九年级数学 特殊平行四边形测试题(无答案)

合集下载

北师大新版九年级数学上学期第一章:特殊的平行四边形 单元培优卷 含解析

北师大新版九年级数学上学期第一章:特殊的平行四边形 单元培优卷  含解析

第一章特殊的平行四边形一.选择题(共6小题)1.如图,矩形ABCD中,BC>AB,对角线AC、BD交于O点,且AC=10,过B点作BE⊥AC 于E点,若BE=4,则AD的长等于()A.8 B.10 C.3D.42.如图,矩形ABCD中,BH⊥AC,DE∥BH交CB的延长线于点E,交AB于点G,P是DE上一点,∠BPD=∠BCD,且G为PF的中点.则①AF=CH;②AC=3FH;③BE=BG;④若AE=,则FG=3,以上结论正确的个数是()A.1 B.2 C.3 D.43.如图,在矩形ABCD中,AB=6,BC=6,点E是边BC上一动点,B关于AE的对称点为B′,过B′作B′F⊥DC于F,连接DB′,若△DB′F为等腰直角三角形,则BE的长是()A.6 B.3 C.3D.6﹣64.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD 的中点,则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个5.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若△ABC为任意三角形,则四边形ADEG是平行四边形B.若∠BAC=90°,则四边形ADEG是矩形C.若AC=AB,则四边形ADEG是菱形D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形6.如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH′L、四边形EKE′A、△BGF的周长分别为C1、C2、C3,且C1=2C2=4C3,已知FG=LK,EF=6,则AB的长是()A.9.5 B.10 C.10.5 D.11二.填空题(共7小题)7.已知菱形ABCD的周长为52cm,对角线AC=10cm,则BD=cm.8.如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于.9.如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为.10.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90°,则点M为直角点.若点E、F分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC=,则线段EF的长为.11.在矩形ABCD中,AB=3,BC=4,点E、F分别在BC与CD上,且∠EAF=45°(1)如图甲,若EA=EF,则EF=;(2)如图乙,若CE=CF,则EF=.12.在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O分别交边AD、BC与点E、F,点G、H分别是OB、OD的中点,当四边形EGFH为矩形时,则BF的长.13.如图,已知矩形ABCD,AB=8,AD=4,E为CD边上一点,CE=5,点P从B点出发,以每秒1个单位的速度沿着BA边向终点A运动,连接PE,设点P运动的时间为t秒,则当t的值为时,△PAE是以PE为腰的等腰三角形.三.解答题(共9小题)14.四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于点H,求DH的长.15.菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.16.菱形ABCD中,对角线AC和BD相交于O,已知AC=8,BD=6,求AB边上的高.17.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.18.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.19.在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是矩形;(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).20.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG=S;正方形ABCD【拓展】如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,设AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);【探究】如图③,若四边形ABCD是平行四边形,且AB=3,AD=5,BE=1,试确定F、G、H的位置,使直线EF、GH把四边形ABCD的面积四等分.21.如图,在▱ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、EF为邻边作▱ECFG.(1)证明▱ECFG是菱形;(2)若∠ABC=120°,连结BC、CG,求∠BDG的度数;(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案与试题解析一.选择题(共6小题)1.如图,矩形ABCD中,BC>AB,对角线AC、BD交于O点,且AC=10,过B点作BE⊥AC 于E点,若BE=4,则AD的长等于()A.8 B.10 C.3D.4【分析】根据矩形的性质得出∠BAD=90°,设AD=BC=a,AB=DC=b,求出a2+b2=102,ab=40,解方程组求出a即可.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,设AD=BC=a,AB=DC=b,∵AC=10,BE⊥AC,BE=4,∴a2+b2=102,又∵S矩形ABCD=2S△ABC∴ab=2××10×4=40,∵BC>AB,解得:a=4,b=2,即AD=4,故选:D.2.如图,矩形ABCD中,BH⊥AC,DE∥BH交CB的延长线于点E,交AB于点G,P是DE上一点,∠BPD=∠BCD,且G为PF的中点.则①AF=CH;②AC=3FH;③BE=BG;④若AE=,则FG=3,以上结论正确的个数是()A.1 B.2 C.3 D.4【分析】①利用矩形的性质,证明△AFD与△CHB全等,即可推出结论①正确;②先证明四边形PBHF为矩形,推出PB=FH,再证明△AFG与△BPG全等,推出AF=FH =CH,即可②正确;③假设结论成立,可推出∠BAC=45°,BA=BC,故矩形ABCD必为正方形,不符合题意,故③错误;④先证明△EPB与△BHC全等,推出EB=BC,AB垂直平分EC,求出AC的长度,再证△ABH与△BCH相似,求出BH的长度,最后证△AFG与△AHB相似,即可求出GF的长度为2,故④错误.【解答】解:①∵四边形ABCD为矩形,∴AD=BC,AD∥BC,∠BCD=∠ABC=90°,∴∠DAF=∠BCH,∵BH⊥AC,∴∠BHC=∠BHA=90°,∴△AFD≌△CHB(AAS),∴AF=CH.故①正确;②由①知,∠PFH=∠BHF=90°,∵∠BPD=∠BCD=90°,∴∠BPD=∠PFH=∠BHF=90°,∴四边形PBHF为矩形,∴PB=FH,PB∥FH,∵∠AFG=∠BPG=90°,FG=PG,∠AGF=∠BGP,∴△AFG≌△BPG(ASA),∴BP=AF,∴AF=FH,由①知,AF=CH,∴AF=FH=CH,∴AC=3FH,故②正确;③假设BE=BG,∵∠EBG=90°,∴∠E=∠BGE=45°,在Rt△EFC中,∠FCB=90°﹣45°=45°,∴∠BAC=45°,∴BA=BC,∴矩形ABCD必为正方形,不符合题意,故③错误;④∵DE∥BH,∴∠PEB=∠HBC,由②知,四边形PBFH为矩形,PB=FH=CH,∴∠EPB=∠BHC=90°,∴△EPB≌△BHC(AAS),∴EB=BC,∵∠ABC=90°,∴AB垂直平分EC,∴AC=AE=6,由②知,AF=FH=HC,∴AF=FH=HC=AC=2,∴AH=4,∵∠BHC=∠AHB=90°,∴∠BAH+∠ABH=90°,∠ABH+∠HBC=90°,∴∠BAH=∠HBC,∴△ABH∽△BCH,∴=,即=,∴BH=4,∵DE∥BH,∴△AFG∽△AHB,∴=,即=,∴CF=2,故④错误,故选:B.3.如图,在矩形ABCD中,AB=6,BC=6,点E是边BC上一动点,B关于AE的对称点为B′,过B′作B′F⊥DC于F,连接DB′,若△DB′F为等腰直角三角形,则BE的长是()A.6 B.3 C.3D.6﹣6【分析】如图作B′H⊥AD于H交BC于M.首先证明四边形DFB′H是正方形,设边长为x,则AH=6﹣x,HB′=x,在Rt△AHB′中,根据AB′2=AH2+HB′2,构建方程求出x,再利用相似三角形的性质解决问题即可;【解答】解:如图作B′H⊥AD于H交BC于M.∵∠B′HD=∠HDF=∠DFB′=90°,∴四边形DFB′H是矩形,∵FD=FB′,∴四边形DFB′H是正方形,设边长为x,则AH=6﹣x,HB′=x,在Rt△AHB′中,∵AB′2=AH2+HB′2,∴62=(6﹣x)2+x2,解得x=3,∴B′M=CF=6﹣3,∵△AHB′∽△B′ME,∴=,∴=,∴EB′=6﹣6,∴BE=B′E=6﹣6,故选:D.4.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD 的中点,则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,得出①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出③正确;如图,过点M作MN⊥AB于N,于是得到==,得到NB =AB﹣AN=2a﹣a=a,根据勾股定理得到BM==a,于是得到结论.【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,∵E、F分别为边AB,BC的中点,∴AE=BF=BC,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;∵DE是△ABD的中线,∴∠ADE≠∠EDB,∴∠BAF≠∠EDB,故②错误;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF==a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得:AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故③正确;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF==a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得:AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故③正确;如图,过点M作MN⊥AB于N,则==,即==,解得MN=a,AN=a,∴NB=AB﹣AN=2a﹣a=a,根据勾股定理,BM==a,∵ME+MF=a+a=a,MB=a=a,∴ME+MF=MB.综上所述,正确的结论有①③④共3个.故选:B.5.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若△ABC为任意三角形,则四边形ADEG是平行四边形B.若∠BAC=90°,则四边形ADEG是矩形C.若AC=AB,则四边形ADEG是菱形D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形【分析】根据全等三角形的判定定理SAS证得△BDE≌△BAC,由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG =180°,易证ED∥GA,即可判断A;求出∠DAG=135°,根据矩形的判定即可判断B;然后由周角的定义求得∠BAC=135°;根据AD=AC=和菱形的判定即可判断C;根据正方形的判定即可判断D.【解答】解:A、∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等),正确,故本选项不符合题意;B、∵四边形ABDI和四边形ACHG是正方形,∴∠DAI=45°,∠GAC=90°,∵∠BAC=90°,∴∠DAG=360°﹣45°﹣90°﹣90°=135°,∵四边形ADEG是平行四边形,∴四边形ADEG不是矩形,错误,故本选项符合题意;C、∵四边形ADEG是平行四边形,∴若要四边形ADEG是菱形,则需AD=AG,即AD=AC.∵AD=AB,∴当AB=AD,即AB=AC时,四边形ADEG是菱形,正确,故本选项不符合题意;D、∵当∠BAC=135°时,∠DAG=360°﹣45°﹣90°﹣135°=90°,即平行四边形ADEG是平行四边形,∵当AB=AD,即AB=AC时,四边形ADEG是菱形,∴四边形ADEG是正方形,即当∠BAC=135°且AC=AB时,四边形ADEG是正方形,正确,故本选项不符合题意;故选:B.6.如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH′L、四边形EKE′A、△BGF的周长分别为C1、C2、C3,且C1=2C2=4C3,已知FG=LK,EF=6,则AB的长是()A.9.5 B.10 C.10.5 D.11【分析】根据六边形EFGHLK的各个内角相等,即可得出△BFG,△AEK,△CHL都是等边三角形,由轴对称可得,四边形HCH′L、四边形EKE′A都是菱形,再根据C1=2C2=4C3,FG=LK,EF=6,即可得到AB=BF+EF+AE=11.【解答】解:∵六边形EFGHLK的各个内角相等,∴该六边形的每个内角为120°,每个外角都是60°,∴△BFG,△AEK,△CHL都是等边三角形,∴∠B=∠BAC=∠ACB=60°,BF=FG,AE=AK,CL=HL,∴△ABC是等边三角形,∴AB=AC,即BF+FE+AE=AK+KL+CL,又∵BF=FG=KL,∴EF=CL=6=CH,由轴对称可得,四边形HCH′L、四边形EKE′A都是菱形,∵C1=2C2,∴AE=CH=3,又∵2C2=4C3,∴C3=C2=×12=6,∴BF=×6=2,∴AB=BF+EF+AE=2+6+3=11,故选:C.二.填空题(共7小题)7.已知菱形ABCD的周长为52cm,对角线AC=10cm,则BD=24 cm.【分析】根据菱形的性质得出AC⊥BD,BD=2DO,AO=OC=AC=5cm,AD=AB=BC=CD =13cm,根据勾股定理求出OD即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,BD=2DO,AO=OC=AC==5cm,∵菱形ABCD的周长为52cm,∴AD=AB=BC=CD=×52cm=13cm,在Rt△AOD中,由勾股定理得:AD2=AO2+0D2,即OD==12(cm),∴BD=2OD=24cm,故答案为:24.8.如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于50.【分析】将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,想办法证明∠APH=30°,利用勾股定理求出AB的平方即可解决问题.【解答】解:将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AH⊥BP于H.∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∵AM=AP,∠MAP=60°,∴△AMP是等边三角形,∵∠MAP=∠BAC,∴∠MAB=∠PAC,∴△MAB≌△PAC,∴BM=PC=10,∵PM2+PB2=100,BM2=100,∴PM2+PB2=BM2,∴∠MPB=90°,∵∠APM=60°,∴∠APB=150°,∠APH=30°,∴AH=PA=3,PH=3,BH=8+3,∴AB2=AH2+BH2=100+48,∴菱形ABCD的面积=2•△ABC的面积=2××AB2=50+72,故答案为50+72.9.如图,菱形ABCD和菱形BEFG的边长分别是5和2,∠A=60°,连结DF,则DF的长为.【分析】延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,由菱形的性质和勾股定理再结合已知条件可求出NF,DN的长,在直角三角形DNF中,再利用勾股定理即可求出DF的长.【解答】解:延长FG交AD于点M,过点D作DH⊥AB交AB于点H,交GF的延长线于点N,∵四边形ABCD和四边形BEFG都是菱形,∴GF∥BE,EF∥AM,∴四边形AMFE是平行四边形,∴AM=EF=2,MF=AE=AB+BE=5+2=7,∴DM=AD﹣AM=5﹣2=3,∵∠A=60°,∴∠DAH=30°,∴MN=DM=,∴DN==,NF=MF﹣MN=,在Rt△DNF中,DF==,故答案为:.10.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90°,则点M为直角点.若点E、F分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC=,则线段EF的长为或.【分析】作FH⊥AB于点H,利用已知得出△ADF∽△FCB,进而得出=,求得构造的直角三角形的两条直角边即可得出答案.【解答】解:作FH⊥AB于点H,连接EF.∵∠AFB=90°,∴∠AFD+∠BFC=90°,∵∠AMD+∠DAM=90°,∴∠DAF=∠BFC又∵∠D=∠C,∴△ADF∽△FCB,∴=,即=,∴FC=2或3.∵点F,E分别为矩形ABCD边CD,AB上的直角点,∴AE=FC,∴当FC=2时,AE=2,EH=1,∴EF2=FH2+EH2=()2+12=7,∴EF=.当FC=3时,此时点E与点H重合,即EF=BC=,综上,EF=或.故答案为:或.11.在矩形ABCD中,AB=3,BC=4,点E、F分别在BC与CD上,且∠EAF=45°(1)如图甲,若EA=EF,则EF=;(2)如图乙,若CE=CF,则EF=7﹣4..【分析】(1)已知EA=EF,∠EAF=45°,由三角形的内角和得∠AEF=90°,∠AEB+∠FEC=90°,又因∠BAE+∠AEB=90°,等量代换得∠BAE=∠CEF,从而证明△ABE≌△ECF;EF的长可由勾股定理求出.(2)作辅助线FM和EN,已知△CEF,构建两个等腰△DEM,△BEN可求出线段DF,AM,FC,BE和AN的长;证明△ANE∽△FMA,再由两个三角形相似的性质求出相似比,解出x 的值,由勾股定理(或三角函数)求出EF的长.【解答】解:(1)如图甲所示:∵EA=EF,∴△AEF是等腰直角形,∠EAF=∠EFA,∵∠EAF=45°,∴∠EFA=45°,又∵在△AEF中,∠EAF+∠EFA+∠AEF=180°,∴∠AEF=180°﹣45°﹣45°=90°,又∵∠AEB+∠AEF+∠FEC=180°,∴∠AEB+∠FEC=90°,又∵△ABE中,∠B+∠BAE+∠AEB=180°,∠B=90°,∴∠BAE+∠AEB=90°,∴∠BAE=∠CEF,在△ABE和△ECF中,∴△ABE≌△ECF(AAS)∴AB=EC,BE=CF,又∵AB=3,BC=4,∴EC=3,CF=1,在Rt△CEF中,由勾股定理得:==故答案为.(2)如图乙所示:作DM=DF,BN=BE,分别交AD,AB于点M和点N,设MD=x,∵四边形ABCDA是矩形,∴∠B=∠D=90°,∴∠BNE=45°,∠DMF=90°,又∵∠BNE+∠ENA=180°,∠FMD+∠FMA=180°,∴∠ENA=135°,∠FMA=135°,又∵∠EAF=45°,∠BAD=∠BAE+∠EAF+∠FAD=90°,∴∠BAE+∠FAD=45°,∵∠BAE+∠NEA=45°,在△ANE和△FMA中,∴△ANE∽△FMA(AA)∴;又∵MD=x,∴DF=x,∵CE=CF,AB=3,BC=4,∴FC=EC=3﹣x,BE=AB=x+1,AN=2﹣x,∴,解得:2﹣4,或﹣2﹣4(舍去),∴FC=3﹣()=7﹣2,∴EF=FC=(7﹣2)=7﹣4.故答案为7﹣4.12.在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O分别交边AD、BC与点E、F,点G、H分别是OB、OD的中点,当四边形EGFH为矩形时,则BF的长或.【分析】根据矩形ABCD中,AB=2,BC=6,可求出对角线的长,再由点G、H分别是OB、OD的中点,可得GH=BD,从而求出GH的长,若四边形EGFH为矩形时,EF=GH,可求EF的长,通过作辅助线,构造直角三角形,由勾股定理可求出MF的长,最后通过设未知数,列方程求出BF的长.【解答】解:如图:过点E作EM⊥BC,垂直为M,矩形ABCD中,AB=2,BC=6,∴AB=EM=CD=2,AD=BC=6,∠A=90°,OB=OD,在Rt△ABD中,BD=,又∵点G、H分别是OB、OD的中点,∴GH=BD=,当四边形EGFH为矩形时,GH=EF=,在Rt△EMF中,FM==,易证△BOF≌△DOE(AAS),∴BF=DE,∴AE=FC,设BF=x,则FC=6﹣x,由题意得:x﹣(6﹣x)=,或(6﹣x)﹣x=,∴x=或x=,故答案为:或.13.如图,已知矩形ABCD,AB=8,AD=4,E为CD边上一点,CE=5,点P从B点出发,以每秒1个单位的速度沿着BA边向终点A运动,连接PE,设点P运动的时间为t秒,则当t的值为2或时,△PAE是以PE为腰的等腰三角形.【分析】根据矩形的性质得出CD=AB=8,BC=AD=4,求出AP=8﹣t,DE=3,由勾股定理求出AE=5,PE2=EF2+PF2=42+(5﹣t)2,分为两种情况:①当AE=PE时,②当AP =PE时,求出即可.【解答】解:根据题意得:BP=t,∵四边形ABCD是矩形,AB=8,AD=4,∴CD=AB=8,BC=AD=4,∴AP=8﹣t,DE=DC﹣CE=8﹣5=3,由勾股定理得:AE==5,过E作EF⊥AB于F,则∠EFA=∠EFB=90°,∵∠C=∠B=90°,∴四边形BCEF是矩形,∴BF=CE=5,BC=EF=4,∴PF=5﹣t,由勾股定理得:PE2=EF2+PF2=42+(5﹣t)2,①当AE=PE时,52=42+(5﹣t)2,解得:t=2,t=8,∵t=8不符合题意,舍去;②当AP=PE时,(8﹣t)2=42+(5﹣t)2,解得:t=,即当t的值为2或时,△PAE是以PE为腰的等腰三角形,故答案为:2或.三.解答题(共9小题)14.四边形ABCD是菱形,AC=16,DB=12,DH⊥AB于点H,求DH的长.【分析】先根据菱形的性质得OA=OC,OB=OD,AC⊥BD,再利用勾股定理计算出AB=10,然后根据菱形的面积公式得到•AC•BD=DH•AB,再解关于DH的方程即可.【解答】解:∵四边形ABCD是菱形,∴OA=OC=8,OB=OD=6,AC⊥BD,在Rt△AOB中,AB==10,∵S菱形ABCD=•AC•BD,S菱形ABCD=DH•AB,∴DH•10=×12×16,∴DH=.15.菱形ABCD中,点P为CD上一点,连接BP.(1)如图1,若BP⊥CD,菱形ABCD边长为10,PD=4,连接AP,求AP的长.(2)如图2,连接对角线AC、BD相交于点O,点N为BP的中点,过P作PM⊥AC于M,连接ON、MN.试判断△MON的形状,并说明理由.【分析】(1)在RT△BCP中利用勾股定理求出PB,在RT△ABP中利用勾股定理求出PA 即可.(2)如图2中,延长PM交BC于E.先证明PD=BE,再利用三角形中位线定理证明MN =BE,ON=PD即可.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=10,AB∥CD∵PD=4,∴PC=6,∵PB⊥CD,∴PB⊥AB,∴∠CPB=∠ABP=90°,在RT△PCB中,∵∠CPB=90°PC=6,BC=10,∴PB===8,在RT△ABP中,∵∠ABP=90°,AB=10,PB=8,∴PA===2.(2)△OMN是等腰三角形.理由:如图2中,延长PM交BC于E.∵四边形ABCD是菱形,∴AC⊥BD,CB=CD,∵PE⊥AC,∴PE∥BD,∴=,∴CP=CE,∴PD=BE,∵CP=CE,CM⊥PE,∴PM=ME,∵PN=NB,∴MN=BE,∵BO=OD,BN=NP,∴ON=PD,∴ON=MN,∴△OMN是等腰三角形.16.菱形ABCD中,对角线AC和BD相交于O,已知AC=8,BD=6,求AB边上的高.【分析】首先利用菱形的性质得出AB的长,再利用菱形面积求法得出DE的长.【解答】解:∵菱形ABCD中,对角线AC和BD相交于O,AC=8,BD=6,∴AO=4,BO=3,∠AOB=90°,∴AB=5,∴×6×8=DE×AB,解得:DE=,即AB边上的高为:.17.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.【分析】(1)根据已知条件证明AE=CF,从而根据SAS可证明两三角形全等;(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵DF∥BE,DF=BE,∴四边形DEBF是平行四边形,∴四边形DEBF是菱形.18.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC =180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【分析】(1)根据平行四边形的判定得出四边形ABCD是平行四边形,求出∠ABC=90°,根据矩形的判定得出即可;(2)求出∠FDC的度数,根据三角形内角和定理求出∠DCO,根据矩形的性质得出OD=OC,求出∠CDO,即可求出答案.【解答】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.19.在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是矩形;(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).【分析】(1)由△AEF≌△CED,推出EF=DE,又AE=EC,推出四边形ADCF是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF是矩形.(2)四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE都是平行四边形.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠EDC,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴EF=DE,∵AE=EC,∴四边形ADCF是平行四边形,∵AD⊥BC,∴∠ADC=90°,∴四边形ADCF是矩形.(2)∵线段DG、线段GE、线段DE都是△ABC的中位线,又AF∥BC,∴AB∥DE,DG∥AC,EG∥BC,∴四边形ABDF、四边形AGEF、四边形GBDE、四边形AGDE、四边形GDCE都是平行四边形.20.在四边形ABCD中,对角线AC、BD相交于点O,过点O的两条直线分别交边AB、CD、AD、BC于点E、F、G、H.【感知】如图①,若四边形ABCD是正方形,且AG=BE=CH=DF,则S四边形AEOG=S;正方形ABCD【拓展】如图②,若四边形ABCD是矩形,且S四边形AEOG=S矩形ABCD,设AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);【探究】如图③,若四边形ABCD是平行四边形,且AB=3,AD=5,BE=1,试确定F、G、H的位置,使直线EF、GH把四边形ABCD的面积四等分.【分析】【感知】如图①,根据正方形的性质和全等三角形的性质即可得到结论;【拓展】如图②,过O作ON⊥AD于N,OM⊥AB于M,根据图形的面积得到mb=AG•a,于是得到结论;【探究】如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,根据平行四边形的面积公式得到=,根据三角形的面积公式列方程即可得到结论.【解答】解:【感知】如图①,∵四边形ABCD是正方形,∴∠OAG=∠OBE=45°,OA=OB,在△AOG与△BOE中,,∴△AOG≌△BOE,∴S四边形AEOG=S△AOB=S正方形ABCD;故答案为:;【拓展】如图②,过O作ON⊥AD于N,OM⊥AB于M,∵S△AOB=S矩形ABCD,S四边形AEOG=S矩形ABCD,∴S△AOB=S四边形AEOG,∵S△AOB=S△BOE+S△AOE,S四边形AEOG=S△AOG+S△AOE,∴S△BOE=S△AOG,∵S△BOE=BE•OM=m b=mb,S△AOG=AG•ON=AG•a=AG•a,∴mb=AG•a,∴AG=;【探究】如图③,过O作KL⊥AB,PQ⊥AD,则KL=2OK,PQ=2OQ,∵S平行四边形ABCD=AB•KL=AD•PQ,∴3×2OK=5×2OQ,∴=,∵S△AOB=S平行四边形ABCD,S四边形AEOG=S平行四边形ABCD,∴S△AOB=S四边形AEOG,∴S△BOE=S△AOG,∵S△BOE=BE•OK=×1×OK,S△AOG=AG•OQ,∴×1×OK=AG•OQ,∴=AG=,∴当AG=CH=,BE=DF=1时,直线EF、GH把四边形ABCD的面积四等分.21.如图,在▱ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、EF为邻边作▱ECFG.(1)证明▱ECFG是菱形;(2)若∠ABC=120°,连结BC、CG,求∠BDG的度数;(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.【分析】(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF =∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG,再判断出AB=BE,进而得出BE=CD,即可判断出△BEG≌△DCG(SAS),再判断出∠CGE=60°,进而得出△BDG是等边三角形,即可得出结论;(3)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【解答】解:(1)证明:,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=6,AD=8,∴BD=10,∴DM=BD=5.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.【分析】(1)证△AEO≌△CFO,推出OE=OF,根据平行四边形和菱形的判定推出即可;(2)设AF=CF=a,根据勾股定理得出关于a的方程,求出即可;(3)①只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,求出时间t,即可求出答案;②分为三种情况,P在AF上,P在BF上,P 在AB上,根据平行四边形的性质求出即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵,∴△AEO≌△CFO(AAS),∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,a=5,即AF=5cm;(3)解:①在运动过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形,只有当P运动到B点,Q运动到D点时,以A、P、C、Q四点为顶点的四边形有可能是矩形,P点运动的时间是:(5+3)÷1=8,Q的速度是:4÷8=0.5,即Q的速度是0.5cm/s;②分为三种情况:第一、P在AF上,∵P的速度是1cm/s,而Q的速度是0.8cm/s,∴Q只能在CD上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;第二、当P在BF上时,Q在CD或DE上,只有当Q在DE上时,当A、P、C、Q四点为顶点的四边形才有可能是平行四边形,如图,∵AQ=8﹣(0.8t﹣4),CP=5+(t﹣5),∴8﹣(0.8t﹣4)=5+(t﹣5),t=,第三情况:当P在AB上时,Q在DE或CE上,此时当A、P、C、Q四点为顶点的四边形不是平行四边形;即t=.。

