初三上册数学公式
初一到初三数学重点公式
初一到初三数学重点公式初中生学习数学应该熟练掌握基本公式,下面总结了初中数学公式,希望能够帮助大家学习数学。
因式分解常用公式1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。
8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。
三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|图形面积公式直棱柱侧面积:S=c*h斜棱柱侧面积:S=c'*h正棱锥侧面积:S=1/2c*h'正棱台侧面积:S=1/2(c+c')h'圆台侧面积:S=1/2(c+c')l=pi(R+r)l球的表面积:S=4pi*r2圆柱侧面积:S=c*h=2pi*h圆锥侧面积:S=1/2*c*l=pi*r*l弧长公式:l=a*r.a是圆心角的弧度数r>0扇形面积公式:s=1/2*l*r锥体体积公式:V=1/3*S*H圆锥体体积公式:V=1/3*pi*r2h斜棱柱体积:V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式:V=s*h;圆柱体V=pi*r2h。
初中三年数学公式定理大全,初一到初三
要知道明年你们将迎来人生中的第一次选拔性考试——中考,所以,这一年的时间都是很宝贵了。
不想落后他人,预习复习工作都得做到位。
今天,老师和大家分享的是新初三数学:三年【公式定理】大全,初一初二预习,初三复习!初中数学公式定理大全1、点、线、角点的定理:过两点有且只有一条直线;两点之间线段最短角的定理:同角或等角的补角相等;同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等;有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上;角的平分线是到角的两边距离相等的所有点的集合6等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边;等腰三角形顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称8定理:在直角三角形中,如果一个锐角等于30°那它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11矩形性质定理:矩形的四个角都是直角;矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形12菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14定理:关于中心对称的两个图形是全等的;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1. 在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1. 两角对应相等,两三角形相似(ASA)2. 两边对应成比例且夹角相等,两三角形相似(SAS)3. 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18定理1:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值定理2:任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19定理:过不共线的三个点,可以作且只可以作一个圆;垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理3:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。
数学九年级公式
1.长方形的周长= 2 × (长+ 宽),即C = 2(a + b)。
2.正方形的周长= 4 ×边长,即C = 4a。
3.圆的周长= π × 直径,即C = πd。
4.长方形的面积= 长×宽,即S = ab。
5.正方形的面积= 边长×边长,即S = a²。
6.圆的面积= π × 半径²,即S = πr²。
7.扇形面积= (n/360) × π × 半径²,其中n 是圆心角度数,即S = nπr²/360。
8.三角形的面积= (底×高) / 2,即S = (a × h) / 2。
9.正方形的面积= 边长×边长,即S = a²。
10.平行四边形的面积= 底×高,即S = a × h。
11.菱形的面积= (对角线1 ×对角线2) / 2,即S = (d1 × d2) / 2。
12.梯形的面积= ((上底+ 下底) ×高) / 2,即S = (a + b)h/2。
这些公式包括了一些常见的几何形状(如长方形、正方形、圆、三角形、平行四边形、菱形和梯形)的周长和面积的计算公式。
请注意,这些公式可能需要适应具体的问题和情境进行应用。
初三(九年级)数学公式大全
初三(九年级)数学公式大全为了节约同学们的复习时间,我们小编特意精编了初三(九年级)数学公式大全的资料,这套数学公式大全囊括了整个初中阶段的所有的数学教科书上的公式,希望能够对考生有帮助,祝考试顺利!1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
初中数学九年级上册知识点及公式总结大全(人教版)
九年级数学(上)知识点(2)被开方数中不含有开得尽方的整数或整式。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。
注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。
8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。
