岩土工程3动力触探

合集下载

动力触探计算范文

动力触探计算范文

动力触探计算范文动力触探计算的原理是基于地下岩石对外力的响应。

当电动机或汽油发动机施加外力时,岩石会出现振动,而不同类型的岩石对外力的响应是不同的。

通过测量岩石对外力的响应,可以间接推测其物理性质参数,如坚硬程度、密度、抗剪切强度等。

常用的动力触探计算包括动力触探测试、声波杆静探、振动杆静探和冲击杆静探等。

动力触探测试是利用电动机或汽油发动机施加动力,通过压入探针或探头测定地下岩石的物理性质参数。

声波杆静探是通过施加声波激励并记录反射波来研究地下岩石的物理性质。

振动杆静探是利用振动杆的振动频率和振幅来推断地下岩石的物理性质。

冲击杆静探是通过冲击杆对地下岩石施加冲击力后测量反弹力来获取岩石的物理性质。

动力触探计算在地质工程、岩土工程和矿山工程等领域具有重要的应用价值。

在地质勘探中,动力触探计算可以帮助工程师了解地下岩体的物理性质,为地质灾害风险评估和工程设计提供依据。

在岩土工程中,动力触探计算可以用于探测地下含水层、测定土壤的密实程度和剪切强度等参数。

在矿山工程中,动力触探计算可以用于矿石探测和矿体评估。

虽然动力触探计算在工程领域有着广泛的应用,但该方法也存在一些局限性。

首先,由于地下岩石的异质性和复杂性,动力触探计算的数据解释常常受到困扰。

其次,动力触探计算需要对地下岩石的物理特性进行间接推测,而推测结果的准确性依赖于岩石物理模型和数据处理方法的准确性。

总之,动力触探计算是一种常用的地下岩石物理性质参数测试技术。

通过施加外力并测量岩石的响应,可以间接推测地下岩石的性质参数。

该方法在地质、岩土和矿山工程领域有着重要的应用价值,但也面临一些挑战,需要结合实际情况合理选择合适的方法和步骤进行数据处理和分析。

岩土测试技术第3章-动力触探试验

岩土测试技术第3章-动力触探试验

02 动力触探试验的基本原理
动力触探试验的原理
动力触探试验是一种通过锤击或落锤的方式,使一定形状和质量的探头贯入土层 ,根据贯入过程中所受阻力和探头贯入土层的深度来推求土层工程性质的原位测 试方法。
动力触探试验的原理基于能量守恒和动量定理,通过测量锤击能量、贯入时间和 单位时间内贯入的深度,可以推导出土层的力学性质指标。
锤击装置包括锤头、锤杆和支架,用于产生锤击力。
触探杆通常由金属材料制成,用于传递锤击能量和支撑 探头。
深度测量装置用于精确测量探头贯入土层的深度。
03 动力触探试验的操作流程
试验前的准备工作
确定试验目的
明确试验的目标,是为了评估土体的力学性 质、确定地基承载力还是其他目的。
准备试验场地
清理试验场地,确保没有杂物和障碍物,并 按照要求整平场地。
提出结论和建议
根据分析结果,提出相应的结 论和建议,为工程设计和施工
提供依据。
04 动力触探试验的结果解读
动力触探试验结果的解读方法
原始数据转换
01
将采集的原始动力触探数据转换为击数和能量等参数,以便进
行后续分析。
对比分析
02
将试验结果与标准值或已知数据进行对比,判断岩土的力学性
质和承载能力。
曲线拟合
选择合适的探头和钻杆
根据试验要求选择适合的探头和钻杆,确保 能够达到所需的探测深度和精度。
安装探头和钻杆
将探头和钻杆安装到测试仪器上,并确保连 接牢固。
试验操作步骤
调整测试仪器
根据试验要求调整测试仪 器的各项参数,如落锤重 量、落高、贯入速率等。
进行触探
操作测试仪器,使探头 贯入土体,记录贯入深
度和相应的锤击数。

