日本留考(EJU)理科数学平成17年第2回

合集下载

EJU留考大纲

EJU留考大纲

(2) 制造电流磁场直流电流、圆形电流、螺线管电流磁场 (3) 电流在磁场受力直流电流受力、平行电流受力 (4) 洛伦兹力 洛伦兹力、回旋加速器运动和比电荷、电流受力,霍尔效应 电磁诱导和 电磁波 (1) 电磁诱导定律 电磁诱导、楞次定律、法拉第电磁诱导定律、诱导起电力(洛伦兹力 和诱导起电力) (2) 相互诱导、自己诱导相互电感、自己电感、线圈磁场能量 (3) 交流 交流发生(交流电压、交流电流、位相、角周波数)、抵抗交流、实效值 (4) 交流回路 线圈电抗、电容器电抗、消费电力、変圧器和能源保存、共振回路、振 动回路 (5) 电磁波电磁波的发生和性质、高温物体放射 3)日本留学实验理科-化学考试范围无机物质 (1)单体典型元素性质和周期表、到第三周期 K、Ca 为止 (2)化合物 典型元素和其化合物、迁移元素和其化合物(Ag,Cu,Zn,Fe,Ni, Mn,Cr)酸化物、水酸化物 (3)离子确认 Ag+、Cu2+、Zn2+、Ba2+、Ca2+、Sr2+、Mg2+、Na+、K+、Al3+、 Pb2+、Fe2+、Fe3+、Cl-、SO42-、HCO3-、代表性的离子反応呈色反応、沉淀反応 有机物质 (1)有机化合物的特征脂肪族、芳香族有机化合物的组成、决定分子式有机化合物的 构造和分类构造式和异形体构造式(含光学异性体) (2)由炭素、氢、氧形成的化合物 炭化水素、酒精、醚、醛、酮、羟酸、石碳酸油 脂和洗剂 (3)含氮的化合物 胺、芳香族胺、芳香族硝基化合物,、胺酸 合成高分子化合物聚乙 烯、聚丙烯、ポリアクリロニトリル、聚盐化乙烯、聚酢酸乙烯、聚酯、尼龙 有机化合物反应 (1)置换反应 (2)付加反応 (3)重合反応 物质的状态纯物质 (1)物质三态 (2)融解、蒸发和融点、沸点 (3)气体的状态式 混合物 (1)气体的分压 (2)溶液 溶解和溶解度 (3)稀薄溶液的性质 沸点上升、凝固点降下、浸透圧 (4)胶质溶液 胶质溶液性质 化学反应反应速度 (1)快速反应和慢速反应(含触媒) 化学反应和热 (1)反应热 (2)热化学方程式 化学平衡 (1)可逆反应 (2)化学平衡的移动

尾崎放哉 - 日本ペンクラブ

尾崎放哉 - 日本ペンクラブ

招待席尾崎放哉おざきほうさい 俳人 1885年~1926年 鳥取県生まれ。

東京帝国大学法学 部卒業。

生命保険会社に就職したが、課長職を解職されたことから、退職。

その後、 当時の満州(現在の中国東北部)に赴くが、酒癖で身を持ち崩したほか、体調不 良となるなどして、修養団体・一燈会に入り、奉仕・托鉢をするなど、1924(大 正13)年以降、いわゆる「遁世」生活に入る。

1925(大正14)年8月から、 小豆島に移住したが、翌1926(大正15)年4月、「南郷庵」にて、41歳で病没。

第一高等学校時代の一年先輩である荻原井泉水に師事。

旧制の中学生時代から句 作を始め、明治から大正初期までは、定型俳句、それ以降は、自由律俳句の俳人 として、句を作るが、早過ぎた晩年期の自由律俳句に、独自の俳境を拓く。

掲載 作は、2001年から02年に刊行された筑摩書房版「放哉全集」全3巻をもとに 新たに編集された「尾崎放哉全句集」(2008年2月筑摩書房「ちくま文庫」刊) 所収の句のうち、大正15年の部分を抄録。

