回顾体育统计学试题.doc
体育统计学复习
一、填空题(本大题共5个空,每题2分, 共10分。
)1、一个代表队在一场排球比赛中发球成功的次数属于[ ]数据。
2、定比测量尺度具有定距测量尺度的所有功能,一般可不作区别。
它们唯一区别在于定比尺度具有[ ]。
3、从总体中抽取的一部分个体称为[ ],其中所包含的个体数通常用符号n 表示。
4、在标准正态分布中,如果我们已知P (1.6<u< ∞)=0.0548,那么P (–∞<u<1.6)的值为[ ]。
5、一组观测数据最大值与最小值之差叫[ ]。
也称为两极差,用R 表示。
6、某体育俱乐部出售体育彩票,在100000张彩票中有特等奖1个,一等奖5个,二等奖100个,三等奖500个,末等奖1000个,问任意购买1张彩票中奖的概率为[ ]。
7、一组俯卧撑成绩为:8、6、5、12、9、4、7、7,其中位数为[ ]。
8、测得10名12岁学生身高为1.45、1.52、1.48、1.50米…,这组数据均为[ ]数据。
9、在标准正态曲线下,u=2.58右侧的面积为[ ]。
10、对于一组数值较大观测数据,将每个数据分别减去80后,所得新数据的平均数为5,则原数据的平均数为[ ]。
11、 测得8名男生50米行跑成绩6″3、6″1、 6″6、7″5、6″9、6″7、7″4、6″2 ,其平均数为 [ ]。
12、我们都知道跑步会把脚扭伤,可是还是有很多人愿意慢跑健身,这说明:跑步时扭伤脚是[ ]事件。
13、某运动员晨脉62次/分,某足球球星在整场比赛射门6次,这些资料均为[ ]数据。
二、判断题:(本大题共5小题,每小题2分 ,共10分。
)( )1、不可能事件是一定不会发生的。
( )2、i ni i y x ∑=1=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑==n i i n i i y x 11( )3、某篮球运动员在一场比赛中的投篮命中率为-0.55。
( )4、由实验条件的不同或施加的处理的不同而引起的差异叫条件误差。
体育统计学试题及答案
体育统计学试题及答案一、选择题1. 下列选项中,属于体育统计学的内容是:A. 运动员的饮食安排B. 运动员的心理素质C. 运动员的竞技成绩D. 运动员的训练计划答案:C2. 体育统计学主要研究以下哪个方面:A. 运动员的养生保健B. 运动项目的规则制定C. 运动员的竞技表现D. 运动场馆的建设规划答案:C3. 体育比赛中的场上实施情景统计是指:A. 记录运动员的训练计划B. 记录比赛时的主要情景C. 记录运动员的心理变化D. 记录比赛中的技术统计数据答案:B4. 体育统计学常用的数据分析方法包括:A. 方差分析B. 回归分析C. 相关分析D. 所有选项都对答案:D5. 作为体育统计学的研究对象,下列哪个属于场外统计:A. 记录运动员的体格指标B. 记录运动员在场上的表现C. 记录比赛场馆的气候情况D. 记录运动员的训练计划答案:A二、简答题1. 简述体育统计学在运动训练中的应用。
答:体育统计学在运动训练中有着广泛的应用。
首先,通过对运动员的竞技表现进行统计分析,可以了解运动员的优势和不足,进而制定有针对性的训练计划。
其次,通过运动员的技术统计数据,可以评估运动员的技术水平,及时发现问题并加以改进。
此外,体育统计学还可以帮助教练员进行对抗性训练的安排,提高运动员的竞技能力。
2. 你认为体育统计学对于提高比赛规则的公正性有何作用?答:体育统计学对于提高比赛规则的公正性起着重要作用。
通过对比赛进行统计分析,可以客观地评估比赛规则的合理性和公正性。
例如,在某项运动中,通过对比赛过程中的技术统计数据进行分析,可以判断现有的规则是否存在利于某一方的偏差,从而对规则进行相应的修改和完善,确保比赛结果的公正性。
三、论述题体育统计学在竞技体育中的应用分析体育统计学作为一门交叉学科的研究领域,它与体育竞技密不可分。
通过对运动员的竞技表现数据进行统计分析,可以了解运动员的优势和不足,制定相应的训练计划,提高运动员的竞技能力。
体育统计学复习题 文档
1,体育统计学:体育统计是运用数理的原理和方法对体育领域里各种随机现象规律性进行研究的一门基础应用学科,属方法论学科范畴。
2,体育统计从学科性质来看,它包括:描述性统计、推断统计、参数估计、假设检验3,体育统计工作的基本过程:统计资料的搜集、整理、分析4,普查:指对研究总体中所有个体进行全部的测试和观察5,抽样:在总体中随机地抽取研究个体6,频数分布表:组序号| 组限| 画记| 频数| 累计频数7,总体:根据统计研究的具体目的而确定的同质对象的全体样本:根据需要与可能从总体中抽取的部分研究对象的子集(N大于等于30为大样本)8,总体参数与样本统计量的区别与联系:反映总体的一些数量特征称为总体参数,如总体平均数和总体方差;而抽样样本所获得的一些数量特征称为样本统计量如样本的算术平均数和样本的方差联系:根据统计量可以得出总体参数9,集中位置数量的种类:中位数、众数、均数、几何平均数、算术平均数、离散系数:全距、绝对差、平均数、方差、标准差10,变异系数:也是反映变量离散程度的统计指标,它是以样本标准差与平均数的百分数来表示的,没有单位,记作CV CV=C/X11,定基比:在动态数列中,以某一时间的指标值作为基数,然后将各时期的指标数值与之相比。