轻型动力触探试验方法

轻型动力触探试验方法

轻型动力触探试验方法轻型动力触探试验方法是一种常用于土壤和岩石工程勘察中的试验方法,它能够获取土壤和岩石的物理力学性质,为工程设计提供重要的依据。

本文将介绍轻型动力触探试验的基本原理、设备和操作步骤,以及试验结果的分析与应用。

一、轻型动力触探试验原理轻型动力触探试验是利用重锤的自由下落,通过测量重锤下落过程中的动力响应,来推断土壤和岩石的物理力学性质。

试验原理基于质量、速度和力学原理,根据重锤的下落速度和反弹速度来计算土壤和岩石的击实度、抗压强度、抗剪强度等力学参数。

二、轻型动力触探试验设备轻型动力触探试验主要设备包括重锤、测力计、击打器和钻杆等。

重锤一般采用质量较大的钢制锤头,测力计用于测量重锤的下落和反弹力,击打器用于使重锤落下,钻杆用于将重锤送入试验层。

三、轻型动力触探试验操作步骤1. 在试验区域选择试验点,清理试验点上方的杂物和碎石。

2. 将钻杆插入试验点,直至达到所需深度。

3. 安装测力计,并进行校准,确保准确测量重锤的动力响应。

4. 将重锤安装在击打器上,调整重锤的下落高度和击打次数。

5. 用击打器使重锤自由下落,记录下落和反弹的动力响应数据。

6. 重复以上步骤,进行多次试验,以获得可靠的试验结果。

四、轻型动力触探试验结果分析与应用轻型动力触探试验结果的分析与应用需要综合考虑多个因素,如重锤下落速度、反弹速度、试验层深度等。

通过对试验数据的处理和分析,可以得到土壤和岩石的击实度、抗压强度、抗剪强度等重要参数,为工程设计提供参考依据。

1. 击实度分析:根据重锤下落速度和反弹速度的变化规律,可以推断土壤的密实程度。

当下落速度较大、反弹速度较小时,说明土壤较松散;反之,说明土壤较密实。

2. 抗压强度分析:根据重锤下落和反弹的动力响应数据,可以计算土壤的抗压强度。

抗压强度是土壤承受垂直载荷的能力,对于土壤工程设计非常重要。

3. 抗剪强度分析:通过轻型动力触探试验,可以间接推断土壤的抗剪强度。

动力触探试验方法

动力触探试验方法
13
2.注意事项:
(1)须保持孔内水位高出地下水位一定高度,以免塌孔,保 持孔底土处于平衡状态,不使孔底发生涌砂变松,影响N值;
(2)下套管不要超过试验标高;
(3)须缓慢地下放钻具,避免孔底土的扰动; (4)细心清除孔底浮土,孔底浮土应尽量少,其厚度不得大 于10cm; (5)如钻进中需取样,则不应在锤击法取样后立刻做标贯, 而应在继续钻进一定深度(可根据土层软硬程度而定)后再做标 贯,以免人为增大N值; (6)钻孔直径不宜过大,以免加大锤击时探杆的晃动;钻孔 直径过大时,可减少 N 至 50% ,建议钻孔直径上限为 100mm ,以 免影响N值。
对超重型动力触探的实测击数 N120,直接按(3-15)式及表 3-3进行杆长击数校正。
N120=N120
者使用的探杆直径不同。
(3-16)
使用时不但应注意两者在计算结果上的差异,还应注意两
19
3.绘制动力触探击数沿深度分布曲线
以杆长校正后的击数为横坐标,以贯入深度为纵坐标绘制 曲线图。因为采集的数据表示每贯入某一深度的锤击数,故曲
6 .动力触探的一般测试过程如何?怎样绘制动探的击数 ~ 深度 关系曲线?
7.为什么说动力触探是比较粗略的原位测试手段? 8 .怎样根据击数 ~ 深度关系曲线进行土层划分?土层划分后如 何用平均法求各土层的测试参数? 27
根据教学计划,下一讲课安排自学: 学习内容:旁压试验 学习要求:1. 了解旁压试验的设备; 2. 了解试验方法和测试原理; 3. 了解资料整理分析的基本方法; 4. 了解试验成果的工程应用。
中国地质大学(武汉)对粘性土也有类似经验公式:
(3-19)
动力触探试验对桩基的设计和施工也具有指导意义。实践证
明,动力触探不易打入时,桩也不易打入。这对确定桩基持力层 及沉桩的可行性具有重要意义。用标准贯入击数预估打入桩的极 限承载力在国内外都是比较常用的方法。

