南昌大学数字钟实验报告

合集下载

南昌大学实验报告

南昌大学实验报告

学号:6100208248 专业班级:通信082班实验日期:2010/11/11实验成绩:实验四数字钟设计一、实验目的1.设计一个数字钟2.掌握动态扫描数码管的工作原理和相关的VHDL程序的编写方法3.掌握分模块设计的方法二、实验内容与要求1.在实验箱上实现动态扫描数码管显示时分秒;2.可以预置为12小时计时显示和24小时计时显示;3.一个调节键,用于调节目标数位的数字。

对调节的内容敏感,如调节分钟或秒时,保持按下时自动计数,否则以脉冲计数;4.一个功能键,用于切换不同的状态;计时、调时、调分、调秒、调小时制式;三、设计思路时、分、秒计数模块可以用计数器实现,时计数分为模12/24进制计数器,分和秒为模60计数器,显示模块用动态扫描数码管实现。

数字钟总的设计框图:图1:数字钟设计框图四、实验程序(程序来源:根据网络上的修改)1.控制模块:控制模块分散在各计数模块的控制引脚2.秒计数模块①VHDL程序:ENTITY SECOND ISPORT ( CLK : IN STD_LOGIC;RESET : IN STD_LOGIC;SETMIN : IN STD_LOGIC;ENMIN : OUT STD_LOGIC;DAOUT : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)); END ENTITY SECOND;ARCHITECTURE ART OF SECOND ISSIGNAL COUNT : STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL ENMIN_1,ENMIN_2 : STD_LOGIC;BEGINDAOUT<=COUNT;ENMIN_2<=(SETMIN AND CLK);ENMIN<=(ENMIN_1 OR ENMIN_2);PROCESS(CLK,RESET,SETMIN)BEGINIF(RESET='0')THENCOUNT<="00000000";ENMIN_1<='0';ELSIF(CLK'EVENT AND CLK='1')THENIF(COUNT(3 DOWNTO 0)="1001")THENIF(COUNT<16#60#)THENIF(COUNT="01011001")THENENMIN_1<='1';COUNT<="00000000";ELSECOUNT<=COUNT + 7;END IF;ELSECOUNT<="00000000";END IF;ELSIF(COUNT<16#60#)THENCOUNT<=COUNT + 1;ENMIN_1<='0';ELSECOUNT<="00000000";ENMIN_1<='0'; END IF;END IF;END PROCESS;END ART;②封装后的秒计数模块:图2:秒计数模块3.分计数模块①VHDL 程序(与秒计数程序基本相同,略) ②封装后的分计数模块:图3:分计数模块4.时计数模块①VHDL 程序(分为12进制和24进制,与秒计数基本相同,略)②封装后的时计数模块:图4:时计数模块(12进制、24进制、2选1数据选择器)5.显示模块 ①VHDL 程序ENTITY SETTIME ISPORT ( CLK1 : IN STD_LOGIC; RESET : IN STD_LOGIC;SEC,MIN : IN STD_LOGIC_VECTOR(7 DOWNTO 0); HOUR : IN STD_LOGIC_VECTOR(7 DOWNTO 0); DAOUT : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); SEL : OUT STD_LOGIC_VECTOR(2 DOWNTO 0)); END SETTIME;ARCHITECTURE ART OF SETTIME ISSIGNAL COUNT : STD_LOGIC_VECTOR(2 DOWNTO 0); BEGINPROCESS(CLK1,RESET) BEGINIF(RESET='0')THENCOUNT<="000";ELSIF(CLK1'EVENT AND CLK1='1')THENIF(COUNT>="101")THENCOUNT<="000";ELSECOUNT<=COUNT + 1;END IF;END IF;END PROCESS;PROCESS(CLK1,RESET)BEGINIF(RESET='0')THENDAOUT<="0000";SEL<="111";ELSIF(CLK1'EVENT AND CLK1='1')THENCASE COUNT ISWHEN"000"=>DAOUT<=SEC(3 DOWNTO 0);SEL<="000";--秒低位 WHEN"001"=>DAOUT<=SEC(7 DOWNTO 4);SEL<="001";--秒高位 WHEN"010"=>DAOUT<=MIN(3 DOWNTO 0);SEL<="010";--分低位 WHEN"011"=>DAOUT<=MIN(7 DOWNTO 4);SEL<="011";--分高位 WHEN"100"=>DAOUT<=HOUR(3 DOWNTO 0);SEL<="100";--时低位 WHEN"101"=>DAOUT<=HOUR(7 DOWNTO 4);SEL<="101";--时高位 WHEN OTHERS=>DAOUT<="0000";SEL<="111";END CASE;END IF;END PROCESS;END ART;②封装后的动态扫描数码管显示模块图5:显示模块6.顶层文件五、实验步骤①.新建工程。

数字钟实验报告_4

数字钟实验报告_4

华中科技大学《电子线路设计、测试与实验》实验报告实验名称: 多功能数字钟设计院(系): 自动化学院专业班级:实验成绩:****: ***2014 年6 月11 日一、实验目的1.掌握可编程逻辑器件的应用开发技术, 设计输入、编译、仿真和器件编程;2.熟悉EDA软件使用;3.掌握Verilog HDL设计方法;4.分模块、分层次数字系统设计二、实验器材QUARTUS II软件PC DEO实验板三、实验要求1.能显示小时、分钟、秒钟(小时以24进制,时、分用显示器, 秒用LED)2.能调整小时、分钟的时间3.复位四、实验原理五、程序设计过程数字钟由2个60进制计数器和1个24进制计数器和4个译码器共7个模块构成,3个计数器公用一个时钟信号CP。

2个选择器分别用于选择分计数器和时计数器的使能控制信号,对时间进行校正时,在控制器的作用下,使能信号接高电平,此时每来一个时钟信号,计数器加一计数,从而实现对小时和分钟的校正.正常计时时,使能信号来自低位计数器的输出,即秒计数器达到59秒时,产生输出信号使分计数器加1,分秒计数器同时计到最大值时即59分59秒时,产生输出信号使小时计数器加一。