因基数是固定的,故称定基比12,环比:在动态数列中,将各个时期的指标数值与前一时期的指标数值相比,由于比较的基数不是固定的,各时期都是以前期为基数,按数列的顺序用后期的数据比前期的数据,这种依次更迭的对比恰如连环,故称环比,又称环比相对数13,同比:14,标准正态曲线的峰值出现在U=0时,U变量服从参数U=0、B=1的正态分布,记为U-N(0,1) 高优指标U=(X-x)/S S决定曲线的高低,x决定曲线的胖瘦低优指标:U=(x-X)/S15,|U|=1.96 区间(-1.96,1.96)所围成的面积(概率)P=0.95 占整个曲线下面积的95% |U|=2.58 区间(-2.58,2.58)P=99% |U|=1.28 P=90%16,参数估计:用样本统计量来估计总体参数分为区间估计和点估计17,假设检验:通过样本的统计指标来判定总体参数是否相同的问题18,标准误:用来表示样本均数与总体均数间偏差程度的标准差称为均数的标准误19,假设检验的基本原理:中心极限定理,小概率事件原理中心极限定理:设从均值为U方差为R的一个任意总体中抽取容量为N的样本,当N充分大时样本均值的抽样分布近似服从均值为U,方差为R的正态分布小概率时间原理:在一次实验中,一个几乎不可能发生事件发生的概率,如是发生,则证明不是小概率事件小概率事件:P小于等于5%20.原假设与备择假设:原假设(0假设):研究者想收集证据予以反对的假设。
体育统计学期末考试习题
第 一 章
PART ONE
某样本铁饼成绩平均数29。9米,标准差4.1米,最好成 绩39.76米,最差成绩20.55米,试以平均数加减3倍标准 差为评分范围,求最好,最差以及,36米的累进分数
某样本1500米跑成绩4分47秒,标准差15秒,最好成绩4 分14秒,最差成绩5分41秒,假设服从正态分布,以平均 数-3倍标准差为1000分,平均数+4倍标准差为0分,试 求,最好,最差以及4分40秒累进分数
某地区男性体重服从正态分布,其中 均数55公斤,标准差10公斤,试求任 选一人的体重
1在区间【45,65】的概率
2大于85公斤的概率
某年级男生推铅球成绩服从正态分布,均数为 8.50米。标准差为0.35米,该年级400人
1成绩优于8.70米的人数的概率 2成绩在米的人数 3以均数为中心,占总人数95%的分布区间 4若规定优秀占10%,良好占30%,及格占
1试估计其中有多少人身高在177厘米以下
2试估计其中有多少人身高至少183厘米
3估计这些人中,以均数为中心,概率为75%的 身高区间是多少
已知某年级学生100米跑成绩服从正态分 布,均数为14.7秒,标准差为0.7秒,如 果制定测验标准要求10%达到优秀,30% 达到良好,8%不及格,其余为及格,问优 秀,良好,及格的成绩标准各是什么
单击此处添加副标题
体育统计
例题:某大型网球中心,每天接待的人数X服从 正态分布,其均数为800人,标准差为150人, 试求
1每天接待人数在650-1000之间的概率
2每天接待人数超过1100人的概率
3每天接待人数不足350人的概率
现有10000名成年男子,假定身高服从正态分布 ,其均数为175厘米,标准差为15厘米
体育统计学
体育统计学复习资料1、体育统计学是统计学的原理和方法在体育中的应用,是统计学的一个分支学科。
体育统计学是一门收集、整理和分析体育中的统计数据的方法科学,其目的在于从量的侧面揭示体育现象的特征和规律性。
2、体育统计分析的过程:(1)根据研究的问题做出研究设计 (2)根据上述设计收集样本数据 (3)整理数据资料统计描述 (4)统计推断 (5)作出统计结论(6)结合专业分析讨论3、总体:根据研究目的所确定的研究对象全体,它是由同质的个体所构成。
样本:从总体中抽取的一部分个体成为样本。
样本中所包含的个体数称为样本含量,通常用符号n 表示。
参数:表示总体分布某种特征的量数。
常用的总体参数有:总体的平均数、标准差、相关系数等。
统计量:表示样本分布某种特征的量数,它是由样本数据计算出来的。
如样本平均数 ,样本标准差统计误差:统计分析不可能避免误差,只可能减少误差。
统计误差归纳起来可分为两类。
第一类是实际测试值与真值之差(测量误差);第二类是样本指标与总体指标之差(抽样误差)。
4、有效数字:通常将仅保留末一位估计数字其余数字为准确数的数字称为有效数字,我们从左起非零数字开始,清点有效数字的位数,命名它是几位有效数字。
5、由于观测数据具有变异性,因而统计学中把它称为变量。
变量按取值情况可分为离散型变量和连续型变量,按性质(层次)可分为定类变量、定序变量、定距变量和定比定量。
定类变量是最低层次的变量,它的取值只有类别属性之分,而无大小、程度之分。