在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。
9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。
第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax +bx+c=0(a≠0).2这种形式叫做一元二次方程的一般形式.其中ax 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:2(1)运用开平方法解形如(x+m) =n(n≥0)的方程;领会降次──转化的数学思想.2(2)配方法:将一元二次方程变形为(x+p) =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.2 2(3)公式法:将方程化为一般形式ax +bx+c=0,当b -4ac≥0时,将a、b、c代入式子第二十三章旋转一.知识框架二.知识概念 1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
初中数学公式大全(从初一到初三)
一、初一数学公式1.1 二次根式的性质① 非负性:若a≥0,则√a≥0② 开平方的乘法性:√a×√b=√(a×b)③ 开平方的除法性:√(a/b)=√a/√b (b>0)1.2 整式化简公式①(a+b)²=a²+2ab+b²②(a-b)²=a²-2ab+b²③(a+b)×(a-b)=a²-b²1.3 分式的运算① 加法:a/b+c/d=(ad+bc)/bd② 减法:a/b-c/d=(ad-bc)/bd③ 乘法:a/b×c/d=ac/bd④ 除法:a/b÷c/d=ad/bc2.1 二次函数① 一般式:y=ax²+bx+c (a≠0)② 顶点坐标:( -b/2a , c-b²/4a )③ 判别式:Δ=b²-4ac若Δ>0,则二次函数有两个不同的实根若Δ=0,则二次函数有两个相等的实根若Δ<0,则二次函数无实根2.2 三角函数① 正弦函数:y=Asin(Bx-C)+D② 余弦函数:y=Acos(Bx-C)+D③ 正切函数:y=Atan(Bx-C)+D2.3 同底数幂的运算aⁿ×aᵐ=aⁿᵐaⁿ÷aᵐ=aⁿ⁻ᵐ(a≠0)三、初三数学公式3.1 等差数列① 通项公式:aₙ=a₁+(n-1)d② 前n项和公式:Sₙ=n/2(a₁+aₙ)3.2 三角恒等变换公式① 和差化积公式:sinα±sinβ=2sin(±(α±β)/2)cos(∓(α±β)/2)② 二倍角公式:sin2α=2sinαcosα, cos2α=cos²α-sin²α3.3 平面几何图形① 三角形面积公式:S=(1/2)×底×高② 圆周长公式:C=2πr, 圆面积公式:S=πr²初中数学公式包括初一到初三阶段的各类公式,涵盖了整式化简、二次函数、三角函数、等差数列、三角恒等变换、平面几何图形等内容。
初三数学公式
初三数学复习资料1乘法公式:(a+b)(a-b)= a – b (a±b) = a ± 2ab + b变形公式:a + b =(a+b) – 2ab2求根公式法 x =3方差:s = [(x – x) +(x – x) +….+(x + x ) ]4、n边形内角和 (n – 2).180 任意多边的外角和等于360°5、根的判别式: b – 4ac6.根与系数顶的关系: x + x = x.x =7一次函数:y=kx+b(k≠0)正比例函数:y=kx(k≠0)或 y/x=k8.反比例函数:y= 或xy=k(k≠0)。
9.二次函数 (1)一般式 y= ax + bx +c (2)顶点式 y=a(x –h) +k(3)两根式 y=a(x-x )(x-x ) (a ≠0)10二次函数形式及顶点:(1)Y= ax (2) y=ax +k (3) y=a(x-h) (4) y=a(x-h) +k (5) y=ax +bx +k顶点;(0,0)(0,k)(h,0) (h,k) ( , ) 11.特殊角的三角函数值:12.一组计算公式(1).圆周长公式 c=2∏r (2).圆面积公式 s=∏r(3).扇形面积公式 : s= 或 s=(4).弧长公式 L=(5).圆柱的侧面展开图及相关计算 (6)圆锥的侧面展开图及相关计算S(侧)=2∏rh S(侧)=∏rL13. 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a +b =c14. 有一个角等于60°的等腰三角形是等边三角形15. 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半16. 直角三角形斜边上的中线等于斜边上的一半17 定理线段垂直平分线上的点和这条线段两个端点的距离相等18平行四边形性质定理1 平行四边形的对角相等 2 平行四边形的对边相等 3 平行四边形的对角线互相平分19平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 2 两组对边分别相等的四边形是平行四边形3 对角线互相平分的四边形是平行四边形4 一组对边平行相等的四边形是平行四边形20矩形性质定理 1 矩形的四个角都是直角 2 矩形的对角线相等21矩形判定定理 1 有三个角是直角的四边形是矩形 2 对角线相等的平行四边形是矩形22菱形性质定理1 菱形的四条边都相等 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角23 菱形面积=对角线乘积的一半,即S=(a×b)÷2 或S= ah24菱形判定定理1 四边都相等的四边形是菱形 2 对角线互相垂直的平行四边形是菱形25正方形性质定理1 正方形的四个角都是直角,四条边都相等2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角26等腰梯形性质定理1 等腰梯形在同一底上的两个角相等2两条对角线相等27等腰梯形判定定理 1在同一底上的两个角相等的梯形是等腰梯形2对角线相等的梯形是等腰梯形28 