数值分析复化梯形公式,复化Simpson公式MATLAB程序电子版本

合集下载

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

佛山科学技术学院实验报告课程名称_______________ 数值分析________________________实验项目_______________ 数值积分____________________专业班级机械工程姓名余红杰学号2111505010 指导教师陈剑成绩日期月日一、实验目的b1、理解如何在计算机上使用数值方法计算定积分 a f ""X的近似值;2、学会复合梯形、复合Simpson和龙贝格求积分公式的编程与应用。

3、探索二重积分.11 f (x, y)dxdy在矩形区域D = {( x, y) | a _ x _ b, c _ y _ d}的数值D积分方法。

二、实验要求(1)按照题目要求完成实验内容;(2)写出相应的Matlab程序;(3)给出实验结果(可以用表格展示实验结果);(4)分析和讨论实验结果并提出可能的优化实验。

(5)写出实验报告。

三、实验步骤1、用不同数值方法计算积xln xdx =-- 0 9(1)取不同的步长h,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两公式的精度。

(2)用龙贝格求积计算完成问题(1 )。

2、给出一种求矩形区域上二重积分的复化求积方法,然后计算二重积分..e"y dxdy,其中积分区域D二{0乞x岂1,0岂y乞1}。

1.%lnt_t.m复化梯形:function F = Int_t(x1,x2,n)%复化梯形求积公式% x1,x2为积分起点和中点%分为n个区间,没选用步长可以防止区间数为非整数。

%样点矩阵及其函数值:x = lin space(x1,x2 ,n+1);y = f(x);m = len gth(x);%本题中用Matlab计算端点位置函数值为NaN,故化为零: y(1) = 0;y(m) = 0;%算岀区间长度,步长h:h = (x2 -x1)/n;a = [1 2*o nes(1,m-2) 1];%计算估计的积分值:F = h/2*sum(a.*y);%f.mfun cti on y = f(x)y = sqrt(x).*log(x);%run 11.mclc,clear;%分为10个区间,步长0.1的积分值:F = In t_t(0,1,10);F10 = F%分为100个区间F = In t_t(0,1,100);F100 = F%误差计算W10 = abs((-4/9)-F10);W100 = abs((-4/9)-F100);W = [W10 W100]%复化辛普森:%l nt_s.mfun cti on F = In t_s(x1,x2 ,n)%复化梯形求积公式% x1,x2区间,分为n个区间。

复化梯形公式,复化辛普森公式,复化柯特斯公式

复化梯形公式,复化辛普森公式,复化柯特斯公式

复化梯形公式,复化辛普森公式,复化柯特斯公式
复化梯形公式、复化辛普森公式和复化柯特斯公式都是用来计算定积分的近似值的方法。

1. 复化梯形公式:将积分区间分成若干个小区间,在每个小区间上用梯形面积近似代替该小区间的曲边梯形面积,然后将这些梯形面积相加,得到积分的近似值。

2. 复化辛普森公式:将积分区间分成若干个等分小区间,在每个小区间上用矩形面积近似代替该小区间的曲边梯形面积,然后将这些矩形面积相加,得到积分的近似值。

3. 复化柯特斯公式:将积分区间分成若干个等分小区间,在每个小区间上用切线段长度近似代替该小区间的曲边梯形面积,然后将这些切线段长度相加,得到积分的近似值。

这三种方法都是通过将积分区间分成若干个小区间,然后在每个小区间上用近似方法计算该小区间的曲边梯形面积,最后将这些近似值相加得到积分的近似值。

它们的精度和误差都与分区间的大小有关。

matlab复化Simpson求积公式计算数值积分

matlab复化Simpson求积公式计算数值积分

,(k 0,1,...,n)k x a kh =+=b a h n-=2221222121(x)dx (x)dx [(x )4(x )(x )]3k k m a x b x k m k k k k f f h f f f -=--=≈≈++∑⎰⎰∑复化Simpson 求积公式计算数值积分一·复化Simpson 求积公式的数学理论如果用分段二次插值函数近似被积函数,即在小区间上用Simpson 公式计算积分近似值,就可导出复化Simpson 公式。

二·复化Simpson 求积公式的算法和流程图将积分区间[a,b]分成n=2m 等分,分点为,在每个小区间[222,x k k x -](k=0,1,…,n-1)上。