根据变量值,只能知道研究对象是相同还是不相同,定序变量的测度水平高于定类变量,它的取值除了类别属性之外,还有等级、次序的差别,例如学生体育成绩可分为优、良、中、差,这是一种由高到低的等级排列,它可对应为1、2、3、4等级,定距变量是定义变量在某个点值上为零点,以固定间距对变量进行的测度。
如运动时对体温的测定先定义出零度和一百度,然后以固定的间距“度”对某人的体温进行测度。
体育统计学试题及答案
体育统计学试题及答案一、选择题1. 体育统计学是运用统计学原理和方法进行体育研究和分析的学科。
以下哪个不是体育统计学的应用领域?a. 运动员表现评估b. 战术分析与预测c. 运动项目选材d. 体育休闲旅游答案:d2. 体育统计学中的“场均得分”是指运动员或球队平均每场比赛的得分数。
下列哪种统计方法可以计算“场均得分”?a. 算术平均b. 中位数c. 众数d. 方差答案:a3. 在体育比赛中,常用的得分统计方法有哪些?a. 助攻b. 投篮命中率c. 三分球命中率d. 上场时间答案:a、b、c4. 体育统计学中的“胜率”是指球队或运动员在一定时间内所获得的胜利数与总比赛数之比。
以下哪个是计算胜率的公式?a. 胜利次数 / 失败次数b. 胜利次数 / 总比赛数c. 总比赛数 / 失败次数d. 胜利次数 + 总比赛数答案:b5. 体育统计学中的“效率值”是综合评价运动员比赛表现的指标。
以下哪个不是计算效率值的方法?a. 得分 + 助攻 + 篮板 - 失误b. 得分 + 助攻 + 篮板 + 抢断 + 盖帽c. 得分 + 助攻 + 篮板 + 抢断 + 盖帽 - 失误d. 得分 + 投篮命中率 + 三分球命中率 + 罚球命中率答案:d二、解答题1. 请简要说明体育统计学在职业篮球中的应用,并列举一个具体的例子。
答案:体育统计学在职业篮球中起到至关重要的作用。
通过对比赛数据的统计和分析,我们可以评估球队的整体表现、战术效果和球员个人能力。
例如,在一场篮球比赛中,我们可以使用体育统计学的方法来分析球队的得分、篮板、助攻等数据,进而评估球队的进攻和防守水平。
同时,通过对球员个人数据的统计分析,我们可以评估球员的得分效率、篮板能力、组织能力等,为球队的选秀和人员调整提供参考依据。
2. 假设你是一名篮球教练,请列举至少三种体育统计学方法,以帮助你进行战术分析和指导球队训练。
答案:作为一名篮球教练,可以利用以下体育统计学方法进行战术分析和训练指导:a. 视频分析:通过观看比赛录像,分析球队在不同战术下的表现,包括进攻时的传球配合、位置调整等,以及防守时的盯人和篮板表现等。
体育统计学复习题答案
体育统计学复习题答案体育统计学是一门应用统计学原理和方法来分析和解释体育数据的学科。
以下是一些体育统计学复习题的答案示例:1. 描述性统计分析:- 描述性统计包括哪些内容?答案:描述性统计包括中心趋势的度量(如均值、中位数、众数)和离散程度的度量(如方差、标准差、极差)。
2. 概率分布:- 正态分布的特点是什么?答案:正态分布是一种对称的钟形曲线,其特点是均值、中位数和众数相等,且数据的分布遵循3σ规则。
3. 假设检验:- 假设检验的基本步骤是什么?答案:假设检验的基本步骤包括:提出零假设和备择假设、选择适当的检验统计量、确定显著性水平、计算检验统计量的值、做出决策。
4. 相关与回归分析:- 相关系数的取值范围是多少?答案:相关系数的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示无相关。
5. 方差分析:- 方差分析的目的是什么?答案:方差分析的目的是检验两个或两个以上样本均值是否存在显著差异。
6. 非参数统计:- 非参数统计方法适用于哪些情况?答案:非参数统计方法适用于样本量较小、数据不满足正态分布或数据为定性数据的情况。
7. 样本与总体:- 抽样误差是如何产生的?答案:抽样误差是由于从总体中随机抽取的样本不能完全代表总体而产生的误差。
8. 统计图表:- 条形图和直方图的区别是什么?答案:条形图用于展示分类数据的频数或百分比,而直方图用于展示连续数据的分布情况。
9. 体育成绩的统计分析:- 如何使用统计学方法分析运动员的成绩?答案:可以使用描述性统计来展示运动员成绩的中心趋势和离散程度,使用相关和回归分析来探究不同因素对成绩的影响,使用假设检验来比较不同运动员或不同训练方法的效果。
10. 体育研究中的伦理问题:- 在体育统计研究中,研究者应遵循哪些伦理准则?答案:研究者应遵循诚信、尊重参与者、保护隐私和数据的准确性等伦理准则。
请注意,这些答案仅为示例,具体问题的答案可能需要根据实际的统计数据和研究背景来确定。
体育统计学期中考试试题
《体育统计学》期中考试试卷
(总分100分)
班级学号姓名成绩
一、简答题(共45分,每题15分)
1、为了估计全国高中学生的平均身高,从20个城市选取了100所中学的
2万名高中生进行调查。
在该项研究中总体、样本、样本容量是什么?
2、若想从8000名大学生中抽取800名进行关于大学生体育锻炼时间的调
查,请问用系统抽样法如何进行抽样?
3、正态分布曲线的性质有哪些?