1.顶层模块:module clock (led0, led1, led2, led3, led_sec, _50mhzin, adjminkey, adjhrkey, ncr, h12, hour12);input _50mhzin;input adjminkey, adjhrkey;input h12;input ncr;output [6:0]led0, led1, led2, led3;wire [7:0] led_a, led_b;wire _1hz, _1khz, _5hz;wire [7:0] hour, minute, second, set_hr, set_min;output hour12;wire h12;output [7:0]led_sec;assign hour12 = h12;divided_frequency u0(_1hz,ncr,_50mhzin);top_clock u1(hour, minute, second, _1hz, ncr, adjminkey, adjhrkey, _50mhzin);display u2(_50mhzin, _5hz, ncr, led_a, led_b, led_sec, hour, minute, second,h12);SEG7_LUT u3(led_a[7:4], led3);SEG7_LUT u4(led_a[3:0], led2);SEG7_LUT u5(led_b[7:4], led1);SEG7_LUT u6(led_b[3:0], led0);endmodule2.分频模块:module divided_frequency(_1hzout,ncr,_50mhzin);input _50mhzin, ncr;output _1hzout;supply1 vdd;wire[11:0] q;wire _1khzin;wire en1, en2;divfreq50M_1Khz du00(_1khzin, ncr, _50mhzin);//先调用1khz分频counter10 du0(q[3:0], ncr, vdd, _1khzin);counter10 du1(q[7:4], ncr, en1, _1khzin);counter10 du2(q[11:8], ncr, en2, _1khzin);//再调用三个10计数器,将1khz分为1hzassign en1=(q[3:0] == 4'h9);assign en2=(q[7:4] == 4'h9) && (q[3:0] == 4'h9);assign _1hzout = q[11];assign _500hzout = q[0];endmodule3.时钟运行模块module top_clock(hour, minute, second, _1hz, ncr, adjminkey, adjhrkey, _50mhzin);input _1hz, _50mhzin, ncr, adjminkey, adjhrkey;output [7:0] hour, minute, second;wire [7:0] hour, minute, second;//时、分、秒每个用八位二进制表示两位BCD 码supply1 vdd; //高电平, 是使能一直打开wire mincp, hrcp, _5hz;//_5hz用于快速校时divfreq50M_5hz ut0(_5hz, ncr, _50mhzin);counter60 ut1(second, ncr, vdd, _1hz);counter60 ut2(minute, ncr, vdd, ~mincp);//秒和分使用60进制counter24 ut3(hour[7:4], hour[3:0], ncr, vdd, ~hrcp);//时钟为24进制(默认)assign mincp = adjminkey ? _5hz : (second==8'h59);assign hrcp = adjhrkey? _5hz : ({minute,second}==16'h5959);//进位或校时使能控制endmodule4.显示模块:module display(_50mhz,_5hz,cr,led_a,led_b,led_sec,hour,minute,second,h12);input [7:0]hour,minute,second;//时分秒input _50mhz,cr,_5hz;output [7:0]led_a,led_b,led_sec;//数码管显示缓存input h12;//12,24小时制切换reg [7:0]led_a,led_b,led_sec;reg [2:0]mod;//模式变量always@(posedge _50mhz)beginled_b=minute;led_sec=second;//模式0,显示时分秒if(~h12)beginled_a=hour;led_b=minute;led_sec=second;endelsebegincase(hour)8'h13,8'h14,8'h15,8'h16,8'h17,8'h18,8'h19,8'h22,8'h23,8'h24:led_a=hour-8'h12;8'h20:led_a=8'h08;8'h21:led_a=8'h09;default:led_a=hour;endcaseend//12/24小时切换,24到12,相应BCD码减endendmodule5.数码管操作模块module SEG7_LUT (iDIG,oSEG);input [3:0] iDIG;output [6:0] oSEG;reg [6:0] oSEG;always @(iDIG)begincase(iDIG)4'h1: oSEG = 7'b1111001; // ---t----4'h2: oSEG = 7'b0100100; // | |4'h3: oSEG = 7'b0110000; // lt rt4'h4: oSEG = 7'b0011001; // | |4'h5: oSEG = 7'b0010010; // ---m----4'h6: oSEG = 7'b0000010; // | |4'h7: oSEG = 7'b1111000; // lb rb4'h8: oSEG = 7'b0000000; // | |4'h9: oSEG = 7'b0010000; // ---b----4'ha: oSEG = 7'b0001000;4'hb: oSEG = 7'b0000011;4'hc: oSEG = 7'b1000110;4'hd: oSEG = 7'b0100001;4'he: oSEG = 7'b0000110;4'hf: oSEG = 7'b0001110;4'h0: oSEG = 7'b1000000;endcaseendendmodule六、功能仿真1.六进制2.十进制3.六十进制(分了几张图截图)4.24进制5.异步清零仿真6.正常计时仿真秒计时●分计时●小时计时23:59:59秒返07 手动校小时和分钟仿真ADJHrKey 与AdjMinKey均为高电平有效,七、思考题1.什么是分层次的电路设计方法?叙述分层次设计电路的基本过程.答: 在电路设计中,可以将两个或者多个模块组合起来描述电路逻辑功能,通常称为分层次的电路设计.自顶而下和自底而上是两种常用的设计方法.在自顶而下的设计中,先定义顶层模块,然后再定义顶层模块中用到的子模块.而在自底而上的设计中,底层的各个子模块首先被确定下来,然后将这些子模块组合起来构成顶层模块.2.在用MAX+PLUS II 软件设计数字钟电路时,简述对60进制计数器进行仿真分析的大致过程.若仿真时栅格的大小(GRID SIZE)为0.5ms,设置CP信号时倍率(Multiplied By)为软件默认值1,那么仿真文件的时间至少需要多长才能完整反映计数过程?答: 至少要0.5ms * 60 = 30ms八、试验中遇到的问题与解决办法这次实验主要是Verilog代码的编写和仿真, 在波形的仿真过程中, 有许多操作并不清楚, 尤其是部分功能的波形仿真输出和如何手动调整时钟的波形仿真, 虽然最后有同学帮忙, 但是最后还是操作得很不熟练。

数字时钟实验报告

数字时钟实验报告

单片机数字时钟设计实训报告系别专业姓名学号摘要单片机是把中央处理器CPU,随即存取存储器RAM,只读存储器ROM,定时器/计数器以及输入/输出即I/O接口电路等主要计算机部件,集成在一块集成电路上的微机。