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半29 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h30 相似三角形判定定理1 两角对应相等,两三角形相似2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似3 两边对应成比例且夹角相等,两三角形相似(SAS)4 三边对应成比例,两三角形相似(SSS)5 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似31 性质定理3 相似三角形面积的比等于相似比的平方32和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线33到已知角的两边距离相等的点的轨迹,是这个角的平分线34到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线35定理不在同一直线上的三点确定一个圆。
初三上册数学一元二次方程知识点公式法
初三上册数学一元二次方程知识点公式法一元二次方程的定义一元二次方程是指形式为Ax^2 + Bx + C = 0的方程,其中A、B 和C都是已知的实数且A ≠ 0。
其中,A是二次项系数,B是一次项系数,C是常数项。
一元二次方程的解一元二次方程的解可以通过求根公式来求得。
求根公式为:x = (-B ± √(B^2 - 4AC)) / (2A)。
其中,“±”表示两个解,即正负两个值。
如果根的判别式D = B^2 - 4AC大于0,方程有两个不相等的实数根;如果D = 0,方程有两个相等的实数根;如果D < 0,方程没有实数根。
一元二次方程的性质1.一元二次方程的图像是抛物线。
当A > 0时,抛物线开口朝上;当A < 0时,抛物线开口朝下。
2.一元二次方程的对称轴是x = -B/2A。
对称轴将抛物线分成两个对称的部分。
3.一元二次方程的顶点坐标为(-B/2A, f(-B/2A)),其中f(x)为方程的解析式。
4.一元二次方程的解的个数与判别式D的大小相关。
当D > 0时,方程有两个不相等的实数根;当 D = 0时,方程有两个相等的实数根;当D < 0时,方程没有实数根。
5.一元二次方程的解与方程的系数有关。
如果改变A、B、C的大小,方程的解也会相应改变。
公式法解一元二次方程的步骤1.将方程写成标准形式:Ax^2 + Bx + C = 0,其中A ≠ 0。
2.计算判别式D = B^2 - 4AC。
3.根据判别式的大小判断方程的解的个数:–当D > 0时,方程有两个不相等的实数根,可以使用求根公式直接计算。
–当D = 0时,方程有两个相等的实数根,可以使用求根公式直接计算。
–当D < 0时,方程没有实数根,无法使用求根公式计算。
4.如果方程有实数根,使用求根公式计算解:–x1 = (-B + √D) / (2A)–x2 = (-B - √D) / (2A)例题演示例题1:解一元二次方程 2x^2 - 5x + 2 = 0。
初三数学公式大全
初三数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c ^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)³180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a³b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L³h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) 94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
2021年人教版九年级上册数学概念定义公式归纳
九年级上册数学概念、定义、公式归纳一、二次根式1.2.二次根式被开方数为非负数。
所有二次根式都是非负数。
3.4.二次根式乘法法则:反过来也合用。
5.二次根式除法法则:,反过来也合用。
6.被开方数不含分母、不含能开得尽方因数或因式二次根式,称为最简二次根式。
7.二次根式加减法则:先将二次根式化成最简二次根式,再将被开方数相似二次根式进行合并。
二、一元二次方程8.等号两边都是整式,只具有一种未知数,并且未知数最高次数是2,这样方程叫一元二次方程。
9.一元二次方程普通形式:ax²+bx+c=0(a≠0),其中a叫做二次项系数,b叫做一次项系数,c是常数项。
10.解一元二次方程基本思路是“降次”。
办法有四种:①直接开平办法。
如果方程能化成x²=p或(mx+n)²=p(p≥0)形式,那么x=±√p,或mx+n=±√p。
②配办法:(1)移项,把常数项移到等号右边。
(2)系数化为1,方程两边同除以二次项系数。
(3)配方,等号两边同加一次项系数一半平方。
(4)直接开平方。
③公式法。
(1)运用根鉴别式b²-4ac判断根状况。
若鉴别式△不大于0,则方程无实数根;若等于0,则有两个相等实数根;若不不大于0,则有两个不相等实数根。
(2)△≥0时,运用一元二次方程求根公式“-b±√b²-4ac /2a”来解方程。
④因式分解法。
把方程化为mn=0形式。
11.求两个单位时间段平均增长(减少)率公式:a(1±x)²=b三、旋转12.把一种平面图形绕着平面内某一点O转动一种角度,叫做图形旋转。
点O叫旋转中心,转动角叫旋转角,转动方向有顺时针和逆时针两种。
13.旋转性质:①相应点到旋转中心距离相等。
②相应点与旋转中心所连线段夹角等于旋转角。
③旋转先后图形全等。
14.把一种图形绕着某一点旋转180°,如果它可以与另一种图形重叠,那么就说这两个图形中心对称。
人教版数学九年级上册 公式法
c
x x ,
a
a
2
方程两边都除以a,得
2
配方,得
即
b
c b
b
x2 x
a
a 2a
2a
b
b 2 4ac
x 2a
4a 2
2
.