专题07 特殊平行四边形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

专题07  特殊平行四边形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

挑战2023年中考数学选择、填空压轴真题汇编专题07特殊平行四边形综合的压轴真题训练一.平行四边形的性质1.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是()A.4<m<3+B.3﹣<m<4C.2﹣<m<3D.4<m<4+【答案】A【解答】解:可得C(,),A(4,0),B(4+,),∴直线AB的解析式为:y=x﹣4,∴x=y+4,直线AC的解析式为:y=﹣,∴x=4+y﹣2y,∴点F的横坐标为:y+4,点E的横坐标为:4+y﹣2y,∴EF=(y+4)﹣(4+y﹣2y)=2,∵EP=3PF,∴PF=EF=y,∴点P的横坐标为:y+4﹣y,∵0<y<,∴4<y+4﹣y<3+,故答案为:A.2.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD 上,∠EBA=60°,则的值是()A.B.C.D.【答案】D【解答】解:如图,过点B作BH⊥AD于H,设∠ADB=x,∵四边形ABCD是平行四边形,∴BC∥AD,∠ADC=∠ABC=105°,∴∠CBD=∠ADB=x,∵AD=BD,∴∠DBA=∠DAB=,∴x+=105°,∴x=30°,∴∠ADB=30°,∠DAB=75°,∵BH⊥AD,∴BD=2BH,DH=BH,∵∠EBA=60°,∠DAB=75°,∴∠AEB=45°,∴EH=BH,∴DE=BH﹣BH=(﹣1)BH,∵AB===(﹣)BH=CD,∴=,故选:D.二.矩形的性质3.(2022•泰安)如图,四边形ABCD为矩形,AB=3,BC=4,点P是线段BC 上一动点,点M为线段AP上一点,∠ADM=∠BAP,则BM的最小值为()A.B.C.﹣D.﹣2【答案】D【解答】解:如图,取AD的中点O,连接OB,OM.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴∠BAP+∠DAM=90°,∵∠ADM=∠BAP,∴∠AMD=90°,∵AO=OD=2,∴OM=AD=2,∴点M在以O为圆心,2为半径的⊙O上,∵OB===,∴BM≥OB﹣OM=﹣2,∴BM的最小值为﹣2.故选:D.4.(2022•丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN.已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.AE=a,DE=b,且a>b.(1)若a,b是整数,则PQ的长是;(2)若代数式a2﹣2ab﹣b2的值为零,则的值是.【答案】a﹣b;3+2.【解答】解:(1)由图可知:PQ=a﹣b,故答案为:a﹣b;(2)∵a2﹣2ab﹣b2=0,∴a2﹣b2=2ab,(a﹣b)2=2b2,∴a=b+b(负值舍),∵四个矩形的面积都是5.AE=a,DE=b,∴EP=,EN=,则======3+2.故答案为:3+2.5.(2022•宿迁)如图,在矩形ABCD 中,AB =6,BC =8,点M 、N 分别是边AD 、BC 的中点,某一时刻,动点E 从点M 出发,沿MA 方向以每秒2个单位长度的速度向点A 匀速运动;同时,动点F 从点N 出发,沿NC 方向以每秒1个单位长度的速度向点C 匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接EF ,过点B 作EF 的垂线,垂足为H .在这一运动过程中,点H 所经过的路径长是.【答案】π【解答】解:如图1中,连接MN 交EF 于点P ,连接BP .∵四边形ABCD 是矩形,AM =MD ,BN =CN ,∴四边形ABNM 是矩形,∴MN =AB =6,∵EM ∥NF ,∴△EPM ∽△FPN ,∴===2,∴PN=2,PM=4,∵BN=4,∴BP===2,∵BH⊥EF,∴∠BHP=90°,∴点H在BP为直径的⊙O上运动,当点E与A重合时,如图2中,连接OH,ON.点H的运动轨迹是.此时AM=4,NF=2,∴BF=AB=6,∵∠ABF=90°,BH⊥AF,∴BH平分∠ABF,∴∠HBN=45°,∴∠HON=2∠HBN=90°,∴点H的运动轨迹的长==π.故答案为:π.6.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.【答案】5或4【解答】解:如图所示,①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当P1E=AE=5时,∵BE=AB﹣AE=8﹣5=3,∠B=90°,∴P1B=,∴底边AP1=;综上所述:等腰三角形AEP1的底边长为5或4;故答案为:5或4.三.正方形的性质和判定7.(2022•泸州)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为()A.B.C.D.1【答案】B【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FK⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.8.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.B.2C.2D.4【答案】C【解答】解:如图,连接AE,∵四边形DEFG是正方形,∴∠EDG=90°,EF=DE=DG,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴AE=CG,∴d1+d2+d3=EF+CF+AE,∴点A,E,F,C在同一条线上时,EF+CF+AE最小,即d1+d2+d3最小,连接AC,∴d1+d2+d3最小值为AC,在Rt△ABC中,AC=AB=2,∴d1+d2+d3最小=AC=2,故选:C.9.(2022•广西)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.【答案】5+【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,∵将△EFH沿EF翻折得到△EFH′,∴△EGH'≌△EGH,∵四边形ABCD是正方形,∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,∴BD=BC=8,△CPF是等腰直角三角形,∵F是CD的中点,∴CF=CD=2,∴CP=PF=2,OB=BD=4,∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,∴EM=EN,∠EMC=∠ENC=∠BCD=90°,∴∠MEN=90°,∵EF⊥BE,∴∠BEF=90°,∴∠BEM=∠FEN,∵∠BME=∠FNE,∴△BME≌△FNE(ASA),∴EB=EF,∵∠BEO+∠PEF=∠PEF+∠EFP=90°,∴∠BEO=∠EFP,∵∠BOE=∠EPF=90°,∴△BEO≌△EFP(AAS),∴OE=PF=2,OB=EP=4,∵tan∠OEG==,即=,∴OG=1,∴EG==,∵OB∥FP,∴∠OBH=∠PFH,∴tan∠OBH=tan∠PFH,∴=,∴==2,∴OH=2PH,∵OP=OC﹣PC=4﹣2=2,∴OH=×2=,在Rt△OGH中,由勾股定理得:GH==,∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.故答案为:5+.10.(2022•安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F 作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2,则MN=.【答案】45°【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,∴∠AEB+∠GEF=90°,∵∠AEB+∠ABE=90°,∴∠GEF=∠ABE,在△ABE和△GEF中,,∴△ABE≌△GEF(AAS),∴EG=AB=AD,GF=AE,即DG+DE=AE+DE,∴DG=AE,∴DG=GF,即△DGF是等腰直角三角形,∴∠FDG=45°,故答案为:45°;(2)∵DE=1,DF=2,由(1)知,△DGF是等腰直角三角形,∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,延长GF交BC延长线于点H,∴CD∥GH,∴△EDM∽△EGF,∴,即,∴MD=,同理△BNC∽△BFH,∴,即,∴,∴NC=,∴MN=CD﹣MD﹣NC=3﹣﹣=,故答案为:.11.(2022•达州)如图,在边长为2的正方形ABCD中,点E,F分别为AD,CD边上的动点(不与端点重合),连接BE,BF,分别交对角线AC于点P,Q.点E,F在运动过程中,始终保持∠EBF=45°,连接EF,PF,PD.下列结论:①PB=PD;②∠EFD=2∠FBC;③PQ=P A+CQ;④△BPF为等腰直角三角形;⑤若过点B作BH⊥EF,垂足为H,连接DH,则DH的最小值为2﹣2,其中所有正确结论的序号是.【答案】①②④⑤【解答】解:如图,∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCP=45°,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴PB=PD,故①正确,∵∠PBQ=∠QCF=45°,∠PQB=∠FQC,∴△PQB∽△FQC,∴=,∠BPQ=∠CFQ,∴=,∵∠PQF=∠BQC,∴△PQF∽△BQC,∴∠QPF=∠QBC,∵∠QBC+∠CFQ=90°,∴∠BPF=∠BPQ+∠QPF=90°,∴∠PBF=∠PFB=45°,∴PB=PF,∴△BPF是等腰直角三角形,故④正确,∵∠EPF=∠EDF=90°,∴E,D,F,P四点共圆,∴∠PEF=∠PDF,∵PB=PD=PF,∴∠PDF=∠PFD,∵∠AEB+∠DEP=180°,∠DEP+∠DFP=180°,∴∠AEB=∠DFP,∴∠AEB=∠BEH,∵BH⊥EF,∴∠BAE=∠BHE=90°,∵BE=BE,∴△BEA≌△BEH(AAS),∴AB=BH=BC,∵∠BHF=∠BCF=90°,BF=BF,∴Rt△BFH≌Rt△BFC(HL),∴∠BFC=∠BFH,∵∠CBF+∠BFC=90°,∴2∠CBF+2∠CFB=180°,∵∠EFD+∠CFH=∠EFD+2∠CFB=180°,∴∠EFD=2∠CBF,故②正确,将△ABP绕点B顺时针旋转90°得到△BCT,连接QT,∴∠ABP=∠CBT,∴∠PBT=∠ABC=90°,∴∠PBQ=∠TBQ=45°,∵BQ=BQ,BP=BT,∴△BQP≌△BQT(SAS),∴PQ=QT,∵QT<CQ+CT=CQ+AP,∴PQ<AP+CQ,故③错误,连接BD,DH,∵BD=2,BH=AB=2,∴DH≥BD﹣BH=2﹣2,∴DH的最小值为2﹣2,故⑤正确,故答案为:①②④⑤.12.(2022•南通)如图,点O是正方形ABCD的中心,AB=3.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=,则△OEM的周长为.【答案】3+3【解答】解:如图,连接BD,过点F作FH⊥CD于点H.∵四边形ABCD是正方形,∴AB=AD=3,∠A=∠ADC=90°,∵tan∠ABG==,∴AG=,DG=2,∴BG===2,∵∠BAG=∠DEG=90°,∠AGB=∠DGE,∴△BAG∽△DEG,∴==,∠ABG=∠EDG,∴==,∴DE=,EG=,∴BE=BG+EG=2+=,∵∠ADH=∠FHD=90°,∴AD∥FH,∴∠EDG=∠DFH,∴∠ABG=∠DFH,∵BG=DF=2,∠A=∠FHD=90°,∴△BAG≌△FHD(AAS),∴AB=FH,∵AB=BC,∴FH=BC,∵∠C=∠FHM=90°,∴FH∥CB,∴==1,∴FM=BM,∵EF=DE+DF=+2=,∴BF==4,∵∠BEF=90°,BM=MF,∴EM=BF=2,∵BO=OD,BM=MF,∴OM=DF=,∵OE=BD=×6=3,∴△OEM的周长=3++2=3+3,解法二:辅助线相同.证明△BAG≌△FHD,推出AB=HF=3,再证明△FHM≌△BCM,推出CM=HM=,求出BD,DF,BF,利用直角三角形斜边中线的性质,三角形中位线定理,可得结论.故答案为:3+3.13.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC 时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE 是正方形.其中正确结论有(填上所有正确结论的序号).【答案】①②③④【解答】解:①∵△ABE、△CBF是等边三角形,∴BE=AB,BF=CB,∠EBA=∠FBC=60°;∴∠EBF=∠ABC=60°﹣∠ABF;∴△EFB≌△ACB(SAS);∴EF=AC=AD;同理由△CDF≌△CAB,得DF=AB=AE;由AE=DF,AD=EF即可得出四边形ADFE是平行四边形,故结论①正确;②当∠BAC=150°时,∠EAD=360°﹣∠BAE﹣∠BAC﹣∠CAD=360°﹣60°﹣150°﹣60°=90°,由①知四边形AEFD是平行四边形,∴平行四边形ADFE是矩形,故结论②正确;③由①知AB=AE,AC=AD,四边形AEFD是平行四边形,∴当AB=AC时,AE=AD,∴平行四边形AEFD是菱形,故结论③正确;④综合②③的结论知:当AB=AC,且∠BAC=150°时,四边形AEFD既是菱形,又是矩形,∴四边形AEFD是正方形,故结论④正确.故答案为:①②③④.四.菱形的性质14.(2022•丽水)如图,已知菱形ABCD的边长为4,E是BC的中点,AF平分∠EAD交CD于点F,FG∥AD交AE于点G.若cos B=,则FG的长是()A.3B.C.D.【答案】B【解答】解:方法一,如图,过点A作AH⊥BE于点H,过点F作FQ⊥AD于点Q,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∴AH===,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,∵AF平分∠EAD,∴∠DAF=∠FAG,∵FG∥AD,∴∠DAF=∠AFG,∴∠F AG=∠AFG,∴GA=GF,设GA=GF=x,∵AE=CD=4,FG∥AD,∴DF=AG=x,cos D=cos B==,∴DQ=x,∴FQ===x,=S梯形CEGF+S梯形GFDA,∵S梯形CEAD∴×(2+4)×=(2+x)×(﹣x)+(x+4)×x,解得x=,则FG的长是.或者:∵AE=CD=4,FG∥AD,∴四边形AGFD的等腰梯形,∴GA=FD=GF,则x+x+x=4,解得x=,则FG的长是.方法二:如图,作AH垂直BC于H,延长AE和DC交于点M,∵菱形ABCD的边长为4,∴AB=AD=BC=4,∵cos B==,∴BH=1,∵E是BC的中点,∴BE=CE=2,∴EH=BE﹣BH=1,∴AH是BE的垂直平分线,∴AE=AB=4,所以AE=AB=EM=CM=4,设GF=x,则AG=x,GE=4﹣x,由GF∥BC,∴△MGF∽△MEC,∴=,解得x=.故选:B.15.(2022•甘肃)如图1,在菱形ABCD中,∠A=60°,动点P从点A出发,沿折线AD→DC→CB方向匀速运动,运动到点B停止.设点P的运动路程为x,△APB的面积为y,y与x的函数图象如图2所示,则AB的长为()A.B.2C.3D.4【答案】B【解答】解:在菱形ABCD中,∠A=60°,∴△ABD为等边三角形,设AB=a,由图2可知,△ABD的面积为3,∴△ABD的面积=a2=3,解得:a1=2,a2=﹣2(舍去),故选:B.。