原位测试(动力触探-标准贯入等)

原位测试(动力触探-标准贯入等)

原位测试(GB 50021-2009)原位测试:在岩土层原来所处的位置,基本保持的天然结构,天然含水量以及天然应力状态下,测定岩土的工程力学性质指标。

原位测试包括静力触探、动力触探、标准贯入试验、十字板剪切、旁压试验、静载试验、扁板侧胀试验、应力铲试验、现场直剪试验、岩体应力试验、岩土波速测试等。

适用条件:1. 当原位测试比较简单,而室内试验条件与工程实际相差较大时。

2. 当基础的受力状态比较复杂,计算不准确而又无成熟经验,或整体基础的原位真型试验比较简单。

3. 重要工程必须进行必要的原位试验。

优点:可以测定难于取得不扰动土样的有关工程力学性质;可避免取样过程中应力释放的影响;影响范围大,代表性强。

缺点:各种原位测试有其适用条件;有些理论往往建立在统计经验的关系上等。

影响原位测试成果的因素较为复杂,使得对测定值的准确判定造成一定的困难.软土原位测试的一般规定第1条软土地区工程地质勘察应增加原位测试工作量,其布置应与钻探、室内试验的配合和对比,以提高勘察质量。

原位测试成果的使用应考虑地区性和经验性。

第2条原位测试一般包括静力触探试验、十字板剪切试验,标准贯入试验、旁压试验、载荷试验及波速试验等。

选用原位测试方法应以土层情况、设计参数的要求以及建筑物等级等因素确定。

第3条采用静力触探方法评价土的强度和变形指标时,应结合本地区经验取值。

应用静力触探曲线分层时,应综合考虑土的类别,成因和地下水条件等因素。

第4条十字板剪切试验适用于测定软土的抗剪强度。

对重荷载的大型建筑,应测定其残余强度并计算其灵敏度。

第5条标准贯入试验可用于评价土的均匀性和定性地划分不同性质的土层,以及软土中夹砂层的密实度和承载力。

第6条旁压试验宜采用自钻式旁压仪。

依据仪器设备和土质条件,选择适当的钻头、转速、进速、泥浆压力和流量、刃口的距离等以确定最佳自钻方式。

第7条用载荷试验确定地基承载力时,承压板面积不宜小于5000。

承载力基本值的选用,应根据压力和沉降、沉降与时间关系曲线的特征,结合地区经验取值。

动力触探检测标准

动力触探检测标准

动力触探检测标准一、检测原理动力触探是一种通过锤击将圆锥形探头压入土中,根据锤击能量和贯入深度的关系,测定土的力学性质和地基承载力的原位测试方法。

该方法广泛应用于岩土工程勘察、施工和质量控制中,是检测地基承载力和变形特性的重要手段。

二、检测仪器1.动力触探仪应包括锤、探头、支架、导向杆、加压装置和计时器等部分。

2.锤的质量、形状和落距应符合规范要求,锤的落距应通过导向杆控制。

3.探头应具有足够的刚度和硬度,以保证其在贯入过程中不受损伤。

4.加压装置应能够均匀施加压力,以保持探头在贯入过程中的稳定性。

5.计时器应能够精确记录锤击时间。

三、检测步骤1.场地平整:将检测场地整平,确保探头能够顺利贯入。

2.仪器安装:将动力触探仪放置在检测点上,调整导向杆的高度,使锤的落距与地面垂直。

3.锤击试验:将探头压入土中,控制落距和贯入速度,记录每锤击的贯入深度和锤击能量。

4.重复试验:在每个检测点进行至少三次锤击试验,以获得可靠的检测数据。