2
,
探究新知
a 0, 4a 2 0, 当 b 4ac ≥ 0,
2
b
b 2 4ac
一般的,式子 b2-4ac 叫做一元二次方程根的判别式,通
常用希腊字母“∆”来表示,即∆=b2-4ac.
探究新知
一元二次方程的根的情况
【注意】若已知一个一元二次方程的根的情况,是否能得
到判别式的值的符号呢?
当一元二次方程有两个不相等的实数根时, b2-4ac >0;
当一元二次方程有两个相等的实数根时, b2-4ac = 0;
A. k>-1
B. k>-1 且k≠ 0
C. k<1
D. k<1 且k≠0
课堂检测
3. 已知x2+2x=m-1没有实数根,求证:x2+mx
=1-2m必有两个不相等的实数根.
证明:∵ x 2 2 x m 1 0 没有实数根,
∴ 4-4(1-m)<0, ∴m<0.
2
2
x
对于方程 x +mx=1-2m ,即 mx 2m 1 0
⊿=m2 8m 4 ,∵
m<0 ,∴ △>0.
∴x2+mx=1-2m必有两个不相等的实数根.
.
课堂小结
定
初三数学公式万能大全
九年级数学公式大全:1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理SAS有两边和它们的夹角对应相等的两个三角形全等23角边角公理ASA有两角和它们的夹边对应相等的两个三角形全等24推论AAS有两角和其中一角的对边对应相等的两个三角形全等25边边边公理SSS有三边对应相等的两个三角形全等26斜边、直角边公理HL有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于n-2×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=a×b÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=a+b÷2S=L×h831比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d842合比性质如果a/b=c/d,那么a±b/b=c±d/d853等比性质如果a/b=c/d=…=m/nb+d+…+n≠0,那么a+c+…+m/b+d+…+n=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例88定理如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似ASA92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似SAS94判定定理3三边对应成比例,两三角形相似SSS95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆;110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+rR>r④两圆内切d=R-rR>r⑤两圆内含d<R-rR>r136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成nn≥3:⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于n-2×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积√3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长=d-R-r外公切线长=d-R+r还有一些,大家帮补充吧实用工具:常用数学公式公式分类公式表达式乘法与因式分a2-b2=a+ba-ba3+b3=a+ba2-ab+b2a3-b3=a-ba2+ab+b2三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√b2-4ac/2a-b-√b2-4ac/2a根与系数的关系X1+X2=-b/aX1X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根三角函数公式两角和公式sinA+B=sinAcosB+cosAsinBsinA-B=sinAcosB-sinBcosAcosA+B=cosAcosB-sinAsinBcosA-B=cosAcosB+sinAsinBtanA+B=tanA+tanB/1-tanAtanBtanA-B=tanA-tanB/1+tanAtanBctgA+B=ctgActgB-1/ctgB+ctgActgA-B=ctgActgB+1/ctgB-ctgA倍角公式tan2A=2tanA/1-tan2Actg2A=ctg2A-1/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