y)+4b2(y﹣x)(2)化简:÷(2+)【考点】分式的混合运算;提公因式法与公式法的综合运用.【分析】(1)利用提公因式法和公式法分解因式即可;(2)依照分式的混合运算的法制和顺序化简即可.【解答】解:(1)原式=(9a2﹣4b2)(x﹣y),=(3a+2b)(3a﹣2b)(x﹣y);(2)原式=,=.【点评】(1)本题考查了提公因式法与公式法的综合运用,解题关键是熟记因式分解的各种方法.(2)本题考查了分式的混合运算,解题的关键是要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.17.解关于的方程:.【考点】解分式方程.【专题】运算题.【分析】观看可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,能够把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.【点评】本题考查了解分式方程.(1)解分式方程的差不多思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.四、解答题(共2小题,满分20分)18.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2020年春运将迎来“高铁时代”.甲、乙两个都市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时刻缩短了11小时,大大方便了人们出行.已知高铁行使速度是原先火车速度的3.2倍,求高铁的行驶速度.【考点】分式方程的应用.【分析】依照题意,设原先火车的速度是x千米/时,进而利用从甲站到乙站的运行时刻缩短了11小时,得出等式求出即可.【解答】解:设原先火车的速度是x千米/时,依照题意得:﹣=11,解得:x=80,经检验,是原方程的根且符合题意.故80×3.2=256(km/h).答:高铁的行驶速度是256km/h.【点评】此题要紧考查了分式的方程的应用,依照题意得出正确等量关系是解题关键.19.已知:在Rt△ABC中,∠C=90°.(1)请在线段BC上作一点D,使点D到边AC、AB的距离相等(要求:尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若AC=6,BC=8,要求出CD的长度.【考点】角平分线的性质;勾股定理;作图—差不多作图.【分析】(1)依照角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)设CD的长为x,然后用x表示出DB、DE、BF利用勾股定理得到有关x的方程,解之即可.【解答】解:(1)如图所示:因此点D为所求;(2)过点D做DE⊥AB于E,设DC=x,则BD=8﹣x∵Rt△ABC中,∠C=90°,AC=6,BC=8∴由勾股定理得AB==10…∵点D到边AC、AB的距离相等∴AD是∠BAC的平分线又∵∠C=90°,DE⊥AB∴DE=DC=x,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6,∴BE=4,Rt△DEB中,∠DEB=90°,∴由勾股定理得DE2+BE2=BD2,即x2+42=(8﹣x)2,解得x=3.答:CD的长度为3.【点评】本题考查了勾股定理的应用,通过本题使同学们明白勾股定理不但能够在直角三角形中求线段的长,而且能够依照其列出等量关系.五、作图解答题(共1小题,满分10分)20.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1).提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标;(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,现在BD+CD 最小,写出点D的坐标.【解答】解:(1)所作图形如图所示:A1(3,1),B1(0,0),C1(1,3);(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,现在BD+CD最小,点D坐标为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查了依照轴对称变换作图,解答本题的关键是依照网格结构作出对应点的位置,并顺次连接.六、证明题(共1小题,满分12分)21.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】几何综合题;压轴题.【分析】(1)第一依照点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判定出△AEC≌△CGB,即可得出AE=CG,(2)依照垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再依照AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【点评】本题要紧考查了全等三角形的判定方法以及全等三角形对应边相等的性质,难度适中.七、(共1小题,满分10分)22.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否完全不完全.(填“完全”或“不完全”)若不完全,请直截了当写出因式分解的最后结果(x﹣2)4.(3)请你仿照以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【考点】提公因式法与公式法的综合运用.【专题】阅读型.【分析】(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2﹣4x+4还能够分解,因此是不完全.(3)按惯例题的分解方法进行分解即可.【解答】解:(1)运用了C,两数和的完全平方公式;(2)x2﹣4x+4还能够分解,分解不完全;(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.【点评】本题考查了运用公式法分解因式和学生的仿照明白得能力,按照提供的方法和样式解答即可,难度中等.八、(共1小题,满分14分)23.(14分)如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P 从顶点A,点Q从顶点B同时动身,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后连续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【考点】等边三角形的性质;全等三角形的判定与性质;直角三角形的性质.【专题】动点型.【分析】(1)因为点P从顶点A,点Q从顶点B同时动身,且它们的速度都为1cm/s,因此AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得CQM的度数.(2)设时刻为t,则AP=BQ=t,PB=4﹣t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值.(3)第一利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时刻为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°【点评】此题是一个综合性专门强的题目.本题考查等边三角形的性质、全等三角形的判定与性质、直角三角形的性质.难度专门大,有利于培养同学们钻研和探究问题的精神.。
安徽省马鞍山市2021届数学八年级上学期期末试卷模拟卷三
安徽省马鞍山市2021届数学八年级上学期期末试卷模拟卷三一、选择题1.如果数m 使关于x 的不等式组12260x x m <⎧⎪⎨⎪-≥⎩有且只有四个整数解,且关于x 的分式方程311x m x x-=--有整数解,那么符合条件的所有整数m 的和是( ) A .8 B .9 C .﹣8 D .﹣92.据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(ct ),1克拉为100分,已知1克拉0.2=克,则“1分”用科学计数法表示正确的是( )A .20.210-⨯克B .2210-⨯克C .3210-⨯ 克D .4210-⨯克 3.计算 2x 2·(-3x 3)的结果是( ) A .-6x 5B .6x 5C .-2x 6D .2x 6 4.若解方程225111m x x x +=+--会产生增根,则m 等于( ) A .-10 B .-10或-3C .-3D .-10或-4 5.已知非零实数a 满足213a a +=,则2221()a a -的值是( ) A .9 B .45 C .47 D .796.如果917255+能被n 整除,则n 的值可能是( ) A.20 B.30C.35D.40 7.下列图案属于轴对称图形的是( ).A. B. C . D .8.在ABC △中,A x ︒∠=,B y ︒∠=,60C ︒∠≠.若1802y x ︒=-,则下列结论正确的是( ) A .AC AB =B .AB BC = C .AC BC =D .,,AB BC AC 中任意两边都不相等 9.如图,等腰中,,,线段的垂直平分线交于,交于,连接,则( )A. B. C. D.10.如图,在锐角三角形ABC 中,直线l 为BC 的垂直平分线,射线m 平分∠ABC ,l 与m 相交于P 点.若∠A =60°,∠ACP =24°,则∠ABP 等于( )A.24°B.30°C.32°D.42°11.如图,已知ΔABC ,下面甲、乙、丙、丁四个三角形中,与ΔABC 全等的是( )A .甲B .乙C .丙D .丁12.如图,在Rt △ABC 中,∠ACB =90°,AD 平分∠CAB ,若CD =4,则点D 到AB 的距离是( )A .4B .3C .2D .513.如图,O 是直线AB 上一点,OC 平分DOB ∠,COD 5546'∠=,则AOD (∠= )A .6828'B .6928'C .6838'D .6938'14.下列命题是假命题的是( )A .同角(或等角)的余角相等B .三角形的任意两边之和大于第三边C .三角形的内角和为180°D .两直线平行,同旁内角相等15.一个多边形每个外角都等于30°,则这个多边形是几边形( )A .9B .10C .11D .12二、填空题16.若方程323x x k=-+的根为正数,则k 的取值范围是______. 17.分解因式:a 3b 2-2a 2b 2+ab 2=________________. 【答案】ab 2(a -1)218.如图,在四边形ABCD 中,90BAD BCD ∠=∠=,AB AD =,如果AC =,则四边形ABCD 的面积为________2cm .19.如图,已知AB CD ∥,14EAF EAB ∠=∠,14ECF EGD ∠=∠,记AFC m AEC ∠=∠,则m =________.20.如图,在Rt ABC ∆中,90C ∠=︒,BD 平分ABC ∠,交AC 于点D ,DE ⊥AB ,E 为AB 的中点,且DE=10cm ,则AC=___.三、解答题21.随着我国经济的发展,高铁逐渐成为了主要的交通工具,一般的高铁G 字头的高速动车组以D 字头的动车组,由大连到北京的G377的平均速度是D31的平均速度的1.2倍,行驶相同的路程1500千米,G377少用1个小时。
安徽省马鞍山市2021届数学八上期末模拟试卷(一)
安徽省马鞍山市2021届数学八上期末模拟试卷(一)一、选择题1.若分式1x x -有意义,则x 的取值范围是( ) A .x≠1B .x≠﹣1C .x =1D .x =﹣1 2.若分式方程1133a x x x -+=--有增根,则a 的值是( ) A .4 B .3 C .2 D .13.如果把分式+-x y x y中的x 和y 都扩大为原来的10倍,那么分式的值( ) A .扩大10倍 B .缩小10倍 C .是原来的100倍 D .不变4.如图,从边长为+a b 的正方形纸片中剪去一个边长为-a b 的正方形(a b >),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .4abB .2abC .2bD .2a 5.下列各式计算正确的是( ) A .()326x x = B .()2222x x =C .236x x x ⋅=D .()()522316m m m -⋅-=6.下列运算正确的是( )A .a 8÷a 4=a 2B .2a 3+3a 3=5a 6C .(﹣a 3)2=a 6D .(a ﹣b )2=a 2﹣b 2 7.如图,在ABC ∆中,点D 是BC 边上一点,AD AC =,过点D 作DE BC ⊥交AB 于E ,若ADE ∆是等腰三角形,则下列判断中正确的是( )A .B CAD =∠∠ B .BED CAD ∠=∠C .ADB AED ∠=∠ D .BED ADC ∠=∠8.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13B .12C .23D .不能确定9.下列说法错误的是( )A .等腰三角形底边上的高所在的直线是它的对称轴B .线段和角都是轴对称图形C .连接轴对称图形的对应点的线段必被对称轴垂直平分D .则ABC DEF ∆∆≌,ABC ∆与DEF ∆—定关于某条直线对称10.如图,有一张三角形纸片ABC ,已知∠B =∠C =x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A .B .C .D .11.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,若AD =3,BE =1,则DE =( )A.1B.2C.3D.412.如图所示,在ABC ∆中,AC BC =,90ACB ∠=,直线MN 过点C ,并交AB 边于点D ,点A 到直线MN 的距离2AE =,点B 到直线MN 的距离5BF =,则线段EF 的长是( )A .2B .3C .5D .713.如图,AE ∥BF ,∠1=110°,∠2=130°,那么∠3的度数是( )A.40°B.50°C.60°D.70°14.一个三角形,剪去一个角后所得的多边形内角和的度数是( )A .180° B.360°C .540° D.180°或 360°15.如图,点D 为△ABC 边BC 的延长线上一点.∠ABC 的角平分线与∠ACD 的角平分线交于点M ,将△MBC 以直线BC 为对称轴翻折得到△NBC ,∠NBC 的角平分线与∠NCB 的角平分线交于点Q ,若∠A=48°,则∠BQC 的度数为( )A.138°B.114°C.102°D.100°二、填空题 16.纳米是一种单位长度,1纳米910-=米,已知某种植物花粉的直径约为35000纳米,用科学记数法表示该种花粉的直径为______米.17.计算:()201820190.1258-⨯=________.18.如图,ABC ∆中,AB AC =,50A ∠=,AB 的垂直平分线交AC 于点E ,则ECB ∠=__________.19.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____.20.直角坐标系内点P (﹣2,3)关于x 轴的对称点Q 的坐标为_____.三、解答题21.进入夏季用电高峰季节,市供电局维修队接到紧急通知:要到 30 千米远的某乡镇进行紧急抢修,维修工骑摩托车先走,15 分钟后,抢修车装载所需材料出发, 结果两车同时到达抢修点,已知抢修车的速度是摩托车速度的 1.5 倍,求两种车的速 度.22.计算:(1)()()()2322x x x +--- (2)()()()2112a a a +---23.如图,已知△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,P 、Q 是△ABC 边上的两个动点,其中P 点从点A 开始沿AB 方向运动且速度为每秒lcm ,点Q 从点B 开始沿B→C→A 方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长?