5.数据整理:整理每次锤击的贯入深度和锤击能量数据,计算平均值和标准差。

四、数据分析1.根据锤击能量和贯入深度的关系,计算地基承载力和变形特性。

2.将实测数据与理论值进行对比,评估地基的可靠性。

3.根据检测结果,提出相应的工程建议和措施。

五、检测报告1.检测报告应包括以下内容:工程名称、检测地点、检测日期、检测目的、场地条件、检测方法、锤击能量、贯入深度、地基承载力及变形特性等。

2.报告中应附有锤击试验的原始数据记录表,以便查阅和分析。

3.根据检测结果,提出相应的工程建议和措施,为设计和施工提供依据。

动力触探试验检测地基承载力作业指导书

动力触探试验检测地基承载力作业指导书

动力触探试验检测地基承载力作业指导书编写:审核:批准:颁布日期:实施日期:动力触探试验检测地基承载力作业指导书1适用范围本试验根据锤击能量分为轻型、重型2种。

轻型动力触探适用于一般粘质土及素填土;重型动力触探适用于中、粗、砂砾和碎石土;超重型适用于卵石、砾石类土。

动力触探不适用于软土,贯入深度大时杆体会受到软土粘滞力的作用,造成灌入困难,结果偏差过大(正偏差,对工程质量不利)。

2 执行标准《岩土工程勘察规范》(GB50021—2001)。

《广东省建筑地基基础检测规范》(DBJ-15-60-2008)3仪器设备4检测目的一般用于确定各类土的容许承载力;还可用于划分土的力学分层、评价土层的均匀程度和确定桩基持力层。

5资料收集及检测准备1、收集工程相关资料,要求委托单位填写委托单:(1)工程名称、桩号、以及相应的设计图纸;(2)建设、设计施工及监理单位名称;(3)工程地质勘察报告及平面位置图等;(4)检测部位,标高(是否为设计标高),现场测点图;(5)施工记录等相关资料;(6)检测原因及目的。

2.检查所用的仪器设备,设备必须在计量检定有效期内。

3.动力触探作业前必须对机具设备进行检查,确认正常后,方可启动。

部件磨损及变形超过下列规定者,应予更换或修理。

(1)探头允许磨损量:直径磨损不得大于2mm,锥尖高度磨损不得大于5mm;(2)每节探杆非直线偏差不得大于0.5%;(3)所有部件连接处丝扣应完好,连接紧固。

6现场检测6.1 检测前现场检查1、检测前委托单位必须提供下列资料:试验要求及目的;试验的具体位置;工程地质勘察报告及平面位置图等;并备有施工记录待查。

2、检测前应做好下列准备工作:(1)进行现场调查,检查检测任务单与图纸资料及现场情况是否相符。

不符的询问原因,明确后方可试验,否则有权拒检。

(2)检查检测环境条件是否符合检测要求,主要指检测实施条件和现场安全保障条件。

6.2 试验步骤(1)采用自由落锤方法;轻型落距须严格控制在50cm,重型落距须严格控制在76cm。

动力触探试验

动力触探试验

动力触探试验12.1 适用范围12.1.1本方法适用于检测地基土或加固土增强体的均匀性,判定地基处理效果。

12.1.1[条文说明]动力触探试验还可查明土洞、滑动面、软硬土层界面等;另外,当具备本地区可靠对比验证经验资料时,根据动力触探试验指标,还可推断地基土或加固土增强体的物理力学性质指标(如状态、密实度、土的强度、变形参数、地基承载力等)。