虽然只是一个芯片,但从组成和功能上来看,已具备微型系统的属性。

单片机的发展经历了4个阶段,其向着低功耗CMOS化,微型单片化,主流与多品种共存的方向发展。

单片机在工业自动化,仪器仪表,家用电器,信息和通讯产品及军事方面得到了广泛应用。

另外,其发展前景不错。

本次实训以设计制作数字时钟为例,来加深我们对单片机特性和功能的了解,加强我们的编程思想。

为今后从事单片机程序产品的开发,打下了良好的理论与实践基础。

理论服务于实践,将知识转化为能力,也是本次试训的另一个重要目的。

目录一、整体设计方案 (3)1. 方案设计要求 (3)2. 方案设计与论证 (3)3. 整体设计框图 (4)二、数字时钟的硬件设计 (4)1. 最小系统设计 (4)2. LED显示电路 (8)3. 键盘控制电路 (9)4. 数字时钟的原理图 (10)三、数字时钟的软件设计 (11)1. 系统软件设计流程图 (11)2. 数字时钟主程序 (14)四、调试与仿真 (18)1. 数字时钟系统PROTUES仿真 (18)2. 软件与硬件调试 (19)3. 系统性能测试与功能说明 (19)4. 出现问题及解决 (19)五、实验结论 (20)六、心得体会 (21)附录:1.原器件清单 (22)2.参考文献 (22)一、整体方案设计1. 方案设计要求设计制作一个数字时钟,要求能实现基本走时,并以数字形式显示时、分、秒;采用24小时制;能校时、校分、校秒;也可以添加其他功能.2. 方案设计与论证方案一:采用各种纯数字芯片实现数字时钟的设计。

优点:各个模块功能清晰,电路易于理解实现。

缺点:各个模块功能已定不能进行智能化调整,整体电路太庞大。

方案二:采用 FPGA模块用硬件语言实现功能。

数字时钟实习报告[1]

数字时钟实习报告[1]

目录一实验目的-------------------------------------------------------------------------------1 二实验任务及要求----------------------------------------------------------------------1 三实验设计---------------------------------------------------------------------------- --11.设计原理及思路---------------------------------------------------------------------12.单元电路设计------------------------------------------------------------------------2(1)振荡电路-----------------------------------------------------------------------------2(2)计数电路----------------------------------------------------------------------------4(3)译码及显示电路----------------------------------------------------------------- ---7(4)校时电路----------------------------------------------------------------------------9(5)电源适配器电路----------------------------------------------------------------- --9 四电路原理图、PCB图---------------------------------------------------------10 五元器件清单-------------------------------------------------------------------12 六电路制板及焊接---------------------------------------------------------------------13七实物调试----------------------------------------------------------------------14 八实验自我评估及体会--------------------------------------------------------15 九小组成员分工安排-----------------------------------------------------------15一实验目的1.在了解数字钟的原理的前提下,运用刚刚学过的数电知识设计并制作数字钟,而且通过数字钟的制作进一步了解各种在制作中用到的中小规模集成电路的作用及其使用方法。

数字钟实验报告5篇范文

数字钟实验报告5篇范文

数字钟实验报告5篇范文第一篇:数字钟实验报告数字钟实验报告班级:电气信息i类112班实验时间:实验地点:指导老师:目录一、实验目的-----------------3二、实验任务及要求--------3三、实验设计内容-----------3(一)、设计原理及思路3(二)、数字钟电路的设计--------------------------4(1)电路组成---------4(2)方案分析---------10(3)元器件清单------11四、电路制版与焊接---------11五、电路调试------------------12六、实验总结及心得体会---13七、组员分工安排------------19一、实验目的:1.学习了解数码管,译码器,及一些中规模器件的逻辑功能和使用方法。

2.学习和掌握数字钟的设计方法及工作原理。

熟悉集成电路的引脚安排,掌握各芯片的逻辑功能及使用方法了解面包板结构及其接线方法。

3.了解pcb板的制作流程及提高自己的动手能力。

4.学习使用protel软件进行电子电路的原理图设计、印制电路板设计。

5.初步学习手工焊接的方法以及电路的调试等。

使学生在学完了《数字电路》课程的基本理论,基本知识后,能够综合运用所学理论知识、拓宽知识面,系统地进行电子电路的工程实践训练,学会检查电路的故障与排除故障的一般方法锻炼动手能力,培养工程师的基本技能,提高分析问题和解决问题的能力。

二、实验任务及要求1.设计一个二十四小时制的数字钟,时、分、秒分别由二十四进制、六十进制、六十进制计数器来完成计时功能。

2.能够准确校时,可以分别对时、分进行单独校时,使其到达标准时间。

3.能够准确计时,以数字形式显示时、分,发光二极管显示秒。

4.根据经济原则选择元器件及参数;5..小组进行电路焊接、调试、测试电路性能,撰写整理设计说明书。

三、实验设计内容1、设计原理及思路 3.1数字钟的构成数字钟一般由振荡器、分频器、计数器、译码器、显示器、较时电路、报时电路等部分组成,这些都是数字电路中应用最广的基本电路3.2原理分析数字钟实际上是一个对标准频率(1hz)进行计数的计数电路。