二、 计算题(第一题20分,第二题35分)
1、 随机抽测了8名运动员的100米成绩,结果(单位:s )如下:11.4、11.8、11.4、11.6、11.3、11.7、11.5、11.2,求这组数据的中位数、平均数与标准差。
(10分)
2、 某校初二男生跳远成绩服从正态分布,米9.1 X ,
S=0.20米。
试估计以均值为中心,80%的男生跳远成绩范围以及该区间相应的人数?(精确到0.01)
(注:P (u ≤-1.27)=0.1020,P (u ≤-1.28)=0.1003,P (u ≤1.28)=0.8997,P (u ≤1.29)=0.9015 ,U 服从标准正态分布 )。
《体育统计学》题集
《体育统计学》题集第一大题:选择题(每小题2分,共20分)1.在体育统计学中,下列哪一项不是描述性统计的内容?A. 平均数B. 标准差C. 频数分布D. 假设检验2.下列哪个统计量是度量数据分布离散程度的?A. 平均数B. 中位数C. 众数D. 标准差3.在体育研究中,如果要比较两组运动员的成绩是否有显著差异,应该使用哪种统计方法?A. t检验B. 方差分析C. 卡方检验D. 相关分析4.下列哪个概念用于描述两个变量之间的线性关系强度和方向?A. 回归系数B. 相关系数C. 协方差D. 标准差5.在体育统计学中,下列哪一项不是推断性统计的内容?A. 参数估计B. 假设检验C. 回归分析D. 频数分布表6.下列哪个统计量常用于描述偏态分布的中心位置?A. 平均数B. 中位数C. 众数D. 几何平均数7.在进行方差分析时,如果F值大于临界值,说明什么?A. 各组之间无显著差异B. 各组之间有显著差异C. 需要进行事后检验D. 数据不符合正态分布8.下列哪个统计图常用于展示两个变量之间的相关关系?A. 条形图B. 饼图C. 散点图D. 折线图9.在体育研究中,如果要研究运动员的年龄与其运动成绩之间的关系,应该使用哪种统计方法?A. t检验B. 方差分析C. 相关分析D. 卡方检验10.下列哪个概念用于描述数据集中某一数值出现的次数?A. 频数B. 频率C. 累积频数D. 累积频率第二大题:填空题(每小题2分,共10分)1.在体育统计学中,描述性统计主要包括______和______两部分内容。
2.标准差是度量数据分布______的统计量。
3.在进行假设检验时,如果P值小于显著性水平α,则应______原假设。
4.相关系数r的取值范围是______,其中r=1表示完全正相关。
5.在回归分析中,如果回归系数b大于0,说明自变量x与因变量y之间存在______关系。
第三大题:判断题(每小题2分,共10分)1.在体育统计学中,频数分布表是描述性统计的内容之一。
(完整word版)体育统计学考试必备
一、名词解释体育统计:是运用数理统计的理论方法,对体育领域里各种随机现象的规律进行研究的一门基础应用学科。
1.随机现象:在同一实验条件下,多次进行同一实验,所得结果不一定完全相同,往往存在差异,而且在实验前不能确切预言将要出现的结果,这样的现象称为随机现象。
2。
随机事件:随机实验的每一可能结果(在相同实验条件下,有可能出现和不可能出现的结果)称为随机事件。
3。
随机变量:随实验结果而变的变量(随机事件的数量表现)称为随机变量. 4。
概率:表示事件发生可能性大小的数值。
5。
古典概率:在实验中全部等可能的独立的基本结果有n 个,其中有m 个属于事件A ,则在实验中称事件A 出现的概率等于m 与n 的比,其公式为P(A )=nm ,此时事件A 出现的概率称为古典概率。
6。
统计概率:在同一实验条件下,重复进行n 次实验,事件A 出现m 次,则称m 与n 的比为事件A 在n 次实验中的频率;当n 很大时,频率逐渐稳定在某常数P 附近摆动,该常数称为事件A 发生的统计概率。
表达式为P (A)=nm 。
7。
总体:根据一定的研究目的而选择的同质对象的全体称为总体。
8.个体:构成总体的每一基本单位称为个体.9.样本:根据需要与可能从总体中抽取的部分个体称为样本。
10.样本含量:样本中所包含的基本单位称为样本含量. 11.大样本:n ≥45的样本称为大样本。
12。
小样本:n 〈45的样本称为小样本.13。
平均数:对于一组数据x (I=1,2,3………n ),把nxx ni i∑==1称为本组数据的算术平均数,简称平均数.14.算术平均数:对于一组数据x (I=1,2,3………n),把nxx ni i∑==1称为本组数据的算术平均数。
15. (样本)标准差:对于一组数据x (I=1,2,3………n ),把x 表示本组数据的平均数,则1)(12--=∑=n x xS ni ii称为本组数据的标准差。
16.变异系数:对于一组数据x (i=1,2,3………n),x 表示本组数据的平均数,S 表示本组数据的标准差,则CV=%100⨯xS称为本组数据的变异系数.17.误差:数据的测量值与真实值之间的差异.18。
《体育统计学》习题及解答
《体育统计学》习题及解答第一讲习题1-1.根据表1-1的数据,试利用Excel函数计算:(1) 总评成绩列第三位的成绩是多少?(2) 课程考试成绩倒数第十名的成绩是多少?(3) 总评成绩第一的成绩是多少?(4) 课程考试成绩最低的是多少?(5) 该年级课程考试的总分是多少?解:(1) 总评成绩列第三位的成绩是多少?=LARGE(g5:g32,3)回车=87(2) 课程考试成绩倒数第十名的成绩是多少?=small(f5:f32,10)回车=80(3) 总评成绩第一的成绩是多少?=large(g5:g32,1)回车=88(4) 课程考试成绩最低的是多少?=min(f5:f32)回车=70或=small(f5:f32,1)回车=70(5) 该年级课程考试的总分是多少?=sum(f5:f32)回车=22701-2.进入十三届亚运会足球比赛前八名的球队分别是中国、伊朗、科威特、泰国、韩国、土库曼斯坦、乌兹别克和卡塔尔,试分析前三名的组成情况有几种?解:=permut(8,3)回车=336分析:即前三名的组成情况有336种。