(2)当点Q 在边BC 上运动时,出发儿秒钟后,OPQB 是等腰三角形?(3)当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间?24.点D ,E 分别在△ABC 的边AC ,BD 上,BD ,CE 交于点F ,连接AF ,∠FAE =∠FAD ,FE =FD .(1)如图1,若∠AEF =∠ADF ,求证:AE =AD ;(2)如图2,若∠AEF≠∠ADF ,FB 平分∠ABC ,求∠BAC 的度数;(3)在(2)的条件下,如图3,点G 在BE 上,∠CFG =∠AFB 若AG =6,△ABC 的周长为20,求BC 长.25.求证:三角形的内角和等于180︒.(要求,画图,据图写出已知,求证,证明)【参考答案】***一、选择题16.53.510-⨯17.818.15°.19.32°20.(﹣2,﹣3)三、解答题21.摩托车的速度是40km/h ,抢修车的速度是60km/h.22.(1)原式=5x-10;(2)原式=4a-5.23.(1)出发2秒后,线段PQ 的长为(2)当点Q 在边BC 上运动时,出发83秒后,△PQB 是等腰三角形; (3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【解析】【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可;(2)设出发t 秒钟后,△PQB 能形成等腰三角形,则BP=BQ ,由BQ=2t ,BP=8-t ,列式求得t 即可;(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;②当CQ=BC时(如图2),则BC+CQ=12,易求得t;③当BC=BQ时(如图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.【详解】(1)BQ=2×2=4cm,BP=AB−AP=8−2×1=6cm,∵∠B=90°,由勾股定理得:===,∴出发2秒后,线段PQ的长为(2)BQ=2t,BP=8-t ,由题意得:2t=8-t ,解得:t=83,∴当点Q在边BC上运动时,出发83秒后,△PQB是等腰三角形;(3) ∵∠ABC=90°,BC=6,AB=8,∴=10.①当CQ=BQ时(图1),则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ=BC时(如图2),则BC+CQ=12,∴t=12÷2=6秒,③当BC=BQ时(如图3),过B点作BE⊥AC于点E,∴BE=6824105 AB BCAC⋅⨯==,所以=185=3.6, 故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒. 由上可知,当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质,注意分类讨论思想的应用.24.(1)见解析;(2)60BAC ∠=︒;(3)7BC =.【解析】【分析】(1)证明△AEF ≌△ADF ,根据全等三角形的对应边相等证明结论;(2)过点F 分别作AB ,BC ,AC 边上的高,根据角平分线的性质定理得到FP=FQ ,FP=FN ,根据角平分线的判定定理得到CF 平分∠ACB ,证明Rt △PEF ≌Rt △NDF ,根据全等三角形的性质得到∠PEF=∠FDN ,计算得到答案;(3)在BC 上取点R ,使CR=CA ,分别证明△CAF ≌△CRF 、△BGF ≌△BRF ,根据全等三角形的性质、三角形的周长公式计算即可.【详解】(1)∵FAE FAD ∠=∠,AEF ADF ∠=∠,FE FD =.∴AEF ADF ∆≅∆,∴AE AD =.(2)过F 点分别作AB ,BC ,AC 边上的高,FP ,FQ ,FN ,点P ,Q ,N 为垂足. ∵AF ,BF 分别平分BAC ∠和ABC ∠,∴FP FQ =,FP FN =,∴FQ FN =,且FN AC ⊥,FQ BC ⊥,∴CF 平分ACB ∠.∴ACE BCE ∠=∠.∵2BEC BAC ACE BAF ACE ∠=∠+∠=∠+∠,∴2EFD ABF BEC ABF BAF ACE ∠=∠+∠=∠+∠+∠1180902BAF BAF =⨯︒+∠=︒+∠. ∵FE FD =,∴Rt PEF Rt NDF ∆≅∆,∴PEF FDN ∠=∠,∴180PEF ADF ∠+∠=︒, ∴()42180BAC EFD PEF ADF ∠+∠=-⨯︒-∠-∠360180180=︒-︒=︒.∴90180BAF BAC ︒+∠+∠=︒且2BAC BAF ∠=∠,∴60BAC ∠=︒.(3)在BC 上取点R ,使CR CA =,∵CF CF =,FCA FCR ∠=∠,∴CAF CRF ∆≅∆.∴30CRF CAF ∠=∠=︒,180150BRF CRF ∠=︒-∠=︒.∵CFG AFB ∠=∠,∴CFG BFG AFB BFG ∠-∠=∠-∠,∴18060120AFG BFC ∠=∠=︒-︒=︒, ∵1302BAF BAC ∠=∠=︒, ∴30AGF ∠=︒,180150BGF AGF ∠=︒-∠=︒.∴BGF BRF ∠=∠.∵GBF RBF ∠=∠,BF BF =,∴BGF BRF ∆≅∆.∴BG BR =.∵AC AB BC BG AG BC AC ++=+++6220BR AG BC CR BC =+++=+=,∴7BC =.【点睛】本题考查的是全等三角形的判定和性质、角平分线的性质、三角形内角和定理,正确作出辅助性、掌握全等三角形的判定定理和性质定理是解题的关键.25.见解析。
马鞍山市2021届数学八上期末试卷
马鞍山市2021届数学八上期末试卷一、选择题1.如果关于x 的分式方程1222x m x x++=--有非负整数解,且一次函数2y x m =++不经过四象限,则所有符合条件的m 的和是( ). A.0 B.2C.3D.5 2.施工队为抢修其中一段120米的铁路,每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?设原计划每天修x 米,所列方程正确的是( )A.B.C. D.3.若分式方程12x -+3=12a x +-有增根,则a 的值是( ) A .﹣1 B .0 C .1D .2 4.分解因式3a 2b ﹣6ab+3b 的结果是( ) A .3b (a 2﹣2a ) B .b (3a 2﹣6a+1)C .3(a 2b ﹣2ab )D .3b (a ﹣1)25.下列因式分解正确的是( ) A .x 3﹣x=x (x 2﹣1) B .﹣a 2+6a ﹣9=﹣(a ﹣3)2C .x 2+y 2=(x+y )2D .a 3﹣2a 2+a=a (a+1)(a ﹣1)6.算式991001011021⨯⨯⨯+的结果可表示成一个自然数的平方,这个自然数是( )A .10099B .10098C .10097D .10096 7.下列图案是轴对称图形的有( )A.1个B.2个C.3个D.4个8.下列命题:①若|a|>|b|,则a >b ;②若a+b =0,则|a|≠|b|;③等边三角形的三个内角都相等.④线段垂直平分线上的点到线段两个端点的距离相等.以上命题的逆命题是真命题的有( )A .0 个B .1 个C .2 个D .3 个9.如图,OA=OB ,∠A=∠B ,有下列4个结论:①△AOD ≌△BOC ,②EA=EB ,③点E 在∠O 的平分线上.④若OC=2CA ,△AEC 的面积为1,那么四边形OCED 的面积为4.其中正确的结论个数为( )A.1个B.2个C.3个D.4个10.如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =72°,那么∠DAC 的大小是( )A .30°B .36°C .18°D .40°11.如图,点A 、D 在线段BC 的同侧,连接AB 、AC 、DB 、DC ,已知ABC DCB ∠=∠,老师要求同学们补充一个条件使ABC DCB ∆≅∆.以下是四个同学补充的条件,其中错误的是( )A.AC DB =B.AB DC =C.A D ∠=∠D.ABD DCA ∠=∠ 12.如图,ABC ≌EDC ,BC CD ⊥,点A ,D ,E 在同一条直线上,ACB 20∠=,则ADC ∠的度数是( )A .55B .60C .65D .7013.在一个四边形的所有内角中,锐角的个数最多有( )A .4个B .3个C .2个D .1个14.如图,直线AB 、CD 交于点O ,射线OM 平分∠AOC ,若∠BOD=76°,则∠BOM 的度数为( )A.38°B.152°C.150°D.142°15.如图,图中有四条互相不平行的直线1L 、2L 、3L 、4L 所截出的七个角,关于这七个角的度数关系,下列选项正确的是( )A.∠2=∠4+∠5B.∠3=∠1+∠6C.∠1+∠4+∠7=180°D.∠5=∠1+∠4二、填空题16.计算()22ab ab 的结果为________________.17.如果a+b=0,ab=-5,则22a b ab +=__________。
安徽省马鞍山市名校2021届数学八上期末教学质量检测试题
安徽省马鞍山市名校2021届数学八上期末教学质量检测试题一、选择题1.化简222x y x xy-+的结果为( ) A .﹣y x B .﹣y C .x y x + D .x y x- 2.若分式23x x +-的值为零,则( ) A .x=3 B .x=-2 C .x=2 D .x=-33.关于x 的方程323x a a +-=1的解是非负数,则a 的取值范围是( ) A .a≥﹣3 B .a≤﹣3C .a≥﹣3且a≠32- D .a≤﹣3且a≠92- 4.已知a+b =m ,ab =n ,则(a ﹣b)2等于( )A .m 2﹣nB .m 2+nC .m 2+4nD .m 2﹣4n5.下列运算正确的是( )A .236a a a =⋅ B .235?)(a a = C .623a a a ÷=D .22(2)(2)4a b a b a b +-=- 6.已知M =(x+1)(x 2+x ﹣1),N =(x ﹣1)(x 2+x+1),那么M 与N 的大小关系是( ) A .M >NB .M <NC .M≥ND .M≤N 7.若点A (1+m ,1﹣n )与点B (﹣3,2)关于x 轴对称,则m+n 的值是( )A .﹣1B .﹣3C .1D .3 8.如图,边长为24的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连结MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连结HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12B .6C .3D .19.若等腰三角形中,有两边的长分别是5和11,则这个三角形的周长为( )A .21B .27C .16或27D .21或2710.如图,小敏用三角尺按下面方法画角平分线:在已知的∠AOB 的两边上,分别取OM =ON ,再分别过点M ,N 作OA ,OB 的垂线,交点为P ,画射线OP ,则OP 平分∠AOB ,其作图原理是:△OMP ≌△ONP ,这样就有∠AOP =∠BOP ,则说明这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.HL11.如图,在△ABC巾,∠B=44°,∠C=56°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,则∠ADE的大小是()A.40°B.44°C.50°D.56°12.如图,△ABC 中,∠B=90°,AD 是∠BAC 的平分线,DE⊥AC,垂足为 E,则下列结论中不正确的是( )A.AB=AE B.BD=DE C.∠ADE=∠CDE D.∠ADB=∠ADE13.若一个正多边形的每一个外角都等于40°,则它是( ).A.正九边形B.正十边形C.正十一边形D.正十二边形14.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.6,6,1315.三条高的交点一定在三角形内部的是()A.任意三角形 B.锐角三角形 C.直角三角形 D.纯角三角形二、填空题16.非洲猪瘟病毒,在低温暗室内存在血液中之病毒可生存六年,室温中可活数周,加热被病毒感染的血液55℃30分钟或60℃10分钟,病毒将被破坏,许多脂溶剂和消毒剂可以将其破坏.该病毒粒子的直径约为0.000000175米,用科学计数法表示数据0.00000175=_____;17.已知直线y=﹣2x+4与平面直角坐标系中的x轴、y轴分别交于A、B两点,以AB为边作等腰直角三角形ABC,使得点C与原点O在AB两侧,则点C的坐标为_____.18.已知多项式x2+mx+25是完全平方式,且m<0,则m的值为_____.【答案】-1019.一个等腰三角形的两条边的长为4和5,则这个等腰三角形的周长为_____.20.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为()9 0,,()0 3,,5OD =,点P 在BC (不与点B 、C 重合)上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为______.三、解答题21.计算:(1)()1020201132π-⎛⎫-+-+ ⎪⎝⎭; (2)()32328292a a a a a a ⋅⋅+--÷. 22.计算: ① 20192-2018×2020 -1 ②化简:2(2)(1)(1)x x x +--+ 23.如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为.(1)画出将向右平移5个单位长度,再向上平移1个单位长度得到,并写出的坐标.(2)画出关于原点成中心对称的,并写出的坐标. 24.如图,AD 为∠EAC 的角平分线,DE ⊥AE ,DF ⊥AC ,∠EBD=∠FCD.(1)判断△BDC 的形状并说明理由;(2)求证:CF-AF=AB.25.直线AB 、CD 相交于点O ,OE 平分∠BOD .OF ⊥CD ,垂足为O ,若∠EOF =54°.(1)求∠AOC 的度数;(2)作射线OG ⊥OE ,试求出∠AOG 的度数.【参考答案】***一、选择题16.75×10-617.(6,2)或(4,6)或(3,3)18.无19.14或13.20.(1,3)或(4,3)三、解答题21.(1)2;(2)0.22.①0;②4x+5;23.(1)见解析,的坐标;(2)见解析,的坐标.【解析】【分析】(1)根据平移的性质即可得到答案;(2)根据中心对称的性质即可得到答案.【详解】(1)平移如图,即为所求.的坐标(2)如图,即为所求.的坐标【点睛】本题考查平移的性质和轴对称的性质,解题的关键是掌握平移的性质和轴对称的性质.24.(1)详见解析;(2)详见解析.【解析】【分析】(1)由角平分线上的点到两边的距离相等可知DE=DF,又由题意知∠DEB=∠DFC=90°,∠EBD=∠FCD可证三角形DEB≌三角形DFC,可得BD=CD,即可知△BDC的形状;(2)由题意可得三角形ADE≌三角形ADF,可得AF=AE,由(1)知BE=CF,则可知CF-AF=AB.【详解】解:(1)∵AD为∠EAC的平分线,DE⊥BE,DF⊥AC,∴DE=DF,∵∠DEB=∠DFC=90°,∠EBD=∠FCD,∴三角形DEB≌三角形DFC,∴BD=CD,∴三角形BDC为等腰三角形;(2)由题意可得∠DAE=∠DAF,AD=AD,∠AED=∠AFD,则三角形ADE≌三角形ADF,可得AF=AE,由(1)知BE=CF,CF-AF=BE-AE=AB.【点睛】本题主要考察角平分线的性质,全等三角形的证明,理清楚各线段、各角度之间的关系式解题的关键. 25.(1)72°(2)54°或126°。