北师大版九年级数学上册第一章特殊平行四边形单元测试

北师大版九年级数学上册第一章特殊平行四边形单元测试

北师大版九年级数学上册第一章特殊平行四边形单元测试(4)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1BC.2D.2.正方形面积为36,则对角线的长为()A.6B.C.9D.3.如图,在矩形ABCD中,对角线BD=8cm,∠AOD=120°,则AB的长为()B.2cm C.D.4cmA4.如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm5.下列命题中,真命题是().A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A .AC =BD ,AB∠CD ,AB =CDB .AD∠BC ,∠A =∠C C .AO =BO =CO =DO ,AC∠BD D .AO =CO ,BO =DO ,AB =BC7.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是( )A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形8.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .15B .14C .13D .3109.图,在∠ABC 中,AB =AC ,四边形ADEF 为菱形,O 为AE ,DF 的交点,S △ABC =,则S 菱形ADEF =( )A .4B .C .D .10.如图,四边形ABCD 中,90BAD C ∠=∠=︒,AB AD =,AH BC ⊥于H ,若线段AH =ABCD 的面积是( ).A .3B .4C .D .6二、填空题11.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离AB=BC=16cm ,则∠1=_______°12.如图,已知正方形ABCD 的边长为1,连接AC ,BD ,相交于点O ,CE 平分∠ACD 交BD 于点E ,则DE =_____.13.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标为(8,2),点D 的坐标为(0,2),则点C 的坐标为_____________.14.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,CE ∠BD ,垂足为点E ,CE =5,EO =2DE ,则DE 的长为________.15.如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为_________.16.将五个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3、A 4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.17.图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点(不与B ,D 重合),PE∥CD 交BC 于点E ,PF ∥BC 交CD 于点F ,连接AP ,EF .给出下列结论:∠PD EC ;∠四边形PECF 的周长为8;∠∠APD 一定是等腰三角形;∠AP =EF .其中正确结论的序号为________.三、解答题18.如图,矩形ABCD 中,AC 与BD 交于点O BE AC CF BD ⊥⊥,,,垂足分别为.E F ,求证:BE CF =.19.如图,在77⨯的正方形网格中,网格线的交点称为格点,B 在格点上,每一个小正方形的边长为1.(1)以AB 为边画菱形,使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.20.如图,菱形ABCD的对角线AC,BD交于点O,AB=5,AC=6,DE∠BC的延长线于点E,求OE的长.21.如图,菱形ABCD的对角线AC,BD交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)求证:四边形AEBO是矩形;(2)若CD=3,求EO的长.22.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,连接PE,PB.(1)在AC上找一点P,使∠BPE的周长最小(作图说明);(2)求出∠BPE周长的最小值.23.如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.=;(1)求证:AF HG∠=∠;(2)求证:FAE GHC24.如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN∠BC,设MN 交∠ACB 的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.(3)若AC 边上存在点O,使四边形AECF 是正方形,猜想△ABC 的形状并证明你的结论.25.有一张矩形纸片ABCD,其中AB=10,AD=6,现将矩形纸片折叠,点D的对应点记为点P,折痕为EF(点E、F是折痕与矩形纸片的边的交点),再将纸片还原.(1)若点P落在矩形ABCD的边AB上(如图∠).∠当点P与点A重合时,∠DEF=________°,当点E与点A重合时,∠DEF=________°,当点F与点C重合时,AP=________;∠若点P为AB的中点,求AE的长;(2)若点P落在矩形ABCD的外部(如图∠),点F与点C重合,点E在AD上,BA与FP交于点M,当AM=DE时,请求出AE的长;(3)若点E为动点,点F为DC的中点,直接写出AP的最小值.参考答案:1.C【分析】利用菱形的性质以及等边三角形的判定方法得出∠DAB 是等边三角形,进而得出BD 的长,【详解】解:∠菱形ABCD 的边长为2,∠AD =AB =2,又∠∠DAB =60°,∠∠DAB 是等边三角形,∠AD =BD =AB =2,则对角线BD 的长是2.故选C .【点睛】此题主要考查了菱形的性质以及等边三角形的判定,得出∠DAB 是等边三角形是解题关键.2.B【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【详解】设对角线长是x .则有12x 2=36,解得:x故选B .【点睛】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.3.D【分析】根据矩形的性质求出4AO BO cm ==,再根据等边三角形的判定可得AOB 是等边三角形,然后根据等边三角形的性质即可得.【详解】∠120AOD ∠=︒∠18060AOB AOD ∠=︒-∠=︒∠四边形ABCD 是矩形,8BD cm = ∠118,4,422AC BD cm AO AC cm BO BD cm ======∠4AO BO cm ==∠AOB 是等边三角形∠4AB AO cm ==故选:D .【点睛】本题考查了矩形的性质、等边三角形的判定与性质等知识点,熟记矩形的性质是解题关键.4.D【分析】根据菱形的性质和勾股定理求解即可.【详解】解:∠菱形的对角线AC 与BD 相交于点O ,∠AO =OC ,BO =OD ,AC ∠BD ,AB =BC =CD =AD ,∠AC =6cm ,BD =8cm ,∠在Rt∠AOB 中,AO =3cm ,BO =4cm ,∠AOB =90°,由勾股定理得:AB ,∠菱形的周长为4×5=20cm ,故选:D .【点睛】本题考查菱形的性质、勾股定理,熟练掌握菱形的对角线互相垂直且平分是解答的关键.5.C【详解】解:A 、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B 、对角线互相垂直的平行四边形是菱形;故本选项错误;C 、对角线互相平分的四边形是平行四边形;故本选项正确;D 、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.故选C .6.C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A ,不能,只能判定为矩形,不符合题意;B ,不能,只能判定为平行四边形,不符合题意;C ,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.7.D【分析】根据三角形的中位线定理得到EH∠FG,EF=FG,EF=12BD,要是四边形为菱形,得出EF=EH,即可得到答案.【详解】解:∠E,F,G,H分别是边AD,AB,CB,DC的中点,∠EH=12AC,EH∠AC,FG=12AC,FG∠AC,EF=12BD,∠EH∠FG,EF=FG,∠四边形EFGH是平行四边形,假设AC=BD,∠EH=12AC,EF=12BD,则EF=EH,∠平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选:D.【点睛】题目主要考查中位线的性质及菱形的判定和性质,理解题意,熟练掌握运用三角形中位线的性质是解题关键.8.B【分析】根据矩形的性质,得△EBO∠∠FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的12得出结论.【详解】解:∠四边形为矩形,∠OB=OD=OA=OC,在△EBO与△FDO中,∠∠EOB=∠DOF,OB =OD ,∠EBO =∠FDO ,∠∠EBO ∠∠FDO (ASA ),∠阴影部分的面积=S △AEO +S △EBO =S △AOB ,∠∠AOB 与△ABC 同底且△AOB 的高是△ABC 高的12, ∠S △AOB =12S △ABC =14S 矩形ABCD . 故选B【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质9.C【分析】根据菱形的性质,结合AB =AC ,得出DF 为∠ABC 的中位线,DF∥BC ,12DF BC =,从而得出AE 为∠ABC 的高,得出BC AE ⨯=的面积.【详解】解:∠四边形ADEF 为菱形,∠EF∥AB ,DE∥AC ,AF =EF =DE =AD ,AE ∠DF ,∠CEF B ∠=∠,DEB C ∠=∠,AC AB =,B C ∴∠=∠,CEF B C DEB ===∴∠∠∠∠,∠CF =EF ,DE =DB ,CF AF ∴=,AD DB =,∠DF∥BC ,12DF BC =, 90AOD ∠=︒,90AEB AOD ==︒∴∠∠,AE BC ∴⊥,ABC S =∵12BC AE ⨯=∴即BC AE ⨯=1111=2224ADEF S DF AE BC AE ⨯=⨯⨯=⨯菱形∴C 正确. 故选:C .【点睛】本题主要考查了菱形的性质,中位线的性质,等腰三角形的性质和判断,平行线的性质,菱形的面积,三角形面积的计算,根据菱形的性质和等腰三角形的性质得出DF 为∠ABC 的中位线,是解题的关键.10.D【详解】试题解析:过A 点作CD 的垂线,交CD 的延长线于F 点,如图,则四边形AECF 是矩形90,90DAE BAE DAE DAF ∠+∠=∠+∠=,BAE DAF ∴∠=∠,在∠ABE 和∠DAF 中,{AB ADBAE DAF AEB AFD =∠=∠∠=∠,则(AAS)ABE DAF ≌,,AE AF ∴=又∠四边形AECF 是矩形.∠四边形AECF 为正方形,而四边形ABCD 的面积是6,故选D.11.120【详解】由题意可得AB 与菱形的两邻边组成等边三角形,从而不难求得∠1的度数. 解:由题意可得AB 与菱形的两邻边组成等边三角形,则∠1=120°.故答案为120.此题主要考查菱形的性质和等边三角形的判定.12【分析】由正方形对角线相交于点O ,则DO CO ⊥,12DO BD ==,过点E 作EF CD ⊥于F ,设EO EF DF x ===,则DE =,列出方程x =解出x ,最后得出答案. 【详解】解:如图所示,过点E 作EF CD ⊥于F ,∠正方形ABCD 的边长为1,∠AC =BDDO CO ⊥,∠OA =OC =OB =OD =2, ∠CE 平分∠ACD 交BD 于点E ,∠EO =EF ,∠在正方形ABCD 中,∠ADB =∠CDB =45°,∠EF =DF ,设EO EF DF x ===,则DE =,∠OD =OE +DE =x =∠解得x =∠DE =OD -OE 1=,1.【点睛】本题主要考查了正方形的性质与角平分线的性质,解题的关键是根据角平线的性质作出辅助线.13.(4,4)【详解】解:连接AC 、BD 交于点E ,如图所示:∠四边形ABCD 是菱形,∠AC ∠BD ,AE =CE =12AC ,BE =DE =12BD ,∠点B的坐标为(8,2),点D的坐标为(0,2),∠OD=2,BD=8,∠AE=OD=2,DE=4,∠AC=4,∠点C的坐标为:(4,4)故答案为:(4,4)【点睛】本题考查菱形的性质;坐标与图形性质.14【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=12BD,OC=12AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【详解】解:∠四边形ABCD是矩形,∠∠ADC=90°,BD=AC,OD=12BD,OC=12AC,∠OC=OD,∠EO=2DE,∠设DE=x,OE=2x,∠OD=OC=3x,∠CE∠BD,∠∠DEC=∠OEC=90°,在Rt△OCE中,∠OE2+CE2=OC2,∠(2x)2+52=(3x)2,解得:x,∠DE【点睛】本题考查了矩形的性质,勾股定理,熟练掌握矩形的性质是解决问题的关键.15.50 13【详解】试题分析:∠四边形ABCD是菱形,AC=24,BD=10,∠AO=12,OD=5,AC∠BD,=13,∠DH∠AB,∠AO×BD=DH×AB,∠12×10=13×DH,∠DH=12013,5013=.考点:1.菱形的性质;2.勾股定理.16.4【分析】连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF∠∠NAE,进而可得四边形AENF的面积等于∠NAP的面积,同理可得答案.【详解】如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∠∠PAF+∠FAN=∠FAN+∠NAE=90°,∠∠PAF=∠NAE,∠∠PAF∠∠NAE,∠四边形AENF的面积等于∠NAP的面积,而∠NAP 的面积是正方形的面积的14,而正方形的面积为4, ∠四边形AENF 的面积为1cm 2,四块阴影面积的和为4cm 2.故答案为4.【点睛】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:∠定点-旋转中心;∠旋转方向;∠旋转角度.17.∠∠∠【分析】∠证明PF EC =,PDF ∆是等腰直角三角形,即可说明PD =;∠先证明四边形PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为2BC ,则四边形PECF 的周长为8;∠根据P 的任意性可以判断APD ∆不一定是等腰三角形;∠四边形PECF 为矩形,通过正方形的轴对称性,证明AP EF =.【详解】解:∠PE BC ⊥,PF CD ⊥,90PEC PFC ∴∠=∠=︒,又90C ∠=︒,∴四边形PECF 是矩形,EC PF ∴=.四边形ABCD 是正方形,45PDF ∴∠=︒,PDF ∴∆是等腰直角三角形,PD ∴==,故∠正确;∠PE BC ⊥,PF CD ⊥,90BCD ∠=︒,∴四边形PECF 为矩形,∴四边形PECF 的周长222228CE PE CE BE BC =+=+==,故∠正确; ∠点P 是正方形ABCD 的对角线BD 上任意一点,45ADP ∠=︒,∴当45PAD ∠=︒或67.5︒或90︒时,APD ∆是等腰三角形,除此之外,APD ∆不是等腰三角形,故∠错误.∠四边形PECF为矩形,∠=∠,∴=,PFE ECPPC EF正方形为轴对称图形,∴=,AP PC∴=,AP EF故∠正确;故答案为∠∠∠.【点睛】本题考查了正方形的性质,等腰三角形的判定与性质,勾股定理的运用等知识;熟练掌握正方形的性质和等腰三角形的性质是解题的关键.18.证明见解析【分析】要证BE=CF,可运用矩形的性质结合已知条件证BE、CF所在的三角形全等.【详解】证明:∠四边形ABCD为矩形,∠AC=BD,则BO=CO.∠BE∠AC于E,CF∠BD于F,∠∠BEO=∠CFO=90°.又∠∠BOE=∠COF,∠∠BOE∠∠COF.∠BE=CF.19.(1)答案不唯一,见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意,菱形ABCD即为所求(2)图1中AC =2,BD =6∠图1中菱形面积12662=⨯⨯=.图2中,AC22442,BD =∠图2中菱形面积182=⨯=.图3中,AC BD =∠图3菱形面积1102=⨯=. 【点睛】本题考查菱形的性质,掌握菱形的概念准确作图是关键.20.4【分析】由菱形的性质得出AC BD ⊥,OB OD =,112OA OC AC ===,在Rt AOD ∆中,由勾股定理得:4OD =,得出28BD OD ==,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∠四边形ABCD 是菱形,∠AD =AB =5,AC ∠BD ,AO =12AC =12×6=3,OB =OD . 在Rt∠AOD 中,由勾股定理得OD =4OD ==,∠BD =2OD =8.∠DE ∠BC ,∠∠DEB =90°.又∠OD =OB ,∠OE =12BD =12×8=4. 【点睛】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.21.(1)见解析;(2)3【分析】(1)先根据平行四边形的判定证明四边形AEBO 是平行四边形,再利用菱形的对角线互相垂直和矩形的判定证明即可;(2)利用矩形的性质求解即可.(1)证明:∠BE∠AC,AE∠BD,∠四边形AEBO是平行四边形.∠四边形ABCD是菱形,∠AC∠BD,即∠AOB=90°.∠四边形AEBO是矩形.(2)解:∠四边形AEBO是矩形,∠EO=AB,在菱形ABCD中,AB=CD,∠EO=CD=3.【点睛】本题考查菱形的性质、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的性质和矩形的判定与性质是解答的关键.22.(1)见解析(2)12【分析】(1)连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:证明∠AB P′∠∠AD P′,即可求解;(2)根据(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.从而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如图,连接DE,交AC于点P′,连接BP′,当点P在点P′处时,∠BPE的周长最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∠AP′=AP′,∠∠ABP′∠∠ADP′,∠BP′=DP′,∠BP+PE= DP′+ P′E≥DE,即当点P位于PP′时,∠BPE的周长PB+EP+BE最小;(2)解:由(1)得:B P ′=DP ′,∠P ′B +P ′E =DE .∠BE =2,AE =3BE ,∠AE =6.∠AD =AB =8.∠DE10.∠PB +PE 的最小值是10.∠∠BPE 周长的最小值为10+BE =10+2=12.【点睛】本题主要考查了正方形的性质,勾股定理,最短距离,全等三角形的判定和性质等,熟练掌握相关知识点是解题的关键.23.(1)详见解析;(2)详见解析.【分析】(1)根据题意可先证明四边形AHCE 为平行四边形,再根据正方形的性质得到∠AH FG =,//AH FG ,故可证明四边形AHGF 是平行四边形,即可求解;(2)根据四边形AHGF 是平行四边形,得180FAH AHG ∠+∠=︒,根据四边形ABCD 是矩形,可得 DAH AHB ∠=∠,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∠四边形ABCD 是矩形,且E 、H 分别为AD 、BC 的中点, ∠AE HC =,//AE HC ,∠四边形AHCE 为平行四边形,∠AH EC =,//AH EC ,又∠四边形ECGF 为正方形,∠EC FG =,//EC FG ,∠AH FG =,//AH FG ,∠四边形AHGF 是平行四边形,∠AH FG =;(2)证明:∠四边形AHGF 是平行四边形,∠180FAH AHG ∠+∠=︒,∠四边形ABCD 是矩形,∠//AD BC ,∠DAH AHB ∠=∠,又∠180AHB AHG GHC ∠+∠+∠=︒,∠FAD GHC ∠=∠;【点睛】此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.24.(1)见解析;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.见解析;(3)△ABC 是直角三角形,理由见解析.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO =CO ,EO =FO 可得四边形AECF 平行四边形,再证明∠ECF =90°利用矩形的判定得出即可;(3)利用正方形的性质得出AC ∠EN ,再利用平行线的性质得出∠BCA =90°,即可得出答案;【详解】证明:(1)∠MN 交∠ACB 的平分线于点 E ,交∠ACB 的外角平分线于点 F , ∠∠2=∠5,∠4=∠6,∠MN ∠BC ,∠∠1=∠5,∠3=∠6,∠∠1=∠2,∠3=∠4,∠EO =CO ,FO =CO ,∠OE =OF ;(2)当点 O 在边 AC 上运动到 AC 中点时,四边形 AECF 是矩形.证明:当 O 为 AC 的中点时,AO =CO ,∠EO =FO ,∠四边形 AECF 是平行四边形,∠CE 是∠ACB 的平分线,CF 是∠ACD 的平分线,∠∠ECF =12(∠ACB +∠ACD )=90°,∠平行四边形 AECF 是矩形.(3)∠ABC 是直角三角形,理由:∠四边形AECF 是正方形,∠AC∠EN,故∠AOM=90°,∠MN∠BC,∠∠BCA=∠AOM,∠∠BCA=90°,∠∠ABC 是直角三角形.【点睛】此题考查了正方形的判断和矩形的判定,需要知道平行线的特征和角平分线的性质才能解答此题.25.(1)∠ 90,45,2;∠11 12(2)1275【分析】(1)∠分别画出三种情况下的图形即可得到解答;∠连接EP,设AE=x,可以得到关于x的方程,从而得到AE的值;(2)连接EM,设AE=y,根据题意可以得到关于y的方程,解方程即可得到问题解答;(3)画出图形后根据题意可以得到解答.(1)∠如图1所示,点P与点A重合,由题意可知,PD∠EF,所以∠DEF=90°,如图2所示,点E与点A重合,由题意可知,ED=EP,PD∠EF,所以∠DEF=45°,如图3所示,点F与点C重合,连结CP,由题意可知,CP=DF=10,BC=6,∠在RT∠CPB中,PB=8,∠AP=AB-PB=2,故答案为90;45;2;∠如图4所示,连接EP,∠点P为AB的中点,∠AP=BP=5,由折叠知DE=EP,设AE=x,则DE=EP=6-x,在Rt∠AEP中,AE2+AP2=EP2,即x2+52=(6-x)2,解得x=1112,即AE=1112.(2)如图5所示,连接EM,设AE=y,由折叠知PE=DE,∠CDE=∠EPM=90°,CD=CP=AB=10,∠AM=DE,∠AM=PE.在Rt∠AEM和Rt∠PME中,,, AM PE EM ME=⎧⎨=⎩∠Rt∠AEM∠Rt∠PME(HL),∠AE=PM=y,∠CM=10-y,BM=AB-AM=AB-DE=10-(6-y)=4+y.在Rt∠BCM中,BM2+BC2=CM2,∠(4+y)2+62=(10-y)2,解得y=127.∠AE=127.(3)如图6所示,连结AF,在Rt ADF中,∠D=90°,AD=6,DF=CF=5,∠AF∠PF=DF=5,∠5AP AF PF≥-=,∠AP5.【点睛】本题考查矩形的的折叠问题和最短距离问题,正确分类并画出图形是解题的关键.。