【项目】数字钟实训报告

【项目】数字钟实训报告

【关键字】项目实验项目数字钟设计与制作一、设计指标1. 显示时、分、秒。

2. 可以24小时制或12小时制。

3. 具有校时功能,可以对小时和分单独校时,对分校时的时候,停止分向小时进位。

校时时钟源可以手动输入或借用电路中的时钟。

4. 具有正点报时功能,正点前10秒开始,蜂鸣器1秒响1秒停地响5次。

(选做)5. 为了保证计时准确、稳定,由晶体振荡器提供标准时间的基准信号。

二、设计方案数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ 时间信号必须做到准确稳定。

通常使用石英晶体振荡器电路构成数字钟。

数字钟组成框图如图所示。

1.晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。

不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。

一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。

如图(b)所示,由CMOS非门U1与晶体、电容和电阻构成晶体振荡器电路,U2实现整形功能,将振荡器输出的近似于正弦波的波形转换为较理想的方波。

输出反应电阻R1为非门提供偏置,使电路工作于放大区域,即非门的功能近似于一个高增益的反相放大器。

电容C1、C2与晶体构成一个谐振型网络,完成对振荡频率的控制功能,同时提供了一个180度相移,从而和非门构成一个正反应网络,实现了振荡器的功能。

由于晶体具有较高的频率稳定性及准确性,从而保证了输出频率的稳定和准确。

CMOS 晶体振荡器2.时间记数电路一般采用10进制计数器如74HC290、74HC390等来实现时间计数单元的计数功能。

本次设计中选择74HC390。

由其内部逻辑框图可知,其为双2-5-10异步计数器,并每一计数器均有一个异步清零端(高电平有效)。

数字时钟设计实验报告

数字时钟设计实验报告

电子课程设计题目:数字时钟数字时钟设计实验报告一、设计要求:设计一个24小时制的数字时钟。

要求:计时、显示精度到秒;有校时功能。

采用中小规模集成电路设计。

发挥:增加闹钟功能。

二、设计方案:由秒时钟信号发生器、计时电路和校时电路构成电路。

秒时钟信号发生器可由振荡器和分频器构成。

计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。

校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。

三、电路框图:时计数分计数秒计数图一数字时钟电路框图四、电路原理图:(一)秒脉冲信号发生器秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。

由振荡器与分频器组合产生秒脉冲信号。

振荡器: 通常用555定时器与RC构成的多谐振荡器,经过调整输出1000Hz脉冲。

分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能扩展电路所需要的信号,选用三片74LS290进行级联,因为每片为1/10分频器,三片级联好获得1Hz标准秒脉冲。

其电路图如下:图二秒脉冲信号发生器(二)秒、分、时计时器电路设计秒、分计数器为60进制计数器,小时计数器为24进制计数器。

60进制——秒计数器秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。

当计数到59时清零并重新开始计数。

秒的个位部分的设计:利用十进制计数器CD40110设计10进制计数器显示秒的个位。

个位计数器由0增加到9时产生进位,连在十位部计数器脉冲输入端CP,从而实现10进制计数和进位功能。

利用74LS161和74LS11设计6进制计数器显示秒的十位,当十位计数器由0增加到5时利用74LS11与门产生一个高电平接到个位、十位的CD40110的清零端,同时产生一个脉冲给分的个位。

其电路图如下:图三 60进制--秒计数电路60进制——分计数电路分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。

【VIP专享】数字钟实验报告

【VIP专享】数字钟实验报告

姓名:段博学号:6100212256 班级:电气信息I类126南昌大学实验报告数字钟综合设计与仿真一.实验目的1.了解数字钟的组成及工作原理;2.熟练掌握组合逻辑电路以及时序电路的使用;3.熟悉掌握555定时器和计数器,并利用其设计构成多谐振荡和分频电路4.进一步熟悉并掌握Protel软件的使用二.实验任务及要求设计一个24小时制的数字钟,即能从00:00:00到23:59:59,能显示时、分、秒,并且具有校正功能,并要求用Multisim仿真软件进行仿真,用DXP软件制出PCB板三.设计思路数字钟实际上是一个对标准频率(1Hz)进行计数的计数电路。

振荡器产生的时钟信号经过分频器形成秒脉冲信号,秒脉冲信号输入计数器进行计数,并把累计结果以“时”、“分”、“秒”的数字显示出来。

秒计数器电路计满60后触发分计数器电路,分计数器电路计满60后触发时计数器电路,当计满24小时后又开始下一轮的循环计数。

一般由振荡器、计数器、译码器、数码显示器等几部分组成。

振荡电路:主要用来产生时间标准信号,因为时钟的精度主要取决于时间标准信号的频率及稳定度,所以采用555振荡器来产生1HZ的信号脉冲时间计数电路:有了“秒”信号,则可以根据60秒为1分,24小时为1天的进制,分别设定“时”、“分”、“秒”的计数器,分别为60进制、60进制、24进制计数器,并输出一分,一小时,一天的进位信号。

译码显示电路:将“时”、“分”、“秒”显示出来。

将计数器输入状态,输入到译码器,产生驱动数码显示器信号,呈现出对应的进位数字字型。

校时及复位功能:由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路可以对分和时进行校时。

四.实验内容及设计步骤1.555构成的多谐振荡电路,如图:由于f=1/(0.7*(R1+2R2)C1)≈1Hz,故输出端out输出的信号频率为1Hz,满足实验要求2.时间计数电路①由于秒位和分位均为模60计数,故计数电路相同,相应计数电路如下图所示:个位和十位军采用74LS161四位—二进制计数器通过反馈置数法进行计数,其中个位通过反馈1001到置数端,即从0000到1001再到0000,因此为模十计数器,同理分析十位的为模六计数器,中间通过一个非门进行级联使总电路为一个模6*10=60的计数器,刚好达到分秒计数的要求。

南昌大学课程设计-数字钟总结.

南昌大学课程设计-数字钟总结.

这次课程设计是对这学期数字逻辑课程所学内容的一次综合练习从中不仅强化了我对教材中知识的理解和掌握。

而且也拓展了我在数字电子技术方面的知识和对自己所学专业的认识。

课程设计更是一个把所学知识应用于实践的过程它对我动手能力的提高不言而喻。

同时我从这次课设中知道知识不仅仅是写在书本上的文字和死板的理论它更是指导我们实践的工具。

一些比较简单的逻辑器件经过一定的理论知识分析将它们组合在一起就构成了我们生活中普遍应用几乎必不可少的电子时钟。

完成课程设计的任务以后看到自己的成果感到很有成就感从而加强了自己对本课程的兴趣更加有利于对本课程方面知识的进一步拓展性学习。

通过这次对数字钟的设计与制作,让我了解了设计电路的程序,也让我了解了关于数字钟的原理与设计理念,要设计一个电路总要先用仿真仿真成功之后才实际接线的。

但是最后的成品却不一定与仿真时完全一样,因为,再实际接线中有着各种各样的条件制约着。

而且,在仿真中无法成功的电路接法,在实际中因为芯片本身的特性而能够成功。

所以,在设计时应考虑两者的差异,从中找出最适合的设计方法。

通过这次学习,让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解。

通过此次课程设计, 总体来说, 收获颇丰, 无论是在培养自己的实验动手能力还是培养自己的性情方面。

在此次的数字钟设计过程中 , 更进一步地熟悉了芯片的结构及掌握了各芯片的工作原理和其具体的使用方法 . 在连接六进制 , 十进制 , 六十进制的进位及二十四进制的接法中 , 要求熟悉逻辑电路及其芯片各引脚的功能 , 那么在电路出错时便能准确地找出错误所在并及时纠正了 . 在设计电路中 , 往往是先仿真后连接实物图 , 但有时候仿真和电路连接并不是完全一致的 , 因此仿真图和电路连接图还是有一定区别的, 所以在连接线路是就要求非常认真, 要清楚了解各个连接点之间的关系, 这样才能在实际焊接过程中得心应手, 取得事半功倍的效果 . 在设计电路的连接图中出错的主要原因都是接线和芯片的接触不良以及接线的焊点所引起的 . 在焊接过程中,组员间配合的非常好,进度相当快,虽然在其中几个焊接中遇到几点非常困难的地方, 但是还是被我们解决了, 这就是团队的力量。