用Simpson 公式求积分,则有2222222221222212(x)dx [(x )4(x )(x )]6[(x )4(x )(x )]3kk x k k k k k x k k k x x f f f f h f f f -------≈++=++⎰求和得整理后得到122111(x)dx [(a)(b)2(x )4(x )]3m m bk k a k k h f f f f f --==≈+++∑∑⎰ (5-21)式(5-21)称为复化Simpson 公式。

如果(4)(x)[a,b]f c ∈,则由Simpson 插值余项公式可得复化公式的截断误差为1221115(4)2221()(x)dx [(a)(b)2(x )4(x )]3(2h)()[x ,x ]2880m m bS k k a k k mk k k h R f f f f f f ξξ--==-==-+++=-∈∑∑⎰∑因为(4)f x 为连续,故存在[a,b]ξ∈,使得(4)(4)11()()m k k f f m ξξ==∑代入上式得5(4)4(4)1(2h)()()()(a,b)2880180m s k b a R f mf h f ξξξ=-=-=-∈∑ (5-22)式(5-22)表明,步长h 越小,截断误差越小。

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值分析计算方法程序汇总

数值分析计算方法程序汇总

(一)复化梯形公式例:求121?x dx -=⎰程序:#include "stdio.h"void main(){double a,b,s,h,x;int i,n;a=-1.0;b=1.0;n=10;h=(b-a)/n;x=a;s=x*x/2;for(i=1;i<n;i++){x=x+h;s=s+x*x;}s=s+b*b/2;s=s*h;printf("s=%f\n",s);}结果:s=0.680000(二)复化辛普森公式例:求130?x dx=⎰程序:#include "stdio.h"void main(){double a,b,c,s,h,x,y;int i,n;a=0.0;b=1.0;n=10;s=0.0;h=(b-a)/n;x=a;y=x+h;c=(x+y)/2;for(i=1;i<=n;i++){s=s+x*x*x+4*c*c*c+y*y*y;x=x+h;y=y+h;c=c+h;}s=s*h/6;printf("s=%f\n",s);}结果:s=0.250000(三)复化高斯公式例:求220?x dx=⎰程序:#include <stdio.h>#include <math.h>main(){double a,b,h,s,x1,x2;int i,n;a=0;b=2;n=20;s=0;h=(b-a)/n;for(i=0;i<n;i++){x1=a+i*h+h/2*(1/1.732+1); x2=a+i*h+h/2*(1-1/1.732); s=s+x1*x1*x1+x2*x2*x2; }s=h/2*s;printf("s=%f\n",s);}结果:s=4.000000(四)迭代法例:求x=x2的解。

程序:#include "stdio.h"#include<math.h>main(){double x,xl,y,yl;int i,j;x=0.5;xl=x;y=0.5;yl=y;for(i=0;;i++){x=x*x;if(fabs(xl-x)<0.0001)break;else xl=x;}for(j=0;;j++){y=sqrt(y);if(fabs(yl-y)<0.0001)break;else yl=y;printf("x=%f,y=%f\n",x,y);}结果:x=0.000000,y=0.999915(五)牛顿迭代法y=f(x),求f(x*)=0。