初中数学特殊的平行四边形50题(含答案)

初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。

新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)

新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)

新北师大版九年级数学上册《特殊平行四边形》试卷(附答案)特殊平行四边形》试卷一、填空题1、如图,将△ABC绕AC的中点O按顺时针旋转180°得到△CDA,添加一个条件使四边形ABCD为矩形.条件:AB=CD2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.四边形EFGH的面积为24.3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________.DQ+PQ的最小值为√10.二、选择题4、矩形具有而菱形不具有的性质是() A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等答案:D5、如图,菱形ABCD的两条对角线相交于点O,若AC =6,BD=4,则菱形ABCD的周长是()。

A.24B.16C.413D.213答案:B6、如图,将△XXX沿BC方向平移得到△DCE,连接AD,下列条件中能够判定四边形ACED为菱形的是() A.AB =XXX.∠B=60°D.∠ACB=60°答案:C7、如图,4×4的方格中每个小正方形的边长都是1,则S 四边形ABDC与S四边形ECDF的大小关系是() A.S四边形ABDC=S四边形ECDFB.S四边形ABDC<S四边形ECDFC.S四边形ABDC=S四边形ECDF+1D.S四边形ABDC=S四边形ECDF+2答案:A8、如图,菱形ABCD中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF的周长为() A.14B.15C.16D.17答案:C9、如图,把矩形ABCD沿EF翻折,点B恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是() A.12B.24C.123D.163答案:B三、XXX10、如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F。

北师大版九年级数学上册第一章 特殊平行四边形 单元测试卷

北师大版九年级数学上册第一章 特殊平行四边形 单元测试卷

北师大版九年级数学上册第一章特殊平行四边形单元测试卷总分120分120分钟一.选择题(共8小题,每题3分)1.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC3.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 4.如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)5.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.96.如图,在矩形ABCD中有两个一条边长为1的平行四边形,则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于17.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB 于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.58.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1B.C.D.二.填空题(共6小题,每题3分)9.如图,在矩形ABCD中,AC、BD相交于点O且AC=8,如果∠AOD=60°,那么AD=.10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是_________A、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④11.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为.12.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为72cm2,则菱形的边长为2.(结果中如有根号保留根号)13.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是(填序号).14.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.三.解答题(共11小题)15.(6分)如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.16.(6分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.17.(6分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.18.(6分)已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.19.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.20.(8分)如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG ⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?21.(8分)如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.22.(8分)如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.23.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE的形状,并计算其周长.24.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.25.(8分)如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.参考答案与试题解析一.选择题(共8小题)1.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形【分析】根据菱形的性质即可判断;【解答】解:菱形的四条边相等,是轴对称图形,也是中心对称图形,对角线垂直不一定相等,故选:B.【点评】本题考查菱形的性质,解题的关键是熟练掌握菱形的性质,属于中考基础题.2.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确;故选:B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.【点评】本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.4.如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)【分析】首先根据正方形的性质求出D点坐标,再将D点横坐标加上3,纵坐标不变即可.【解答】解:∵在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D(﹣3,2),∴将正方形ABCD向右平移3个单位,则平移后点D的坐标是(0,2),故选:B.【点评】本题考查了正方形的性质,坐标与图形变化﹣平移,是基础题,比较简单.5.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24B.18C.12D.9【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【解答】解:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=BC,∴BC=6,∴菱形ABCD的周长是4×6=24.故选:A.【点评】本题考查的是三角形中位线的性质及菱形的周长公式,题目比较简单.6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于1解:如图所示:作EN∥AB,FM∥CD,过点E作EG⊥MN于点G,可得阴影部分面等于四边形EFMN的面积,则四边形EFMN是平行四边形,且EN=FM=1,∵EN=1,∴EG<1,∴它们的公共部分(即阴影部分)的面积小于1.故选:C.点评:此题主要考查了平行四边形的性质以及平行四边形面积求法,得出阴影部分面等于四边形EFMN的面积是解题关键.7.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB 于H,则DH的长是()A.7.5 B.7 C.6.5 D. 5.5分析:过C作DH的垂线CE交DH于E,证明四边形BCEH是矩形.所以求出HE的长;再求出∠DCE=30°,又因为CD=11,所以求出DE,进而求出DH的长.解:过C作DH的垂线CE交DH于E,∵DH⊥AB,CB⊥AB,∴CB∥DH又CE⊥DH,∴四边形BCEH是矩形.∵HE=BC=2,在Rt△AHD中,∠A=60°,∴∠ADH=30°,又∵∠ADC=90°∴∠CDE=60°,∴∠DCE=30°,∴在Rt△CED中,DE=CD=5.5,∴DH=2+5.5=7.5.故选A.点评:本题考查了矩形的判定和性质,直角三角形的一个重要性质:30°的锐角所对的直角边是斜边的一半;以及勾股定理的运用.8.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.【点评】本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.二.填空题(共6小题)9.如图,在矩形ABCD中,AC、BD相交于点O且AC=8,如果∠AOD=60°,那么AD=4.【考点】矩形的性质.【分析】根据矩形的对角线互相平分且相等可得OA=OD=AC,然后判断出△AOD是等边三角形,根据等边三角形的三边都相等解答即可.【解答】解:在矩形ABCD中,OA=OD=AC=×8=4,∵∠AOD=60°,∴△AOD是等边三角形,∴AD=OA=4.故答案为:4.【点评】本题考查了矩形的对角线互相平分且相等的性质,等边三角形的判定与性质,比较简单,熟记性质是解题的关键.10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是CA、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④分析:根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.解答:解:A、由①④得,一组邻边相等的矩形是正方形,故正确;B、由③得,四边形是平行四边形,再由①,一组邻边相等的平行四边形是菱形,故正确;C、由①②不能判断四边形是正方形;D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确.故选C.点评:此题用到的知识点是:矩形、菱形、正方形的判定定理,如:一组邻边相等的矩形是正方形;对角线互相平分且一组邻边相等的四边形是菱形;对角线互相平分且一个角是直角的四边形是矩形.灵活掌握这些判定定理是解本题的关键.11.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为(2,﹣3).【分析】根据轴对称图形的性质即可解决问题;【解答】解:∵四边形OABC是菱形,∴A、C关于直线OB对称,∵A(2,3),∴C(2,﹣3),故答案为(2,﹣3).【点评】本题考查菱形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握菱形的性质,利用菱形是轴对称图形解决问题.12.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为72cm2,则菱形的边长为2.(结果中如有根号保留根号)【分析】连接AC、BD,由正方形的面积,可计算出正方形的边长和对角线AC的长,再根据菱形的面积,计算出菱形的对角线BD的长,在直角△AOB中,求出菱形的边长.【解答】解:连接AC、BD,AC、BD相交于点O.∵正方形AECF的面积为72cm2,∴AE==6,AC=6×=12.∵菱形ABCD的面积为120cm2,即AC×BD=120∵AC=12,∴BD=20∵四边形ABCD是菱形,∴AO=AC=6,BO=BD=10,∴AB===2故答案为:2【点评】本题考查了菱形的性质、面积,正方形的面积及勾股定理.解决本题的关键是根据面积,求出菱形对角线的长.13.如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是②(填序号).【分析】当BA=BC时,四边形ADCE是菱形.只要证明四边形ADCE是平行四边形,DA=DC即可解决问题.【解答】解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD,CD分别平分∠BAC和∠ACB,∴∠DAC=∠DCA,∴DA=DC,∴四边形ADCE是菱形.故答案为②【点评】本题考查菱形的判断、平行四边形的判断和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【考点】KK:等边三角形的性质;LE:正方形的性质.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE =∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.【点评】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.三.解答题(共11小题)15.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;LB:矩形的性质;LF:正方形的判定.【分析】先判断出AE=AF,∠AEF=∠AFE=60°,进而求出∠AFD=∠AEB=75°,进而判断出△AEB≌△AFD,即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°,∵△AEF是等边三角形,∴AE=AF,∠AEF=∠AFE=60°,∵∠CEF=45°,∴∠CFE=∠CEF=45°,∴∠AFD=∠AEB=180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.【点评】此题主要考查了矩形的性质,等边三角形的性质,全等三角形的判定和性质,正方形的判定,判断出∠AFD=∠AEB是解本题的关键.16.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.【考点】全等三角形的判定与性质;平行四边形的性质;菱形的判定与性质.【分析】(1)利用全等三角形的性质证明AB=AD即可解决问题;(2)连接BD交AC于O,利用勾股定理求出对角线的长即可解决问题;【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.【点评】本题考查菱形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.【考点】KD:全等三角形的判定与性质;LB:矩形的性质.【分析】(1)由全等三角形的判定定理SAS证得结论;(2)由(1)中全等三角形的对应边相等和勾股定理求得线段DE的长度,结合三角形的周长公式解答.【解答】(1)证明:在矩形ABCD中,AD=BC,∠A=∠B=90°.∵E是AB的中点,∴AE=BE.在△ADE与△BCE中,,∴△ADE≌△BCE(SAS);(2)由(1)知:△ADE≌△BCE,则DE=EC.在直角△ADE中,AE=4,AE=AB=3,由勾股定理知,DE===5,∴△CDE的周长=2DE+AD=2DE+AB=2×5+6=16.【点评】本题主要考查了全等三角形的判定和性质,矩形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.18.已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.证明:∵AB=AC,∴∠B=∠ACB,∵AE是∠BAC的外角平分线,∴∠FAE=∠EAC,∵∠B+∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD,又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形,又∵∠ADC=90°,∴平行四边形ADCE是矩形.即四边形ADCE是矩形.点评:此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活利用平行四边形的判定得出四边形AEDB是平行四边形是解题关键.19.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.考点:矩形的判定与性质;等腰直角三角形.分析:如上图所示,延长AB,延长DC,相交于E点.△ADE是等腰直角三角形,AD=DE=2,则可以求出△ADE的面积;∠C=∠AED=45度,所以△CBE是等腰直角三角形,BE=CB=4厘米,则可以求出△CBE的面积;那么四边形ABCD的面积是两个三角形的面积之差.解:延长AB,延长DC,相交于E点,得到两个等腰直角三角形△ADE和△CBE,由等腰直角三角形的性质得:DE=AD=2,BE=CB=4,那么四边形ABCD的面积是:4×4÷2﹣2×2÷2=8﹣2=6.答:四边形ABCD的面积是6.点评:此题考查了等腰直角三角形的性质以及三角形的面积公式的运用,解题的关键是作延长线,找到交点,组成新图形,是解决此题的关键.20.如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?考点:矩形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.分析:先根据题意推理出四边形AFCG是矩形,然后根据矩形的性质得到对角线相等;由第一问的结论和AC⊥FG得到四边形AFCG是正方形,然后即可得到△ABC是等腰直角三角形.解答:(1)证明:∵AD平分∠EAC,且AD∥BC,∴∠ABC=∠EAD=∠CAD=∠ACB,∴AB=AC;AF是BC边上的中线,∴AF⊥BC,∵CG⊥AD,AD∥BC,∴CG⊥BC,∴AF∥CG,∴四边形AFCG是平行四边形,∵∠AFC=90°,∴四边形AFCG是矩形;∴AC=FG.(2)解:当AC⊥FG时,△ABC是等腰直角三角形.理由如下:∵四边形AFCG是矩形,∴四边形AFCG是正方形,∠ACB=45°,∵AB=AC,∴△ABC是等腰直角三角形.点评:该题目考查了矩形的判定和性质、正方形的判定和性质、等腰三角形的性质,知识点比较多,注意解答的思路要清晰.21.如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.考点:菱形的判定;全等三角形的判定与性质;等边三角形的性质.分析:在已知条件中求证全等三角形,即△BAE≌△CAF,△AEC≌△AFD,从而得到△ACD 和△ABC都是等边三角形,故可根据四条边都相等的四边形是菱形判定.解:四边形ABCD是菱形.证明:在△ABE、△ACF中∵AB=AC,AE=AF∠BAE=60°﹣∠EAC,∠CAF=60°﹣∠EAC∴∠BAE=∠CAF∴△BAE≌△CAF∵∠CFA=∠CFE+∠EFA=∠CFE+60°∠BEA=∠ECA+∠EAC=∠EAC+60°∴∠EAC=∠CFE∵∠DAF=∠CFE∴∠EAC=∠DAF∵AE=AF,∠AEC=∠AFD∴△AEC≌△AFD∴AC=AD,且∠D=∠ACE=60°∴△ACD和△ABC都是等边三角形∴四边形ABCD是菱形.点评:本题考查了菱形的判定、等边三角形的性质和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.22.如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.考点:菱形的判定;矩形的性质.分析:在矩形ABCD中,可得OB=OC,由BE∥AC,EC∥BD,所以四边形OBEC是平行四边形,两个条件合在一起,可得出其为菱形.证明:在矩形ABCD中,AC=BD,∴OB=OC,∵BE∥AC,EC∥BD,∴四边形OBEC是平行四边形,∴四边形OBEC是菱形.点评:熟练掌握菱形的性质及判定定理.23.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE的形状,并计算其周长.考点:菱形的判定与性质;矩形的性质.分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD 是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故答案为:8.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.24.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.考点:菱形的判定与性质;线段垂直平分线的性质;矩形的性质.分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO ≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=(8﹣x)2+62,求出即可.解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,在△DMO和△BNO中,,∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+62,解得:x=.答:MD长为.点评:本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用.注意对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.25.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.专题:动点型.分析:(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE过定点.解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.点评:在证明过程中,应了解正方形和平行四边形的判定定理,为使问题简单化,在证明过程中,可适当加入辅助线.。