12.1.2本方法根据锤击能量分为轻型、重型和超重型三种。

轻型动力触探适用于浅部的填土、砂土、粉土、黏性土等原状岩土以及采用粉质粘土、灰土、粉煤灰、砂土的垫层和水泥土搅拌桩、单液硅化法加固地基;重型动力触探适用于砂土、中密以下的碎石土、极软岩等原状岩土以及采用矿渣、砂石的垫层和强夯处理地基、不加填料振冲处理砂土地基、碎石桩振冲法、砂石桩、石灰桩、冲扩桩、单液硅化法加固地基;超重型动力触探适用于密实和很密的碎石土、软岩、极软岩等原状岩土以及强夯处理地基、不加填料振冲处理砂土地基、砂石桩、石灰桩。

12.1.2[条文说明]轻型动力触探的优点在于轻便,在判断水泥土搅拌桩的搅拌均匀性等方面有实用价值。

重型动力触探是应用最广泛的动力触探试验,已经积累了较多的经验,而且它的落锤能量与标准贯人试验及国际上通用的动力触探试验相一致。

12.2 仪器设备12.2.1动力触探仪由穿心锤、圆锥触探头和触探杆(包括锤座和导向杆)组成。

其规格如表12.2.1所列。

表12.2.1 动力触探设备类型和规格设备类型轻型重型超重型落锤质量(kg) 10±0.2 63.5±0.5 130±1.0落距(cm) 50±2 76±2 100±2探头直径(mm)40 74 74 截面积(cm2)12.6 43 43 圆锥角(°)60 60 60触探杆直径(mm)25 42 50~60 每米质量(kg)<8 <13锤座质量(kg)10~15注:重型和超重型动力触探探头直径的最大允许磨损尺寸为2mm;探头尖端的最大允许磨损尺寸为5mm。

动力触探检测地基承载力试验方法1

动力触探检测地基承载力试验方法1

动力触探检测地基承载力试验方法1目的利用一定的锤击能量,将一定规格的探头和探杆打入土中,根据贯入的难易程度即土的阻抗大小判别土层变化,进行力学分析,评价土的工程性质。

2适用范围动力触探可分为轻型、重型和特重型。

轻型动力触探可确定一般黏性土地基承载力;重型动力触探和特重型动力触探可确定中砂以上的砂类土和碎石类土地基承载力,测定圆砾土、卵石土的变形模量。

动力触探还可以用于查明地层在垂直和水平方向的均匀程度和确定桩基承载力。

3依据3.1《建筑地基检测技术规范》JGJ 340-20153.2《岩土工程勘察规范》GB 50021-2001 (2009版)3.3《城市轨道交通岩土工程勘察规范》GB 50307-20123.4《铁路工程地质原位测试规程》TB10018-20184工作流程4.1接受委托正式接手检测工作时,应获得委托方书面形式的委托函,了解工程概况,明确委托方意图即检测目的,同时也使即将开展的检测工作进入合法轨道。

4.2调查、资料收集为进一步明确委托方的具体要求和现场实施的可行性,了解施工工艺和施工中出现的异常情况,应尽可能收集相关的技术资料,主要收集内容有:岩土工程勘察资料、施工资料等。

4. 3仪器设备准备4. 3. 1动力触探设备类型和规格应符合表1的规定。

1、轻型动力触探探头材料应采用45号碳素钢或采用优于45号碳素钢的钢材。

表面淬火后硬度HRO45~50。

2、重型动力触探设备,应符合下列要求;①探杆:每米质量不宜大于7.5kg o探杆接头外径应与探杆外径相同,探杆和接头材料应采用耐疲劳高强度的钢材。

②锤座直径应小于锤径1/2,并大于IOOmm;导杆长度应满足重锤落距的要求,锤座和导杆总质量为20~25kg°③重锤应采用圆柱形,高径比1~2。

重锤中心的通孔直径应比导杆外径大3~4mm°5试验要点5.1动力触探作业前必须对机具设备进行检查,确认正常后,方可使用。

部件磨损及变形超过下列规定者,应予以更换或修复。

动力触探试验

动力触探试验

第四节动力触探试验一、概述动力触探(DynamicPenetrationTest简称DPT)是利用一定的落锤能量,将一定尺寸、一定形状的探头打入土中,根据打入的难易程度(可用贯入度、锤击数或单位面积动贯入阻力来表示)判定土层性质的一种原位测试方法。