马鞍山市2021届数学八上期末模拟调研试卷(二)
马鞍山市2021届数学八上期末模拟调研试卷(二)一、选择题1.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A.m >-6B.m <-6且m≠-4C.m <-6D.m >-6且m≠-42.分式可变形为( )A. B. C. D. 3.要使分式12x -有意义,则x 的取值应满足( ) A.x≠2B.x≠1C.x =2D.x =﹣1 4.下列代数式中,能用完全平方公式进行因式分解的是( ) A .x 2-1 B .x 2 +xy+y 2 C .x 2-2x+1 D .x 2+2x -15.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b6.下列各式中计算正确的是( )A .236x x x ⋅=B .842x x x ÷=C .()326326a b a b -=-D .()3412x x -=-7.已知ABC ∆中,90ACB ∠=,8AC =,6BC =.在射线BC 上取一点D ,使得ABD ∆为等腰三角形,这样的等腰三角形有几个? ( )A .2个B .3个C .4个D .5个 8.如图,将△ABC 沿直线DE 折叠后,使点B 与点A 重合,已知AC=5cm,△ADC 的周长为14cm,则BC 的长为( )A .8cmB .9cmC .10cmD .11cm 9.已知的坐标为,直线轴,且,则点的坐标为( )A.B.或C. D.或 10.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°11.下列说法:①若点C 是AB 的中点,则AC =BC ;②若AC =BC ,则点C 是AB 的中点;③若OC 是∠AOB 的平分线,则∠AOC =12∠AOB ;④若∠AOC =12∠AOB ,则OC 是∠AOB 的平分线.其中正确的有( ) A .1个 B .2个 C .3个 D .4个12.如图所示,在ABC ∆中,AC BC =,90ACB ∠=,直线MN 过点C ,并交AB 边于点D ,点A 到直线MN 的距离2AE =,点B 到直线MN 的距离5BF =,则线段EF 的长是( )A .2B .3C .5D .713.如图,一条公路修到湖边时需绕道,第一次拐角∠B =120°,第二次拐角∠C =140°.为了保持公路AB 与DE 平行,则第三次拐角∠D 的度数应为( )A .130°B .140°C .150°D .160° 14.在一个四边形的所有内角中,锐角的个数最多有( )A .4个B .3个C .2个D .1个 15.一个三角形,剪去一个角后所得的多边形内角和的度数是( )A .180° B.360°C .540° D.180°或 360°二、填空题16.方程()()()()2121221x x x x x x -=+-+-的根是______. 17.计算:-y 2·(-y)3·(-y)4=________________.18.如图,在平面直角坐标系中,以点O 为圆心,适当的长为半径画弧,交x 轴于点A ,交y 轴于点B ,再分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在第四象限交于点P .若点P 的坐标为(2a ,a-9),则a 的值为__________.19.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-∠2的度数是_______度。
★试卷3套精选★马鞍山市2021届八年级上学期数学期末经典试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有()A.2对B.3对C.4对D.5对【答案】D【解析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【详解】∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D.【点睛】本题考查了直角三角形的性质,熟练掌握同角的余角相等是解题的关键.2.下列银行图标中,是轴对称图形的是( )A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各选项分析即可.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4 B.4或﹣2 C.±4 D.﹣2【答案】B【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵x 2+2(m ﹣1)x+9是一个完全平方式,∴2(m ﹣1)=±6,解得:m =4或m =﹣2,故选:B .【点睛】本题考查了完全平方公式的应用,掌握完全平方公式的结构特征是解题的关键.4.一个多边形内角和是720,则这个多边形的边数为( )A .8B .7C .6D .5 【答案】C【分析】n 边形的内角和为(n−2)180 ︒,由此列方程求n 的值.【详解】设这个多边形的边数是n ,则:(n−2)×180 ︒=720 ︒,解得n =6,故选:C .【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.5.能说明命题“对于任何实数a ,a 2≥a”是假命题的一个反例可以是( )A .2a =-B .1a =C .0a =D .0.2a = 【答案】D【分析】根据题意、乘方的意义举例即可.【详解】解:当a=0.2时,a 2=0.04,∴a 2<a ,故选D .【点睛】本题考查的是命题的真假判断,正确举出反例是解题的关键.6.若关于x 的多项式26x px --含有因式2x -,则实数p 的值为( )A .5-B .5C .1-D .1【答案】C【分析】设26(2)()x px x x a --=--,然后利用多项式乘多项式法则计算,合并后根据多项式相等的条件即可求出p 的值.【详解】解:根据题意设226(2)()(2)2x px x x a x a x a --=--=-++,∴-p=-a-2,2a=-6,解得:a=-3,p=-1.故选:C .【点睛】此题考查了因式分解的意义,熟练掌握并灵活运用是解题的关键.7.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将()2101,()21011换算成十进制数应为: ()21021011202124015=⨯+⨯+⨯=++=;()32102101112021212802111=⨯+⨯+⨯+⨯=+++=.按此方式,将二进制()21001换算成十进制数和将十进制数13转化为二进制的结果分别为( ) A .9,()21101B .9, ()21110C .17,()21101D .17,()21110【答案】A【分析】首先理解十进制的含义,然后结合有理数混合运算法则及顺序进一步计算即可.【详解】将二进制()21001换算成十进制数如下: ()3210210011202021280019=⨯+⨯+⨯+⨯=+++=;将十进制数13转化为二进制数如下:1326÷=……1,623÷=……0,321÷=……1,∴将十进制数13转化为二进制数后得()21101,故选:A.【点睛】本题主要考查了有理数运算,根据题意准确理解十进制与二进制的关系是解题关键.8.如图,已知直角三角板中90C ∠=︒,30ABC ∠=︒,顶点A ,B 分别在直线m ,n 上,边BC 交线m 于点D .若//m n ,且25CAD ∠=︒,则α∠的度数为( )A .105︒B .115︒C .125︒D .135︒【答案】B 【分析】根据直角三角形的特点、平行线的性质及平角的性质即可求解.【详解】∵直角三角板中90C ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒∵25CAD ∠=︒∴602535BAD ∠=︒-︒=︒∵//m n∴35ABF BAD ∠=∠=︒故α∠=1803511530︒-︒-︒=︒故选B .【点睛】此题主要考查三角形的角度求解,解题的关键是熟知平行线的性质.9.A 、B 两地相距36?千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程为( )A .36369 x 4x 4+=+- B .363694x 4x +=+- C .36 49x += D .36369x 4x 4-=+- 【答案】A 【分析】分别表示出顺水航行时间和逆水航行的时间,根据“顺水航行时间+逆水航行时间=9”列方程即可求解.【详解】解:设该轮船在静水中的速度为x 千米/时,列方程得3636 9 x 4x 4+=+-. 故选:A【点睛】本题考查了列分式方程解应用题,熟知“顺水速=静水速+水速”,“逆水速=静水速-水速”是解题关键. 10.对于一次函数y =﹣2x+1,下列说法正确的是( )A .图象分布在第一、二、三象限B .y 随x 的增大而增大C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1>y 2【答案】D【分析】根据一次函数的图象和性质,逐一判断选项,即可得到答案.【详解】A 、∵k =﹣2<0,b =1>0,∴图象经过第一、二、四象限,故不正确;B 、∵k =﹣2,∴y 随x 的增大而减小,故不正确;C 、∵当x =1时,y =﹣1,∴图象不过(1,﹣2),故不正确;D 、∵y 随x 的增大而减小,∴若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1>y 2,故正确;故选:D .【点睛】本题主要考查一次函数的图象和性质,掌握一次函数解析式系数的几何意义,增减性,以及一次函数图象上点的坐标特征,是解题的关键.二、填空题11.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可.详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.12.把二次根式45化成最简二次根式得到的结果是______. 【答案】35【分析】根据二次根式的性质进行化简即可.【详解】解:45=95⨯=35.故答案为:35.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.在Rt △ABC 中,∠C =90°,如果AB =15,AC =12,那么Rt △ABC 的面积是_____.【答案】2【分析】在Rt △ABC 中,利用勾股定理可求出BC 的长度,即可解决问题.【详解】解:∵在Rt △ABC 中,∠C =10°,AB =15,AC =12,∴BC =22AB AC - =221512-=1. ∴S △ABC =12×1×12=2 故答案为:2.【点睛】本题考查勾股定理的知识,属于基础题,解题关键是掌握勾股定理的形式.14.如图,在△ABC 中,EF 是AB 的垂直平分线,与AB 交于点D ,BF=6,CF=2,则AC=________.【答案】1【分析】根据垂直平分线的性质可得AF=BF=6,然后根据已知条件即可求出结论.【详解】解:∵EF 是AB 的垂直平分线,BF =6,∴AF=BF=6∵CF =2,∴AC=AF +CF=1.故答案为:1.【点睛】本题考查的是垂直平分线的性质,掌握垂直平分线的性质找到相等线段是解决此题的关键.15.已知a ,b 满足方程组2a 15b a b -=⎧⎨+=⎩,则a —2b 的值为__________. 【答案】4-【分析】先根据二元一次方程组解出a ,b 的值,再代入求解即可.【详解】2a 15b a b -=⎧⎨+=⎩ 解得23a b ==,将23a b ==,代入a —2b 中22234a b -=-⨯=-故答案为:4-.【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.16.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案. 【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.17.多项式34a a -分解因式的结果是____.【答案】()()22a a a +-【分析】先提取公因式a ,再利用平方差公式(22()()a b a b a b -=+-)因式分解即可.【详解】解:32(4)(42)(2)a a a a a a a =-=-+-.故答案为:(2)(2)a a a -+.【点睛】本题考查综合运用提公因式法和公式法因式分解.一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.三、解答题18.已知2a-1的算术平方根是3,3a+b-1的平方根是±4,c 是13的整数部分,求a+2b-c 的平方根. 【答案】a+2b -c 的平方根为6±.【解析】试题分析:先根据算术平方根及平方根的定义得出关于,a b 的方程组,求出,a b 的值,再估算出13的取值范围求出c 的值,代入所求代数式进行计算即可.试题解析:∵2a−1的算术平方根是3,3a+b−1的平方根是±4,∴2193116a a b -=⎧⎨+-=⎩,解得52a b ,=⎧⎨=⎩∵9<13<16,∴3134,<< ∴13的整数部分是3,即c=3,∴原式5223 6.=+⨯-=6的平方根是6,±19.如图①,在△ABC 中,AC =BC ,∠ACB =90°,过点C 作CD ⊥AB 于点D ,点E 是AB 边上一动点(不含端点A ,B),连接CE ,过点B 作CE 的垂线交直线CE 于点F ,交直线CD 于点G .(1)求证:AE =CG ;(2)若点E 运动到线段BD 上时(如图②),试猜想AE ,CG 的数量关系是否发生变化,请证明你的结论;(3)过点A 作AH ⊥CE ,垂足为点H ,并交CD 的延长线于点M(如图③),找出图中与BE 相等的线段,直接写出答案BE=【答案】(1)详见解析;(2)不变,AE =CG ,详见解析;(3)CM【分析】(1)如图①,根据等腰直角三角形的性质可以得出∠BCD =∠ACD =45°,根据直角三角形的三角形的性质就可以得出∠CBF =∠ACE ,由ASA 就可以得出△BCG ≌△CAE ,就可以得出结论;(2)如图②,根据等腰直角三角形的性质可以得出∠BCD =∠ACD =45°,根据直角三角形的三角形的性质就可以得出∠CBF =∠ACE ,由ASA 就可以得出△BCG ≌△CAE ,就可以得出结论;(3)如图③,根据等腰直角三角形的性质可以得出∠BCD =∠ACD =45°,根据直角三角形的三角形的性质就可以得出∠BCE =∠CAM ,由ASA 就可以得出△BCE ≌△CAM ,就可以得出结论.【详解】(1)证明:∵AC =BC ,∴∠ABC =∠CAB .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE +∠BCE =90°.∵BF ⊥CE ,∴∠BFC =90°,∴∠CBF +∠BCE =90°,∴∠ACE =∠CBF .∵CD ⊥AB ,∠ABC =∠A =45°,∴∠BCD =∠ACD =45°,∴∠A =∠BCD .在△BCG 和△CAE 中,BCG A BC CACBG ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BCG ≌△CAE(ASA),∴AE =CG .(2)解:不变,AE =CG理由如下:∵AC =BC ,∴∠ABC =∠A .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE +∠BCE =90°.∵BF ⊥CE ,∴∠BFC =90°,∴∠CBF +∠BCE =90°,∴∠ACE =∠CBF .∵CD ⊥AB ,∠ABC =∠A =45°,∴∠BCD =∠ACD =45°,∴∠A =∠BCD .在△BCG 和△CAE 中,BCG A BC CACBG ACE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BCG ≌△CAE(ASA),∴AE =CG .