数字电路数字钟实训报告

数字电路数字钟实训报告

一、引言随着科技的发展,数字电路在各个领域得到了广泛应用。

数字钟作为一种典型的数字电路应用,具有走时准确、显示直观、无机械传动装置等优点,在日常生活、工业控制等领域发挥着重要作用。

本次实训旨在通过设计、制作和调试数字钟,加深对数字电路原理的理解,提高动手能力和实践能力。

二、实训目的1. 掌握数字钟的设计原理,了解数字电路的基本组成和功能。

2. 学会使用数字电路元器件,包括计数器、译码器、显示器等。

3. 提高动手能力和实践能力,培养团队合作精神。

4. 了解数字电路在实际应用中的优缺点,为以后的学习和工作打下基础。

三、实训内容1. 数字钟电路设计(1)设计思路:采用CMOS集成电路,以石英晶体振荡器作为时钟源,通过分频器得到1Hz脉冲信号,然后通过计数器进行计数,最后通过译码器和显示器显示时间。

(2)电路组成:主要包括以下部分:- 晶体振荡器:产生稳定频率的振荡信号;- 分频器:将振荡信号分频得到1Hz脉冲信号;- 计数器:对1Hz脉冲信号进行计数,得到时、分、秒;- 译码器:将计数器的输出转换为对应的数字信号;- 显示器:将数字信号显示在显示器上。

2. 数字钟电路制作与调试(1)元器件选择:根据设计要求,选择合适的元器件,如计数器、译码器、显示器、晶体振荡器等。

(2)电路焊接:按照电路图进行焊接,注意焊接质量,避免虚焊、短路等现象。

(3)电路调试:对电路进行调试,检查各个部分是否正常工作,包括晶体振荡器、分频器、计数器、译码器和显示器等。

四、实训过程1. 设计阶段:查阅相关资料,了解数字钟的设计原理,确定电路设计方案,绘制电路图。

2. 制作阶段:根据电路图,选择合适的元器件,进行焊接,注意焊接质量。

3. 调试阶段:对电路进行调试,检查各个部分是否正常工作,发现问题并及时解决。

五、实训结果1. 成功制作并调试了一台数字钟,实现了时、分、秒的显示。

2. 熟练掌握了数字电路元器件的使用方法,提高了动手能力。

数字钟实验报告电子版剖析

数字钟实验报告电子版剖析

数字电路与逻辑设计实验报告实验课程:数字系统与逻辑设计实验学生姓名:黄鹏飞学号:6100212197专业班级:中兴通信1212013 年 12 月 25 日目录1.用SSI进行组合电路设计(交通灯)2.MIS组合功能件应用(全减器)3.MIS组合功能件的应用(血型匹配)4.集成触发器的应用5.集成移位寄存器的应用6.MIS时序功能件的应用(序列信号发生器)7.555定时器的应用8.数字钟综合设计与仿真南昌大学实验报告学生姓名:黄鹏飞学号:6100212197 专业班级:中兴通信121实验类型:□验证□综合■设计□创新实验日期:12-25 实验成绩:数字钟电路设计与制作实验报告一、实验目的:1、综合应用数字电路知识;2、掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法;3、进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力;4、学习并熟练掌握Multism 11仿真软件的使用;5、学习使用Altium Designer10进行电子电路的原理图设计、印制电路板设计;6、学习电路板制作、安装、调试技能;7、提高电路布局﹑布线及检查和排除故障的能力;二、实验任务及要求:任务:设计一个12小时或24小时制的数字钟,显示时、分、秒,有校时功能,可以分别对时及分进行单独校时,使其校正到准确时间。

可以根据兴趣增加其它与数字钟有关的功能。

要求:画出电路原理图,元器件及参数选择,PCB文件生成、制板。

三、实验原理及电路设计:1、设计方案与模块框图该实验电路主要设计了一个24小时制的数字钟,显示时、分、秒,有校时功能,可以分别对时、分、秒进行单独校时,使其校正到准确时间。

由基本频率源(振荡器)、计数器、译码显示驱动器、数字显示器、校准电路、清零电路等部分组成。

多谐振荡器产生稳定的“秒”计时信号(1Hz)。

对“秒”计时信号进行60进制计数,形成“分”计时信号和秒计数值;再对“分”计时信号进行60进制计数,形成“时”计时信号和分计数值;进一步对“时”计时信号进行24进制计数得到时计数值。

数字钟实验报告

数字钟实验报告

数字钟设计实验报告实习内容:□认识实习(社会调查)□教学实习(□生产□临床□劳动)□毕业实习实习形式:□集中□分散学生姓名:彭云学号: 6100209071专业班级:信息工程学院电气信息I类092班实习单位:南昌大学实习时间: 2010.11—2011.12011年1月日目录一、实验目的 (3)二、实验任务及要求 (3)三、主要工具及附加材料: (4)四、设计原理 (5)五、电路工作原理: (5)六、实验总结 (10)七、实验感悟 (11)数字钟设计一、实验目的1.了解数字钟的组成及工作原理;2.熟练掌握组合逻辑电路以及时序电路的使用,掌握各芯片的逻辑功能及使用方法,熟用常用电子元气件的类型和特性,并掌握合理选用原则;3. 熟悉掌握555定时器和计数器,并利用其设计构成多谐振荡和分频电路4.熟悉protel软件的操作,学会用protel软件制作电路图,和PCB板。