可分为圆锥动力触探和标准贯入试验两种。

圆锥动力触探(DPT)是利用一定的锤击能量,将一定的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。

通常以打入土中一定距离所需的锤击数来表示土的阻抗,也有以动贯入阻力来表示土的阻抗。

圆锥动力触探的优点是设备简单、操作方便、工效较高、适应性强,并具有连续贯入的特性。

对难以取样的砂土、粉土、碎石类土等,对静力触探难以贯入的土层,圆锥动力触探是十分有效的勘探测试手段。

圆锥动力触探的缺点是不能采样对土进行直接鉴别描述,试验误差较大,再现性差。

如将探头换为标准贯入器,则称标准贯入试验(StandardPenetrationTest简称SPT)。

利用动力触探试验可以解决如下问题:1)划分不同性质的土层。

当土层的力学性质有显着差异,而在触探指标上有显着反映时,可利用动力触探进行分层和定性地评价土的均匀性,检查填土质量,探查滑动带、土洞和确定基岩面或碎石土层的埋藏深度等。

2)确定土的物理力学性质。

确定砂土的密实度和黏性土的状态,评价地基土和桩基承载力,估算土的强度和变形参数等。

二、适用范围动力触探和标准贯入试验的适用范围见表7-10三、圆锥动力触探(一)动力触探类型及规格根据《岩土工程勘察规范》(GB50021-2001)的规定,圆锥动力触探试验的类型可分为轻型、重型和超重型三种。