sinA/2=√1-cosA/2sinA/2=-√1-cosA/2cosA/2=√1+cosA/2cosA/2=-√1+cosA/2tanA/2=√1-cosA/1+cosAtanA/2=-√1-cosA/1+cosActgA/2=√1+cosA/1-cosActgA/2=-√1+cosA/1-cosA和差化积2sinAcosB=sinA+B+sinA-B2cosAsinB=sinA+B-sinA-B2cosAcosB=cosA+B-sinA-B-2sinAsinB=cosA+B-cosA-BsinA+sinB=2sinA+B/2cosA-B/2cosA+cosB=2cosA+B/2sinA-B/2tanA+tanB=sinA+B/cosAcosBtanA-tanB=sinA-B/cosAcosBctgA+ctgBsinA+B/sinAsinB-ctgA+ctgBsinA+B/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=nn+1/21+3+5+7+9+11+13+15+…+2n-1=n22+4+6+8+10+12+14+…+2n=nn+112+22+32+42+52+62+72+82+…+n2=nn+12n+1/6 13+23+33+43+53+63+…n3=n2n+12/412+23+34+45+56+67+…+nn+1=nn+1n+2/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程x-a2+y-b2=r2注:a,b是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=ch斜棱柱侧面积S=c'h正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2c+c'h'圆台侧面积S=1/2c+c'l=piR+rl球的表面积S=4pir2圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr 锥体体积公式V=1/3SH圆锥体体积公式V=1/3pir2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=sh圆柱体V=pir2h。
九年级数学上册公式汇总
九年级数学上册公式汇总一、代数公式1. 求和公式- 角度和:$$\sum_{k=1}^{n}(\alpha_k + \beta_k) =\sum_{k=1}^{n}\alpha_k + \sum_{k=1}^{n}\beta_k$$- 平方和:$$\sum_{k=1}^{n}(\alpha_k + \beta_k)^2 =\sum_{k=1}^{n}\alpha_k^2 + 2\sum_{k=1}^{n}(\alpha_k \beta_k) + \sum_{k=1}^{n}\beta_k^2$$2. 因式分解公式- 平方差公式:$$a^2 - b^2 = (a+b)(a-b)$$- 完全平方公式:$$a^2 + 2ab + b^2 = (a+b)^2$$二、几何公式1. 周长和面积公式- 矩形周长:$$P = 2(l + w)$$- 矩形面积:$$S = l \times w$$- 三角形周长:$$P = a + b + c$$- 三角形面积(海伦公式):$$S = \sqrt{p(p-a)(p-b)(p-c)}$$,其中$$p = \frac{1}{2}(a + b + c)$$2. 三角函数公式- 正弦定理:$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$- 余弦定理:$$a^2 = b^2 + c^2 - 2bc\cos A$$3. 相似三角形公式- 对应边比例相等:$$\frac{AB}{DE} = \frac{AC}{DF} =\frac{BC}{EF}$$- 对应角相等:$$\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$$三、概率公式1. 概率计算公式- 事件概率:$$P(A) = \frac{n(A)}{n(S)}$$,其中$$n(A)$$为事件$$A$$的样本点个数,$$n(S)$$为样本空间$$S$$的样本点个数。
初三数学知识点总结公式
初三数学知识点总结公式
三年初级数学教育是非常重要的,也是学生升入高中数学阶段最重要的基础课程。
而初三数学一直都是学生们最害怕的学科,在掌握知识点的同时,掌握一些关键的概念和公式也十分重要。
下面就来看看初三数学中非常重要的以及必备的公式:
一、代数学公式
1、平方和公式:$a^2+b^2=(a+b)^2-2ab;$
2、一元二次方程组根式:$x_{1,2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a};$