1-3.某届全运会篮球预赛分三区进行。
其中太原赛区男女各有9个队,哈尔滨赛区男女各有10个队,乌鲁木齐赛区男队9个,女队10个,各赛区男女各取前四名参加在北京举行的决赛,预赛和决赛都采用单循环制,试计算一共需比赛多少场?解:=combin(9,2)回车=36=combin(10,2)回车=45预赛场次为:36+36+45+45+36+45=243=combin(12,2)回车=66决赛场次为:66+66=132总场次为:132+243=375分析:即一共需比赛375场。
1-4.根据表1-1的数据,试利用Excel函数计算:(1) 调查报告成绩的平均数为多少?(2) 文献摘要成绩的众数为多少?(3) 试比较课程考试成绩的平均数和中位数。
解:(1) 调查报告成绩的平均数为多少=average(c5:c32)回车=83.03571(2) 文献摘要成绩的众数为多少?=mode(d5:d32)回车=90(3) 试比较课程考试成绩的平均数和中位数。
体育统计学练习题
体育统计学练习题一、简答题(24分)1、统计工作的基本过程和要求。
(6分)2、什么是总体、样本?它们是何种关系?(6分)3、什么是小概率事件和小概率事件原理?。
(8分)4、随机事件与必然事件的区别和联系。
(8分)5、什么是离中位置量数?它的主要代表是什么?(8分7、在统计学中均数和标准差有什么意义?(8分)8、什么是假设检验的基本思想?假设检验可分为几个步骤? (8分)9、动态数列与动态分析的关系。
(6分)11、简述从总体中随机抽样形成样本的意义(为什么在实际研究中往往要从总体中随机抽取样本进行研究?)。
(6分)12、区分大、小概率事件界限的标准是什么?什么是小概率事件原理?(8分)14、总体、样本的特征一般可从哪两个方面进行(均数和标准差的意义)?15、怎样描述数据的稳定性?有那些统计指标?16、简述随机数表法的应用步骤。
(10分)17、什么叫误差?真实值一般用哪些指标代替它?18、为什么在实际研究中往往要从总体中随机抽取样本进行研究?叙述怎样从庞大的总体中抽取样本的方法和步骤。
(10分)二、简算题(10分)1、正态分布应用题(10分)某市公务员考试,考试平均成绩X=70分,标准差S=12分,这次公务员录取率为16%,请用正态分布原理确定最低录取分数线。
2、全市环城越野比赛有1000人参加,平均成绩为40分钟,标准差S=2分钟,本次比赛录取50个名次,请用正态分布原理估计最低成绩为多少才能进入前50名?3、某次招生考试有500人参加,考试平均成绩为65分,标准差S=10分,这次招生录取100人,请用正态分布原理确定最低录取分数线。
4、为了判断两个跳远运动员踏跳的准确性,现测量两位学生踏跳点与标志线的距离(cm)如下:运动员A:2,3,-1,-10,0,-15,-8,-3,0,-6,-4,9运动员B:5,1,-6,-7,-12,10,-9,10,6,-7,-6,16试问哪个运动员稳定性更好?5、随机抽取20名运动员100m跑的成绩(s),试求他们的均数和标准差。
《体育统计学》习题
《体育统计学》习题第一章1. 试问统计学的研究对象是什么?2. 简述学习体育统计的要求?3. 简述学习体育统计的方法4. 体育统计的特点是什么?第二章 第一、二节1. 为了考察一枚骰子出现点数的规律,掷骰子若干次,问统计总体是什么? 2. 为了研究某人的百米跑水平,测其若干次百米跑成绩,问统计总体是什么? 3. 举例说明,概率与频率的区别与联系 4. 如何理解“小概率原则有出错的可能”? 5. 结合实际,分析减少抽样误差的方法或途径6. 从统计和几何的角度分别解释总体参数μ和σ的含义 7. 如何理解区间估计的可靠性与精确性的关系? 第三章1.设)1,0(~x x v r ⋅⋅ 求 (1))1(-<x P 0.1587 (2))5.111(>⨯P 0.1336 (3))5.01(<<-x P 0.53282.设)2,10(~2N x v r ⋅⋅,求 (1))9(>x P 0.6915 (2))1310(<<x P 0.4332 (3))14(>x P 0.02283. 设)5,20(~2N x v r ⋅⋅,已知3.0)(=<c x P 求c 17.4第四章1、某班级50名男生的体育课100米期终考试成绩如下:(单位:秒)请列出该班级100米成绩的频数分布表和频数分布图。
2、求出上题50名男生100米成绩的平均数和标准差 3、已知某篮球队8名球员的身高和体重:身高(米):1.98 1.89 1.92 1.99 2.05 1.96 2.07 1.87 体重(公斤): 77 83 84 84 79 82 98 86 求该队篮球运动员的身高和体重的平均值与标准差。
4、简述标准百分、累进计分在应用中的优缺点5、已知某班级体育课100米期终考试成绩:=x 13.6秒, S=0.4秒,求14.6秒和12.8秒的标准百分。
6、某班级体制达标测试,测得男生立定跳远成绩=x 1.98米,S=0.2米,设x -S 为60分x +3为100分,求1.92米和2.06米的累进计分。
体育统计学复习资料
四、参数估计是指利用样本指标统计量对总体指标参数作出推算和判断。 (1)当样本含量较大时,总体均数 的 95%置信区间可用下式作近似估计。
式中,
为样本均数,
为标准误,
称为置信区间 的 95%置信区间可用下式作近似估计。
(2)当样本含量较小时,总体均数
x t
一、
0.05,v
S x , x t 0.05,v S x
7
复习题 1 有 10 个引体向上的数据(单位:次)7、3、9、6、10、12、5、 11、4、13。 求: 平均数: 标准差: 方 差:
_
x x Z 对于测得值越小成绩越好的指标,比如 100 米跑等项目,我们称它为低优指标 s
9、标准百分的计算公式如下:
xx 100 高优指标 Z 50 6s
_
xx 100 低优指标 Z 50 6s
_
10、分布位置百分,是以分数反映出某个运动成绩在集体中的位置 只要知道了他所得的分布位置百分,就知道他在集体中所处的位置,也了解了他的水平与集体水平的比较情况这 正是这种评分方法的优点。 第六章 统计推断 一、误差 1、随机误差(理解) 2、系统误差(理解) 3、抽样误差(理解) 抽样误差也称为代表性误差,是指所得样本统计量与总体参数之间的离差。 二、抽样误差(标准误)与标准差的区别: 1、从意义上讲,标准差是随着样本含量的增加而趋于稳定。而标准误则不同,标准误与样本含量 n 的平方根成反比, 即随着样本含量的增加而减小。在实际工作中总希望标准误愈小愈好,故必须设法合理地增加样本的含量。 2、从两者所描述的对象来看,标准差是描述变量的实数值变异的大小,即观测值系列的离散程度。凡同质的资料,标 准差大,表示个体变异大;标准差小,表示个体变异小 而标准误是样本分布的标准差,它所描述的是样本统计量的抽样误差的大小,即样本统计量的离散程度。凡同质的资 料,标准误大,说明用样本统计量估计总体参数的可靠性小;标准误小,说明同样本统计量估计总体参数的可靠性大。 3、从用途上来说,标准差是用以判断某一个随机变量值是否在正常范围(如 1.96 ) ;而标准误则是用来估计参 数所在的范围。标准差用于计算标准误和离差系数;而标准误可用来进行统计参数的显著性检验。 三、标准误的计算(应用) (1)均数标准误的计算 (2)率的标准误的计算
体育统计学试卷A
系别班级学号姓名淮阴师范学院 2013 级社会体育专业《体育统计与测量平价》课程考试卷(A) 2015-2016 学年第 1 学期题号一二三四五六总分密得分得分一、填空题 (每空 1 分,共 15 分)1、体育测量学的三要素包括_____________、_____________、。
封2、体育测量量表包括、、、。
3、可靠性的种类包括、、。
4、体育评价基本形式有、、。
5、决定正态分布曲线的位置,决定正态分布曲线的形状。
线得分二、选择题 (每小题 1 分,共 15 分)1、以下适合描述统计资料离散趋势的指标是()A、均数、标准差、方差B、极差、标准差、中位数C、中位数、均数、变异系数 D、标准差、变异系数12、下列关于标准差的说法中错误的是()A、标准差一定大于 0B、标准差和方差是属于描述变异程度的同类指标C、同一资料的标准差一定小于均数D、标准差常用于描述正态分布资料的变异程度。
3、样本观测值在频率分布表中频率最多的那一组的组中值,称为 ( )A、中位数B、均值C、众数D、标准差4、 一 组 数 据 中 20%为 4,60%为 3,10%为 2,10%为 1,则 平 均 数 为( )A、1.5B、1.9 C、2.9 D、不知道总个数,不能计算5、T 检验和方差分析都可以用于两均数的比较,下列说法正确的是 ( )A、两者可互相代替B、T 检验可以代替方差分析C、方差分析可以代替 T 检验D、两者不能互相代替6、某校学生身高服从正态分布,现随机抽测 29 人进行数据测量,已知 x、Sx ,则该校学生身高均数 99%的置信区间为()A、( x -t0.05/2(28) Sx , x +t0.05/2(28) Sx )B、( x -t0.01/2(28) Sx , x +t0.01/2(28) Sx )C、( x -1.96 Sx , x +1.96 Sx )D、( x -2.58 Sx , x +2.58 Sx )7、某校男生参加跳远决赛成绩的平均数为 5.00 米,标准差为 0.4 米,则变异系数为()A、8.00%B、0.40%C、6.00%D、0.06%8、正 态 曲 线 下 , 从 均 数 到 1.96 倍 标 准 差 的 面 积 为()A、 95%B、45%C、 97.5%D、 47.5%9、已知 P(0<u<1.22)=0.3888,则 P(-∞<u<-1.22)的值为()A、0.1112B、0.6112C、0.2224D、0.888810、 随 着 样 本 含 量 的 增 加 , 标 准 误()A、逐渐增大B、 逐 渐 减 小C、趋向稳定D、 变 化 无 规 律11、 查找“缺、误、疑”工作属于统计中的A、资料的审核B、资料的收集C、资料的分析D、资料的抽查()1 2 、从性质来看,通过______的数量特征以一定的方式估计、推断______的特征,称为推断性统计。
统计试题库
统计试题库体育统计试题库一、名词解释:1、随机现象2、随机事件3、随机变量4、概率5、统计数据概率6、统计数据量7、参数8、总体9、个体10、样本11、样本含量12、大样本13、小样本14、分散边线量数15、距中边线量数16、平均数17、算术平均数18、标准差19、变异系数20、综合评价21、误差22、权重23、抽样误差24、随机误差25、过错误差26、系统误差27、大概率28、大概率事件29、百分位数30、假设检验31、实际推断原理()1.随机现象就是偶然现象,无规律可寻。
()2.在实际工作中,我们可以得到总体率的真值。
()3.通过{embedequation.3|x和s对总体均数展开估算,99%的置信区间就是(-t0.05/2(n-1)s,-t0.05/2(n-1)s)()4.回归方程的适用范围一般来说,不仅局限于原来样本的范围内,而且可以随意外推.()5.是描述观察值样本特征的参数.()6.体重、体重、投篮次数等数据资料均属连续型资料。
()7.计算某跑成绩的z分时,用下面的公式:z=50+100。
()8、百分位数法就是在变量不顺从正态分布时采用的变量标准化方法。