其规格和适用土类应符合表7-11的规定。

(二)技术要求根据《岩土工程勘察规范》的规定,圆锥动力触探试验技术要求应符合下列规定:1)采用自动落锤装置。

2)触探杆最大偏斜度不应超过2%,锤击贯入应连续进行;同时防止锤击偏心、探杆倾斜和侧向晃动,保持探杆垂直度;锤击速率每分钟宜为15~30击。

动力触探试验检测方法

动力触探试验检测方法

动力触探试验检测方法动力触探试验是一种常用的地质勘探方法,用于获取地下岩层的物理性质和地质结构信息。

本文将介绍动力触探试验的基本原理、仪器设备以及应用范围。

一、动力触探试验的基本原理动力触探试验是利用冲击力将探测器送入地下岩层,通过测量探测器在不同深度下的冲击力和阻力来推测岩层的物理性质和地质结构。

其基本原理如下:1. 冲击力与阻力关系:当探测器冲击地下岩层时,岩层的物理性质和地质结构会对冲击力和阻力产生影响。

通过测量冲击力和阻力的变化,可以推断岩层的硬度、密度、含水量等信息。

2. 冲击力传感器:动力触探试验主要依靠冲击力传感器来测量冲击力的变化。

冲击力传感器通常具有高灵敏度和快速响应的特点,能够准确记录冲击力的大小和变化趋势。

3. 阻力测量:除了测量冲击力,动力触探试验还需要测量阻力。

阻力的大小取决于岩层的物理性质和地质结构,通过测量阻力的变化,可以推断岩层的孔隙度、压缩性等信息。

二、动力触探试验的仪器设备动力触探试验需要使用特定的仪器设备来完成,主要包括以下几种:1. 冲击器:冲击器是动力触探试验的核心设备,用于将探测器送入地下岩层。

冲击器通常由一个重锤和一个冲击杆组成,重锤通过释放势能产生冲击力,将冲击杆推入岩层。

2. 探测器:探测器是用于测量冲击力和阻力的传感器,通常由冲击力传感器和阻力传感器组成。

冲击力传感器用于测量冲击力的大小和变化趋势,阻力传感器用于测量阻力的大小和变化趋势。

3. 钻杆和钻头:钻杆和钻头用于钻孔,使冲击器能够进入地下岩层。

钻杆通常由多节组成,可以根据需要进行延伸或缩短,钻头则用于切削地下岩层。

4. 数据记录仪:数据记录仪用于记录冲击力和阻力的变化,通常具有高精度和大容量的存储空间。

数据记录仪可以将测量数据保存下来,便于后续分析和处理。

三、动力触探试验的应用范围动力触探试验广泛应用于地质勘探和工程建设领域,主要用于以下方面:1. 地质勘探:动力触探试验可以提供地下岩层的物理性质和地质结构信息,对于地质勘探具有重要意义。

岩土工程勘察中钻探技术要点分析

岩土工程勘察中钻探技术要点分析

近年来,伴随经济社会高速发展,岩土工程项目越来越 多,获得了巨大发展,为了保证岩土工程质量,必须要充分重 视岩土工程勘察工作,而钻探技术作为岩土工程勘察的重要 技术手段,其技术水平的高低对能否准确全面地获取地质基 础信息有着至关重要的影响,同时决定着岩土工程勘察报告 的分析和结论与工程整体建设质量。因此,必须要充分重视 岩土工程勘察工作,不断提高钻探技术水平,为工程建设施 工提供有效指导,确保工程整体质量。基于此,下文主要对岩 土工程勘察工作当中钻探技术要点予以分析探讨,以供参考。
(3)重型圆锥动力触探试验 :锤应当达到 63.5kg 重量, 保持 76cm 的落距与 74mm 的探头直径和 60°的锐角,击 入过程当中持续进行,锤击过程当中采用自由落锤法来完 成,当超过 50 重型击数时停止进行试验,与钻探相互结合, 分段进行击入,来评价场地当中第三层地圆砾具有的强度、 状态和变形参数。
建筑稳定性与耐用性。因此在岩土工程勘察工作当中,要进一步强化钻探技术方面的研究,不断提高岩土工程勘察技术
水平,进而获取全面的工程地质基础信息,为岩土工程设计施工奠定良好的基础,保证建筑工程安全性与稳定性具有非
常重要的现实意义。
关键词 :岩土工程 ;勘察 ;钻探技术
中图分类号 :P634.5
文献标识码 :A
收稿日期 :2021-05 作者简介 :马东胜,男,生于 1985 年,汉族,甘肃静宁人,本科,中级工程 师,研究方向 :桩基工程及岩土工程勘察施工。
资料与数据,确保设计方案更加科学有效,进而大幅提高岩 土工程勘察效率和质量,保证岩土工程勘察工作持续稳步发 展,以免由于不合理的施工,引发工程隐患,并科学合理的 预防和控制各种地质灾害的发生,避免造成巨大的经济损 失,因此对于岩土工程勘察工作给予充分重视,采取切实有 效的措施提高岩土工程勘察水平,意义重大。

动力触探试验细则

动力触探试验细则

动力触探试验细则1.1、适用范围浅部的填土、砂土、粉土、粘性土。

1.2、检测依据《岩土工程勘察规范》GB50021—20011.3、试验设备试验设备由落锤、探杆、探头组成1.4、检测原理是用一定质量的重锤,以一定高度的自由落距,将标准规格的圆锥形探头贯入土中,根据打入土中一定的距离所需的锤击数,判定土的力学特性,具有勘探和测试双重功能。

1.5、试验步骤1.5.1、先用轻便钻具钻至试验土层标高,然后对土层连续进行触探,使穿。

心锤自由落下将触探杆竖直打入土层中,记录每打入土层30cm的锤击数N101.5.2当N10 >100或贯入15cm锤击数超过50时,可停止试验,并记录50击的实际贯入深度。