复合梯形公式、复合辛普森公式matlab

复合梯形公式、复合辛普森公式matlab

复合梯形公式、复合⾟普森公式matlab 1. ⽤1阶⾄4阶Newton-Cotes公式计算积分程序:function I = NewtonCotes(f,a,b,type)%syms t;t=findsym(sym(f));I=0;switch typecase 1,I=((b-a)/2)*(subs(sym(f),t,a)+subs(sym(f),t,b));case 2,I=((b-a)/6)*(subs(sym(f),t,a)+4*subs(sym(f),t,(a+b)/2)+...subs(sym(f),t,b));case 3,I=((b-a)/8)*(subs(sym(f),t,a)+3*subs(sym(f),t,(2*a+b)/3)+...3*subs(sym(f),t,(a+2*b)/3)+subs(sym(f),t,b));case 4,I=((b-a)/90)*(7*subs(sym(f),t,a)+...32*subs(sym(f),t,(3*a+b)/4)+...12*subs(sym(f),t,(a+b)/2)+...32*subs(sym(f),t,(a+3*b)/4)+7*subs(sym(f),t,b));case 5,I=((b-a)/288)*(19*subs(sym(f),t,a)+...75*subs(sym(f),t,(4*a+b)/5)+...50*subs(sym(f),t,(3*a+2*b)/5)+...50*subs(sym(f),t,(2*a+3*b)/5)+...75*subs(sym(f),t,(a+4*b)/5)+19*subs(sym(f),t,b));case 6,I=((b-a)/840)*(41*subs(sym(f),t,a)+...216*subs(sym(f),t,(5*a+b)/6)+...27*subs(sym(f),t,(2*a+b)/3)+...272*subs(sym(f),t,(a+b)/2)+...27*subs(sym(f),t,(a+2*b)/3)+...216*subs(sym(f),t,(a+5*b)/6)+...41*subs(sym(f),t,b));case 7,I=((b-a)/17280)*(751*subs(sym(f),t,a)+...3577*subs(sym(f),t,(6*a+b)/7)+...1323*subs(sym(f),t,(5*a+2*b)/7)+...2989*subs(sym(f),t,(3*a+4*b)/7)+...1323*subs(sym(f),t,(2*a+5*b)/7)+...3577*subs(sym(f),t,(a+6*b)/7)+751*subs(sym(f),t,b));endsyms xf=exp(-x).*sin(x);a=0;b=2*pi;I = NewtonCotes(f,a,b,1)N=1:I =N=2:I =N=3:I =(pi*((3*3^(1/2)*exp(-(2*pi)/3))/2 - (3*3^(1/2)*exp(-(4*pi)/3))/2))/4N=4:I =(pi*(32*exp(-pi/2) - 32*exp(-(3*pi)/2)))/452. 已知,因此可以通过数值积分计算的近似值。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果 Tn= 7.3891等分数 n= 7019已知值与计算值的误差 R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果 Sn= 7.3891等分数 n= 24已知值与计算值的误差 R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

数值分析复化梯形公式,复化Simpson公式MATLAB程序

数值分析复化梯形公式,复化Simpson公式MATLAB程序

分别用复化梯形公式、复化Simpson 公式计算定积分dx e x ⎰+201,取n=2,4,8,16分别验证结果(精确值I=4.006994)。

复化梯形公式求定积分:
function I=tquad(x,y)
%复化梯形求积公式,其中,
%x 为向量,被积函数自变量的等距结点; %y 为向量,被积函数在结点处的函数值; n=length(x);
m=length(y);
%积分自变量的结点数应与它的函数值的个数相同 h=(x(n)-x(1))/(n-1);
a=[1 2*ones(1,n-2) 1];
I=h/2*sum(a.*y);
复化Simpson 公式求定积分:
function I=squad(x,y)
%复化Simpson 求积公式,其中,
%x 为向量,被积函数自变量的等距结点; %y 为向量,被积函数在结点处的函数值; n=length(x);
m=length(y);
%积分自变量的结点数应与它的函数值的个数相同 if rem(n-1,2)~=0
I=tquad(x,y);
return;
end
N=(n-1)/2;
h=(x(n)-x(1))/N;
a=zeros(1,n);
for k=1:N
a(2*k-1)=a(2*k-1)+1;
a(2*k)=a(2*k)+4;
a(2*k+1)=a(2*k+1)+1;
end
I=h/6*sum(a.*y);。

复合梯形公式和复合辛普森公式

复合梯形公式和复合辛普森公式

复合梯形公式和复合辛普森公式1.复合梯形公式步骤1:将积分区间[a,b]均匀地分成n个小区间,每个小区间的长度为h=(b-a)/n,其中n为正整数。

步骤2:定义一个函数f(x),并在每个小区间上求出函数在小区间两个端点的函数值,记作f(x0), f(x1), f(x2), ..., f(xn)。

步骤3:根据梯形公式,每个小区间上的定积分近似值为(h/2) * (f(x0) + 2f(x1) + 2f(x2) + ... + 2f(xn-1) + f(xn))。