(3)BE =CM ,理由如下:∵AC =BC ,∴∠ABC =∠CAB .∵∠ACB =90°,∴∠ABC =∠A =45°,∠ACE+∠BCE =90°.∵AH ⊥CE ,∴∠AHC =90°,∴∠HAC+∠ACE =90°,∴∠BCE =∠HAC .∵在RT △ABC 中,CD ⊥AB ,AC =BC ,∴∠BCD =∠ACD =45°∴∠ACD =∠ABC .在△BCE 和△CAM 中BCE MAC BC CACBE ACM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BCE ≌△CAM (ASA ),∴BE =CM ,故答案为:CM .【点评】本题考查了等腰直角三角形的性质的运用,等式的性质的运用,线段垂直平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.20.如图,△ABC 中,CE 、AD 分别垂直平分AB 、BC ,求△ABC 各内角的大小.【答案】各内角都是60°【分析】根据线段垂直平分线的性质得到AB =AC =BC ,根据等边三角形的性质解答.【详解】解:∵AD 是BC 的垂直平分线,∴AB =AC ,同理,AC =BC ,∴AB =AC =BC ,∴△ABC 为等边三角形,∴△ABC 各内角的度数都是60°.【点睛】本题考查的是线段垂直平分线的性质、等边三角形的判定和性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.某市为节约水资源,从2018年1月1日起调整居民用水价格,每立方米水费比2017年上涨29.小明家2017年8月的水费是18元,而2018年8月的水费是11元.已知小明家2018年8月的用水量比2017年8月的用水量多5 m 1.(1)求该市2017年居民用水的价格;(2)小明家2019年8月用水量比2018年8月份用水量多了20%,求小明家2019年8月份的水费.【答案】 (1)该市2017年的用水价格为每立方米95元;(2)小明家2019年8月的水费为19.6元. 【分析】(1)设该市2017年居民用水价格为每立方米x 元,则2018年的用水价格为每立方米(1+29)x 元,结合水费再分别表示出用水量,根据用水量之间的关系列方程求解;(2)根据2018年8月的水费以及2019年8月用水量比2018年8月份用水量多20%,可得出2019年8月的水费.【详解】解:(1)设该市2017年居民用水价格为每立方米x 元,则2018年的用水价格为每立方米(1+29)x 元,根据题意得, 1833+5=2(1+)9x x ,解得95x =, 经检验,95x =是原方程的解. 答:该市2017年的用水价格为每立方米95元; (2)根据题意得,小明家2019年8月用水量比2018年8月份用水量多了20%,则2019年8月的水费比2018年8月的水费多20%,则11×(1+20%)=19.6(元).答:小明家2019年8月份的水费为19.6元.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意解分式方程必须检验.22.已知x 、y 是实数,且x =,求9x ﹣2y 的值.【答案】-1.【解析】根据被开方数大于等于0列式求出x 的值,再求出y 的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,y ﹣5≥0,5﹣y≥0∴y =5 x =1∴9x ﹣2y =9×1﹣2×5=﹣1∴9x ﹣2y 的值为﹣1【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.某校为了改善办公条件,计划从厂家购买A 、B 两种型号电脑.已知每台A 种型号电脑价格比每台B 种型号电脑价格多1.1万元,且用11万元购买A 种型号电脑的数量与用8万元购买B 种型号电脑的数量相同.求A 、B 两种型号电脑每台价格各为多少万元?【答案】A 、B 两种型号电脑每台价格分别是1.5万元和1.4万元【分析】设A 种型号电脑每台价格为x 万元,则B 种型号电脑每台价格(x −1.1)万元.根据“用11万元购买A 种型号电脑的数量与用8万购买B 种型号电脑的数量相同”列出方程并解答.【详解】解:设A 种型号电脑每台价格为x 万元,则B 种型号电脑每台价格(x −1.1)万元,根据题意得: 1080.1x x =-, 解得:x=1.5,经检验:x=1.5是原方程的解,所以x −1.1=1.4,答:A 、B 两种型号电脑每台价格分别是1.5万元和1.4万元.【点睛】本题考查了分式方程的应用.分析题意,找到合适的数量关系是解决问题的关键.24.如图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC 成轴对称、顶点在格点上,且位置不同的三角形.【答案】见解析【解析】试题分析:根据轴对称图形的性质,不同的对称轴,可以有不同的对称图形,所以可以称找出不同的对称轴,再思考如何画对称图形.试题解析:如图所示,25.如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l 上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.【答案】8cm【解析】试题分析: 先根据BC与CD的长度之和为34cm,可设BC=x,则CD=(34-x),根据勾股定理可得:AC2=AB2+BC2=62+x2,△ACD是以DC为斜边的直角三角形,AD=24cm,根据勾股定理可得:AC2=CD2-AD2=(34-x)2-242,∴62+x2=(34-x)2-242,解方程即可求解.试题解析:∵BC与CD的长度之和为34cm,∴设BC=xcm,则CD=(34﹣x)cm.∵在△ABC中,∠ABC=90°,AB=6cm,∴AC2=AB2+BC2=62+x2.∵△ACD是以DC为斜边的直角三角形,AD=24cm, ∴AC2=CD2﹣AD2=(34﹣x)2﹣242,∴62+x2=(34﹣x)2﹣242,解得x=8,即BC=8cm.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知点P关于x轴对称点的坐标是(-1,2),则点P的坐标为( )A.(1,2) B.(1,-2) C.(2,-1) D.(-1,-2)【答案】D【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.【详解】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴点P关于x轴对称点的坐标是(-1,2),则点P的坐标为(-1,-2).故选:D.【点睛】解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.2.下列选项中,属于最简二次根式的是( )A B C D【答案】C【解析】根据最简二次根式的概念进行判断即可.A错误;=2,不属于最简二次根式,B错误;C正确;D错误.故选C.【点睛】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.某区为了解5600名初中生的身高情况,抽取了300名学生进行身高测量.在这个问题中,样本是()A.300 B.300名学生C.300名学生的身高情况D.5600名学生的身高情况【答案】C【分析】根据样本的定义即可判断.【详解】依题意可知样本是300名学生的身高情况故选C.【点睛】此题主要考查统计分析,解题的关键是熟知样本的定义.4.如果62xy=⎧⎨=-⎩是关于xy的二元一次方程mx﹣10=3y的一个解,则m的值为()A.32B.23C.﹣3 D.﹣2【答案】B【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把62xy=⎧⎨=-⎩代入方程得:6m﹣10=﹣6,解得:m=23,故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.下列几组数中,为勾股数的是()A.4,5,6 B.12,16,18C.7,24,25 D.0.8,1.5,1.7【答案】C【分析】根据勾股数的定义:满足222a b c+=的三个正整数,称为勾股数解答即可.【详解】解:A、42+52≠62,不是勾股数;B、122+162≠182,不是勾股数;C、72+242=252,是勾股数;D、0.82+1.52=1.72,但不是正整数,不是勾股数.故选:C.【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义,特别注意这三个数除了要满足222a b c+=,还要是正整数.6.直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A.B.C.D.【答案】B【解析】试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.7.点()23P -,关于y 轴的对称点的坐标是( ) A .(2,-3)B .(-2,-3)C .(-2,3)D .(-3,2)【答案】B【分析】根据关于y 轴的对称点的点的特点是保持y 不变,x 取相反数即可得出. 【详解】根据关于y 轴的对称点的点的特点得出,点()23P -,关于y 轴的对称点的坐标是(-2,-3) 故答案选B .【点睛】本题考查了坐标点关于y 轴对称点的坐标,属于坐标轴中找对称点的基础试题.8.下列命题是假命题的是( )A .有一个外角是120°的等腰三角形是等边三角形B .等边三角形有3条对称轴C .有两边和一角对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等【答案】C【解析】解:A . 外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A 选项正确;B . 等边三角形有3条对称轴,故B 选项正确;C .当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS 来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D .利用SSS .可以判定三角形全等.故D 选项正确;故选C .9.下列各组数,能够作为直角三角形的三边长的是( )A .2,3,4B .4,5,7C .0.5,1.2,1.3D .12,36,39【答案】C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解:A 、32+22≠42,不能构成直角三角形,故选项错误;B 、42+52≠72,不能构成直角三角形,故选项错误;C 、0.52+1.22=1.32,能构成直角三角形,故选项正确;D 、122+362≠392,不能构成直角三角形,故选项错误.故选C .考点:勾股定理的逆定理.10.化简2226926x y x y x x x -+÷-+-的结果是( ) A .3x y x -- B .23x - C .23x y x -- D .223x y x -- 【答案】D【分析】根据分式的除法法则,即可得到答案.【详解】原式=2()()(3)2(3)x y x y x y x x -++÷-- =2()()2(3)(3)x y x y x x x y-+-⨯-+ =2()(3)x y x -- =223x y x --, 故选D .【点睛】本题主要考查分式的除法法则,掌握分式的约分,是解题的关键.二、填空题11.如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.【答案】1.1【分析】由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=10°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可得:AD=AB ,∵∠B=10°,∴△ABD 是等边三角形,∴BD=AB ,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案为1.1.【点睛】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.12.已知等腰三角形的两边长,x y 满足方程组28210x y x y +=⎧⎨+=⎩,则此等腰三角形的周长为_____. 【答案】10【分析】首先解二元一次方程组求出x 和y 的值,然后分类讨论即可求出等腰三角形的周长.【详解】解:x ,y 满足方程组28210x y x y +=⎧⎨+=⎩解得:42x y =⎧⎨=⎩, 当2是腰是无法构成三角形,当4是腰是,三角形三边是4,4,2,此时三角形的周长是4+4+2=10,故答案是:10【点睛】本题主要考查了等腰三角形的性质、解二元一次方程组以及三角形三边关系,解题的关键是求出x 和y 的值,此题难度不大.13.已知关于x 的方程232x m x +=-的解是正数,则m 的取值范围为__________. 【答案】6m >-且4m ≠- 【分析】首先求出关于x 的方程232x m x +=-的解,然后根据解是正数,再解不等式求出m 的取值范围. 【详解】解关于x 的方程232x m x +=-得x =m +6, ∵x−2≠0,解得x ≠2,∵方程的解是正数,∴m +6>0且m +6≠2,解这个不等式得m >−6且m ≠−1.故答案为:m >−6且m ≠−1.【点睛】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x 的方程是关键,解关于x 的不等式是本题的一个难点.14.如图,在ABC ∆中,30CAB ︒∠=,90ACB ︒∠=,3AC =,D 为AB 的中点,E 为线段AC 上任意一点(不与端点重合),当E 点在线段AC 上运动时,则12DE CE +的最小值为__________.【答案】32 【分析】本题为拔高题,过点C 作AB 的垂线交AB 于点F ,可以根据直角三角形中30°角的特性,得出EF 与12CE 关系,最后得到1322CE DE DE EF +=+-,可知当DE-EF 为0时,12DE CE +有最小值. 【详解】过点C 作AB 的垂线交AB 于点F ,得到图形如下:根据直角三角形中30°角的特性,可知1131(3)2222EF AE CE CE ==-=- 由此可知1322CE EF =- 1322CE DE DE EF +=+- 故可知,当DE 与EF 重合时,两条线之间的差值为0,故则12DE CE +的最小值为32. 【点睛】本题属于拔高题,类似于“胡不归”问题,综合性强,是对动点最值问题的全面考察,是中学应该掌握的内容.15.如果x 2>0,那么x>0,这是一个_________命题【答案】假【分析】根据有理数的乘方法则即可得到答案.【详解】解: 如果x 2>0,那么x >0,是假命题,例如:(-2)2=4>0,-2<0;故答案为:假【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东20°方向,C 处在B 处的北偏东80°方向,则∠ACB=_____°.【答案】1【分析】根据题意,得出方向角的度数,然后根据平行线的性质和三角形的内角和计算即可.【详解】解:由题意得,∠EAB=45°,∠EAC=20°,则∠BAC=65°,∵BD ∥AE ,∴∠DBA=∠EAB=45°,又∵∠DBC=1°,∴∠ABC=35°,∴∠ACB=11°﹣65°﹣35°=1°.故答案为:1.【点睛】本题主要考察了平行线的性质以及三角形的内角和,根据题意正确得出方向角是解题的关键.17.计算:322()3a b-=____________. 【答案】6249a b【分析】按照分式的乘方运算法则即可得到答案. 【详解】解:3622232(2)4(3)(392)a bb a a b ==- 故答案为:6249a b. 【点睛】本题考查的是分式的乘方,熟知分式的乘方是关键,结果的符号要注意好.