二、实验任务及要求1.任务:要求利用单层板设计一个二十四小时制的数字钟,自行制板,能够显示时、分、秒;具有校时功能,并且能分别对时、分进行校时使其达到标准;2.要求:画出电路原理图;自行选择元器件达到最优化;PCB文件生成与打印输出;自行装配和调试,并能发现问题和解决问题。

主要实验元件及参数:Comment Description Designator Footprint LibRef Quantity Cap Capacitor C1, C2RAD-0.3Cap2Dpy Blue-CC14.2 mm GeneralPurpose Blue7-Segment Display: CC,RH DP, Gray SurfaceDS1, DS2, DS3, DS4,DS5, DS6H Dpy Blue-CC6NE555N General-Purpose SingleBipolar TimerJ1DIP8NE555N1SW-PB K1, K2BUTTON SW-PB2 Power9V P1POWER9V Power9V1Res2ResistorR1, R2, RA0, RA1,RA2, RA3, RA4, RA5,RA6, RB0, RB1, RB2,RB3, RB4, RB5, RB6,RC0, RC1, RC2, RC3,RC4, RC5, RC6, RD0,RD1, RD2, RD3, RD4,RD5, RD6, RE0, RE1,RE2, RE3, RE4, RE5,RE6, RF0, RF1, RF2,RF3, RF4, RF5, RF6AXIAL-0.4Res244SW DPDT Switch S1DPDT-6SW DPDT1SN74LS160AN BCD Decade Counter U1, U2, U3, U4, U5,U6648-08SN74LS160AN6SN74LS00NQuadruple 2-InputPositive-NAND GateU11, U22N014SN74LS00N2SN74LS48N BCD-to-Seven-SegmentDecoder/DriverW1, W2, W3, W4, W5,W6N016D SN74LS48N6三、主要工具及附加材料:电烙铁、烙铁架、焊锡丝、松香、导线、绝缘胶布、透明胶带、镊子、钳子、数字万用表、吸锡器、剥线钳、一字起子一套等等。

数字钟的设计实验报告

数字钟的设计实验报告

一、设计目的1.熟悉集成电路的引脚安排。

2.掌握各芯片的逻辑功能。

3.了解面包板结构及其接线方法。

4.了解数字钟的组成及工作原理。

5.熟悉数字钟的设计与制作。

二、设计指标1. 时间以24小时为一个周期。

2. 显示时、分、秒。

3. 为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。

三、具体要求1.画出电路原理图。

2.设计各个功能模块的电路图。

3.选择合适的元器件,设计、选择合适的输入信号和输出方式,在确保电路正确的同时,输出信号和输入方式要便于电路的测试和故障排除,在线路板上接线验证、调试各个功能模块的电路。

4.对整个电路的元器件和布线进行合理布局,进行整个数字时钟电路的接线测试。

四、设计原理及其框图1.数字钟的构成数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

下图为数字钟的一般构成框图:(1)晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32 768Hz的方波信号,可保证数字钟的走时准确及稳定。

不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。

(2)分频器电路分频器电路将32768Hz的高频方波信号经32768(2的15次方)次分频后得到1Hz的方波信号供秒计数器进行计数。

分频器实际上也就是计数器。

(3)时间计数器电路时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为24进制计数器。

(4)译码驱动电路译码驱动电路将计数器输出的8421BCD码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。

(5)数码管数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管。

2.数字钟的各个单元电路工作原理(1)晶体振荡器电路晶体振荡器是构成数字式时钟的核心,它保证了时钟的走时准确及稳定。

南昌大学数字钟设计实验报告

南昌大学数字钟设计实验报告

《数字电路与逻辑设计实验》实验报告题目数字钟电路与PCB设计学院:信息工程学院系电子信息工程专业:班级:学号:学生姓名:同组同学:指导教师:递交日期:南昌大学实验报告学生姓名:学号:专业班级:实验类型:□验证□综合■设计□创新实验日期:实验成绩:数字钟电路设计与制作实验报告一、实验目的:1、综合应用数字电路知识;2、学习使用protel进行电子电路的原理图设计、印制电路板设计3、学习电路板制作、安装、调试技能。

二、实验任务及要求:任务:设计一个12小时或24小时制的数字钟,显示时、分、秒,有校时功能,可以分别对时及分进行单独校时,使其校正到准确时间。

可以根据兴趣增加其它与数字钟有关的功能。

要求:画出电路原理图,元器件及参数选择,PCB文件生成、制板及实物制作三、实验原理及电路设计:1、设计方案与模块框图该系统工作原理是:振荡器产生的稳定高频脉冲信号,为数字钟的时间基准,在经过分频器输出标准秒脉冲。

秒计数器计满60后向频计数器进位,分计数器计满60后向时计数器进位,小时计数器按照“12翻1”的规律计数。

计数器的输出经过译码器送显示器。

计时出现误差时可以用校正电路进行校时、分、秒。

主体电路是有功能电路部件或单元电路组成的。

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

在其进位计数的基本功能上,同时标准的1HZ时间信号必须做到准确稳定。

通常使用石英晶体振荡器电路构成数字钟。

数字钟的结构组成:1)译码及显示电路单元2)时间计数电路单元3)校时电路单元4)振荡电路单元2、各子模块电路设计及原理说明译码驱动及显示单元选择74LS48作为显示译码电路如图所示;选择LED数码管作为显示单元电路。

由74LS48把输进来的二进制信号翻译成十进制数字,再由数码管显示出来。

这里的LED数码管是采用共阴的方法连接的。

在LT=RBI=1的条件下,及使能输入BI/BRO=1时,锁存器不工作,译码器的输出随输入码的变化而变化。

数字时钟电路设计实验报告

数字时钟电路设计实验报告

数字时钟电路设计实验报告
实验目的:
本实验的目的是设计一台数字时钟电路,通过对时钟的设置和调整,实现准确计时和时间显示功能,同时训练学生的电路设计能力。

实验设备:
本实验所需设备包括数字电路实验板、电源、示波器、数字万用表等。

实验原理:
数字时钟电路主要由定时器、锁存器、计数器、时钟发生器、数码显示器、按键等部件组成。

其中,时钟发生器是严格按照预设的时间间隔输出脉冲信号,计数器用于计数,锁存器用于锁存一定的时间值,数码显示器用于显示时间信息。

实验步骤:
1.准备工作:将数字电路实验板连接到电源上,调节电源电压为正常值。

将示波器连接到电路中,以便观察电路工作情况。

2.电路设计:根据实验要求设计数字时钟电路,并将其连入数字电路实验板中。

根据实验需要确定计数器、锁存器、时钟发生器和数码显示器的接口,设置时钟发生器的工作频率和计数器的计数值。

3.测试电路:打开电源,观察数码显示器是否能够正常显示时间信息。

对电路进行调试,确保计时准确、时间显示准确。

4.时钟调整:通过按键对时钟进行调整,完成对时间的设置和运行。

实验结果:
经过设计、连接、调试和测试,数字时钟电路的工作稳定,能够准确计时、显示时间信息,并支持时间的设置和调整。

实验总结:
本次实验通过数字时钟电路的设计与调试,提高学生的电路设计
能力,让学生掌握数字电路设计的基本原理和方法,增强学生的创新能力和实践能力,是一次非常有益的实验训练。