尾崎放哉句集(抄) 島の明けくれ道を教へてくれる煙管から煙が出てゐる病人花活ける程になりし朝靄豚が出て来る人が出て来る 迷つて来たまんまの犬で居る山の芋掘りに行くスツトコ被り人間並の風邪の熱出して居ることよさつさと大根の種子まいて行つてしまつた夕靄溜まらせて塩浜人居る已に秋の山山となり机に迫り来蛙釣る児を見て居るお女郎だ久し振りの雨の雨だれの音都のはやりうたうたつて島のあめ売り厚い藁屋根の下のボンボン時計三味線が上手な島の夜のとしより障子あけて置く海も暮れ切る山に大きな牛追ひあげる朝靄畑のなかの近か道戻つて来よる畳を歩く雀の足音を知つて居るあすのお天気をしやべる雀等と掃いてゐるあらしがすつかり青空にしてしまつた窓には朝風の鉢花淋しきままに熱さめて居り火の無い火鉢が見えて居る寝床だ風にふかれ信心申して居る小さい家で母と子とゐる淋しい寝る本がない竹藪に夕陽吹きつけて居る月夜風ある一人咳してお粥煮えてくる音の鍋ふた 一つ二つ蛍見てたづぬる家早さとぶ小鳥見て山路行く咳き入る日輪くらむ 野菜根抄雀等いちどきにいんでしまつた草花たくさん咲いて児が留守番してゐる爪切つたゆびが十本ある来る船来る船に一つの島漬物石がころがつて居た家を借りることにする鳳仙花の実をはねさせて見ても淋しい夜の木の肌に手を添へて待つ秋日さす石の上に脊の児を下ろす浮草風に小さい花咲かせ隆子の穴から覗いて見ても留守である朝がきれいで鈴を振るお遍路さん入れものが無い両手で受ける朝月嵐となる秋山広い道に出る口あけぬ蜆死んでゐる咳をしても一人汽車が走る山火事静かに撥が置かれた畳菊枯れ尽くしたる海少し見ゆ流れに沿うて歩いてとまる海苔そだの風雪となる舟に人居るとんぼの尾をつまみそこねた麦がすつかり蒔かれた庵のぐるり墓地からもどつて来ても一人恋心四十にして穂芒なんと丸い月が出たよ窓ゆうべ底がぬけた柄杓で朝風凪いでより落つる松の葉雪の頭巾の眼を知つてる自分が通つただけの冬ざれの石橋藪のなかの紅葉見てたづねるひどい風だどこ迄も青空 寒空大根ぬきに行く畑山にある麦まいてしまひ風吹く日ばかり今朝の霜濃し先生として行くとなりにも雨の葱畑くるりと剃つてしまつた寒ン空夜なべが始まる河音よい処へ乞食が来た雨萩に降りて流れ寒なぎの帆を下ろし帆柱庵の障子あけて小ざかな買つてる師走の木魚たたいて居る松かさそつくり火になつた風吹きくたびれて居る青草嵐が落ちた夜の白湯を呑んでゐる鉄砲光つて居る深雪霜濃し水汲んでは入つてしまつた一人でそば刈つてしまつた冬川せつせと洗濯してゐる 仏とわたくし昔は海であつたと榾をくべる寒ン空シヤツポがほしいな蜜柑たべてよい火にあたつて居るとつぷり暮れて足を洗つて居る昼の鶏なく漁師の家ばかり海凪げる日の大河を入れる働きに行く人ばかりの電車雪の宿屋の金屏風わが家の冬木二三本家のぐるり落葉にして顔出してゐる墓原花無きこのごろ山火事の北国大空月夜の葦が折れとる墓のうらに廻るあすは元日が来る仏とわたくし掛取も来てくれぬ大晦日も独り雪積もる夜のランプ雨の舟岸により来る山奥の木挽きと其男の子夕空見てから夜食の箸とるひそかに波よせ明けてゐる冬木の窓があちこちあいてる窓あけた笑ひ顔だ 虚空実相夜釣から明けてもどつた小さい舟だ児を連れて城跡に来た風吹く道のめくら旅人夫婦で相談してゐるぬくい屋根で仕事してゐる絵の書きたい児が遊びに来て居る山風山を下りるとす裸木春の雨雲行くやをそくなつて月夜となつた庵松の根方が凍ててつはぶき舟をからつぽにして上つてしまつた小さい島にすみ島の雪名残の夕陽ある淋しさ山よ故郷の冬空にもどつて来た一日雪ふるとなりをもつみんなが夜の雪をふんでいんだ山吹の花咲き尋ねて居る春が来たと大きな新聞広告雨の中泥手を洗ふ枯枝ほきほき折るによし静かなる一つのうきが引かれる山畑麦が青くなる一本松窓まで這つて来た顔出して青草渚白い足出し久し振りの太陽の下で働く貧乏して植木鉢並べて居る霜とけ鳥光る久しぶりに片目が蜜柑うりに来た障子に近く蘆枯るる風音八ツ手の月夜もある恋猫仕事探して歩く町中歩く人ばかり舟から唄つてあがつてくる元気な人ばかり海へ働きにゆく 最後の手記よりあついめしがたけた野茶屋どつさり春の終りの雪ふり森に近づき雪のある森肉がやせてくる太い骨である一つの湯呑を置いてむせてゐるやせたからだを窓に置き船の汽笛婆さんが寒夜の針箱おいて去んでるすつかり病人になって柳の糸が吹かれゐる春の山のうしろから烟が出だしたOzaki Hosai日本ペンクラブ 電子文藝館編輯室This page was created on Oct 30, 2008。