三、解答题18.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D 、E ,CE 与AB 相交于O . (1)证明:BCE CAD ≌;(2)若AD=25,BE=8,求DE 的长;(3)若65BOE ∠=︒,求CAD ∠的度数.【答案】(1)见解析;(2)17; (3)∠CAD=20°.【分析】(1)根据垂直的定义可得∠BEC=∠ACB=∠ADC=90°,然后根据同角的余角相等可得∠ACD=∠CBE ,然后利用AAS 即可证出结论;(2)根据全等三角形的性质可得AD=CE ,BE=CD ,利用等量代换即可求出结论;(3)根据等腰直角三角形的性质∠ABC=∠BAC=45°,从而求出∠BCE ,然后根据全等三角形的性质即可得出结论.【详解】解:(1)∵∠ACB=90°,BE ⊥CE ,AD ⊥CE∴∠BEC=∠ACB=∠ADC=90°∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°∴∠ACD=∠CBE∵AC=BC ∴BCE ≌CAD (AAS );(2)∵BCE ≌CAD ,∴AD=CE ,BE=CD ,∴DE=CE ﹣CD=AD ﹣BE=25﹣8=17;(3)∵∠ACB=90°,AC=BC∴∠ABC=∠BAC=45°∵∠BOE=65°∴∠BCE=∠BOE-∠ABC=20° ∵BCE ≌CAD∴∠BCE=∠CAD∴∠CAD=20°.【点睛】此题考查的是全等三角形的判定及性质和等腰直角三角形的性质,掌握全等三角形的判定及性质和等腰直角三角形的性质是解决此题的关键.19.如图, 90,,BAC AB AC BD ∠=︒=平分ABC ∠交AC 于D ,交CF 于E ,AD AF =.(1)求证:ABD ACF ∠=∠;(2)BC BF =.【答案】(1)证明见解析;(2)证明见解析【分析】(1)证明△ABD≌△ACF即可得到结论;(2)由(1)得∠ABD=∠ACF,∠CDE=∠BDA,根据三角形内角和定理可得∠CED=∠BAD=90°,即BE⊥CF,结合BD平分∠ABC可证明BC=BF.【详解】(1)∵∠BAC=90°,∴∠CAF=90°,∴∠BAC=∠CAF,又∵AB=AC,AD=AF,∴△ABD≌△ACF,∴∠ABD=∠ACF;(2)在△CDE和△BDA中∵∠DEC+∠CDE+DCE=180°,∠ABD+∠BDA+∠BAD=180°又∠ABD=∠ACF,∠CDE=∠BDA,∴∠CED=∠BDA=90°,∴∠CEB=∠FEB=90°,∵BD平分∠ABC∴∠CBE=∠FBE又BE为公共边,∴△CEB≌△FEB,∴BC=BF.【点睛】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定定理,证明三角形全等是证明线段或角相等的重要手段.20.某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?【答案】(1)该公司至少购进甲型显示器1台;(2)购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器2台,乙型显示器2台.【分析】(1)设该公司购进甲型显示器x台,则购进乙型显示器(50-x)台,根据两种显示器的总价不超过77000元建立不等式,求出其解即可;(2)由甲型显示器的台数不超过乙型显示器的台数可以建立不等式x≤50-x与(1)的结论构成不等式组,求出其解即可.【详解】解:(1)设该公司购进甲型显示器x台,则购进乙型显示器(50-x)台,由题意,得:1000x+2000(50-x)≤77000解得:x≥1.∴该公司至少购进甲型显示器1台.(2)依题意可列不等式:x≤50-x,解得:x≤2.∴1≤x≤2.∵x为整数,∴x=1,24,2.∴购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器2台,乙型显示器2台.【点睛】本题考查了列一元一次不等式解实际问题的运用,一元一次不等式的解法的运用,方案设计的运用,解答时根据条件的不相等关系建立不等式是关键.21.如图,已知□ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF是平行四边形.【答案】证明见解析.【分析】由四边形ABCD是平行四边形和BE=DF可得△GBE≌△HDF,利用全等的性质和等量代换可知GE=HF ,GE ∥HF ,依据“一组对边平行且相等的四边形是平行四边形”可判定四边形GEHF 是平行四边形.【详解】解:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD .∴∠GBE=∠HDF .又∵AG=CH ,∴BG=DH .又∵BE=DF ,∴△GBE ≌△HDF .∴GE=HF ,∠GEB=∠HFD .∴∠GEF=∠HFE .∴GE ∥HF .∴四边形GEHF 是平行四边形.【点睛】本题考查平行四边形的判定与性质.22.因雾霾天引发的汽车尾气污染备受关注,由此汽车限号行驶也成为人们关注的焦点,限行期间为方便市民出行,某路公交车每天比原来的运行增加15车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,限行期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问限行期间这路公交车每天运行多少车次?【答案】限行期间这路公交车每天运行50车次.【分析】设限行期间这路公交车每天运行x 车次,则原来运行()15x -车次,根据“平均每车次运送乘客与原来的数量基本相同”列出分式方程,求解即可.【详解】解:设限行期间这路公交车每天运行x 车次,则原来运行()15x -车次,根据题意可得: 5600800015x x=-, 解得:50x =,经检验得50x =是该分式方程的解,答:限行期间这路公交车每天运行50车次.【点睛】本题考查分式方程的实际应用,根据题意列出分式方程并求解是解题的关键,需要注意的是求出分式方程的解之后一定要验根.23.如图1,公路上有,,A B C 三个车站,一辆汽车从A 站以速度1v 匀速驶向B 站,到达B 站后不停留,以速度2v 匀速驶向C 站,汽车行驶路程y (千米)与行驶时间x (小时)之间的函数图象如图2所示.(1)求y 与x 之间的函数关系式及自变量的取值范围.。
(汇总3份试卷)2021年马鞍山市八年级上学期数学期末联考试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,过边长为2的等边三角形ABC的顶点C作直线l⊥ BC,然后作△ABC关于直线l对称的△A′B′C,P为线段A′C上一动点,连接AP,PB,则AP+PB的最小值是()A.4 B.3 C.2 D.2+3【答案】A【分析】连接AA′,根据现有条件可推出△A′B′C≌△AA′C,连接AB′交A′C于点E,易证△A′B′E≌△A′AE,可得点A关于A′C对称的点是B′,可得当点P与点C重合时,AP+PB取最小值,即可求得答案.【详解】解:如图,连接AA′,由对称知△ABC,△A′B′C都是等边三角形,∴∠ACB=∠A′CB′=60°,∴∠A′CA=60°,由题意得△ABC≌△A′B′C,∴AC=A′C,∴△ACA′是等边三角形,∴△A′B′C≌△AA′C,连接AB′交A′C于点E,易证△A′B′E≌△A′AE,∴∠A′EB′=∠A′EA=90°,B′E=AE,∴点A关于A′C对称的点是B′,∴当点P与点C重合时,AP+PB取最小值,此时AP+PB=AC+BC=2+2=4,故选:A.【点睛】本题考查了轴对称——最短路线问题,等边三角形的判定和性质,全等三角形的判定和性质,掌握知识点是解题关键.2.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行B.一组对边平行,另一组对边相等C.一组对边平行且相等D.两组对边分别相等【答案】B【解析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形.故选B.3.下列各组线段中,能够组成直角三角形的一组是()A.1,2,3 B.2,3,4 C.4,5,6 D.1,3,2【答案】D【分析】根据勾股定理的逆定理判断即可.【详解】解:1+2=3,A不能构成三角形;22+32≠42,B不能构成直角三角形;42+52≠62,C不能构成直角三角形;12+(3)2=22,D能构成直角三角形;故选D.【点睛】本题考查了能构成直角三角形的三边关系,解题的关键是掌握勾股定理.4.在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A2018的坐标为()A.(337,1)B.(337,﹣1)C.(673,1)D.(673,﹣1)【答案】C【分析】先写出前9个点的坐标,可得点的坐标变化特征:每三个点为一组,循环,进而即可得到答案.【详解】观察点的坐标变化特征可知:A 2(1,1)A 3(1,0)A 4(1,﹣1)A 5(2,﹣1)A 6(2,0)A 7(2,1)A 8(3,1)A 9(3,0)…发现规律:每三个点为一组,循环,∵2018÷3=672…2,∴第2018个点是第673组的第二个点,∴A 2018的坐标为(673,1).故选:C .【点睛】本题主要考查点的坐标,找出点的坐标的变化规律,是解题的关键.5.下列说法错误的是( )A .所有的等边三角形都是全等三角形B .全等三角形面积相等C .三条边分别相等的两个三角形全等D .成轴对称的两个三角形全等【答案】A【分析】根据全等三角形的判定和性质、成轴对称图形的概念对各选项分析判断即可解答.【详解】A .所有的等边三角形有大有小,不一定全对,故此选项错误,符合题意;B .全等三角形的面积相等,故此选项正确,不符合题意;C .三条边分别相等的三角形全等,此选项正确,不符合题意;D .成轴对称的两个三角形全等,此选项正确,不符合题意,故选:A .【点睛】本题考查全等三角形的判定与性质、成轴对称图形的概念,熟练掌握全等三角形的判定与性质是解答的关键.6.下列从左到右的变形,属于分解因式的是( )A .2(3)(3)9a a a +-=-B .25(1)5x x x x +-=--C .2 (1)a a a a =++D .32x y x x y =⋅⋅【解析】试题解析:A. 右边不是整式积是形式,故本选项错误;B. 不是因式分解,故本选项错误;C. 是因式分解,故本选项正确;D. 不是因式分解,故本选项错误.故选C.7.计算()32-2a b的结果是( ) A .536a b -B .636a bC .538a b -D .638a b - 【答案】D【分析】根据幂的乘方:底数不变,指数相乘;以及积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘,进行运算,即可求解.【详解】解:()()()33322323363-2288a ba b a b a b ⨯=-⋅⋅=-⋅⋅=-, 故选D .【点睛】本题考察积的乘方以及幂的乘方运算,较容易,熟练掌握积的乘方以及幂的乘方运算法则是顺利解题的关键.8.对于任何整数m ,多项式()2459m +-都能( )A .被8整除B .被m 整除C .被()1m -整除D .被()21m -整除【答案】A【分析】先对多项式进行因式分解,化为多个最简因式的乘积,再找出其中有无和选项中相同的一个,即可得出答案.【详解】原式2(45)3m =+- (453)(453)m m =+++-(48)(42)m m =++8(2)(21)m m =++故可知()2459m +-中含有因式8、2m +、21m +,说明该多项式可被8、2m +、21m +整除,故A 满足,本题答案为A.【点睛】本题关键,若想让多项式被因式整除,需要将多项式化简为多个最简因式的乘积,则多项式一定可以被这几个最简因式整除.9.函数 y =ax ﹣a 的大致图象是( )A .B .C .D .【答案】C【解析】将y=ax-a 化为y= a(x-1),可知图像过点(1,0),进行判断可得答案.【详解】解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A 、B 、 D 中的图象都不过点(1,0), 所以C 项图象正确.故本题正确答案为C.【点睛】本题主要考查一次函数的图象和一次函数的性质.10.下列命题是假命题的是( )A .所有的实数都可用数轴上的点表示B .三角形的一个外角等于它的两个内角的和C .方差能反映一组数据的波动大小D .等角的补角相等【答案】B【解析】根据实数和数轴的一一对应关系,可知所有的实数都可用数轴上的点表示,故是真命题; 根据三角形的外角的性质,可知三角形的一个外角等于它的不相邻两内角的和,故是假命题; 根据方差的意义,可知方差越大,波动越大,方差越小,波动越小,故是真命题;根据互为补角的两角的性质,可知等角的补角相等,故是真命题.故选B.二、填空题11.已知13a a +=,则221a a +的值是__________. 【答案】7【分析】已知等式两边平方,利用完全平方公式展开,变形即可求出所求式子的值. 【详解】将13a a +=两边平方得:221()3a a +=, 即:221+2=9a a+, 解得:221a a+=7, 故填7.【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.12.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有个.【答案】3【解析】试题分析:由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻.∵∠C=72°,∠DBC=36°,∠A=36°,∴∠ABD=180°-72°-36°-36°=36°=∠A,∴AD=BD,△ADB是等腰三角形,∵根据三角形内角和定理知∠BDC=180°-72°-36°=72°=∠C,∴BD=BC,△BDC是等腰三角形,∵∠C=∠ABC=72°,∴AB=AC,△ABC是等腰三角形.故图中共3个等腰三角形.考点:本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理点评:由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.同时注意做到由易到难,不重不漏.13.已知关于x,y的方程组4375x y mx y m+=⎧⎨-=-⎩的解满足不等式2x+y>8,则m的取值范围是____.【答案】m<﹣1.【分析】先解方程组,然后将x、y的值代入不等式解答.【详解】解:解方程组得x=2m﹣1,y=4﹣5m,将x=2m﹣1,y=4﹣5m代入不等式2x+y>8得4m﹣2+4﹣5m>8,∴m<﹣1.故答案为:m<﹣1.【点睛】本题考查了方程组与不等式,熟练解方程组与不等式是解题的关键.14.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是_____.【答案】16【解析】由线段垂直平分线上的点到线段两端点的距离相等可求出AE=BE ,进而求出△BCE 的周长.【详解】∵DE 是AB 的垂直平分线,∴AE=BE ,∵AC=10cm ,BC=6cm ,∴△BCE 的周长=BC +BE +CE=BC +AE +CE=BC +AC=10+6=16cm .故答案为:16【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△BCE 的周长等于AC 与BC 的和是解题的关键.15.如图,已知BD 为ABC 中ABC ∠的平分线,CD 为ABC 的外角ACE ∠的平分线,与BD 交于点D ,若28D ∠=︒,则A ∠=______.【答案】56°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACE 和∠DCE ,再根据角平分线的定义可得∠ABC=2∠DBC ,∠ACE=2∠DCE ,然后整理即可得解.