电子实习数字钟实验报告

电子实习数字钟实验报告

数字钟实验报告一、实验目的1. 学习数字电路的设计与实践,提高动手能力。

2. 了解和掌握数字电子钟的工作原理及制作方法。

3. 培养严谨的科学态度和良好的团队协作精神。

二、实验任务及要求1. 设计并制作一个具有时、分、秒显示功能的数字电子钟。

2. 电子钟应具备校时功能,能手动调整时、分。

3. 电子钟在24小时内整点报时,从59分50秒开始,每2秒钟响一声,共响5次。

4. 电子钟在6--22点之间每整点报时,23--5点之间整点不报时。

三、实验原理及设计思路1. 实验原理数字电子钟主要由石英晶体振荡器、分频器、计数器、译码器、显示器等组成。

石英晶体振荡器产生1Hz的基准信号,分频器将1Hz信号分频得到秒信号,计数器对秒信号进行计数实现时、分、秒的显示,译码器将计数器的输出信号转换为显示器所需的信号,显示器以数字形式显示时间。

2. 设计思路(1)选用合适的石英晶体振荡器,确保电子钟的走时准确。

(2)设计分频器,将1Hz信号分频得到秒信号。

(3)设计计数器,实现时、分、秒的计数功能。

(4)设计译码器,将计数器的输出信号转换为显示器所需的信号。

(5)设计显示器,以数字形式显示时间。

(6)设计校时电路,实现手动调整时、分功能。

(7)设计整点报时电路,实现整点报时功能。

四、实验步骤1. 搭建石英晶体振荡器电路,确保输出1Hz的基准信号。

2. 设计并搭建分频器电路,将1Hz信号分频得到秒信号。

3. 设计并搭建计数器电路,实现时、分、秒的计数功能。

4. 设计并搭建译码器电路,将计数器的输出信号转换为显示器所需的信号。

5. 设计并搭建显示器电路,以数字形式显示时间。

6. 设计并搭建校时电路,实现手动调整时、分功能。

7. 设计并搭建整点报时电路,实现整点报时功能。

8. 调试并优化电路,确保电子钟的正常运行。

五、实验结果与分析1. 实验结果经过以上步骤,我们成功制作了一个具有时、分、秒显示功能的数字电子钟。

实验结果显示,电子钟走时准确,能手动调整时、分,整点报时功能正常,符合实验要求。

数字钟实习报告

数字钟实习报告

数字钟实验报告一.系统设计框图数字式计时器一般由振荡器、分频器、计数器、译码器、显示器等几部分组成。

在本设计中采用32.768KHZ晶体振荡器及其相应外部电路组成标准秒信号发生器,由不同进制的计数器、译码器和显示器组成计时系统。

秒信号送入计数器进行计数,把累计的结果以‘时’、‘分’、‘秒’的数字显示出来。

‘时’显示由二十四进制计数器、译码器、显示器构成,‘分’、‘秒’显示分别由六十进制计数器、译码器、显示器构成。

1.0数字钟的构成数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路.由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定.在此使用555振荡器组成1Hz的信号。

二、数字钟原理1.1振荡器电路由一个32.768KHZ的晶体振荡器和一个1M的电阻组成。

1.2时间计数器电路时间计数路由秒个位和秒十位计数器,分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为24进制计数器.1.3分频器电路通常,数字钟的晶体振荡器输出频率较高,为了得到32.768Hz 的秒信号输入,需要对振荡器的输出信号进行分频。

通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现。

例如,将32768Hz的振荡信号分频为1HZ的分频倍数为32768(),即实现该分频功能的计数器相当于15级2进制计数器。

1.5数字时钟的计数显示控制在设计中,我们使用的是CD4518双四位BCD同步加法计数器,来实现计数的功能,实验中主要用到了160的置数清零功能(特点:消耗一个时钟脉冲),清零功能(特点:不耗时钟脉冲),在上级160控制下级160时候通过组合电路(主要利用与非门)实现,在连接电路的时候要注意并且强调使能端的连接,其将影响到整一个电路的是否工作。

当数值显示达到:23:59的时候要实现清零的工作,采用CLR 清零的方式反馈清零。

数字时钟实验报告

数字时钟实验报告

电子技术课程设计报告实验题目:数字时钟姓名:学号:学院:专业:年级:指导教师:目录一、实验要求 .............................................................二、设计步骤 .............................................................1、1 K Hz信号发生器....................................2、分频器…………………………………….…….…………3、计数器.........................................................4、校时电路……………………………………………….…5、闹钟………….………………………………………………三、功能测试及总结................................................四、收获和体会………………………………………五、参考文献…………………………………………一、 实验要求基础要求:设计一个24小时制的数字时钟,要求计时、显示精度到秒;有校时功能;采用中小规模集成电路设计。

发挥: 增加闹钟功能二、 设计步骤基本功能电路框图1、 1 K Hz 信号发生器采用由集成电路定时器555与RC组成的多谐振荡器。

如图3-4-1所示。

设振荡频率f=1KHz,R为可调电阻,微调R1可以调出1KHz输出。

2、分频器由于1 K Hz信号发生器产生的频率很高,要得到秒脉冲,需要分频电路。

本实验由集成电路定时器555与RC组成的多谐振荡器,产生1KHz的脉冲信号。

故采用3片中规模集成电路计数器74LS160来实现,得到需要的秒脉冲信号3、计数器秒脉冲信号经过6级计数器,分别得到“秒”个位、十位、“分”个位、十位以及“时”个位、十位的计时。