()9、在实际生活中,我们可以得到总体的真值。
()10、fees记分法就是根据变量的值上升时的难度,不等距升分。
()11、是用来表示总体特征的参数。
()12、密正态分布表应具有标准正态分布的条件,非标准正态分布无法轻易密。
()13、过失误差常因工作人员笔误、读错、听错造成的,是不可避免的。
()14、当要比较的两样本统计数据量的总体参数事先无法确实哪个大于哪个时,就要使用单侧检验的手()15、为了度量抽样误差的大小,统计学家根据数理统计的原理,提出了一个度量指标——标准误,并依统计资料的性质相同分别称作“均数的标准误s和”率为的标准误sp“。
()16、小概率事件在一次实验中是绝对不会发生的。
()17、当r<0时,说道两变量关系不紧密。
体育统计学练习题
体育统计学练习题一、填空题1、通过数学方法简化,使样本的一些特征用几个数集中反映出来,这些数就是。
2、统计资料的审核,通常分两个步骤和。
3、影响抽样误差大小的主要因素有、、。
4、正态分布中两个参数μ和 分别确定图形的和。
5、假设检验中易犯和两类错误。
6、体育简图的特点、。
7、体育绘图的方法有、、。
8、透视形式可分为、、。
9、教学组织队形主要有、、单排双排等。
10、团体操变化的基本方法:、、分段法、。
11、体育器械简图可分为、、、。
12、体育教学组织形式图有、、。
13、运动能力指人体()的能力。
14、运动训练目标包括:运动成绩指标、()、运动负荷指标。
15、起始状态的诊断包括:运动成绩诊断、()、训练负荷诊断。
16、运动训练学研究的主要目的在于:揭示运动训练活动的(),指导各专项运动训练实践,使各专项的训练活动建立在科学的()基础之上,努力提高训练的科学化水平.17、耐力素质是指有机体()的能力。
18、赛前训练周负荷变化的基本特点是()。
19、()是运动训练活动最基本的组织形式。
20、()指运动员掌握和运用战术的能力,是运动员整体()的重要构成部分。
二、解释1、总体:2、统计量:3、中位数4、统计假设5、体育绘图6、体育教学程序图7、平行透视原理8、团体操9、整体观察法10、适宜负荷原则11、直观教练原则12、分解训练法13、特长技术14、重复训练法三、简答题1、试述统计分析的主要过程2、样本特征数分几类?试总结所学各类样本特征数?3、试述假设检验的基本原理。
4、简述体育绘图的内容5、体育动作简图的特点6、团体操的特点7、体育游戏组织形式图画法8、简述影响运动技术的因素9、简述运动训练学的主要任务10、简述运动训练方法的基本结构11、简述运动训练方法的分类12、简述提高动作速度常用的方法手段体育统计学练习题答案一、填空题1、样本特征数2、初审、复核3、变量本身的离散程度、抽样方法、样本大小4、位置、形状5、弃真、纳伪。
(完整word版)!!!正版!!!体育教育专业--体育统计学复习题库
体育统计学复习题第一章绪论一、名词解释:1、总体:根据统计研究的具体研究目的而确定的同质对象的全体,称为总体。
2、样本:根据需要与可能从总体中抽取的部分研究对象所形成的子集。
3、随机事件:在一定实验条件下,有可能发生也有可能不发生的事件称随机事件。
4、随机变量;把随机事件的数量表现(随机事件所对应的随机变化量)。
5、统计概率:如果实验重复进行n次,事件A出现m次,则m与n的比称事件A在实验中的频率,称统计概率。
6、体育统计学:是运用数理统计的原理和方法对体育领域里各种随机现象的规律性进行研究的一门基础应用学科。
二、填空题:1、从性质上看,统计可分为两类:描述性统计、推断性统计。
2、体育统计工作基本过程分为:收集资料、整理资料、分析资料。
3、体育统计研究对象的特征是:运动性、综合性、客观性。
4、从概率的性质看,当m=n时,P(A)=1,则事件A为必然事件。
当m=0时,P(A)=0,则事件A为不可能发生事件。
5、某校共有400人,其中患近视眼60人,若随机抽取一名同学,抽取患近视眼的概率为 0.15 。
6、在一场篮球比赛中,经统计某队共投篮128次,命中41次,在该场比赛中每投篮一次命中的率为 0.32 。
7、在标有数字1~8的8个乒乓球中,随机摸取一个乒乓球,摸到标号为6的概率为 0.125 。
8、体育统计是体育科研活动的基础,体育统计有助于运动训练的科学化,体育统计有助于制定研究设计,体育统计有助于获取文献资料。
9、体育统计中,总体平均数用μ表示,总体方差用σ2表示,总体标准差用σ表示。
10、体育统计中,样本平均数用x表示,样本方差用 S2表示,样本标准差用 S 表示。
11、从概率性质看,若A、B两事件相互排斥,则有:P(A)+ P(B)= P(A+B)。
12、随机变量有两种类型:一是连续型变量,二是离散型变量。
13、一般认为,样本含量 n≥45 为大样本,样本含量 n<45 为小样本。
14、现存总体可分为有限总体和无限总体。
体育统计学试题及答案
体育统计学试题及答案一、选择题(每题2分,共20分)1. 在体育统计学中,描述数据集中趋势的指标不包括以下哪一项?A. 平均数B. 中位数C. 众数D. 方差答案:D2. 以下哪项不是体育统计学中常用的数据类型?A. 计数数据B. 测量数据C. 定性数据D. 定量数据答案:C3. 在体育统计学中,用于描述数据离散程度的指标是?A. 均值B. 方差C. 标准差D. 众数答案:B4. 体育统计学中,描述数据分布形态的指标是?A. 均值B. 标准差C. 偏度D. 峰度答案:C5. 以下哪项是体育统计学中假设检验的步骤?A. 建立假设B. 收集数据C. 计算检验统计量D. 所有选项答案:D6. 在体育统计学中,相关系数的取值范围是?A. -1 到 1B. 0 到 1C. -∞ 到+∞D. 0 到 10答案:A7. 体育统计学中,用于预测未来数据的统计方法是?A. 描述性统计B. 推断性统计C. 探索性数据分析D. 回归分析答案:D8. 体育统计学中,用于描述两个变量之间关系的指标是?A. 相关系数B. 回归系数C. 均值D. 方差答案:A9. 体育统计学中,用于确定样本数据是否具有统计学意义的方法是?A. 描述性统计B. 假设检验C. 回归分析D. 相关分析答案:B10. 在体育统计学中,用于描述数据分布的集中趋势的指标是?A. 均值B. 方差C. 标准差D. 众数答案:A二、填空题(每题2分,共20分)1. 体育统计学中,数据的______和______是描述数据分布的两个重要方面。