【详解】由三角形的外角性质得,∠ACE=∠A+∠ABC ,∠DCE=∠D+∠DBC ,∵BD 为△ABC 中∠ABC 的平分线,CD 为△ABC 中的外角∠ACE 的平分线,∴∠ABC=2∠DBC ,∠ACE=2∠DCE ,∴∠A+∠ABC=2(∠D+∠DBC),整理得,∠A=2∠D ,∵∠D=28°,∴∠A=2×28°=56°故答案为:56°.【点睛】本题考查了角平分线与三角形的外角性质,熟练运用外角性质将角度转化是解题的关键.16.如图,,3,5ABC EBD AB cm BD cm ==≌,则CE 的长度为__________.【答案】2cm【分析】根据全等三角形的对应边都相等,得到BC 、BE 的长,即可求出CE 的长.【详解】解:,3,5ABC EBD AB cm BD cm ∆∆==≌5,3BC BD cm EB AB cm ∴====532CE BC EB cm ∴=-=-=故答案为:2cm .【点睛】本题考查的主要是全等三角形的性质,对应的边都相等,注意到全等三角形的对应顶点写在对应的位置,正确判断对应边即可.17.使分式22x x -+有意义的x 满足的条件是__________________. 【答案】2x ≠-;【分析】本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵20x +≠,∴2x ≠-;故答案为:2x ≠-.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.三、解答题18.根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;1×1.(1)将以上各乘积分别写成“a 2﹣b 2”(两数平方)的形式,将以上10个乘积按照从小到大的顺序排列起来;(2)用含有a ,b 的式子表示(1)中的一个一般性的结论(不要求证明);(3)根据(2)中的一般性的结论回答下面问题:某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案方案:第一次提价p%,第二次提价q%;方案2:第一、二次提价均为2p q +%,其中p ≠q ,比较哪种方案提价最多? 【答案】(1)答案见解析;(2)对于:ab ,当|b ﹣a|越大时,ab 的值越小;(3)方案2提价最多.【分析】(1)根据题目中的式子和平方差公式可以解答本题;(2)根据(1)中的计算结果,可以写出相应的结论;(3)根据题意列出代数式,根据(2)中的结论可以解答本题.【详解】(1)11×29=(1﹣9)×(1+9)=12﹣92,12×28=(1﹣8)×(1+8)=12﹣82,13×27=(1﹣7)×(1+7)=12﹣72,14×26=(1﹣6)×(1+6)=12﹣6215×25=(1﹣5)×(1+5)=12﹣52,16×24=(1﹣4)×(1+4)=12﹣4217×23=(1﹣3)×(1+3)=12﹣32,18×22=(1﹣2)×(1+2)=12﹣22,19×21=(1﹣1)×(1+1)=12﹣12,1×1=(1+2)×(1﹣2)=12﹣22,11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<1×1;(2)由(1)可得:对于ab ,当|b ﹣a|越大时,ab 的值越小;(3)设原价为a ,则方案1:a(1+p%)(1+q%)方案2:a(1%2p q ++)2 ∵|1+p%﹣(1+q%)|=|(p ﹣q)%|, |1%2p q ++-(1%2p q ++)|=2. ∵p≠q ,∴|(p ﹣q)%|>2,∴由(2)的结论可知:方案2提价最多.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.19.如图,已知△ABC 中,∠ACB=90︒,CD 是AB 边上的高,AE 是∠BAC 的平分线,且与CD 交于点F ,(1)求证:CE=CF ;(2)过点F 作FG ‖AB ,交边BC 于点G ,求证:CG=EB.【答案】(1)见解析;(2)见解析【分析】(1)要得到CE=CF 证明∠CFE=∠CEF 即可,据已知条件∠CAE+∠CEA=90°,∠FAD+∠AFD=90°,因为AE 平分∠CAB ,所以∠AFD=∠AEC ;因为∠AFD=∠CFE ,即可得∠CFE=∠CEF ,即得结论CF=CE . (2)过点E 作EH AB ⊥,垂足为点H ,如能证得CFG EHB ∆≅∆,即可得解.【详解】解:(1)∵AE 平分BAC ∠,∴CAE BAE ∠=∠∵90ACB ∠=︒,且CD AB ⊥,∴∠ACD=∠B∵∠CFE=∠CAE+∠ACD ,∠CEF=∠BAE+∠B∴∠CFE=∠CEF∴CE CF =(2)过点E 作EH AB ⊥,垂足为点H ,∵AE 平分BAC ∠,且90ECA EHA ∠=∠=︒∴EC EH =.又∵CE CF =,∴CF EH =∵CD AB ⊥,且FG ∥AB ,∴∠CGF=∠B ,且CD FG ⊥,∠CFG=90°在CFG EHB ∆∆和中,∵90CGF B CFG EHB CF EH ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴CFG EHB ∆≅∆∴=CG EB .【点睛】本题主要考查全等三角形的判定,涉及到直角三角形,等腰三角形、平行线等的性质,是一道综合性题目,比较复杂.解题的关键是熟练掌握所学的知识进行证明.20.分解因式:22363ax axy ay -+【答案】()23-a x y【分析】先提取公因式,然后在利用公式法分解因式即可.【详解】原式()2232a x xy y =-+()23a x y =-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.如图所示,在△ABC 中,AE 、BF 是角平分线,它们相交于点O ,AD 是高,∠BAC=80°,∠C=54°,求∠DAC 、∠BOA 的度数.【答案】∠DAC=36°;∠BOA=117°【分析】首先利用AD 是高,求得∠ADC ,进一步求得∠DAC 度数可求;利用三角形的内角和求得∠ABC ,再由BF 是∠ABC 的角平分线,求得∠ABO ,故∠BOA 的度数可求.【详解】解:∵AD 是高∴∠ADC=90°∵∠C=54°∴∠DAC=180°﹣90°﹣54°=36°∵∠BAC=80°,∠C=54°,AE 是角平分线∴∠BAO=40°,∠ABC=46°∵BF 是∠ABC 的角平分线∴∠ABO=23°∴∠BOA=180°﹣∠BAO ﹣∠ABO=117°【点睛】本题考查了利用角平分线的性质、三角形的内角和定理解决问题的能力,结合图形,灵活运用定理解决问题.22.已知4x y +=,3xy =,求下列各式的值:(1)2222x y xy +; (2)x y - 【答案】(1)24;(2)2±【分析】(1)提出公因式2xy 后即可代入求值;(2)22()()4x y x y xy -=+-可代入求出(x-y )2,再开方即可求得答案.【详解】(1)22222()x y xy xy x y +=+∵4x y +=,3xy =∴原式=24324⨯⨯=(2)∵22()()4x y x y xy -=+-=2443-⨯=4∴x y -=2±【点睛】此题考察代数式求值,注意(2)中x+y 与x-y 之间的关系转化.23. “转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E 的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N 的度数吗?只要写出结论,不需要写出解题过程)【答案】(1)180°;(2)360°;(3)1080°.【分析】(1)根据三角形外角的性质和三角形内角和定理可得∠A+∠B+∠C+∠D+∠E 的度数; (2)根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)根据图中可找出规律∠A+∠B+∠C+∠D+∠E=180°,并且每截去一个角则会增加180度,由此即可求出答案.【详解】(1)∵∠1=∠2+∠D=∠B +∠E +∠D ,∠1+∠A +∠C=180°,∴∠A +∠B +∠C +∠D +∠E=180°;(2))∵∠1=∠2+∠F=∠B +∠E +∠F ,∠1+∠A +∠C +∠D=360°,∴∠A +∠B +∠C +∠D +∠E +∠F=360°;(3)观察可以发现图(1)到图(2)可以发现每截去一个角,则会增加180度,所以当截去5个角时增加了180×5度,则∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠M +∠N=180×5+180=1080°.【点睛】主要考查了多边形的内角与外角之间的关系.有关五角星的角度问题是常见的问题,其5个角的和是180度.解此题的关键是找到规律利用规律求解.24.一辆汽车开往距离出发地150km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后速度提高20%匀速行驶,并比原计划提前20min 到达目的地,求前一小时的行驶速度.【答案】50/km h .【分析】设前一小时的行驶速度为x /km h ,则后来的速度为1.2x /km h ,根据他提前20分钟到达目的地,等量关系式为:加速后的时间+20分钟+1小时=原计划用的时间,列方程求解即可.【详解】设前一小时的行驶速度为x /km h ,则后来的速度为1.2x /km h ,由题意得,150201501 1.260x x x-++=, 解得:50x =,经检验:50x =是原方程的解且符合题意,答:前一小时的行驶速度为50/km h .故答案为:50/km h【点睛】通过设前一小时的行驶速度,根据加速前后时间的等量关系列出方程,求解即可得出答案,注意加速后行驶的路程为150千米-前一小时按原计划行驶的路程.25.解不等式组:3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.【答案】-7<x≤1.数轴见解析.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:3(2)4 21152x xx x--≥⎧⎪⎨-+<⎪⎩①②解不等式①,得x≤1解不等式②,得x>-7∴不等式组的解集为-7<x≤1.在数轴上表示不等式组的解集为故答案为-7<x≤1.【点睛】本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若a 、b 、c 为ABC ∆的三边长,且满足|2|0a -=,则c 的值可以为( ) A .2B .5C .6D .8 【答案】B【分析】根据非负数的性质列方程求出a 、b 的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c 的取值范围,然后解答即可.【详解】解:由题意得,20a -=,40b -=,解得:2a =,4b =,∵4−2=2,4+2=6,∴26c <<,∴c 的值可以为1.故选:B .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系:三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.2.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是( )A .3,4,5B C .8,15,17 D .5,12,13 【答案】B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、222345+=,∴能构成直角三角形;B 、222(3)+≠,∴不能构成直角三角形;C 、22281528917+==,∴能构成直角三角形;D 、22251213169=+=,∴能构成直角三角形.故选:B .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.若(x ﹣2)(x +3)=x 2+ax +b ,则a ,b 的值分别为( )A .a =5,b =﹣6B .a =5,b =6C .a =1,b =6D .a =1,b =﹣6【答案】D【分析】等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出a 与b 的值即可.【详解】解:∵(x ﹣2)(x+3)=x 2+x ﹣6=x 2+ax+b ,∴a =1,b =﹣6,故选:D .【点睛】此题考查了多项式乘多项式以及多项式相等的条件,熟练掌握运算法则是解本题的关键.4.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130°【答案】C 【分析】根据等边对等角可得∠B =∠ACB =50°,再根据三角形内角和计算出∠A 的度数,然后根据三角形内角与外角的关系可得∠BPC >∠A , 再因为∠B =50°,所以∠BPC <180°-50°=130°进而可得答案.【详解】∵AB =AC ,∠B =50°,∴∠B =∠ACB =50°,∴∠A =180°-50°×2=80°,∵∠BPC =∠A +∠ACP ,∴∠BPC >∠A ,∴∠BPC >80°.∵∠B =50°,∴∠BPC <180°-50°=130°,则∠BPC 的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.5.如图,在ABC ∆中,90ACB ∠=︒,15B ∠=︒,DE 垂直平分AB ,交BC 于点E 若6BE =,则AC 等于( )A .3B .4C .5D .6【答案】A 【分析】根据垂直平分线的性质,得出AE=BE=6,再由三角形外角的性质得出∠AEC=∠ABE+∠BAE=30°,最后由含30°的直角三角形的性质得出AC 的值即可.【详解】解:∵DE 垂直平分AB ,6BE =∴AE=BE=6,又15B ∠=︒∴∠ABE=∠BAE=15°,∴∠AEC=∠ABE+∠BAE=30°,又∵90ACB ∠=︒∴在RT △AEC 中,132AC AE == 故答案为:A .【点睛】本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,熟知上述几何性质是解题的关键.6.下列从左到右的变形是分解因式的是( )A .2925(95)(95)x x x -=+-B .2249(2)(2)9a b a b a b -+=+-+C .225105(2)x y xy xy x y -=-D .(2)()()(2)a b a b a b a b -+=+-【答案】C【分析】考查因式分解的概念:把一个多项式分解成几个整式的积的形式.【详解】解:A. 正确分解为:2925(35)(35)x x x -=+-,所以错误; B .因式分解后为积的形式,所以错误;C .正确;D.等式左边就不是多项式,所以错误.【点睛】多项式分解后一定是几个整式相乘的形式,才能叫因式分解7.下列分式是最简分式的是( )A .222a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 【答案】C 【分析】根据分式的基本性质进行约分,化出最简分式即可进行判断;【详解】解:选项A 中,221=2a a b ab ,不符合题意,故选项A 错误; 选项B 中,21=33a a a a --,不符合题意,故选项B 错误; 选项C 中,22a b a b ++不能约分,符合题意,故选项C 正确; 选项D 中,222=a ab a a b a b--+,不符合题意,故选项D 错误; 故选C.【点睛】本题主要考查了最简分式,分式的基本性质,掌握最简分式,分式的基本性质是解题的关键.8.如图,AD 是ABC ∆的中线,E ,F 分别是AD 和AD 延长线上的点,连接BF ,CE ,且CE AD ⊥.BF AD ⊥.有下列说法:①CE BF =;②ABD ∆和ACD ∆的面积相等;③BAD CAD ∠=∠;④BDF CDE ∆∆≌.