步骤4:将所有小区间上的定积分近似值相加,得到最终的近似值。

复合辛普森公式是通过将积分区间划分成若干个小区间,然后在每个小区间上应用辛普森公式来逼近定积分的值。

具体的步骤如下:步骤1:将积分区间[a,b]均匀地分成n个小区间,每个小区间的长度为h=(b-a)/n,其中n为正偶数。

步骤2:定义一个函数f(x),并在每个小区间上求出函数在小区间三个点的函数值,记作f(x0),f(x1),f(x2)。

步骤3:根据辛普森公式,每个小区间上的定积分近似值为(h/3)*(f(x0)+4f(x1)+f(x2))。

步骤4:将所有小区间上的定积分近似值相加,得到最终的近似值。

复合辛普森公式的误差主要取决于小区间的数量和函数在每个小区间上的变化情况。

与复合梯形公式相比,复合辛普森公式的精度更高,但计算复杂度也更高。

综上所述,复合梯形公式和复合辛普森公式是数值积分中常用的近似计算方法。

它们通过将积分区间划分成小区间,并在每个小区间上应用相应的公式来逼近定积分的值。

这两种方法都可以通过增加小区间的数量来提高近似的精度,但相应地也会增加计算的复杂度。

根据实际情况,我们可以选择合适的方法来计算需要求解的定积分。

复化梯形公式和复化辛普森公式

复化梯形公式和复化辛普森公式

复化梯形公式和复化辛普森公式1. 引言嘿,大家好!今天我们来聊聊数学里那些看似高深莫测的公式,尤其是复化梯形公式和复化辛普森公式。

这些名字听起来就像是从某部科幻片里蹦出来的角色,但其实它们是我们在数值积分中不可或缺的好帮手。

你知道吗?它们就像是数学世界里的“超能英雄”,让我们轻松搞定积分,简直是妙不可言。

2. 复化梯形公式2.1 你知道什么是梯形吗?首先,咱们得聊聊复化梯形公式。

说白了,就是把一个复杂的积分任务,分解成几个小的梯形来求解。

想象一下,你在河边钓鱼,河水流得可欢了。

为了找一个合适的钓鱼点,你可能得把河分成几段,然后每一段的宽度就是你的小梯形。

你看,这就是复化梯形的魅力所在!2.2 如何运用复化梯形公式?用这个公式的时候,你只需把整个区间分成N个小区间,每个区间的宽度都是一样的。

然后,把每个小区间的函数值拿来加一加,再乘上宽度的一半,最后再把头尾的函数值加上。

这听起来是不是很简单?比如,你想算从0到1的某个函数的积分,只要把这个区间分成若干段,像切蛋糕一样,每一片都求个函数值,然后把结果合起来就行了。

简单得就像吃个冰淇淋,大家都喜欢。

3. 复化辛普森公式3.1 辛普森是谁?接下来,让我们来看看复化辛普森公式。

辛普森这个名字,大家可能都听过,或者说过“这是辛普森家的事儿”。

其实,他是一位牛逼的数学家,专门研究如何让积分变得更加简单。

辛普森公式就像是对梯形公式的一次升级,像换了个新款手机,功能更强大,效果更好。

3.2 如何运用复化辛普森公式?用复化辛普森公式的时候,我们也是把整个区间分成N个小区间,不过这里的N必须是偶数哦!每个小区间的宽度仍然是一样的。

然后,用函数值的加权平均法来计算。

换句话说,你把每个小区间的头尾和中间的函数值都考虑进来,像是为你的冰淇淋加上各种口味的配料。

最后,你的结果就会比单纯用梯形公式得来的要精准多了,仿佛一口下去,味蕾都在舞蹈。

4. 比较与应用4.1 谁更强?说到这儿,很多人就会问,复化梯形公式和复化辛普森公式,谁更厉害呢?其实,这就像问“苹果和橘子,哪个更好吃”。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果 Tn= 7.3891等分数 n=7019已知值与计算值的误差 R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果 Sn= 7.3891等分数 n=24已知值与计算值的误差 R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数 结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x %定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可 f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))' %因fminbnd ()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果Tn= 7.3891等分数n=7019已知值与计算值的误差R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果Sn= 7.3891等分数n=24已知值与计算值的误差R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

复合梯形公式例题代码matlab

复合梯形公式例题代码matlab

复合梯形公式(Composite Trapezoidal Rule)是数值分析中常用的数值积分方法,它通过将区间划分为若干个小区间,并对每个小区间进行梯形面积的计算来逼近定积分的值。

在本文中,我们将使用MATLAB编写一个复合梯形公式的例题代码,并对所得结果进行分析。

1. 复合梯形公式的原理复合梯形公式是通过将整个积分区间[a, b]等分为n个小区间,每个小区间的宽度为h=(b-a)/n,然后对每个小区间应用梯形面积公式进行计算,并将结果相加得到整个积分的近似值。