初三数学特殊平行四边形试题

初三数学特殊平行四边形试题

初三数学特殊平行四边形试题1.顺次连接矩形四边中点所构成的四边形是;【答案】菱形【解析】根据中点四边形的性质及三角形的中位数定理即可得到结果.顺次连接矩形四边中点所构成的四边形是菱形.【考点】中点四边形,三角形的中位数定理点评:三角形的中位数定理的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.2.已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连接DE、DF,在不再连接其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是;【答案】答案不唯一,如AB=AC【解析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直平分的四边形是菱形.由题意知,可添加:AB=AC.则三角形是等腰三角形,由等腰三角形的性质知,顶角的平分线与底边上的中线重合,即点D是BC的中点,∴DE,EF是三角形的中位线,∴DE∥AB,DF∥AC,∴四边形ADEF是平行四边形,∵AB=AC,点E,F分别是AB,AC的中点,∴AE=AF,∴平行四边形ADEF为菱形.【考点】三角形的中位数定理,等腰三角形的性质,菱形的判定点评:此类问题综合性强,注意考查学生对基本图形的性质的熟练应用程度,在中考中比较常见,在各种题型中均有出现,需多加关注.3.菱形两邻角的度数之比为1︰2,较长对角线为20cm,则两对角线的交点到一边的距离为 cm.【答案】5【解析】先根据菱形的性质求得邻角的度数,再根据菱形的对角线平分对角结合对角线互相平分即可求得结果.∵菱形两邻角的度数之比为1︰2,∴邻角的度数分别为60°、120°∴较长对角线分60°所成的两个小角均为30°∵较长对角线为20cm∴对角线的一半为10cm∴两对角线的交点到一边的距离为5cm.【考点】菱形的性质,含30°角的直角三角形的性质点评:此类问题综合性强,注意考查学生对基本图形的性质的熟练应用程度,在中考中比较常见,在各种题型中均有出现,需多加关注.4.在菱形ABCD中,E、F分别是BC、CD上的点,若△AEF是等边三角形,且EF =" AB," 则∠BAD的度数是();A. 100°B. 105°C. 110°D. 120°【答案】A【解析】根据菱形的性质推出∠B=∠D,AD∥BC,根据平行线的性质得出∠DAB+∠B=180°,根据等边三角形的性质得出∠AEF=∠AFE=60°,AF=AD,根据等边对等角得出∠B=∠AEB,∠D=∠AFD,设∠BAE=∠FAD=x,根据三角形的内角和定理得出方程x+2(180°-60°-2x)=180°,求出方程的解即可求出答案.∵四边形ABCD是菱形,∴∠B=∠D,AD∥BC,∴∠DAB+∠B=180°,∵△AEF是等边三角形,AE=AB,∴∠AEF=∠AFE=60°,AF=AD,∴∠B=∠AEB,∠D=∠AFD,由三角形的内角和定理得:∠BAE=∠FAD,设∠BAE=∠FAD=x,则∠D=∠AFD=180°-∠EAF-(∠BAE+∠FAD)=180°-60°-2x,∵∠FAD+∠D+∠AFD=180°,∴x+2(180°-60°-2x)=180°,解得x=20°,∴∠BAD=2×20°+60°=100°,故选A.【考点】菱形的性质,等边三角形的性质,三角形的内角和定理点评:方程思想是初中数学学习中非常重要的思想方法,与各个知识点的结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.5.下列判断中,正确的是( ).A.一组邻边相等的四边形是菱形B.对角线相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线交点到各边距离相等的四边形是菱形【答案】D【解析】根据菱形的判定定理依次分析各项即可判断.A、一组邻边相等的平行四边形是菱形,B、C、对角线互相垂直的平行四边形是菱形,错误;D、对角线交点到各边距离相等的四边形是菱形,本选项正确.【考点】菱形的判定点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.6.如图,将矩形ABCD折叠,使顶点B与D重合,折痕为EF,连接BE、DF.(1)四边形BEDF是什么四边形?为什么?(2)若AB=6cm,BC=8cm,求折痕EF的长.【答案】(1)菱形;(2)cm.【解析】(1)根据折叠的性质可得BE=DE,BF=DF,∠BEF=∠DEF,再结合矩形的性质可得∠BEF=∠BFE,从而可以证得结论;(2)先根据勾股定理求得BE、BO的长,再根据勾股定理求得EO的长,即可求得结果.(1)∵将矩形ABCD折叠,使顶点B与D重合,折痕为EF∴BE=DE,BF=DF,∠BEF=∠DEF,AD∥BC∴∠DEF=∠BFE∴∠BEF=∠BFE∴BE=BF∴BE=DE=BF=DF∴四边形BEDF是菱形;(2)设BE=DE=x,则AE=8-x则解得则∵∴∴∴【考点】折叠的性质,矩形的性质,菱形的判定,勾股定理点评:此类题目综合性强,知识点多,在中考中比较常见,在各种题型中均有出现,需多加关注.7.已知:平行四边形ABCD中,对角线AC、BD相交于O. ①若OA=OB,且OA⊥OB,则四边形ABCD是,②若AB=BC,且AC=BD,则四边形ABCD是;【答案】正方形,正方形【解析】根据正方形的判定定理依次分析即可求得结果.①若OA=OB,且OA⊥OB,则四边形ABCD是正方形;②若AB=BC,且AC=BD,则四边形ABCD是正方形.【考点】正方形的判定点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.正方形边长为a,若以此正方形的对角线为一边作正方形,则所作正方形的对角线长为 .【答案】2a【解析】根据正方形的性质、勾股定理结合正方形的面积公式即可求得结果.由题意得此正方形的对角线长则所作正方形的对角线长【考点】正方形的性质,勾股定理点评:勾股定理的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.9.四边形ABCD的对角线AC=BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,则所构成的四边形是().A. 平行四边形B. 矩形C. 菱形D. 正方形【答案】D【解析】根据过A、B、C、D作对角线的平行线可得所构成的四边形是平行四边形,再结合AC=BD,且AC⊥BD,即可得到结果.∵过A、B、C、D作对角线的平行线∴所构成的四边形是平行四边形∵AC=BD,且AC⊥BD∴所构成的四边形是正方形故选D.【考点】正方形的判定点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.10.如图,要把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的,请说明理由.【答案】AA1=BB1=CC1=DD1=【解析】根据正方形的性质,勾股定理,正方形的面积公式即可得到结果.取AA1=BB1=CC1=DD1=,则A1B=B1C=C1D=D1A=∴四边形A1B1C1D1的面积【考点】正方形的性质,勾股定理,正方形的面积公式点评:特殊四边形的判定和性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.。

新北师大九年级数学上册《特殊的平行四边形》经典题

新北师大九年级数学上册《特殊的平行四边形》经典题

2015年新北师大九年级数学上册《特殊的平行四边形》经典题一.选择题(共14小题,满分44分)1.(3分)(2015春•龙口市期中)下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线相等的菱形是正方形D.对角线互相垂直的四边形是菱形2.(3分)(2015•漳州一模)正方形具有而菱形不一定具有的性质是()A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等3.(3分)(2015春•句容市校级期中)下列条件中,不能判定四边形ABCD为矩形的是()A.AB∥CD,AB=CD,AC=BD B.∠A=∠B=∠D=90°C.AB=BC,AD=CD,且∠C=90°D.AB=CD,AD=BC,∠A=90°4.(3分)(2015•桂林)如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18 B.18C.36 D.365.(3分)(2015•龙岩)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为()A.4 B.4 C.2D.26.(3分)(2015春•泗阳县期末)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.12 B.14 C.16 D.187.(3分)(2015•兰州)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A.4 B.3C.2D.8.(3分)(2015春•罗田县期中)如图,菱形ABCD中对角线相交于点O,且OE⊥AB,若AC=8,BD=6,则OE的长是()A.2.5 B.5 C.2.4 D.不确定9.(3分)(2015•临沂)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE10.(3分)(2015•黔东南州)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.2411.(3分)(2015•台州)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A.6.5 B.6 C.5.5 D.512.(4分)(2015•安徽)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.2 B.3C.5 D.613.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.14.(4分)(2015•重庆)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数y=的图象与菱形对角线AO交D点,连接BD,当DB⊥x轴时,k的值是()A.6 B.﹣6C.12D.﹣12二.填空题(共16小题,满分56分)15.(3分)(2015春•江阴市期中)菱形的对角线长分别为6和8,则此菱形的周长为,面积为.16.(3分)(2015春•邵阳县期末)如图所示,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是.17.(3分)(2015•齐齐哈尔)菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为.18.(3分)(2015•黔西南州)如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:,可使它成为菱形.19.(3分)(2015•南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.20.(3分)(2015•长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.21.(3分)(2015春•通辽期末)如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.22.(3分)(2015•吉林)如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.23.(4分)(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.24.(4分)(2015•凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.25.(4分)(2015•潜江)菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为.26.(4分)(2015•义马市模拟)如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为.27.(4分)(2015•房山区二模)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.28.(4分)(2015•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为.29.(4分)(2015•徐州)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.30.(4分)(2015•天水)正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线y=﹣x+2上,则点A3的坐标为.1.C2.D3.C4.B5.A6.A7.B8.C 9.B 10.A 11.C 12.C 13.A 14.D15. 20 2416. 417. 5cm 或cm18. AB=BC等19. 45°20. 521. 822. (4,4)23. 6524. ()25. (,﹣)26. 3227.28. 1429. ()n﹣1.30. (,0)。

北师大版九年级数学上册第一章特殊平行四边形单元测试题

北师大版九年级数学上册第一章特殊平行四边形单元测试题

北师大版九年级数学上册第一章特殊平行四边形单元测试题第一章特殊平行四边形第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.如图菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是()A.20B.24C.40D.482.如图2,菱形ABCD的周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5图23如图3,在平行四边形ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件可以是()A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND4.如图在菱形ABCD中,E,F分别是AC,AB的中点,如果EF=3,那么菱形ABCD的周长为()B.18C.12D.95.如图4,O是矩形ABCD的对角线AC的中点,M是CD边的中点.若OB=5,OM=3,则矩形ABCD的面积为()A.48B.50C.60D.80图46.如图5,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是()A.3B.4C.5D.6图57.直角三角形斜边上的高与中线的长分别为5cm和6cm,则它的面积为()A.30cm2B.60cm2C.45cm2D.15cm28.如图6是由8个全等的小矩形组成的大正方形,线段AB的两个端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接P A,PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2C.4D.5图6 图79.如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4).将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(-3,10)C.(10,-3)D.(3,-10)10.如图,在正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG 翻折得到△AFG,延长GF交DC于点E,则DE的长是()A.1B.1.5C.2D.2.5第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.图9 图1012.如图10,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B 的对应点E落在CD上,且DE=EF,则AB的长为.13.如图11,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC 于点N,△CND的周长是10,则AC的长为.图11 图1214.如图12,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.15.如图13,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.图13 图1416.如图14是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:把A0纸对折后变为A1纸;把A1纸对折后变为A2纸;把A2纸对折后变为A3纸;把A3纸对折后变为A4纸……A4规格的纸是我们日常生活中最常见的,那么一张A4纸可以裁张A8纸.三、解答题(共72分)17.(6分)如图15,在正方形ABCD中,对角线BD所在的直线上有两点E,F,且满足BE=DF,连接AE,AF,CE,CF.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.图1518.(6分)如图16,E是正方形ABCD外一点,F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.图1619.(8分)如图17,在△ABC中,∠BAC=90°,AD是斜边上的中线,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:BD=AF;(2)判断四边形ADCF的形状,并证明你的结论.图1720.(8分)如图18,将矩形ABCD沿对角线AC翻折,点B落在点F 处,FC交AD于点E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.图1821.(10分)已知:如图9,在平行四边形ABCD中,对角线AC与BD相交于点E,G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.(10分)如图20,在△ABC和△BCD 中,∠BAC=∠BCD=90°,AB=AC,BC=CD,延长CA至点E,使AE=AC,延长CB至点F,使BF=BC,连接AD,AF,DF,EF,延长DB交EF于点N.(1)求证:AD=AF;(2)试判断四边形ABNE的形状,并说明理由.图2023.(12分)如图21,在正方形ABCD中,E是边CD上一点(点E不与点C,D重合),连接BE.【感知】如图①,过点A作AF⊥BE交BC于点F,易证△ABF≌△BCE.(不需要证明) 【探究】如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.(1)求证:BE=GF;(2)连接CM.若CM=1,则GF的长为.【应用】如图③,取BE的中点M,连接CM.过点C作CG⊥BE交AD于点G,连接EG,MG.若CM=3,则四边形GMCE的面积为.图2124.(12分)背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五.它被记载于我国古代著名数学著作《周髀算经》中.在本题中,我们把三边的比为3∶4∶5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15的三角形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图22①,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图②,将图①中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图③,将图②中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图④,将图③中的矩形纸片沿AH折叠,得到△AD'H,再沿AD'折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图②中证明四边形AEFD是正方形;(2)请在图④中判断NF与ND'的数量关系,并加以证明;(3)请在图④中证明△AEN是(3,4,5)型三角形.图22。

(典型题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)

(典型题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)