“秒”“分”计数器为六十进制,小时为十二进制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此外,通过这次实验设计仿真PCB版制作,还让我们学会了查找资料的方法,提高了我们处理分析电路,设计电路的能力。
作为工科类的学生,以后工作了难免要碰到许许多多的问题,要坚持下去,才能看到胜利的曙光。
我认为,在这学期的实验中,不仅培养了独立思考、动手操作的能力,在各种其它能力上也都有了提高。更重要的是,在实验课上,我们学会了PROTEL如何制版以及各种其它有关于数字电路的知识。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践。这对于我们的将来也有很大的帮助。以后,不管有多苦,我想我们都能变苦为乐,找寻有趣的事情,发现其中珍贵的事情。就像中国提倡的艰苦奋斗一样,我们都可以在实验结束之后变的更加成熟,会面对需要面对的事情。
图4
④ 译码器 、显示器
译码是指把给定的代码进行翻译的过程。计数器采用的码制不同,译码电路也不同。
本系统用七段发光二极管来显示译码器输出的数字.
由于MULTSIM有四脚的显示器所以就没用译码器,在用DXP做PCB时使用了译码器。
⑤ 校时电路
当数字钟走时出现误差时,需要校正时间。校时电路实现对“时”“分”“秒”的校准。在电路中设有正常计时和校对位置。本实验实现“时”“分”的校对。
图3
(2)二十四进制计数
“24翻1”小时计数器是按照“00——02——03——„„——23——00——01——02——„„”规律计数的,这与日常生活中的计时规律相同。 计数器的状态要发生两次跳跃:一是计数器计到9,即个位计数Байду номын сангаас的状态为Q03Q02Q01Q00=1001,在下一脉冲作用下计数器进入暂态1010,利用暂态的两个1即Q03Q01使个位清零,同时向十位计数器进位使Q10=1;二是计数器计到23后,在第24个脉冲作用下个位计数器的状态应为Q03Q02Q01Q00=0000,十位计数器的Q10=0。
对校时的要求是,在小时校正时不影响分和秒的正常计数;在分校正时不影响秒和小时的正常计数。
校时开关
四、Protel制版
1.整体原理图
.
2.PCB
布了二十几遍线,还是无法弄成单面板,只能力求红线少一些。
1.PCB版打印图
2.元器件清单
七段数码显示管6个
7448译码器6个
161计数器6个
160计数器3个
7400与非门3个
四、Multisim仿真与分析
1、设计方案与模块框图
2、各子模块电路设计及原理说明
(1)振荡器
石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。它还具有压电效应,在晶体某一方向加一电场,则在与此垂直的方向产生机械振动,有了机械振动,就会在相应的垂直面上产生电场,从而机械振动和电场互为因果,这种循环过程一直持续到晶体的机械强度限止时,才达到最后稳定。这用压电谐振的频率即为晶体振荡器的固有频率。
此次设计也让我明白了思路即出路,有什么不懂不明白的地方要及时请教或上网查询,只要认真钻研,动脑思考,动手实践,就没有弄不懂的知识,收获颇丰。同时特别感谢同学的互相帮助以及老师的指导。
三、设计方案
数字钟设计方案基本框图如下:
时的设计:
时的计数以24小时为周期,按通常的习惯,24小时计数器的计数序列为00,01,…,22,23,00,…,即当计数到23小时59分59秒时,再来一个秒脉冲,计数器就进到00时00分00秒。这样,可利用反馈置数或反馈清零法进行二十四进制计数。
分、秒的设计:
数字钟
实验报 告
课程:
专业班级:
学生姓名:
学 号:
2014年12月22日
多功能数字钟设计
一、设计任务
设计一多功能数字钟并进行仿真以及PCB制版。
二、设计要求
基本功能:准确计时,以数字形式显示时、分、秒的时间。
扩展功能:校正时间
PCB制版要求:尽量单面板、尺寸为200mm*150mm、焊孔0.5mm等
回顾起此数字电路仿真设计,至今我仍感慨颇多,从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上没有学到过的知识。也遇到了很多问题解决了很多问题,从不会用这两个软件到现在可以熟练的进行仿真很绘制PCB版。通过这次实验使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。
555定时器1个
电阻390欧42个
电阻4.7K2个
电容2个
单刀双掷开关2个
六、实验总结
通过数字电路数字钟的设计仿真实验,我们对数逻里所学的知识,有了一个更加深入的了解,将学过的理论知识真正应用到实践中去,同时让我们明白在学习理论知识的时候,我们应该更注重实践,通过所学的知识,设计一些对我们的日常生活很有用的东西。
图2
秒脉冲功能的实现:
③ 计数器
秒脉冲信号经过6级计数器,分别得到“秒”个位、十位、“分”个位、十位以及“时”个位、十位的计时。“秒”“分”计数器为六十进制,小时为十二进制。
(1)六十进制计数
由分频器来的秒脉冲信号,首先送到“秒”计数器进行累加计数,秒计数器应完成一分钟之内秒数目的累加,并达到60秒时产生一个进位信号,所以,选用两片74LS161组成六十进制计数器,采用反馈归零的方法来实现六十进制计数。其中,“秒”十位是六进制,“秒”个位是十进制。如图3所示。
分和秒计数器都是模M=60的计数器。计数规律为00,01,…,58,59,00,…。它们的个位都是十进制,而十位则是六进制。
译码显示:
将计数器输出的4位二进制代码,译码显示出相应的十进制数状态,可利用译码显示器和数码管实现。
校时电路:
校时可用1s脉冲快速校正,也可手动产生单次脉冲慢校正至时或者分计数器。可设置变量来控制实现校正或正常计数。
一般来说,振荡器的频率越高,计时精度越高,但耗电量将增大。如果精度要求不高也可以采用由集成电路定时器555与RC组成的多谐振荡器。如图1所示。
图1
② 分频器
由于振荡器产生的频率很高,要得到秒脉冲,需要分屏电路。本实验由集成电路定时器555与RC组成的多谐振荡器,产生1KHz的脉冲信号。故采用3片中规模集成电路计数器74LS160来实现,得到需要的秒脉冲信号。
相关文档
最新文档