具体而言,对于每个小区间[i, i+1],使用梯形面积公式计算出该区间内的积分近似值为:\[ \frac{h}{2}(f(x_i)+f(x_{i+1})) \]其中,\(x_i = a + i \cdot h\),\(x_{i+1} = a + (i+1) \cdot h\),而f(x)为被积函数。

然后将所有小区间的积分近似值相加得到整个积分的近似值:\[ I \approx \frac{h}{2}(f(x_0)+2f(x_1)+2f(x_2)+...+2f(x_{n-1})+f(x_n)) \]2. 复合梯形公式的MATLAB实现下面我们将使用MATLAB编写一个复合梯形公式的例题代码。

假设我们要计算定积分:\[ \int_{0}^{\pi/2} \sin(x) dx \]我们定义被积函数:```matlabfunction y = f(x)y = sin(x);end```我们编写复合梯形公式的代码:```matlabfunction I =posite_trapezoidal_rule(f, a, b, n)h = (b-a) / n;x = a:h:b;y = f(x);I = h/2 * (y(1) + 2*sum(y(2:end-1)) + y(end));end```我们调用该函数进行计算:```matlaba = 0;b = pi/2;n = 100;I =posite_trapezoidal_rule(f, a, b, n);disp(['The approximate value of the integral is: ', num2str(I)]); ```3. 结果分析通过运行上述代码,我们得到定积分的近似值为1。

复化梯形公式matlab

复化梯形公式matlab

复化梯形公式matlab在MATLAB中,可以使用复化梯形公式来进行数值积分的计算。

复化梯形公式是将积分区间分割成多个小区间,在每个小区间上采用梯形面积逼近曲线下的积分值。

以下是使用MATLAB编写的复化梯形公式的示例代码:```matlabfunction result = composite_trapezoidal(f, a, b, n)h = (b - a) / n; % 计算每个小区间的宽度% 计算每个小区间的积分值,并将其累加得到最终结果result = 0;for i = 1:nx_i = a + (i-1) * h; % 当前小区间的起点x_j = a + i * h; % 当前小区间的终点% 使用梯形公式计算当前小区间的积分值integral_i = (f(x_i) + f(x_j)) * h / 2;% 将当前小区间的积分值累加到总结果中result = result + integral_i;endend```在上述代码中,`f` 是要计算积分的函数,`a` 和 `b` 是积分区间的起点和终点,`n` 是将积分区间划分成的小区间数目。

你可以根据实际需求,将自己的函数替换到 `f` 的位置,并调用 `composite_trapezoidal` 函数来计算数值积分的近似值。

例如,假设要计算函数 `f(x) = x^2` 在区间 `[0, 1]` 上的数值积分,可以使用以下代码进行计算:```matlabf = @(x) x^2; % 定义要计算积分的函数a = 0; % 积分区间起点b = 1; % 积分区间终点n = 100; % 将积分区间划分为100个小区间result = composite_trapezoidal(f, a, b, n); % 使用复化梯形公式计算积分近似值disp(result); % 显示计算结果```运行上述代码,就可以得到函数 `f(x) = x^2` 在区间 `[0, 1]` 上的数值积分的近似值。

数值分析(18)复化求积法

数值分析(18)复化求积法

1 2
h2
b
4
a
,
直到 T2n Tn 为止,将T2n作为积分的近似值。
数值分析
数值分析
下面推导由n到2n的复化梯形公式
给出误差限,将[a,b]n等分,步长hn
b
a n
,
用复化梯形公式:
在[xk , xk1 ]上,T1k
hn 2
(
f
( xk )
f ( xk1 ))
在[a, b]上,
T (hn ) Tn
在每个小区间 xk , xk1 ,(k 0,1,L , n 1)
上用梯形公式:
Tk
h( 2
f ( xk )
f
( xk1 ))
复化梯形公式为
k 0,1,L , n 1
Tn
n1
Tk
k0
h( 2
f (a)
n1
f (b)) h
k 1
f ( xk )
数值分析
数值分析
截断误差分析:
在区间
1(h) C1h p1 C2h p2 Ck h pk O(h p1 ) 其 中pk pk1 p1 0
数值分析
数值分析
将展开式
1(h) C1hp1 C2hp2 Ckhpk O(hp1 )
中 的h用rh代 替 ,r满 足1 r p1 0,则 1(rh) C1(rh) p1 C2 (rh) p2 Ck (rh) pk 用r p1乘原式两端再与此式相减得到: (1 r p1) (1(rh) r p11(h)) C2 (r p2 r p1 )h p2 Ck (r pk r p1 )h pk 整理后得到:
类 似 地 , 若 定 义 m1(h)
m (rh) r 1 r