一、选择题1.如图,已知△ABC 中,AB =AC ,AD 是∠BAC 的平分线,AE 是∠BAC 的外角平分线,ED ∥AB 交AC 于点G .下列结论:①AD ⊥BC ;②AE ∥BC ;③AE =AG ;④AD 2+AE 2=4AG 2,其中正确结论的个数是( )A .1B .2C .3D .42.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个 3.如图所示,在菱形ABCD 中,5AC =,120BCD ∠=︒,则菱形ABC 的周长是( ).A .20B .15C .10D .54.如图,四边形ABCD 中,90A B ∠=∠=︒,60C ∠=°,2CD AD =,4AB =,点P 是AB 上一动点,则PC PD +的最小值是( )A.4B.6C.8D.105.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为()A.4 B.4.5 C.8 D.96.如图,公路,AC BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为4.8km,则,M C两点间的距离为()A.1.2km B.2.4km C.3.6km D.4.8km7.如图,将长方形纸片ABCD沿AE折叠,使点D恰好落在BC边上点F处.若6AB=,10AD=,则EC的长为()A.2 B.83C.3 D.1038.给出下列命题,其中错误命题的个数是()①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .49.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.510.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,延长CB 至E 使BE=CB ,连续AE .下列结论①AE=2OE ;②90EAC ∠=︒;③四边形ADBE 为平行四边形;④34AEBO ABCD S S =四边形菱形中,正确的个数有( )A .1个B .2个C .3个D .4个11.如图,四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC ,垂足是E ,若线段AE =4,则四边形ABCD 的面积为( )A .12B .16C .20D .2412.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把CDB 旋转90°,则旋转后点D 的对应点D 的坐标是( )A .(2,10)B .(﹣2,0)C .(2,10)或(﹣2,0)D .(10,2)或(﹣2,0)二、填空题13.如图,在菱形ABCD 中,2,60AB BAD =∠=︒,将菱形ABCD 绕点A 逆时针方向旋转,对应得到菱形,AEFG 点E 在AC 上.EF 与CD 交于点,P 则PE 的长是____.14.如图,在菱形ABCD 中,E 、F 分别是AC 、BC 的中点,如果EF =5,那么菱形ABCD 的周长_____.15.如图所示,在矩形ABCD 中,AB a ,BC b =,两条对角线相交于点O ,OB 、OC 为邻边作第1个平行四边形1OBB C ,对角线相交于点1A ,以为11A B 、1A C 邻边作第2个平行四边形111A B C C ,对角线相交于1O ;再以11O B 、11O C 为邻边作第3个平行四边形1121O B B C ……此类推,第2020个平行四边形的面积__________.16.如图,矩形ABOC 的顶点B 、C 分别在x 轴、y 轴上,顶点A 在第一象限,点B 的坐标30),将线段OC 绕点O 顺时针旋转60°至线段OD ,若反比例函数k y x=(k ≠0)的图象进过A 、D 两点,则k 值为_____.17.如图,△ABC 中,13AB AC ==,10BC =,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是________.18.如图,点H 在菱形ABCD 的边BC 上,连结AH ,把菱形ABCD 沿AH 折叠,使B 点落在边BC 上的点E 处,若∠B=70°,则∠AED 的度数为_____.19.如下图,在平面直角坐标系中有一边长为l 的正方形OABC ,边OA 、OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB l 为边作第三个正方形OB l B 2C 2,照此规律作下去,则点B 2020的纵坐标为_______.20.请你写出一个原命题与它的逆命题都是真命题的命题____________________ .三、解答题21.已知矩形ABCD 中,点F 在AD 边上,四边形EDCF 是平行四边形,请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹,不必写画法).(1)在图1画出BCD △中DC 边上的中线BG ;(2)在图2中画出线段AF 的垂直平分线.22.如图,过ABC 边AC 的中点O ,作OE AC ⊥,交AB 于点E ,过点A 作//AD BC ,与BO 的延长线交于点D ,连接CD ,CE ,若CE 平分ACB ∠,CE BO ⊥于点F .(1)求证:①OC BC =,②四边形ABCD 是矩形;(2)若3BC =,求DE 的长.23.如图所示,平行四边形,ABCD 对角线BD 平分ABC ∠;()1求证:四边形ABCD 为菱形;()2已知AE BC ⊥于E ,若24CE BE ==,求BD .24.已知:如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点.(1)求证:△ABM ≌△DCM ;(2)当AB :AD 的值为多少时,四边形MENF 是正方形?请说明理由.25.如图,在ABC 中,已知105BAC ∠=︒,45ACB ∠=︒,AD 是BC 边上的高线,CE 是AB 边上的中线,DG CE 于点G ,且42AC =.(1)求AB 的长;(2)求证:CG EG .26.如图,E 、F 分别是矩形ABCD 的边 BC 、AD 上的点,且BE = DF .(1)求证:四边形 AECF 是平行四边形;(2)若四边形 AECF 是菱形,且 CE = 10,AB = 8,求线段BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接EC ,根据等腰三角形的性质得出AD ⊥BC ,即可判断①;求出∠FAE=∠B ,再根据平行线的性质得出AE ∥BC ,即可判断②;求出四边形ABDE 是平行四边形,根据平行四边形的性质得出AE=BD ,求出AE=CD ,根据矩形的判定推出四边形ADCE 是矩形,根据矩形的性质得出AC=DE ,AG=CG ,DG=EG ,求出DG=AG=CG=EG ,根据勾股定理判断④即可;根据AE=BD=12BC 和AG=12AC 判断③即可. 【详解】解:连接EC ,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠FAC,∴∠FAC=2∠FAE,∵∠FAC=∠B+∠ACB,∴∠FAE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=12BC,AG=12AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.【点睛】本题考查了勾股定理,等腰三角形的性质,平行线的性质和判定,平行四边形的性质和判定,矩形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.2.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 3.A解析:A【分析】根据题意可得出∠B=60︒,结合菱形的性质可得BA=BC ,判断出△ABC 是等边三角形即可得出菱形的周长.【详解】解:∵四边形ABCD 是菱形,∴//BA CD ,又∵∠BCD=120︒,∴∠B=180︒-∠BCD= 60︒,又∵四边形ABCD 是菱形,∴BA=BC ,∴△ABC 是等边三角形,∴BA=BC=AC=5,故可得菱形的周长=4AB=20.故选:A .【点睛】本题考查了菱形的性质及等边三角形的判定与性质,根据菱形的性质判断出△ABC是等边三角形是解答本题的关键,难度一般.4.C解析:C【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD 最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=4,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=60°,∴∠D'CE=30°,∴在Rt△D'CE中,D'C=2D'E=2×4=8,∴PC+PD的最小值为8.故选:C.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,含30°角的直角三角形的性质等,确定出P点是解答本题的关键.5.B解析:B【分析】由菱形的性质得出BD=12,由菱形的面积得出AC=9,再由直角三角形斜边上的中线性质即可得出结果.【详解】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=12BD,BD⊥AC,∴BD=2OB=12,∵S菱形ABCD═12AC×BD=54,∴AC=9,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4.5,故选:B.【点睛】本题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.6.B解析:B【分析】根据直角三角形斜边上的中线性质得出CM=12AB,代入求出即可.∵AC⊥BC,∴∠ACB=90°,∵M为AB的中点,∴CM=12AB,∵AB=4.8km,∴CM=2.4km,故选:B.【点睛】本考考查了直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出CM=12AB是解此题的关键.7.B解析:B【分析】由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=6-x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=6,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10,DE=EF,设EC=x,则DE=EF=6-x.在Rt△ABF中,8BF===,∴CF=BC-BF=10-8=2,在Rt△EFC中,EF2=CE2+CF2,∴(6-x)2=x2+22,∴x=83,∴EC=83.故选:B.【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.8.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.9.A解析:A【分析】根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数.【详解】解:∵OG AC ⊥,∴90COG ∠=︒,∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒,∵四边形ABCD 是矩形,∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =, ∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒, ∴37.5ACD BCD OCB ∠=∠-∠=︒, ∵//AB CD ,∴37.5GAC ACD ∠=∠=︒,∵OG AC ⊥,OA OC =,∴GO 是AC 的垂直平分线,∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.10.D解析:D【分析】先判定四边形AEBD 是平行四边形,再根据平行四边形的性质以及菱形的性质,即可得出结论.【详解】 解:四边形ABCD 是菱形,AD BC ∴=,//AD BC ,2BD DO =,又BC BE =,AD BE ∴=,∴四边形AEBD 是平行四边形,故③正确,AE BD ∴=,2AE DO ,故①正确;四边形AEBD 是平行四边形,四边形ABCD 是菱形,//AE BD ∴,AC BD ⊥,AE AC ∴⊥,即90CAE ∠=︒,故②正确;四边形AEBD 是平行四边形, 12ABE ABD ABCD S S S 菱形, 四边形ABCD 是菱形,14ABO ABCDS S 菱形, 34ABE ABO AEBO ABCDS S S S 四边形菱形,故④正确; 故选:D .【点睛】本题主要考查了菱形的性质以及平行四边形的判定与性质,熟悉相关性质是解题的关键. 11.B解析:B【分析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积.【详解】解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒,∵AF CD ⊥,∴90AFC ∠=︒,∵90C ∠=︒,∴四边形AECF 是矩形,∴90EAF ∠=︒,∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠,在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形,∵ABE ADF S S ,∴216ABCD AECF S S AE ===.故选:B .【点睛】本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.12.C解析:C【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【详解】解:∵点D (5,3)在边AB 上,∴BC =5,BD =5﹣3=2,①若顺时针旋转,则点D 在x 轴上,O D =2,所以,D (﹣2,0),②若逆时针旋转,则点D 到x 轴的距离为10,到y 轴的距离为2,所以,D (2,10),综上所述,点D 的坐标为(2,10)或(﹣2,0).故选:C .【点睛】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.二、填空题13.【分析】连接BD 交AC 于O 由菱形的性质得出CD=AB=2∠BCD=∠BAD=60°由直角三角形的性质求出OB=AB=1由直角三角形的性质得出由旋转的性质得出AE=AB=2∠EAG=∠BAD=60°求 解析:31- 【分析】连接BD 交AC 于O ,由菱形的性质得出CD=AB=2,∠BCD=∠BAD=60°,1ACD 302︒∠=∠=∠=BAC BAD ,由直角三角形的性质求出OB=12AB=1,由直角三角形的性质得出23AC =,由旋转的性质得出AE=AB=2,∠EAG=∠BAD=60°,求出CE=AC-AE 232=-,证出∠CPE=90°,由直角三角形的性质得出PE 的长【详解】解:连接BD 交AC 于O ,如图所示:∵四边形ABCD 是菱形,∴CD=AB=2,∠BCD=∠BAD=60°,1ACD 302︒∠=∠=∠=BAC BAD ,OA=OC ,AC ⊥BD , ∴112OB AB == ∴33,==OA OB∴23AC =由旋转的性质得:AE=AB=2,∠EAG=∠BAD=60°,∴232,=-=CE AC AE∵四边形AEFG 是菱形,∴EF ∥AG ,∴∠CEP=∠EAG=60°,∴∠CEP+∠ACD=90°,∴∠CPE=90°,∴112PE CE ==1【点睛】本题考查了菱形的性质、旋转的性质、含30°角的直角三角形的性质、平行线的性质等知识;熟练掌握旋转的性质和菱形的性质是解题的关键.14.40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB =2EF 然后根据菱形的四条边都相等列式计算即可得解【详解】解:∵EF 分别是ACBC 的中点∴EF 是△ABC 的中位线∴AB =2EF =解析:40【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得AB =2EF ,然后根据菱形的四条边都相等列式计算即可得解.【详解】解:∵E 、F 分别是AC 、BC 的中点,∴EF 是△ABC 的中位线,∴AB =2EF =2×5=10,∴菱形ABCD 的周长=4×10=40.故答案为:40.【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.15.【分析】结合题意根据矩形性质得平行四边形为菱形从而依次计算前4个平行四边形的面积并通过归纳计算规律即可得到第2020个平行四边形的面积【详解】∵矩形中两条对角线相交于点∴∵为邻边作第1个平行四边形∴ 解析:20202ab【分析】结合题意,根据矩形性质,得平行四边形1OBB C 为菱形,从而依次计算前4个平行四边形的面积,并通过归纳计算规律,即可得到第2020个平行四边形的面积.【详解】∵矩形ABCD 中,AB a ,BC b =,两条对角线相交于点O∴OB OC OA ==∵OB 、OC 为邻边作第1个平行四边形1OBB C∴11OB OC BB CB ===∴平行四边形1OBB C 为菱形∵平行四边形1OBB C ,对角线相交于点1A ,∴1OA BC ⊥,1112BA CA BC ==,111OA A B = ∵OC OA = ∴11122OA AB a == ∴第1个平行四边形1OBB C 面积112BC OA a b =⨯=⨯ ∴第2个平行四边形111A B C C 面积1111122AC A B a b =⨯=⨯ 同理,得第3个平行四边形1121O B B C 面积21111122222a b a b ⎛⎫=⨯⨯=⨯ ⎪⎝⎭第4个平行四边形2221A B C C 面积2221111122222a b a b ⎛⎫⎛⎫⎛⎫=⨯⨯=⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭以此类推,第2020个平行四边形2221A B C C 面积为:10101010202020201112222ab a b ab ⎛⎫⎛⎫⎛⎫⨯== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故答案为:20202ab . 【点睛】 本题考查了数字及图形规律、三角形中位线、幂的乘方、平行四边形、矩形、菱形的知识;解题的关键是熟练掌握数字及图形规律、幂的乘方、平行四边形、矩形的性质,从而完成求解.16.4【分析】过点D 作DH ⊥x 轴于H 四边形ABOC 是矩形由性质有AB =CO ∠COB =90°将OC 绕点O 顺时针旋转60°OC =OD ∠COD =60°可得∠DOH =30°设DH =x 点D (xx )点A (2x )反比解析:【分析】过点D 作DH ⊥x 轴于H ,四边形ABOC 是矩形,由性质有AB =CO ,∠COB =90°, 将OC 绕点O 顺时针旋转60°,OC =OD ,∠COD =60°,可得∠DOH =30°,设DH =x ,点D ,x ),点A ,2x ),反比例函数k y x=(k ≠0)的图象经过A 、D 两点,构造方程求出即可.【详解】解:如图,过点D 作DH ⊥x 轴于H ,∵四边形ABOC是矩形,∴AB=CO,∠COB=90°,∵将线段OC绕点O顺时针旋转60°至线段OD,∴OC=OD,∠COD=60°,∴∠DOH=30°,∴OD=2DH,OH3,设DH=x,∴点D3,x),点A32x),∵反比例函数kyx=(k≠0)的图象经过A、D两点,∴3×x3x,∴x=2,∴点D(32),∴k=3=3故答案为:3【点睛】本题考查反比例函数解析式问题,关键利用矩形的性质与旋转找到AB=CO=OD,∠DOH =30°,DH=x,会用x表示点D3,x),点A3,2x),利用A、D在反比例函数kyx=(k≠0)的图象上,构造方程使问题得以解决.17.18【详解】根据等腰三角形三线合一的性质可得AD⊥BCDC=BC再根据直角三角形的性质可得DE=EC=AC=65然后可得答案【解答】解:∵AB=ACAD平分∠BAC∴AD⊥BCDC=BC∵BC=10解析:18【详解】根据等腰三角形三线合一的性质可得AD⊥BC,DC=12BC,再根据直角三角形的性质可得DE=EC=12AC=6.5,然后可得答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=12BC,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC=12AC=6.5,∴△CDE的周长为:DC+EC+DE=13+5=18,故答案为:18.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.18.55°【分析】根据翻折变换的性质可得AB=AE然后根据等腰三角形两底角相等求出∠B=∠AEB=70°根据菱形的四条边都相等可得AB=AD菱形的对角相等求出∠ADC再求出∠DAE然后根据等腰三角形两底解析:55°【分析】根据翻折变换的性质可得AB=AE,然后根据等腰三角形两底角相等求出∠B=∠AEB=70°,根据菱形的四条边都相等可得AB=AD,菱形的对角相等求出∠ADC,再求出∠DAE,然后根据等腰三角形两底角相等求出∠AED.【详解】解:∵菱形ABCD沿AH折叠,B落在BC边上的点E处,∴AB=AE,∵∠B=70°,∴∠AEB=70°在菱形ABCD中,AB=AD,∠ADC=∠B=70°,AD∥BC,∴∠DAE=∠AEB=70°,∵AB=AE,AB=AD,∴AE=AD,∴∠AED=12(180°-∠DAE)=12(180°-70°)=55°.故答案为:55°.【点睛】本题考查了翻折变换的性质,菱形的性质,等腰三角形两底角相等的性质,翻折前后对应边相等,菱形的四条边都相等,对角相等.19.【分析】首先求出B1B2B3B4B5B6B7B8B9的坐标找出这些坐标的之间的规律然后根据规律计算出点B2020的坐标【详解】解:∵正方形OABC边长为1∴OB=∵正方形OBB1C1是正方形OABC解析:10102-【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2020的坐标.【详解】解:∵正方形OABC边长为1,∴,∵正方形OBB1C1是正方形OABC的对角线OB为边,∴OB1=2,∴B1点坐标为(0,2),同理可知OB2,B2点坐标为(-2,2),同理可知OB3=4,B3点坐标为(-4,0),B4点坐标为(-4,-4),B5点坐标为(0,-8),B6(8,-8),B7(16,0)B8(16,16),B9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形倍,∵2020÷8=252…4,∴B2020的纵横坐标符号与点B4的相同,横坐标为负值,纵坐标是负值,∴B2020的坐标为(-21010,-21010).故答案为:10102-.【点睛】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变倍,此题难度较大.20.对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成题设是已知事项结论是由已知事项推出的事项;题设成立结论也成立的叫真命题而题设成立结论不成立的为假命题把一个命题的题设解析:对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项;题设成立,结论也成立的叫真命题,而题设成立,结论不成立的为假命题,把一个命题的题设和结论互换即可得到其逆命题.【详解】解:如命题:对角线互相平分且相等的四边形是矩形,真命题,逆命题是矩形的对角线互相平分且相等,真命题,故答案为:对角线互相平分且相等的四边形是矩形(答案不唯一).【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题.三、解答题21.(1)见解析(2)见解析【分析】(1)(1)延长EF交BC于H,连结DH,交CF于N,连结AH,FB交于M,过M、N作直线交DC于G,连结BG即可;(2)连接AH,BF,相交于M,连接BE并交AD于N,由四边形EDCF是平行四边形,矩形ABCD,可得EF=CD=AB,EF∥CD∥AB,可证△ANB≌△FNE(AAS),可得AN=FN过M、N作直线l即可.【详解】解:(1)如图,延长EF交BC于H,连结DH,交CF于N,连结AH,FB交于M过M、N作直线交DC于G连结BG如图1,线段BG即为所求作;(2)如图,连接AH,BF,相交于M,连接BE并交AD于N,∵四边形EDCF是平行四边形,矩形ABCD∴EF=CD=AB,EF∥CD∥AB∴∠ABN=∠FEN,∠ANB=∠FNE∴△ANB≌△FNE(AAS)∴AN=FN过M、N作直线l如图2,直线l即为所求作.【点睛】本题考查的是利用无刻度的直尺作图,平行四边形的性质,矩形的性质,三角形的中位线的性质,三角形的中线的概念,线段垂直平分线,掌握以上知识是解题的关键. 22.(1)①证明见解析;②证明见解析;(2)21DE =【分析】(1)①运用ASA 证明OCF BCF ≌△△即可得出结论;②先证明四边形ABCD 是平行四边形,再证明90EBC ∠=︒即可得出结论;(2)证明△OCB 是等边三角形,得∠ECB=30°,求出3AE 的长,再运用勾股定理求出DE 的长即可.【详解】证明:(1)①∵CE 平分BCA ∠,∴OCE BCE ∠=∠.∵BO CE ⊥,∴90∠∠==︒CFO CFB .又∵CF CF =,∴()≌OCF BCF ASA △△∴OC BC =.②∵O 是AC 的中点,∴OA OC =.又∵//AD BC .∴DAO BCO ∠=∠,ADO CBO ∠=∠.∴()≌OAD OCB ASA △△.∴AD BC =.∵//AD BC ,∴四边形ABCD 是平行四边形.∵OE AC ⊥,∴90EOC ∠=︒∵OCE BCE ∠=∠,CE CE =,OC BC =,∴()≌OCE BCE ASA △△.∴90∠∠==︒EBC EOC .∴四边形ABCD 是矩形.(2)∵四边形ABCD 是矩形,∴3AD BC ==,90DAB ∠=︒,AC BD =.∴OB OC =.∵OC BC =,∴OB OC BC ==.∴OBC 是等边三角形.∴60OCB ∠=︒ ∴1302∠∠︒==ECB OCB . ∵90EBC ∠=︒, ∴12=EB EC . ∵222BE BC EC +=,3BC =. ∴EB =EC = ∵OE AC ⊥,OA OC =, ∴==EC EA .在Rt ADE △中,90DAB ∠=︒,∴===DE 【点睛】此题主要考查了全等三角形的判定与性质,矩形的判定与性质,勾股定理以及直角三角形的性质,熟练掌握矩形的判定与性质是解答此题的关键.23.(1)证明见解析;(2)BD =【分析】(1)由角平分线的定义得ABD CBD ∠=∠,再证明CDB CBD ∠=∠,从而得BC DC =,即可利用一组邻边相等的平行四边形是菱形证明出四边形ABCD 是菱形; (2)分别求出BE EC BC AB AE AC 、、、、、,再根据菱形的面积等于平行四边形的面积求解即可.【详解】解:(1)∵BD 平分ABC ∠∴ABD CBD ∠=∠∵四边形ABCD 是平行四边形∴//AB CD∴CDB ABD ∠=∠∴CDB CBD ∠=∠∴BC DC =∴四边形ABCD 是菱形;(2)连接AC ,如图,∵ABCD 是菱形∴3BC AB BE EC BE ==+=又∵24BE EC ==∴2BE =∴246BC BE EC AB =+=+==又AE BC ⊥ ∴22226242AE AB BE =-=-=2222(42)443AC AE EC =+=+= ∴642242ABCD S BC AE =⨯=⨯= 而242ABCD ABCD S S==菱形 ∴114324222BD AC BD ⨯=⨯= ∴6BD =【点睛】此题主要考查了菱形的性质与判定,关键是掌握菱形的判定定理.24.(1)见解析;(2)当AB :AD =1:2时,四边形MENF 是正方形,理由见解析【分析】(1)求出AB =DC ,∠A =∠D =90°,AM =DM ,根据全等三角形的判定定理推出即可; (2)求出∠EMF =90°,根据正方形的判定推出即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D =90°,∵M 为AD 中点,∴AM =DM ,在△ABM 和△DCM ,AM DM A D AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DCM (SAS );(2)解:当AB :AD =1:2时,四边形MENF 是正方形,理由:当四边形MENF 是正方形时,则∠EMF =90°,∵△ABM≌△DCM,∴∠AMB=∠DMC=45°,∴△ABM、△DCM为等腰直角三角形,∴AM=DM=AB,∴AD=2AB,即当AB:AD=1:2时,四边形MENF是正方形.【点睛】本题考查了正方形的判定,全等三角形的判定和性质,等腰直角三角形的性质,熟练掌握全等三角形的判定和性质定理是解题的关键.25.(1)8;(2)见解析【分析】(1)证明△ADC是等腰直角三角形,求出AD和CD,根据∠BAC的度数求出∠BAD,根据直角三角形的性质可得AB;(2)连接DE,求出DE的长,再根据三线合一的性质证明即可.【详解】解:(1)∵AD是BC边上的高线,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ACB=45°,∴△ADC是等腰直角三角形,∴AD=CD=2AC=4,∠DAC=45°,2∵∠BAC=105°,∴∠BAD=∠BAC-∠DAC=60°,∴∠ABD=30°,∴AB=2AD=8;(2)连接DE,∵CE是AB边上中线,∴E是AB中点,在Rt△ABD中,E是斜边AB中点,∴DE=1AB=4,2∵DC=4,∴DE=DC,∵DG ⊥CE ,∴CG =EG .【点睛】本题考查了直角三角形斜边中线的性质,30度的直角三角形的性质,等腰三角形三线合一的性质,属于基本定理,解题的关键是利用好“中点”这样的条件.26.(1)见解析;(2)6【分析】(1)证明AF EC =,利用一组对边平行且相等证明平行四边形;(2)根据菱形的性质得到10AE CE ==,再用勾股定理求出BE 的长.【详解】解:(1)∵四边形ABCD 是矩形,∴AD BC =,//AD BC ,∵BE DF =,∴AD DF BC BE -=-,即AF EC =,∵//AF EC ,∴四边形AECF 是平行四边形;(2)∵四边形AECF 是菱形,∴10AE CE ==,在Rt ABE △中,6BE ===. 【点睛】本题考查平行四边形的判定,矩形的性质,菱形的性质,解题的关键是掌握这些性质定理进行证明求解.。