3、有理数乘除法:$\frac{a}{b}\times \frac{c}{d}=\frac{ac}{bd};$
二、数列求和公式
1、公差数列求和公式:$S_n=\frac{n}{2}(a_1+a_n);$
2、等比数列求和公式:$S_n=\frac{a_1(1-q^n)}{1-q};$
三、几何学公式
1、$S=a\times b (a、b为相交的两条直线的夹角的正弦的乘积);$
2、$V=\frac{1}{3}a\times b \times h (a、b、h分别为三角形三边长);$
以上就是初三数学中比较重要的公式,这些公式非常有用,学习者在面对学习任务时可以把它看作是一种技能,应用在课堂学习、习题练习和考试中。
此外,学生在巩固学习的关键知识点的同时,还要多多积累经验,熟练掌握这些公式,才能高效的提高数学水平。
初三数学方程式公式大全
初三数学方程式公式大全
方程式是数学中用来描述两个量之间关系的等式。
以下是初三数学方程式公式的大全:
1.一元一次方程式公式:
ax + b = 0
其中,a和b是已知常数,x是未知数。
2.一元二次方程式公式:
ax² + bx + c = 0
其中,a、b、c是已知常数,x是未知数。
3.二元一次方程式公式:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f也是已知常数,x和y是未知数。
4.一元三次方程式公式:
ax³ + bx² + cx + d = 0
其中,a、b、c、d均是已知常数,x是未知数。
5.一元四次方程式公式:
ax⁴ + bx³ + cx² + dx + e = 0
其中,a、b、c、d、e是已知常数,x是未知数。
除了以上常见的方程式公式,还有其他更高次的方程式,以及含有复数解的方程式。
在解方程时,可以利用一系列运算和变换来求解未知数的值。
常用的解方程的方法有:消元法、因式分解法、配方法、求根公式等。
此外,对于一些特殊类型的方程式,如二次三项式、绝对值方程式、指数方程式、对数方程式等,也有相应的解题方法和公式。
总之,在数学中,方程式是一项重要的内容,它们在解决实际问题、推导出数学规律等方面起着重要作用。
熟练掌握各类方程式的公式及解题方法,能够帮助我们更好地理解和应用数学知识。
初三年级数学公式
初三年级数学公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)结螺和的三角函数:sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγcos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)积化和差sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]1二元二次方程与二元二次方程组11二元二次方程含有两个未知数,并且未知数时长是2的整式方程,称为二元二次方程关于x,y的二元二次方程的一般形式是ax²+bxy+cy²+dy+ey+f=0其中ax²,bxy,cy²叫做方程的二次项,d,e叫做一次项,f叫做常数项12二元二次方程组2形式化二次方程组的解法21第一种类型的二元二次方程组的解法当二元方程组的二元二次方程可分解成两个一次方程的时候,我们就可以把分解得到的各方程定理与原方程组的另一个方程组组成两个新的方程组来解这种解方程组的方法,称为分解降次法1数轴11有向直线在科学技术和日常生活中所,为了区别一条直线的几个不同方向,可以新规定其中一方向为正向,另一方向为负相规定了正方向的直角,叫做有向直线,读作有向直线l12数轴我们把数轴上为任意一点对应所对应的实数称为点的坐标对于每一个坐标(实数),在数周上可以找到的点与之对应这就是的坐标化数轴上向这条有任意线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标高的一条绝对值2平面直角坐标系21直角的直角坐标化在平面内任取一点o为作为原点(基准点),过o引两条相互垂直的,以o为公共原点的极线,一般地,两个数轴选取大致相同的一个长度这样就构成了单位平面直角坐标系x轴叫横轴,y轴叫纵轴,它们都叫直角坐标系的坐标轴;公共原点o称为三维空间系的原点;我们把建立了直角坐标系的平面叫直角坐标平面简称坐标平面若两坐标轴把坐标平面分成四个部分,它们叫做四个象限22两点间的距离23中点公式3函数31常量,变量和函数在某一过程中可以好好不同数值的量,叫做变量在整个过程中保持统一数值的量或数,叫做常量或常数1.函数的定义域2.对应法则(1)解析法就是用等式来函数称一个变量是另一个变量的函数,这个等式叫做函数的解析表达式(函数关系式)(2)列表法(3)图像法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三上册数学公式