答案:集中趋势;离散程度2. 在体育统计学中,______是用来描述数据的一般水平的指标。
答案:平均数3. 体育统计学中,______是用来衡量数据离散程度的指标。
答案:方差4. 体育统计学中,______是用来衡量数据分布形态的指标。
答案:偏度5. 体育统计学中,______是用来衡量两个变量之间线性相关程度的指标。
答案:相关系数6. 体育统计学中,______是用来预测未来数据的统计方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学模拟试题
一、名词解释。
1、总体参数:在统计学中,反映总体的一些数量特征称为总体参数
2、样本统计量:由样本所获得的一些数量特征称为样本统计量
3、随机事件:在一定的实验条件下,有可能发生也有可能不发生的事件为随
机事件
4、集中位置量数:反映一群性质相同的观察的平均水平或集中趋势的统计指标
5、频数:是将数据资料按一定顺序分成若干组,并数出各组中所含有的数据。
6、统计推断:
7、抽样误差:抽出的样本统计量之间或样本统计量与总体参数间的偏差,立要由于个体间的差异所造成。
8、相对数:相对数也称为相对指标,是两个有联系的指标的比率,它可以从数量上反映两个相互联系的事物(或现象)之间的对比关系。
9、假设检验:在实际检验过程中,主要的问题是要判定被检验的统计量之间的偏差是由抽样误差造成的,还是由于总体参数不同所造成的,要作出判断就需要对总体先建立某种假设,然后通过统计量的计算及概率判断,对所建立的假设是否成立进行检验。
这类方法称为假设检验。
10、平均数:反映一群性质相同的观察值的平均水平或集中趋势的统计指标。
11、变异系数:也是反映变量离散程度的统计指标,它是以样本标准差与平均数的百分数来表示的!记作:CV
12、总体与样本:
13、离中位置量数:描述一群性质相同值的离散程度的统计指标
14、抽样:指在总体中抽取一定含量的样本。
15、频率:
16、系统误差:宏观世界是由实验对象本身的条件,或或者者仪器不准,场地品格出现故障,训练方法,手段不同所造成的,可使测试结果杨倾向性偏大或偏小。
17、结构相对数:是在分组基础上,以各个分组全计数值与总值对比的相对数。
18、a=0.05或a=0.01:指检验水准称小概率水平
19、中位数:将样本的观察值按其数值大小顺序排列起来,处于中间位置的那个数值就是中位数,中位数通常用X表示,它处于频数分配的中点,不受极端数值的影响。
20、组距:组距指的是组与组之间的区间长度。
二、填空题。
1、a=0.05和a=0.01在统计学中称为(小概率水平)
2、抽样误差是由于(个体间的差异)造成的。
3、标准误差是反映(数据的离散程度)的指标。
4、(随机变量)用来度量随机事件的可能性大小。
5、(算术)平均数量是最简单最常用最有效的统计量。
6、由样本所获得的数量特征称为样本统计量,反映总体的一些数量特征称为(总体参数)
7、标准误是反映(度量抽样误差大小)的指标。
8、在资料的收集过程中,一般要求(资料的准确性)(资料的齐同性)和(资料的随机性)。
9、在一组观察值中,最大值与最小值之差叫(极差)。
10、表示集中位置的指标主要有(中位数)(众数)(平均数)。
三、单项选择题。
1、以下适合描述定量资料,离散趋势的指标是(D )
A、均数、标准差、方差
B、极差、标准差、中位数
C、中位数、均数、变异系数
D、标准差、变异系数
2、下列关于标准差的说法中错误的是(B )
A、标准差一定大于0.
B、标准差和方差属于描述变异程度的同类指标
C、同一资料和标准差一定小于均数
D、标准差常用于描述正态公布资料的变异程度。
3、进行假设检验的目的是(A)
A、判断样本统计量的差异仅仅是抽样引起的还是样本与总体原本就不同
B、由样本统计量估计总体参数
C、确定发生该观察结果的概率
D、计算统计量
4、抽样误差原因是(C )
A、观察对象不纯
B、资料不是正态分布
C、个体差异
D、随机方法错误
5、T检验和方差分析都可以用于两均数的比较,下列说法正确的是( D )
A、T检验和方差分析可经互相代替
B、T检验可以代替方差分析
C、方差分析可以代替T检验
D、T检验和方差分析不能互相代替
6、下列关于方差的应用条件的说法中正确的是( D )
A、随机性
B、正态性
C、方差齐性
D、以上都对
7、两样本均数的比较,P〈=0.001可以认为两总体的均数(A )
A、有差别
B、无差别
C、差别无意义
D、以上都对
8、两个样本平均数的比较,不能用( A )
A、方差分析
B、T检验
C、U检验
D、X2检验
四、判断改正
1、概率又称为风率是度量某一个随机事件A发生可能性大小的一个数值,记为P (A)
2、当自变量X与因变量Y用直角坐标表示散点同量现直红时,两者没有相关性
3、T检验的方法中,用于小样本含量U检验用大于样本含量
4、方差分析中,通过把所要考察的结果称为指标
5、统计表的标题一般放在表的下方,而统计图的标题放在表的上面
6、依据两个变量之间的数据关系建立直线回归方程,这个回方程式由:Y=a+bx表示?
7、方差分析的前提是,不同总体本是互联系的
8、T检验和U检验,只能用于两组均数的显著性检验。