数学九年级(上)特殊的平行四边形习题

数学九年级(上)特殊的平行四边形习题

承诺补习 金老师2013年全国各地中考数学解析汇编特殊的平行四边形(2013湖南益阳,7,4分)如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,则四边形ABCD 一定是( ) A .平行四边形 B .矩形 C .菱形 D .梯形 23.1 矩形(2013湖北襄阳,9,3分)如图4,ABCD 是正方形,G 是BC 上(除端点外)的任意一点,DE ⊥AG 于点E ,BF ∥DE ,交AG 于点F .下列结论不一定成立的是A .△AED ≌△BFAB .DE -BF =EFC .△BGF ∽△DAED .DE -BG =FG(2013山东泰安,9,3分)如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( ) A. 3 B.3.5 C.2.5 D.2.8(2013安徽,14,5分)如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).(2013江苏盐城,15,3分)如图,在四边形ABCD 中,已知AB ∥DC ,AB=DC ,在不添加任图4AD何辅助线的前提下,要想该四边形为矩形,只需加上的一个条件是 (填上你认为正确的一个答案即可).(2013湖南湘潭,20,6分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用m 25),现在已备足可以砌m 50长的墙的材料,试设计一种砌法,使矩形花园的面积为2300m .(2013浙江省绍兴,15,5分)如图,在矩形ABCD 中,点E ,F 分别在BC ,CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B`处,又将△CEF 沿EF 折叠,使点C 落在直线EB`与AD 的交点C`处.则BC ∶AB 的值为 ▲.(2013湖南湘潭,19,6分)如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知m BC 2=,m CD 4.5=,︒=∠30DCF ,请你计算车位所占的宽度EF 约为多少米?(73.13≈,结果保留两位有效数字.)EFCDA B23.2菱形(2013四川成都,9,3分)如图.在菱形ABCD 中,对角线AC ,BD 交于点O ,下列说法错.误.的是( ) A .AB ∥DC B .AC=BD C .AC ⊥BD D .OA=OC(2013山东省临沂市,17,3分)如图,CD 与BE 互相垂直平分,AD ⊥DB,∠BDE=700,则∠CAD= 0.(2013山东省聊城,19,8分)矩形ABCD 对角线相交与O ,DE//AC ,CE//BD. 求证:四边形OCED 是菱形.(2013湖北襄阳,23,7分)如图10,在梯形ABCD 中,AD ∥BC ,E 为BC 的中点,BC =2AD ,EA =ED =2,AC 与ED 相交于点F .(1)求证:梯形ABCD 是等腰梯形;(2)当AB 与AC 具有什么位置关系时,四边形AECD 是菱形?请说明理由,并求出此时菱形AECD 的面积.(2013浙江省温州市,19,8分)如图,△ABC 中,90B ∠=,AB=6cm,BC=8cm 。

北师大版数学九年级上册《特殊的平行四边形》单元测试卷(含答案)

北师大版数学九年级上册《特殊的平行四边形》单元测试卷(含答案)

《特殊的平行四边形》单元测试卷一.选择题(每小题3分,满分36分)1.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等3.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.54.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°5.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1B.C.2D.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.328.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)10.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAO,则AB的长为()A.3B.4C.D.11.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD 于点E,则AE的长是()A.4B.C.5D.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE =S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④二.填空题(每小题3分,满分12分)13.如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点.若MN=4,则AC 的长为.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF 的周长是.16.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.三.解答题(17题—20题,每题7分,21题—23题,每题8分,满分52分)17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.19.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.20.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.23.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.参考答案一.选择题(共12小题)1.下列说法正确的是()A.有两边和一角分别相等的两个三角形全等B.有一组对边平行,且对角线相等的四边形是矩形C.如果一个角的补角等于它本身,那么这个角等于45°D.点到直线的距离就是该点到该直线的垂线段的长度【解答】解:A.有两边和一角分别相等的两个三角形全等;不正确;B.有一组对边平行,且对角线相等的四边形是矩形;不正确;C.如果一个角的补角等于它本身,那么这个角等于45°;不正确;D.点到直线的距离就是该点到该直线的垂线段的长度;正确;故选:D.2.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等【解答】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.3.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5【解答】解:∵四边形ABCD为菱形,∴CD=BC==5,且O为BD的中点,∵E为CD的中点,∴OE为△BCD的中位线,∴OE=CB=2.5,故选:A.4.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为()A.15°B.35°C.45°D.55°【解答】解:在正方形ABCD中,AB=AD,∠BAD=90°,在等边△ABE中,AB=AE,∠BAE=∠AEB=60°,在△AD E中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,所以,∠AED=(180°﹣150°)=15°,所以∠BED=∠AEB﹣∠AED=60°﹣15°=45°.故选:C.5.如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC 于点F,则DE的长是()A.1B.C.2D.【解答】解:连接CE,如图所示:∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=8﹣x,在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即DE=;故选:B.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.7.一个菱形的边长为6,面积为28,则该菱形的两条对角线的长度之和为()A.8B.12C.16D.32【解答】解:如图所示:∵四边形ABCD是菱形,∴AO=CO=AC,DO=BO=BD,AC⊥BD,∵面积为28,∴AC•BD=2OD•AO=28①∵菱形的边长为6,∴OD2+OA2=36②,由①②两式可得:(OD+AO)2=OD2+OA2+2OD•AO=36+28=64.∴OD+AO=8,∴2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.故选:C.8.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.【解答】解:如图,设BC=x,则CE=1﹣x易证△ABC∽△FEC∴===解得x==××1=∴阴影部分面积为:S△ABC故选:A.9.如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,)B.(,2)C.(,3)D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO﹣AF=4﹣1=3,∴.故选:D.10.如图,在矩形ABCD中,AD=6,对角线AC与BD交于点O,AE⊥BD,垂足为点E,且AE 平分∠BAO,则AB的长为()A.3B.4C.D.【解答】解:∵四边形ABCD是矩形∴AO=CO=BO=DO,∵AE平分∠BAO∴∠B AE=∠EAO,且AE=AE,∠AEB=∠AEO,∴△ABE≌△AOE(ASA)∴AO=AB,且AO=OB∴AO=AB=BO=DO,∴BD=2AB,∵AD2+AB2=BD2,∴36+AB2=4AB2,∴AB=2故选:C.11.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD于点E,则AE的长是()A.4B.C.5D.【解答】解:∵四边形ABCD是菱形,∴AO=AC,OB=BD,AC⊥BD,∵AC:BD=3:4,∴AO:OB=3:4,设AO=3x,OB=4x,则AB=5x,∵AB=5,∴5x=5,x=1,∴AC=6,BD=8,S菱形ABCD=,∴,AE=,故选:B.12.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE =S△CEF.其中正确的是()A.①③B.②④C.①③④D.②③④【解答】解:①四边形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE =AF ,∴AC 垂直平分EF .(故①正确).②设BC =a ,CE =y ,∴BE +DF =2(a ﹣y )EF =,∴BE +DF 与EF 关系不确定,只有当y =()a 时成立,(故②错误).③当∠DAF =15°时,∵Rt△ABE ≌Rt△ADF ,∴∠DAF =∠BAE =15°,∴∠EAF =90°﹣2×15°=60°,又∵AE =AF∴△AEF 为等边三角形.(故③正确).④当∠EAF =60°时,设EC =x ,BE =y ,由勾股定理就可以得出:∴x 2=2y (x +y )∵S △CEF =x 2,S △ABE =,∴S △ABE =S △CEF .(故④正确).综上所述,正确的有①③④,故选:C .二.填空题(共4小题)13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN =4,则AC 的长为16.【解答】解:∵M 、N 分别为BC 、OC 的中点,∴BO =2MN =8.∵四边形ABCD 是矩形,∴AC=BD=2BO=16.故答案为16.14.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为24.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,BO=DO,∵点E是BC的中点,∴OE是△BCD的中位线,∴CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.16.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【解答】解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴PA==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).三.解答题(共7小题)17.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【解答】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.18.如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD=BC,AD∥BC,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL);(2)解:当AC⊥EF时,四边形AECF是菱形,理由如下:∵△ABE≌△CDF,∴BE=DF,∵BC=AD,∴CE=AF,∵CE∥AF,∴四边形AECF是平行四边形,又∵AC⊥EF,∴四边形AECF是菱形.19.如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM=CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.【解答】(1)证明∵四边形ABCD是矩形,∴AB∥CD,∴∠MAB=∠NCD.在△ABM和△CDN中,,∴△ABM≌△CDN(SAS);(2)解:如图,连接EF,交AC于点O.在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),∴EO=FO,AO=CO,∴O为EF、AC中点.∵∠EGF=90°,OG=EF=,∴AG=OA﹣OG=1或AG=OA+OG=4,∴AG的长为1或4.20.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB、CD边于点E、F.(1)求证:四边形DEBF是平行四边形;(2)当DE=DF时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,又因为∠DOF=∠BOE,OD=OB,∴△DOF≌△BOE(ASA),∴DF=BE,又因为DF∥BE,∴四边形BEDF是平行四边形;(2)解:∵DE=DF,四边形BEDF是平行四边形∴四边形BEDF是菱形,∴DE=BE,EF⊥BD,OE=OF,设AE=x,则DE=BE=8﹣x在Rt△ADE中,根据勾股定理,有AE2+AD2=DE2∴x2+62=(8﹣x)2,解之得:x=,∴DE=8﹣=,在Rt△ABD中,根据勾股定理,有AB2+AD2=BD2∴BD=,∴OD=BD=5,在Rt△DOE中,根据勾股定理,有DE2﹣OD2=OE2,∴OE=,∴EF=2OE=.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.【解答】解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.23.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴Rt△AFH中,BF=AH=AB.。

第一章《特殊的平行四边形》测试卷2022-2023学年北师大版九年级数学上册2

第一章《特殊的平行四边形》测试卷2022-2023学年北师大版九年级数学上册2

第一章《特殊的平行四边形》测试卷满分:150分时间:120分钟一、选择题(本大题共6小题,每小题3分,共18分)1.如图,矩形ABCD中,对角线AC,BD相交于点O,若∠0AD=40°,则∠COD=()A.20°B.40°C.80°D.100°第1题图第3题图第4题图2.菱形、矩形、正方形都具有的性质是()A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等3.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是CD中点,连接OE,则下列结论中不一定正确的是()ABA.AB=ADB.OE=12C.∠DOE=∠DEOD.∠EOD=∠EDO4.如图,一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c.则正确的是( )A.仅①B.仅③C.①②D.②③5.如图,正方形ABCD的面积为2,菱形AECF的面积为1,则E、F两点间的距离为()D.√2A.1B.2C.√22第5题图第6题图第8题图6.如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种二、填空题(本大题共6小题,每小题3分,共18分)7.直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为.8.如图,菱形ABCD的顶点C在直线MN上,若∠1=50°,∠2=20°,则∠BDC 的度数为.9.如图,矩形ABCD中,对角线AC、BD交于点O,E为OB的中点,且AELBD,BD=4,则CD=.第9题图第10题图第11题图10.如图,已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为11.有两个全等矩形纸条,长与宽分别为8和6,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为12.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为.三、(本大题共5小题,每小题6分,共30分)13.在平行四边形ABCD中,∠BAD的平分线交CD于点E.交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形.14.如图,在正方形ABCD内有一点P,满足PB=PC,连接AP,PD.求证:△APB ≌△DPC.15.如图,在菱形ABCD中,DELAB于点E,DFLBC于点F,求证:DE=DF.某同学的证明过程如下:证明:∵四边形ABCD是菱形,∴∠A=∠C,AD=DC(根据1).在△ADE和△CDF中,AD=DC,∠A=∠C,∠AED=∠CFD=90°,∴△ADE≌ACDF(根据2)∴DE=DF.(1)以上证明过程中的根据1是指,根据2是指;(2)请你写出该题的另外一种证法.16.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,连接CD,过点D作DE⊥BC于E,过A作AF⊥ED的延长线于F.(1)若∠B=25°,求∠ADC的度数;(2)若AF=2DF,求证:四边形ACEF是正方形.17.请仅用无刻度的直尺,分别按下列要求完成画图:(1)如图①,在菱形ABCD中,E,F分别是AB,BC上的中点,以EF为边画一个矩形;(2)图②是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形.四、(本大题共3小题,每小题8分,共24分)18.如图,矩形ABCD中,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F,DE=DF.(1)求证:四边形DEBF是菱形;(2)若BE=5,BD=8,求菱形DEBF的面积.19.如图,菱形ABCD中,点E,O,F分别是边AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)猜测:当AB与BC满足条件时,四边形AEOF是正方形,请说明理由.20.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处,若点D的坐标为(10,8).(1)求CE的长;(2)写出点E的坐标.五、(本大题共2小题,每小题9分,共18分)21.如图,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,且CE=CF.(1)求证:△BCE≌△DCF;(2)问BE与DF有什么关系?请说明理由22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN//BC.设MN交∠ACB的平分线于点E,交△ABC的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由;(3)当点O在边AC上运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?六、(本大题共12分)23. 在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.(1)【观察猜想】如图①,当点D在线段BC上时:①BC与CF的位置关系为;②BC,CD,CF之间的数量关系为(将结论直接写在横线上)(2)【数学思考】如图②,当点D在线段CB的延长线上时,结论①②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)【拓展延伸】如图③,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若AB=2√2,CD=1,请求出GE的长.。

2020年中考数学专题 特殊平行四边形的证明与计算 复习练习(无答案)

2020年中考数学专题  特殊平行四边形的证明与计算   复习练习(无答案)