知识要点:
一.二次根式的概念
二.二次根式的性质
1.双重非负性:被开方数非负 a ≥0 , 二次根式
0≥a 2. 公式⎩⎨⎧≤-≥===)0()0(,
)(22a a a a a a a a 3. 公式2)(a a =的逆用: 将一个非负数写成一个数平方的形式
三.最简二次根式 五.二次根式的乘除法
四.同类二次根式 六.二次根式的加减法
知识要点
一. 一元二次方程的一般形式: ax 2 + b x + c = 0 (a ≠0)
二.解一元二次方程的方法
(1)直接开平方法 (2)配方法
(3)因式分解法 (4)公式法
求根公式: x ( b 2-4ac ≥0 ) 三.根的判别式:△= b 2 - 4a c 应用:1.判定一元二次方程根的情况 当△>0时,方程有两个不相等的实数根 2.确定字母的值或取值范围。
当△=0时,方程有两个相等的实数根
当△<0时,方程没有实数根
四.根与系数的关系(也称韦达定理)
一元二次方程ax 2 +b x +c = 0 (a ≠0)的两根为x 1、x 2, x 1 + x 2 = -b a , x 1· x 2 =c a 应用:1. 已知一根求另一根及未知系数
2. 已知两根求作方程
3. 已知两数的和与积,求这两个数
4. 确定根的符号
5. 求与方程的根有关的代数式的值
知识要点
一元二次方程应用题类型:
一.增长率(或下降率)问题 五.营销问题
增长率 : 原量(1+x )2=后量 下降率:原量(1-x )2=后量
二.复利问题 六.可化为一元二次方程的分式方程
三.面积或体积问题 七.三角形的问题
四.单双循环比赛问题 八.数字问题
知识要点
一.旋转的概念 二.旋转对称图形
三.中心对称图形
旋转对称图形:一个图形绕着某一定点旋转一定角度后,能与自身重合的图形。
中心对称图形:一个图形绕着某一点旋转1800能与自身重合的图形。
知识要点
一.圆的有关概念
1.圆、弧、弦、弦心距、圆心角、圆周角
2.三角形的内心:内切圆的圆心是三角形三个角平分线的交点
三角形的外心:外接圆的圆心就是三角形三边的垂直平分线的交点
二.圆的有关性质
1.圆是轴对称图形和中心对称图形
2.垂径定理和推论:垂直弦、平分弦、平分弧。
3.弧、弦、圆心角的关系:在同圆或等圆中,弧等、弦等、圆心角等 。
三.与圆有关的角
1.圆心角的度数等于它所对的弧的度数.
2.圆周角的度数等于它所对的弧的度数的一半.
3.在同圆或等圆中,同弧或等弧上的圆周角等,且等于该弧所对圆心角的一半。
4.直径所对的圆周角是直角。
5.弦切角的度数等于它所夹的弧所对的圆周角.
6.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角.
知识要点
一.与圆有关的位置关系
1.点与圆的位置关系有三种:点在圆外、点在圆上、点在圆内
设圆的半径为r ,点到圆心的距离为d ,
点在圆外⇔d >r .点在圆上⇔d=r .点在圆内⇔d <r .
2.直线与圆的位置关系有三种:相交、相切、相离
设圆的半径为r ,圆心到直线的距离为d ,
直线与圆相交⇔d <r ,直线与圆相切⇔d=r ,直线与圆相离⇔d >r
3.圆与圆的位置关系:外离、外切、内切、相交、内含
设两圆的圆心距为d ,两圆的半径分别为R 和r ,
⑴ 两圆外离⇔d >R+r ;有4条公切线;
⑵ 两圆外切⇔d=R +r ;有3条公切线;
⑶ 两圆相交⇔R -r <d <R+r (R >r )有2条公切线;
⑷ 两圆内切⇔d=R -r (R >r )有1条公切线;
⑸ 两圆内含⇔d <R —r (R >r )有0条公切线.
二.圆切线的性质与判定:
1.切线的性质:圆的切线垂直于过切点的直径.
2.切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.
3.切线长定理:从圆外一点引圆的两条切线,这两条切线长相等。
知识要点
一.圆中的计算问题
1.弧长公式:180n R
l π= (n 为圆心角的度数, R 为圆半径)
2.扇形的面积公式:S=213602n R lR π= (n 为圆心角的度数,R 为圆的半径)
3.圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线长的扇形面积
知识要点
一.事件:一个实验的结果
二.事件的分类:必然事件、不可能事件、随机事件。
三.概率
1.概率的意义:一个事件发生可能性大小的数
2.概率的计算方法:列举法、列表法、树状图、面积法。
四.计算概率公式
1.概率=n k =全部结果
部分结果 (古典概型) 2.概率=总面积
实验结果的面积 (几何概型)
知识要点
一.求函数解析式
步骤:设(式)、代(点)、解(方程或方程组)、答
二.数形结合解决有关二次函数与一元二次方程及不等式的问题
三.综合应用题。