其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先利用AAS 证明△BDF ≌△CDE ,则即可判断①④正确;由于AD 是△ABC 的中线,由于等底同高,那么两个三角形的面积相等,可判断②正确;不能判断BAD CAD ∠=∠,则③错误;即可得到答案.【详解】解:∵CE AD ⊥,BF AD ⊥,∴∠F=∠CED=90°,∵AD 是ABC ∆的中线,∴BD=CD ,∵∠BDF=∠CDE ,∴△BDF ≌△CDE (AAS ),故④正确;∴BF=CE ,故①正确;∵BD=CD ,∴ABD ∆和ACD ∆的面积相等;故②正确;不能证明BAD CAD ∠=∠,故③错误;∴正确的结论有3个,故选:C.【点睛】本题考查了全等三角形判定和性质,以及三角形中线的性质,解题的关键是证明△BDF ≌△CDE . 9.如图,在ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若BAC 112∠=,则EAF ∠为( )A .38B .40C .42D .44【答案】D 【分析】根据三角形内角和定理求出∠C+∠B =68°,根据线段垂直平分线的性质得到EC =EA ,FB =FA ,根据等腰三角形的性质得到∠EAC =∠C ,∠FAB =∠B ,计算即可.【详解】解:BAC 112∠=,C B 68∠∠∴+=, EG 、FH 分别为AC 、AB 的垂直平分线,EC EA ∴=,FB FA =,EAC C ∠∠∴=,FAB B ∠∠=,EAC FAB 68∠∠∴+=,EAF 44∠∴=,故选D .【点睛】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.10.已知点M (1-2m ,m-1)在第二象限,则m 的取值范围是( )A .1<2mB .>1mC .1<m<12D .1<m<12- 【答案】B【分析】根据平面直角坐标系中第二象限点的符号特征(,)-+可列出关于m 的不等式组,求解即可.【详解】解:根据题意可得 12010m m -<⎧⎨->⎩①② 解不等式①得:12m > 解不等式②得:1m∴该不等式组的解集是1m .故选B【点睛】本题考查了平面直角坐标系中象限点的特征及不等式组的解法,根据象限点的特征列出不等式组是解题的关键.二、填空题11.已知一个三角形的三边长为3、8、a ,则a 的取值范围是_____________.【答案】5<a <1【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a <8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a <8+3,解得:5<a <1,故答案为:5<a <1.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和. 12.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,数字0.00000156用科学记数法表示为 ________________.【答案】61.5610-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯,其中110a ≤<,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 001 56=1.56×610-.故答案为:1.56×610-.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a ⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.如图ABC DCB ∆≅∆,75A ∠=,40DBC ∠=,DCA ∠则的度数为__________.【答案】25【分析】直接利用全等三角形的性质得出对应角相等进而求出答案.【详解】:∵△ABC ≌△DCB ,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,∴∠DCA=65°-40°=25°.故答案为:25°.【点睛】此题主要考查了全等三角形的性质,正确得出对应角的度数是解题关键.14.ABC ∆中,AB AC =,30A ∠=,点E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则D ∠的度数为__________.【答案】15°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A ,∠1=∠3+∠D ,则2∠1=2∠3+∠A ,利用等式的性质得到∠D=12∠A ,然后把∠A 的度数代入计算即可. 【详解】解:∵∠ABC 的平分线与∠ACE 的平分线交于点D ,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC ,即∠1+∠2=∠3+∠4+∠A ,∴2∠1=2∠3+∠A ,∵∠1=∠3+∠D ,∴∠D=12∠A=12×30°=15°. 故答案为:15°.【点睛】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析. 15.如果关于x 的方程23(1)a x =-的解为2x =,则a =__________ 【答案】23【分析】根据题意直接将x=2代入分式方程,即可求a 的值.【详解】解:∵关于x 的方程23(1)a x =-的解为2x =, ∴将x=2代入分式方程有:23a=,解得23a =. 故答案为:23. 【点睛】 本题考查分式方程的解,熟练掌握分式方程的解与分式方程的关系并代入求值是解题的关键. 1631+_____78 【答案】<【分析】由题意先将分数通分,利用无理数的估值比较分子的大小即可. 【详解】解:通分有313248=,比较分子大小23212257=≈<,则有314<78. 故答案为:<.【点睛】本题考查无理数的大小比较,熟练掌握无理数与有理数比较大小的方法是解题关键.17.若3a b +=,1ab =,则22a b +=__________.【答案】7【分析】原式利用完全平方公式变形,将已知等式代入计算即可求出值.【详解】∵a+b=3,ab=1,∴22a b +==(a+b )2-2ab=9-2=7;故答案为7.【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.三、解答题18.已知:如图,点E C ,在线段BF 上,//AC DF AC DF BE CF ==,,.求证://AB DE .【答案】见解析.【分析】根据题意先证明△ABC ≌△DEF ,据此求得∠ABC=∠DEF ,再利用平行线的判定进一步证明即可.【详解】∵//AC DF ,∴∠ACB=∠DFE ,∵BE=CF ,∴BE+EC=CF+EC ,即:BC=EF ,在△ABC 与△DEF 中,∵AC=DF ,∠ACB=∠DFE ,BC=EF ,∴△ABC ≌△DEF (SAS ),∴∠ABC=∠DEF ,∴AB ∥DE.【点睛】本题主要考查了平行线的性质与判定及全等三角形的性质与判定,熟练掌握相关概念是解题关键. 19.如图,△ABC 是等腰三角形,AB =AC ,分别以两腰为边向△ABC 外作等边三角形ADB 和等边三角形ACE . 若∠DAE =∠DBC ,求∠BAC 的度数.【答案】∠BAC 的度数为20°【分析】根据等边三角形各内角为60°,等腰三角形底角相等,三角形内角和为180°、∠DAE=∠DBC 即可120°+∠BAC=60°+∠ABC ,即可解题.【详解】解:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠DBA=∠CAE=60°,∴∠DAE =60°+∠BAC +60°=120°+∠BAC ,∴∠DBC =60°+∠ABC ,又∵∠DAE =∠DBC ,∴120°+∠BAC =60°+∠ABC ,即∠ABC =60°+∠BAC .∵△ABC 是等腰三角形,∴∠ABC =∠ACB =60°+∠BAC .设∠BAC 的度数为x ,则x +2(x +60°)=180°,解得x =20°,∴∠BAC 的度数为20°.【点睛】此题考查等腰三角形底角相等的性质,等边三角形各内角为60°的性质,三角形内角和为180°的性质,本题中求得120°+∠BAC=60°+∠ABC 是解题的关键.20.如图,在ABC ∆中,90C ∠=︒.(1)用尺规作图作BAC ∠的平分线AD ,交BC 于D ;(保留作图痕迹,不要求写作法和证明) (2)若10AB cm =,4CD cm =,求ABD ∆的面积.【答案】(1)见解析;(1)10cm 1.【分析】(1)根据尺规作角平分线的方法,即可得到答案;(1)过D 作DE AB ⊥于E ,根据角平分线的性质定理和三角形的面积公式,即可求解.【详解】(1)如图所示:AD 即为所求;(1)过D 作DE AB ⊥于E ,∵AD 平分BAC ∠,90C ∠=︒,∴4DE CD ==cm , ∴2111042022ABD S AB DE cm ∆=⨯=⨯⨯=.【点睛】本题主要考查尺规作角平分线以及角平分线的性质定理,掌握角平分线的性质定理,是解题的关键. 21.如图,在ABC 中,AB AC =,D 为BC 的中点,DE AB ⊥,DF AC ⊥,垂足为E 、F , 求证:DE DF =.【答案】见解析【分析】根据等腰三角形的性质得到B C ∠=∠,根据D 为BC 的中点,得到BD CD =,再根据DE AB ⊥,DF AC ⊥,得到90BED CFD ∠=∠=,利用全等三角形的性质和判定即可证明DE DF =. 【详解】解:AB AC =,∴B C ∠=∠,DE AB ⊥,DF AC ⊥,∴90BED CFD ∠=∠=,D 为BC 的中点,∴BD CD =,在BED 与CFD △中BED CFD B CBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌CFD △()AAS ,∴DE DF =.【点睛】本题考查了等腰三角形的性质以及全等三角形的性质和判定,找到全等的条件是解题的关键.22.中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A 处先往东走4m ,又往北走1.5m ,遇到障碍后又往西走2m ,再转向北走4.5m 处往东一拐,仅走0.5m 就到达了B .问机器人从点A 到点B 之间的距离是多少?【答案】132 【解析】试题分析:过点B 作BC ⊥AD 于C ,可以计算出AC 、BC 的长度,在直角△ABC 中根据勾股定理即可计算AB .试题解析:过点B 作BC ⊥AD 于C ,所以AC=3﹣2+4.5=2.5m ,BC=3.5+4.5=6m ,在直角△ABC 中,AB 为斜边,则22225136()22AB BC AC =+=+=m, 答:机器人从点A 到点B 之间的距离是132m . 考点:勾股定理. 23.在等边三角形ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ .(1)求证:△ABP ≌△ACQ ;(2)请判断△APQ 是什么形状的三角形?试说明你的结论.【答案】 (1)证明见解析;(2) △APQ 是等边三角形.【分析】(1)根据等边三角形的性质可得AB =AC ,再根据SAS 证明△ABP ≌△ACQ;(2)根据全等三角形的性质得到AP =AQ ,再证∠PAQ = 60°,从而得出△APQ 是等边三角形.【详解】证明:(1)∵△ABC 为等边三角形, ∴AB=AC ,∠BAC=60°,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( )A .20本B .25本C .30本D .35本 2.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( )A .1524x x 3=+B .1524x x 3=-C .1524x 3x =+D .1524x 3x=- 3.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<- C .x 2> D .x 2< 4.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a ,三条直线两两相交最多将平面分得的区域数记为2a ,四条直线两两相交最多将平面分得的区域数记为()3,,1a n ⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为n a ,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10B .11C .20D .21 5.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+ ⎪⎝⎭6.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .987.已知5a b +=,2ab =-,则a 2+b 2的值为( )A .21B .23C .25D .29 8.下列计算正确的是( ) A .(a 2)3=a 5 B .(2a 2)2=2a 4 C .a 3•a 4=a 7 D .a 4÷a =a 4 9.如图,已知30MON ︒∠=,点123,,...A A A 在射线ON 上,点123,,B B B …在射线OM 上,112223334,,...A B A A B A A B A ∆∆∆1n n n A B A +∆均为等边三角形,若11OA =,则778A B A ∆的边长为( )A.16B.32C.64D.12810.等腰三角形两边长为2和4,则其周长为()A.8 B.10 C.8或10 D.1211.在尺规作图作一个角的平分线时的两个三角形全等的依据是()A.SAS B.AAS C.SSS D.HL12.已知直线//a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒二、填空题13.已知方程3a1aa44a--=--,且关于x的不等式组x ax b>⎧⎪⎨⎪≤⎩只有4个整数解,那么b的取值范围是____________.14.已知114y x-=,则分式2322x xy yx xy y+---的值为______.15.2007200820092()(1.5)(1)3⨯÷-=_____.16.若2a与()23b+互为相反数,则2-=b a______.17.如图,点CD在线段AB的同侧,CA=6,AB=14,BD=12,M为AB中点,∠CMD=120°.则CD的最大值为____.18.等腰三角形的周长为24,其中一边为6,则另两边的长分别为__________. 19.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 20.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.三、解答题21.计算:()()()220210324125π-+⨯---+- 22.先化简,再求值:2222631121x x x x x x x ++-÷+--+,其中2x =-. 23.化简:2(3)3(2)m n m m n +-+.24.下面是小明设计“作三角形一边上的高”的尺规作图过程.已知:ABC求作:ABC 的边BC 上的高AD作法:(1)分别以点B 和C 为圆心,BA ,CA 为半径作弧,两弧相交于点E ; (2)作直线AE 交BC 边于点D .所以线段AD 就是所求作的高.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BE ,CE .BA =______∴点B 在线段AE 的垂直平分线上( )(填推理依据)同理可证,点C 也在线段AE 的垂直平分线上BC ∴垂直平分AE ( )(填推理依据)AD∴是ABC的高.25.如图,在△ABD中,∠ABC=45°,AC,BF为△ABD的两条高,CM//AB,交AD于点M;求证:BE=AM+EM.26.()1若n边形的内角和等于它外角和的3倍,求边数n.