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.6.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选:D.8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=6.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法6238100新养殖法3466100总计96104200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF=,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。

日本各大学留考分数线一览表

日本各大学留考分数线一览表

日本各大学留考分数线一览表去日本接受高等教育,需要大家确认好适合自己的学校,并且认真准备留学生考试,保证入学的资格。

和来一起看看日本各大学留考分数线一览表。

日本名校EJU分数早稻田大学学部名:商合格最低分数线:日语:303 文综:163 文数:140 托福:79庆应义塾大学学部名:法合格最低分数线:日语:314 文综:181 文数:152 托福:73学习院大学学部名:文合格最低分数线:日语:318 文综:169 文数:101明治大学学部名:文合格最低分数线:日语:284 文综:184 文数:163 托福:70青山学院大学学部名:国际政治经济合格最低分数线:日语:309 文综:169 文数:103 托福:59部分即将赴日留学的同学认为只要通过了日本语能力测试N2级以上,就可以高枕无忧地选择自己心目中理想的日本大学了。

然而事实并不完全如此,还有一项对赴日留学生而言相当重要的考试——日本留学生考试(俗称EJU留考)。

日本留学生考试不同于国内的高考,通常情况下,日本的大学学部(即国内所说的本科大学)的招生录取工作是由各所大学独立完成的,也就是说所有的日本大学都有自主招生的权力。

而衡量一个留学生能否能被录取的依据除了EJU留考成绩之外,还有留学生提交的志望理由书、英语托福成绩、面试以及校内考等等,只不过,目前绝大多数的日本大学都将EJU留考成绩作为招生录取的重要依据。

这么重要的EJU留考,自然要了解清楚!只有做好了充足的考前准备,你的赴日留学之路才能走地更加轻松、顺利!考试内容EJU留考包含的考试科目大致分为四种:日本语(450分)、文科综合(200分)、理科综合(200分)、数学(200分)。