特殊平行四边形的证明与计算根据题目条件,运用特殊平行四边形的性质和判定,利用全等、折叠、勾股定理、特殊的三角形的性质等知识解决特殊平行四边形的证明和计算.1.在▱ABCD中,过点D作DE▱AB于点E,点F在边CD上,CF=AE,连接AF、BF.(1)求证:四边形BFDE是矩形;(2)若CF=6,BF=8,DF=10,求证:AF是▱DAB的平分线.2.(衢州中考)如图,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.3.(江西中考)(1)如图(1),纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE▱BC,垂足为E,沿AE剪下▱ABE,将它平移至▱DCE′的位置,拼成四边形AEE′D,则四边形AEE′D 的形状为( )A.平行四边形B.菱形C.矩形D.正方形(2)如图(2),在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下▱AEF,将它平移至▱DE′F′的位置,拼成四边形AFF′D.▱求证:四边形AFF′D是菱形;▱求四边形AFF′D的两条对角线的长.4.(北京中考)如图,在四边形ABCD中,AB▱DC,AB=AD,对角线AC、BD相交于点O,AC平分▱BAD,过点C作CE▱AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=5,BD=2,求OE的长.5.如图1,在正方形ABCD中,点E、F分别为BC、CD的中点,连接AE、BF,交点为点G. (1)求证:AE▱BF;(2)将▱BCF沿BF对折,得到▱BPF(如图2),延长FP交BA的延长线于点Q,求BP▱PQ的值.6.(宁夏中考)如图所示,正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且▱EDF =45°.将▱DAE 绕点D 逆时针旋转90°,得到▱DCM.(1)求证:EF =FM ; (2)当AE =1时,求EF 的长.7.如图,线段AB =8,射线BG▱AB ,P 为射线BG 上一点,以AP 为边作正方形APCD ,且点C 、D 与点B 在AP 两侧,在线段DP 上取一点E ,使▱EAP =▱BAP.直线CE 与线段AB 相交于点F(点F 与点A 、B 不重合).(1)求证:▱AEP▱▱CEP ;(2)判断CF 与AB 的位置关系,并说明理由;(3)求▱AEF 的周长.以菱形为背景的证明与计算1.如图,在▱ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ;再分别以点B ,F 为圆心,大于12BF 的相同长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点E ,连接EF ,则所得四边形ABEF 是菱形.根据以上尺规作图的过程,求证四边形ABEF 是菱形.2.如图3,在▱ABCD中,E为BC边上的一点,连接AE,BD,且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.3.如图4,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD.CE∥AB,连接DE交AC于F.(1)证明:四边形ADCE是菱形;(2)试判断BC与线段EF的关系,并说明理由.4.已知:如图5,在△ABC中,点D,E分别是边AB,BC的中点,点F,G是边AC的三等分点,DF,EG的延长线相交于点H.(1)求证:四边形FBGH是平行四边形;(2)如果AC平分∠BAH,求证:四边形ABCH是菱形.5.D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点.O是△ABC所在平面上的动点,连接OB,OC,G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图6,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,AE平分∠BAC,分别与BC,CD 交于点E,F,EH⊥AB于点H,连接FH.求证:四边形CFHE是菱形.7.如图8,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB 边上一动点(不与点A重合),延长ME交射线CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为________时,四边形AMDN是矩形;②当AM的值为________时,四边形AMDN是菱形.8.[2018·安顺]如图,在△ABC中,AD是BC边上的中线,E 是AD的中点,过点A作BC 的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.9.如图,将等腰三角形ABC绕顶点B逆时针方向旋转α度角到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α时,判定四边形A1BCE的形状并说明理由.以正方形为背景的证明与计算1.四边形ABCD是正方形,E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF(提示:取AB的中点G,连接EG).2.数学课上,李老师出示了问题:如图2①,四边形ABCD是正方形,点E是边BC上的点,过点E作EF⊥AE,过点F作FG⊥BC交BC的延长线于点G.(1)求证:∠BAE=∠FEG;(2)同学们很快做出了解答,之后李老师将题目修改成:如图②,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.请借助图②完成小明的证明;在(2)的基础上,同学们作了进一步的研究:(3)小聪提出:如图③,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其他条件不变,那么结论“AE=EF”仍然成立,你认为小聪的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.3.已知正方形ABCD的对角线AC,BD相交于点O.如图3,E,G分别是OB,OC上的点,CE与DG的延长线相交于点F.若DF⊥CE,求证:OE=OG.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且▱GCE=45°,则GE=BE+GD成立吗?请说明理由.5.正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE =BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过某一定点,并说明理由.6.如图7▱,在正方形ABCD的内部,作▱DAE=▱ABF=▱BCG=▱CDH,根据三角形全等的条件,易得▱DAE▱▱ABF▱▱BCG▱▱CDH,从而得到四边形EFGH是正方形.类比探究如图▱,在正三角形ABC的内部,作▱BAD=▱CBE=▱ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).(1)▱ABD,▱BCE,▱CAF是否全等?如果是,请选择其中一对进行证明;(2)▱DEF是否为正三角形?请说明理由;(3)进一步探究发现,▱ABD的三边存在一定的等量关系.如图▱,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.7.[2019·宁波期末]已知,正方形ABCD中,▱MAN=45°,▱MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH▱MN于点H.(1)如图▱,当▱MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:___________;(2)如图▱,当▱MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图▱,已知▱MAN=45°,AH▱MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)。

第一章特殊的平行四边形培优习题

第一章特殊的平行四边形培优习题

九年级上册第一章特殊的平行四边形培优习题(资料编辑:薛思优)一.选择题(共4小题)1.如图,正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.若∠BEC=80°,则∠EFD的度数为()A.20°B.25°C.35°D.40°2.如图,正方形ABCD的边长为2,E为线段AB上一点,点M为边AD的中点,EM的延长线与CD的延长线交于点F,MG⊥EF,交CD于N,交BC的延长线于G,点P是MG的中点.连接EG、FG.下列结论:①当点E为边AB的中点时,S△EFG=5;②MG=EF;③当AE=时,FG=;④若点E从点A运动到点B,则此过程中点P移动的距离为2.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个3.如图,在正方形ABCD中,四边形IJFH是正方形,面积为S1,四边形BEFG 是矩形,面积为S2,下列说法正确的是()A.S1>S2B.S1=S2C.S1<S2D.2S1=3S24.如图,将矩形ABCD分成15个大小相等的正方形,E、F、G、H分别在AD、AB、BC、CD边上,且是某个小正方形的顶点,若四边形EFGH的面积为1,则矩形ABCD的面积为()A.2 B.C.D.二.填空题(共8小题)5.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为.6.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.7.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过点C作CE⊥BE于E,延长AF、EC交于点H,那么下列结论:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.其中正确结论的序号是(多填或错填的得0分,少填的酌情给分)8.以边长为2的正方形的中心O为端点,引两条相互垂直的射线,分别与正方形的边交于A、B两点,则线段AB的最小值.9.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.10.如图,在平面直角坐标系中,菱形OABC的顶点B的坐标为(8,4),则C 点的坐标为.11.如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO度.12.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.13.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.三.解答题(共25小题)14.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点.(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.15.如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.16.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE、BE,求证:四边形AEBD是矩形.17.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.18.已知:如图,在矩形ABCD中,AC是对角线.点P为矩形外一点且满足AP=PC,AP⊥PC.PC交AD于点N,连接DP,过点P作PM⊥PD交AD于M.(1)若AP=,AB=BC,求矩形ABCD的面积;(2)若CD=PM,求证:AC=AP+PN.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)若ED:DC=1:2,EF=12,试求DG的长.(2)观察猜想BE与DG之间的关系,并证明你的结论.21.如图,四边形ABCD和四边形AEFG均为正方形,连接BG与DE相交于点H.证明:△ABG≌△ADE.22.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.23.已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB 有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)。

九年级数学(上)第一章特殊平行四边形考试卷

九年级数学(上)第一章特殊平行四边形考试卷

(第5题) DB E CA 特殊平行四边形考试卷姓名: 评分:一、选择题(每小题3分,共30分)1。

平行四边形两个邻角的角平分线所成的角是( )A 。

锐角B 。

直角C 。

钝角 D. 不能确定2.下列命题是真命题的是( )A.对角线互相垂直且相等的四边形是正方形B 。

有两边和一角对应相等的两个三角形全等C.两条对角线相等的平行四边形是矩形D 。

两边相等的平行四边形是菱形3.如图,在正方形ABCD 的外侧作等边△ADE ,则∠AEB 的度数为( )A 。

︒10B 。

︒5.12 C.︒15 D.︒204。

如图,把一长方形纸片沿MN 折叠后,点D 、C 分别落在C D ''、的位置,若︒='∠36D AM ,则D NF '∠等于( )A 。

︒144 B.︒126 C 。

︒108 D.︒725。

如图,ABCD 中,∠C =108°,BE 平分∠ABC ,则∠AEB 等于( )A. 18°B. 36° C 。

72° D 。

1086。

在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB=5,AC=6,过点D作AC 的平行线交BC 的延长线于点E,则△BDE 的面积为( )A 、22B 、24C 、48D 、447。

在菱形ABCD 中,∠ABC =60°,AC =4,则BD的长为( ) A 。

38 B. 34 C 。

32 D. 88.正方形具有而菱形不一定具有的性质( )A.四条边相等B. 对角线互相垂直平分C. 对角线平分一组对角 D 。

对角线相等9.如图,梯形ABCD 中,AD∥BC,AD=3,AB=5,BC=9,CD 的垂直平分线交BC 于E ,连接DE ,则四边形ABED 的周长等于( )A . 17B . 18C . 19D . 2010.如图,边长为(m+3)的正方形纸片,剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m+3B .m+6C .2m+3D .2m+6(第9题) (第10题)二、填空题(每小题4分,共20分)11.如图,菱形ABCD 中,60A ∠=,对角线8BD =,则菱形ABCD 的周长等于 .12.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距16cm AB BC ==,则1=∠ 度.(第11题) (第12题) (第13题)13.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α= 度。

初三特殊平行四边形练习题

初三特殊平行四边形练习题

初三特殊平行四边形练习题题一:已知平行四边形ABCD,AB=10cm,BC=8cm,BD垂直于BC,求BD的长度。

解:由于ABCD为平行四边形,所以AB ∥ CD 且 AD ∥ BC。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,BD = AC = AB = 10cm。

答案:BD的长度为10cm。

题二:已知平行四边形EFGH,EH=12cm,HF=6cm,EF垂直于HF,求EF的长度。

解:由于EFGH为平行四边形,所以EF ∥ GH 且 EG ∥ FH。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,EF = GH = HF = 6cm。

答案:EF的长度为6cm。

题三:在平行四边形IJKL中,LJ=12cm,IK=16cm,LK垂直于LJ,求LK的长度。

解:由于IJKL为平行四边形,所以IJ ∥ LK 且 IL ∥ KJ。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,LK = IJ = LK = 12cm。

答案:LK的长度为12cm。

题四:在平行四边形MNOP中,MN=8cm,NO=6cm,MP垂直于MN,求MP的长度。

解:由于MNOP为平行四边形,所以MN ∥ OP 且 MP ∥ NO。

根据垂直平行四边形定理可知,垂直于平行边的连线所对应的边长相等。

因此,MP = NO = 6cm。

答案:MP的长度为6cm。

题五:已知平行四边形QRST,QT=14cm,RS=10cm,符合B呼W=QW,求QW的长度。

解:在平行四边形QRST中,根据B呼W=QW的性质可知,比例相等的边与对角线共线。

因此,BW ∥ TR 且 BQ ∥ ST。

与TR平行的边的长度为QS。

根据比例B呼W = QW,可以得到QS/QW = TR/BW= QT/QS。

解方程得到QS^2= QW^2,即QS = QW。

由QS = QT - TS 可知,QS = 14cm - 10cm = 4cm。

九年级上册数学特殊的四边形试题

九年级上册数学特殊的四边形试题

AGEBCF D 特殊的四边形试题1.如图,四边形ABCD 是菱形,点G 是BC 延长线上一点,连接AG ,分别交BD 、CD 于点E 、F ,连接CE .(1)求证:∠DAE =∠DCE ;(2)当AE =2EF 时,判断FG 与EF 有何等量关系并证明你的结论2.如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上, CE ∥BF ,连接BE 、CF .(1)求证:△BDF≌△CDE;(2)若AB=AC ,求证:四边形BFCE 是菱形. 3.(10分)如图,在□ABCD 中,E 、F 分别是边AB 、CD的中点,AG ∥BD 交CB 的延长线于点G . (1)求证:△ADE ∽≌△CBF ;(2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?请说明你的理由.4.已知:如图14,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC , EG ⊥CD ,垂足分别是F 、G 。

求证:AE = FG .5.如图11,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC , 则∠B = °.6.如图,矩形ABCD 中,AB=1,E 、F 分别为AD 、CD 的中点,沿BE 将△ABE 折叠,若点A 恰好落在BF 上,则AD= .7.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B′处.当△CEB′为直角三角形时,BE 的长为 .8.探究:如图①, 在四边形ABCD 中,∠BAD =∠BCD =90°,AB =AD ,AE ⊥CD 于点E .若AE =10,求四边形ABCD 的面积.应用:如图②,在四边形ABCD 中,∠ABC +∠ADC =180°,AB =AD ,AE ⊥BC 于点E .若AE =19,BC =10,CD =6,则四边形ABCD 的面积为 .9.如图,在矩形ABCD 中,E 、F 分别是AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC 。

北师大版九年级数学上册第一章特殊平行四边形测试卷(全章)

北师大版九年级数学上册第一章特殊平行四边形测试卷(全章)

北师大版九年级数学测试卷(考试题)D CB A EF 第一章 特殊平行四边形周周测8一、选择(每题3分,共30分)1 矩形具有而平行四边形不具有的性质是( )A 对角线相等B 对边相等C 对角相等D 对角线互相平分2.下列命题正确的是( )A 有一个角是直角的四边形是矩形B 两条对角线相等的四边形是矩形C 两条对角线互相垂直的四边形是矩形D 四个角都是直角的四边形是矩形3. 如图所示,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BAF =60°,则∠DAE 等于( )A 15°B 30°C 45°D 60° 4. 在菱形ABCD 中,不一定成立的是( ) A 四边形ABCD 是平行四边形 B AC ⊥BDC △ABD 是等边三角形D ∠CAB=∠CAD5. 已知菱形的两条对角线长分别是4cm 和8cm ,则与此菱形同面积的正方形的边长是( )A. 8cm B 4cm C 22cm D 24cm6. 能判定四边形是正方形的条件是( ) A 对角线相等 B 对角线互相平分C 对角形相等且垂直D 对角线相等且互相垂直平分 7.下列命题中,不成立的是( )A 对角线互相平分的四边形是平行四边形B 对角线相等的平行四边形是矩形C 对角线互相垂直的平行四边形是菱形D 对角线互相垂直且相等的四边形是正方形8.在下列图形中,不是轴对称图形,是中心对称图形的是( ) A 矩形 B 菱形 C 平行四边形 D 正方形9.如图,在菱形ABCD 中,∠BAD =80°,AB 的垂直平分线EF 交对角线A C 于点F 、E 为垂足,连结DF ,则∠CDF 等于( ) A .80° B .70° C .65° D .60°A BD CD C B AEF EO A BCD 10. 顺次联结对角线互相垂直且相等的四边形四边的中点所得的四边形是( )A 平行四边形 B 矩形 C 菱形 D 正方形 二、填空(每空2分,共30分)11. 菱形的两条对角线的长分别是4cm 和6cm,则它的面积为_______cm 2. 12. 矩形的对角线的性质是_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊平行四边形测试题
一、
精心选一选,想信你一定能选对!(每题4分,共24分)
1.不能判定四边形ABCD 为平行四边形的题设是( ) (A )AB 平行且等于CD 。

(B )∠A=∠C ,∠B=∠D 。

(C )AB=AD ,BC=CD 。

(D )AB=CD ,AD=BC 。

2.下面性质中菱形有而矩形没有的是( )
(A )邻角互补(B )内角和为360°(C )对角线相等 (D )对角线互相垂直 3.正方形具有而菱形不一定具有的性质是( ) (A )四条边相等 (B )对角线互相垂直平分 (C )对角线平分一组对角 (D )对角线相等
4、顺次连结任意四边形四边中点所得的四边形一定是( )
A 、平行四边形
B 、矩形
C 、菱形
D 、正方形 5.如图,□ABCD 中,∠C=108°,B
E 平分∠ABC,则∠ABE 等于( ) A.18° B.36° C.72° D.108°
6.下列命题中,真命题是( )
A 、有两边相等的平行四边形是菱形
B 、对角线垂直的四边形是菱形
C 、四个角相等的菱形是正方形
D 、两条对角线相等的四边形是矩形 二、细心填一填,相信你填得又快又准!(每题4分,共24分) 7、□ABCD 中,∠A =50°,则∠B =__________,∠C =__________。

8.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm .
9、菱形ABCD 的周长为36,其相邻两内角的度数比为1:5,则 此菱形的面积为_________。

10、对角线长为22的正方形的周长为___________,面积为__________。

11.如图,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP
E
D
C
B A
的面积S 1与矩形QCNK 的面积S 2的关系是
S 1 S 2(填“>”或“<”或“=” )
A
F
E
D C
B
第11题图 第12题图
12.如图,在矩形ABCD 中,点E 、F 分别在AB 、DC 上,BF ∥DE ,若AD=12cm ,AB=7cm ,•且AE :EB=5:2,则阴影部分的面积为_______cm
三、用心做一做,培养你的综合运用能力,相信你是最棒的 13、(本题8分)已知:如图 中,AD 是 的角平分线,
DE ∥AC ,DF ∥AB 。

求证:四边形AEDF 是菱形。

14.(8分)已知:如图,E 、F 是平行四边形ABCD•的对角线AC•上的两点,AE=CF .
求证:(1)△ADF ≌△CBE ;(2)EB ∥DF .
K
N
M
Q
C
B
15.(8分)已知菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,求∠ABD的度数。

A D
O
B C
16.(2006中山中考题9分)如图,在□ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.
(1)求证:四边形AFCE是平行四边形.
(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗?若成立,请写出证明过程;
若不成立,请说明理由.
17.(9分)E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,•垂足分别是F、G,求证:AE=FG.
A P
G
F E
D C
B
18.(10分)如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。

相关文档
最新文档