()2已知a,b,c为三角形三边的长,化简:a b c b c a--+--.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设张明平均每分钟清点图书的数量为x,则李强平均每分钟清点图书的数量为x+10,由张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相等这个条件可列分式方程,求解即可.【详解】设张明平均每分钟清点图书x本,则李强平均每分钟清点(10)x+本,依题意,得:20030010x x=+,解得:20x,经检验,20x是原方程的解,所以张明平均每分钟清点图书20本.故选:A.【点睛】本题考查了分式方程的应用.找到题中的等量关系,列出分式方程,注意分式方程一定要验根.2.D解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程.【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键. 3.C解析:C【分析】 根据题意列得2x 131x x 1+<---,求解即可得到答案. 【详解】 ∵2x 131x x 1+<---, ∴2x 131x-<--, ∴()()x 1x 131x+-<--,即x 13--<-, ∴x 2-<-,解得x 2>.又x 1≠,∴x 2>符合题意.故选:C.【点睛】此题考查列式计算,掌握分式的加减法计算法则,整式的因式分解方法,解一元一次不等式是解题的关键.4.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a ,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -, 21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦ 1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+=20n ∴=经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.5.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意; B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意; C 、()()22492323a b a b a b -+=-++,故该项符合题意; D 、1212x x x ⎛⎫+=+⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C .【点睛】 此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.6.D解析:D【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算.【详解】解:()()23232323955555328x y x y x y -=÷=÷=÷=. 故选:D .【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算. 7.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.8.C解析:C【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得.【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误;故选:C .【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键. 9.C解析:C【分析】根据三角形的外角性质以及等边三角形的判定和性质得出OA 1=B 1A 1=1,OA 2=B 2A 2=2,OA 3=B 3A 3=224=,OA 4=B 4A 4=328=,…进而得出答案.【详解】如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠2=60°,∵∠MON=30°,∴∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1= A 1A 2=1,∵△A 2B 2A 3是等边三角形,同理可得:OA 2=B 2A 2=2,同理;OA 3=B 3A 3=224=,OA4=B4A4=328=,OA5=B5A5=4216=,…,以此类推:所以OA7=B7A7=6264=,故选:C.【点睛】本题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出OA2=B2A2=2,OA3=B3A3=224=,OA4=B4A4=328=,…进而发现规律是解题的关键.10.B解析:B【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.11.C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.12.C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∵135∠=︒,∠B=30°∴∠3=∠1+∠B=35°+30°=65°∵//a b∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.二、填空题13.【分析】分式方程去分母转化为整式方程求出整式方程的解得到a 的值经检验确定出分式方程的解根据已知不等式组只有4个整数解即可确定出b 的范围【详解】解:分式方程去分母得:3﹣a ﹣a2+4a =﹣1整理得:a解析:34b ≤<【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,经检验确定出分式方程的解,根据已知不等式组只有4个整数解,即可确定出b 的范围.【详解】解:分式方程去分母得:3﹣a ﹣a 2+4a =﹣1,整理,得:a 2﹣3a ﹣4=0,即(a ﹣4)(a +1)=0,解得:a =4或a =﹣1,经检验a =4是增根,故分式方程的解为a =﹣1,∴原不等式组的解集为﹣1<x ≤b ,∵不等式组只有4个整数解,∴3≤b <4,故答案为:3≤b <4.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键. 14.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键 解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键. 15.-15【分析】首先把分解成再根据积的乘方的性质的逆用解答即可【详解】解:原式===﹣15故答案为-15【点睛】本题考查有理数的乘方运算逆用积的乘方法则是解题关键解析:-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可.【详解】 解:原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5,故答案为-1.5 .【点睛】 本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.16.-8【分析】根据题意得到+=0根据绝对值的非负性及偶次方的非负性求出a=2b=-3代入2b-a 计算即可【详解】由题意得:+=0∵00∴a-2=0b+3=0∴a=2b=-3∴2b-a=-6-2=8故答解析:-8【分析】 根据题意得到2a +2(3)b +=0,根据绝对值的非负性及偶次方的非负性求出a=2,b=-3,代入2b-a 计算即可.【详解】由题意得:2a +2(3)b +=0∵2a ≥0,2(3)b +≥0,∴a-2=0,b+3=0,∴a=2,b=-3,∴2b-a=-6-2=8,故答案为:-8.【点睛】此题考查相反数的定义,绝对值的非负性及偶次方的非负性,求代数式的值,根据绝对值的非负性及偶次方的非负性求出a 和b 的值是解题的关键.17.25【分析】作点A 关于CM 的对称点A 作点B 关于DM 的对称点B 证明△AMB 为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A 关于CM 的对称点A 作点B 关于DM 的对称点B 如下图所示:∴∠1= 解析:25【分析】作点A 关于CM 的对称点A’,作点B 关于DM 的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A 关于CM 的对称点A’,作点B 关于DM 的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M 为AB 的中点,∴AM=MA’=MB’=MB ,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A 关于CM 的对称点A’,作点B 关于DM 的对称点B’,学会利用两点之间线段最短解决最值问题.18.【分析】题中没有指明长为的边长是腰还是底则分两种情况进行分析还应验证是否满足三角形的三边关系【详解】当腰长是时底边长不能构成三角形;当底长是时三角形的腰能构成三角形其他两边长为故答案为:【点睛】本题 解析:9,9【分析】题中没有指明长为6的边长是腰还是底,则分两种情况进行分析,还应验证是否满足三角形的三边关系.【详解】当腰长是6时,底边长246612=--=,6、6、12不能构成三角形;当底长是6时,三角形的腰()24629=-÷=,6、9、9能构成三角形,其他两边长为9、9.故答案为:9,9.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目—定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.19.【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可【详解】解:∵点P (2mm-1)在二四象限的角平分线上∴2m=-(m-1)解得m=故答案为:【点睛】本题考查了点的坐标熟记第 解析:13【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P (2m ,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13.故答案为:13.【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.20.102°【分析】首先根据∠DFC=3∠B=117°可以算出∠B=39°然后设∠C=∠D=x°根据外角与内角的关系可得39+x+x=117再解方程即可得到x=39再根据三角形内角和定理求出∠BED的度解析:102°【分析】首先根据∠DFC=3∠B=117°,可以算出∠B=39°,然后设∠C=∠D=x°,根据外角与内角的关系可得39+x+x=117,再解方程即可得到x=39,再根据三角形内角和定理求出∠BED的度数.【详解】解:∵∠DFC=3∠B=117°,∴∠B=39°,设∠C=∠D=x°,39+x+x=117,解得:x=39,∴∠D=39°,∴∠BED=180°−39°−39°=102°.故答案为:102°.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.三、解答题21.-7【分析】先依据零指数幂的性质、有理数的乘方、绝对值法则计算,最后算加减即可点.【详解】解:原式=4-4-8+1=-7.【点睛】本题主要考查的是零指数幂的性质、有理数的乘方、绝对值法则计算熟练掌握相关知识是解题的关键.22.21x +,-2 【分析】 先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的减法即可.【详解】 解:2222631121x x x x x x x ++-÷+--+ 222(3)(1)1(1)(1)3x x x x x x x +-=-⋅++-+ 22(1)11x x x x -=-++ 21x =+, 当2x =-时,原式222211===--+-. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键. 23.226m n +【分析】先根据完全平方公式及单项式乘以多项式法则去括号,再合并同类项即可.【详解】解:2(3)3(2)m n m m n +-+ 2229636m mn n m mn =++--226m n =+.【点睛】此题考查整式的混合运算,掌握完全平方公式及单项式乘以多项式法则,去括号法则,合并同类项法则是解题的关键.24.(1)见解析;(2)BE ,与线段两个端点距离相等的点在这条线段的垂直平分线上,两点确定一条直线【分析】(1)利用几何语言画出对应的几何图形;(2)利用作法得到BA=BE ,CA=CE ,则根据线段的垂直平分线的性质定理的逆定理得到点B 、点C 在线段AE 的垂直平分线上,从而得到BC 垂直平分AE .【详解】(1)如图,AD 为所作;(2)证明:连接BE ,CE .BA =__BE____∴点B 在线段AE 的垂直平分线上(与线段两个端点距离相等的点在这条线段的垂直平分线上 )(填推理依据)同理可证,点C 也在线段AE 的垂直平分线上BC ∴垂直平分AE (两点确定一条直线 )(填推理依据)AD ∴是ABC 的高.故答案为:BE ;与线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【点睛】本题考查了作图-基本作图和线段垂直平分线的性质与判定,熟练掌握基本作图,灵活运用垂直平分线的性质是解题关键.25.见解析【分析】求出∠CAD =∠EBC ,∠ACD =∠BCE ,AC =BC ,证出△BCE ≌△ACD ,求出CE =CD ,∠ECM =∠DCM ,证△ECM ≌△DCM ,推出DM =ME ,即可得出答案.【详解】∵AC 、BF 是高,∴∠BCE =∠ACD =∠AFE =90°,∵∠AEF =∠BEC ,∠CAD +∠AFE +∠AEF =180°,∠EBC +∠BCE +∠BEC =180°, ∴∠DAC =∠EBC ,∵∠ACB =90°,∠ABC =45°,∴∠BAC =45°=∠ABC ,∴BC =AC ,在△BCE 和△ACD 中BCE ACD BC ACEBC DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BCE ≌△ACD (ASA ),∴BE =AD .∵CM ∥AB ,∴∠MCE =∠BAC =45°,∵∠ACD =90°,∴∠MCD =45°=∠MCE ,∵△BCE ≌△ACD ,∴CE =CD ,在△CEM 和△CDM 中CE CD ECM DCM CM CM =⎧⎪∠=∠⎨⎪=⎩∴△CEM ≌△CDM (SAS ),∴ME =MD ,∴BE =AD =AM +DM =AM +ME ,即BE =AM +EM .【点睛】本题考查了全等三角形的性质和判定,平行线性质,三角形的内角和定理,垂直定义,等腰三角形的性质和判定的应用,主要考查学生综合运用定理进行推理的能力. 26.()18;()22c .【分析】(1)根据多边形的内角和与外角和公式列出方程即可求解;(2)根据三角形的三边关系可得a c b +>,b c a +>,再根据化简绝对值的方法即可求解.【详解】解:()1由题意得:()18023603n ︒-=︒⨯,解得:8n =.()2∵a ,b ,c 为三角形三边的长,∴a c b +>,b c a +>, ∴a b c b c a --+--()()2a b c b c a b c a a c b c =-++-+=+-++-=.【点睛】此题主要考查多边形的内角和与外角和、三角形的三边关系的应用,解题的关键是熟知多边形的性质及去绝对值的方法.。