通常情况下,选择文科类专业的留学生需要考日本语、文科综合、数1这三门科目。

而选择理科类专业的留学生则需要考日本语、理科综合、数2这三门科目。

文科类日本语:考察考生读解(200分)、听解(100分)、听读解(100分)、记述(50分)这四个部分。

日本留考(EJU)日本语真题平成31年第1回日本语

日本留考(EJU)日本语真题平成31年第1回日本语

日本留考(EJU)日本语真题平成31年第1回日本语引言日本留学考试(EJU)是为了选拔海外学生到日本大学和专门学校就读而设立的考试。

其中包括日本语考试,旨在评估考生的日语听说读写能力。

本文将介绍平成31年第1回日本语真题的内容和解析。

试题概述平成31年第1回日本语考试共分为两个部分:理解和表达。

理解部分理解部分主要测试考生在听力和阅读方面的能力。

听部分听部分分为两个部分:对话和独自表达。

•对话部分:考生需根据对话内容回答相关问题,题型包括选择题、填空题和简答题。

•独自表达部分:考生需根据所听到的问题使用日语回答,题型包括填空题和简答题。

阅读部分阅读部分分为两个部分:文章理解和文章词汇。

•文章理解:考生需要根据所给文章回答问题,题型包括选择题、填空题和简答题。

•文章词汇:考生需要根据上下文选择正确的意思或者同义词,题型为选择题。

表达部分表达部分主要测试考生的写作能力。

短文表达考生需要根据所给的话题写一篇大约150个单词的短文。

题目一般与日本的文化、社会、教育等有关。

长文表达考生需要根据所给的文章写一篇大约300个单词的长文。

题目一般与日本的历史、文学、艺术等有关。

解析接下来,我们将对平成31年第1回日本语考试的真题进行解析。

理解部分在听部分的对话部分,有一段对话是关于餐厅预订的内容。

问题包括预订的时间、人数和菜品选择。

答案分别为早上10点、6人、日式套餐。

在听部分的独自表达部分,有一个问题是关于考生自己的学习计划的。

考生需要根据问题回答自己的学习计划。

在阅读部分的文章理解部分,有一篇文章是关于日本的传统节日“七夕”的内容。

问题包括七夕的日期和习俗。

答案分别为7月7日和写下愿望。

在阅读部分的文章词汇部分,有一个词语是“花火”。

根据上下文,可以判断出其意思是“烟花”。

表达部分短文表达部分的题目是关于“你理想的日本旅行”的,考生需要根据题目写一篇150个单词左右的短文。

可以结合自己的想法和日本的文化进行描述。

2017全国高考Ⅱ卷-真题+答案打印版-理科数学

2017全国高考Ⅱ卷-真题+答案打印版-理科数学

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15B.﹣9C.1D.96.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2B.3C.4D.59.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2B.C.D.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.112.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2B.﹣C.﹣D.﹣1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.15.(5分)(2017•新课标Ⅱ)等差数列{an}的前n项和为Sn,a3=3,S4=10,则=.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001K 3.841 6.635 10.828K2=.19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x 轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.参考答案一、选择题1.【解答】解:===2﹣i,故选D.2.【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.6.【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.7.【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选:D.8.【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题13.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题17.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S△ABC=ac•sinB=2,∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法6238100新养殖法3466100总计96104200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF=,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题22.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.。

2 职员の平均给与暻额、初任给等の状沦

2 职员の平均给与暻额、初任给等の状沦

平均年齢
45.3 歳 44.3 歳 41.5 歳 43.3 歳
平均給料月額
337,708 円 354,500 円 325,521 円 329,354 円
平均給与月額
360,872 円
356,344 円


379,639 円
職員数 31 人 10 人 17 人
514 人 4,429 人
33 人
公務員
平均給料月額
技能労務職
高校卒
205,300 円
216,050 円
239,300 円
3 一般行政職の級別職員数等の状況
(1)一般行政職の級別職員数の状況(平成21年4月1日現在)
区分
標準的な職務内容
職員数
構成比
7級
部長
8人
3.3%
6級
総括課長
2人
0.8%
5級
課長・参事
34 人
13.8%
4級
課長補佐・主幹・主任主査
(0 ~ 41,700)円 × 60ヶ月
(0 ~ 79,200)円 × 60ヶ月
1人当たり平均支給額
- 千円/24,724千円
(注) 退職手当の1人当たり平均支給額は、前年度に退職した全職種に係る職員に支給された平均額である。
(3)地域手当(平成21年4月1日現在) ※導入無し
支給実績(平成20年度決算)
(注)1 職員手当には退職手当を含まない。 2 職員数は、平成20年4月1日現在の人数である。
一人当たり給与費 B/A
千円 5,680
(参考)
類似団体(一般市 I-0) 平均一人当たり給与費
千円
6,112
(3)特記事項
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档