数值分析复化Simpson积分公式和复化梯形积分公式计算积分的通用程序培训讲学

数值分析复化Simpson积分公式和复化梯形积分公式计算积分的通用程序培训讲学

数值分析复化S i m p s o n积分公式和复化梯形积分公式计算积分的通用程序数值分析第五次程序作业PB09001057 孙琪【问题】分别编写用复化Simpson积分公式和复化梯形积分公式计算积分的通用程序;用如上程序计算积分:取节点并分析误差;简单分析你得到的数据。

【复化Simpson积分公式】Simpson法则:使用偶数个子区间上的复合Simpson法则:设n是偶数,则有将Simpson法则应用于每一个区间,得到复合Simpson法则:公式的误差项为:其中δ【复化梯形积分公式】梯形法则:对两个节点相应的积分法则称为梯形法则:如果划分区间[a,b]为:那么在每个区间上可应用梯形法则,此时节点未必是等距的,由此得到复合梯形法则:对等间距h=(b-a)/n及节点,复合梯形法则具有形式:误差项为:【算法分析】复合Simpson法则和复合梯形法则的算法上述描述中都已介绍了,在此不多做叙述。

【实验】通过Mathematica编写程序得到如下结果:1.利用复化Simpson积分公式得:可以看出,当节点数选取越来越多时,误差项越来越小,这从复合的Simpson公式很好看出来,因为在每一段小区间内,都是用Simpson法则去逼近,而每一段的误差都是由函数在该区间内4阶导数值和区间长度的4次方乘积决定的,当每一段小区间越来越小时,相应的每一段小区间内的逼近就会越来越好,从而整体的逼近效果就会越来越好。

2.利用复化梯形积分公式得:可以看出,当节点数选取越来越多时,误差项越来越小,这从复合的梯形公式很好看出来,因为在每一段小区间内,都是用梯形法则去逼近,而每一段的误差都是由函数在该区间内2阶导数值和区间长度的2次方乘积决定的,当每一段小区间越来越小时,相应的每一段小区间内的逼近就会越来越好,从而整体的逼近效果就会越来越好。

【分析】通过对上述两种法则的效果来看,复合Simpson法则的误差要比复合梯形法则收敛到0更快,说明复合Simpson法则逼近到原来的解更快,这主要是因为在每一段小区间内,复合Simpson法则利用得是Simpson法则,复合梯形法则利用得是梯形法则,前者的误差项要比后者的误差项小很多,因此造成了逼近速度的不一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析复化梯形公式,复化S i m p s o n公式M A T L A B程序
精品资料
仅供学习与交流,如有侵权请联系网站删除 谢谢2 分别用复化梯形公式、复化Simpson 公式计算定积分dx e x ⎰+201,取
n=2,4,8,16分别验证结果(精确值I=4.006994)。

复化梯形公式求定积分:
function I=tquad(x,y)
%复化梯形求积公式,其中,
%x 为向量,被积函数自变量的等距结点;
%y 为向量,被积函数在结点处的函数值;
n=length(x);
m=length(y);
%积分自变量的结点数应与它的函数值的个数相同 h=(x(n)-x(1))/(n-1);
a=[1 2*ones(1,n-2) 1];
I=h/2*sum(a.*y);
复化Simpson 公式求定积分:
function I=squad(x,y)
%复化Simpson 求积公式,其中,
%x 为向量,被积函数自变量的等距结点;
%y 为向量,被积函数在结点处的函数值;
n=length(x);
m=length(y);
%积分自变量的结点数应与它的函数值的个数相同 if rem(n-1,2)~=0
I=tquad(x,y);
return;
end
N=(n-1)/2;
h=(x(n)-x(1))/N;
a=zeros(1,n);
for k=1:N
a(2*k-1)=a(2*k-1)+1;
a(2*k)=a(2*k)+4;
a(2*k+1)=a(2*k+1)+1;
end
I=h/6*sum(a.*y);。

相关文档
最新文档