1.5.3试验技术要求a、锤击能量是最重要的因素。

规定落锤方式采用控制落距的自动落锤,使锤能量比较恒定,注意保持探杆垂直,探杆的偏斜度不超过2%。

锤击时防止偏心及探杆晃动。

b、触探杆与土间的侧摩阻力是另一个重要的因素。

试验过程中,可采取下列措施减少侧摩阻力的影响:c、使探杆直径小于探头直径。

在砂土中探头直径与探杆直径比应大于1.3,而在粘土中可小些;d、贯入一定深度后旋转探杆(每1m转动一圈或半圈),以减少侧摩阻力;贯入深度超过10m,每贯入0.2m,转动一次;f、探头的侧摩阻力与土类、土性、杆的外形、刚度、垂直度、触探深度等均有关,很难用一固定的修正系数处理,应采取切合实际的措施,减少侧摩阻力,对贯入深度加以限制;g、锤击速度也影响试验成果,一般采用每分钟15~30击;在砂土、碎石土中,锤击速度影响不大,刚可采用每分钟60击。

h、贯入过程应不间断地连续击入,在粘性土中击入的间歇会使侧摩阻力增大。

i、地下水位对击数与土的力学性质的关系没有影响,但对击数与土的物理性质(砂土孔隙比)的关系有影响,故应记录地下水位埋深。

1.5.3、注意事项⑴试验前或试验过程中,应认真检查机具设备。

⑵在设备安装过程中,部件连接处丝扣应完好,连接紧固。

岩土工程勘察技术-动力触探

岩土工程勘察技术-动力触探
•试验时,穿心锤落距为(0.50±0.02)m,使其自由下落。记
录每打入土层中0.30m时所需的锤击数。
•如遇密实坚硬土层,当贯入0.30m所需锤击数超过100击或贯入 0.15m超过50击时,即可停止试验。如需对下卧土层进行试验 时,可用钻具穿透坚实土层后再贯入. •本试验一般用于贯入深度小于4m的土层。必要时,也可在贯入 4m后,用钻具将孔掏清,再继续贯入2m。
对开管式贯入器,外径 51mm、内径35mm、长 度700mm、刃角19º 47¹
10±0.2
50±2
63.5±0.5
76±2
120±1.0
100±2
63.5±0.5
76±2 贯入30cm的锤击数
贯入30cm的锤 贯入10cm的 贯入10cm的 击数 锤击数 锤击数 25 42 60
42
4-6
12-16
N10 ~ h
曲线图。
2)根据每贯入30cm的锤击数对地基土进行力学分层,然后
计算每层实测击数的算术平均值。
第四节 动力触探
重型型动力触探 铁路《动力触探技术规定》(TBJ8-87)中规定,实测击数应 按杆长校正。重型动力触探的实测击数(N63.5),按下式进 行校正:
N63.5=N63.5
20
密实碎石土
粘性土、粉土、砂土、强 风化岩
适用范围
一般粘性土、素 砂பைடு நூலகம்、碎石 填土 土
第四节 动力触探 二、圆锥动力触探 1 轻型动力初探试验
第四节 动力触探 2 重型动力触探试验
脱钩器
63.5kg重锤
60°探头
第四节 动力触探
3.试验方法
(一)轻型、重型、超重型动力触探的测试程序和要求 1.轻型动力触探

岩土工程测试第四章 动力触探试验

岩土工程测试第四章 动力触探试验

是无法人为控制的,因此要进行修正。
1.杆长修正 与圆锥动力触探相似,关于试验成果进行杆长修正 问题,国内外的意见并不一致。
(1)根据牛顿弹性碰撞理论修正 《建筑地基基础规范》(GBJ7—89)规定,标准贯入试 验的贯入深度不宜超过21m。同时规定,当试验深度大
于3m时,实测锤击数N’需按下式进行钻杆长度修正:
(6)每贯入0.1m所需锤击数连续三次超过50击时,应停止试 验。触探试验深度1~16m。
三、标准贯入试验方法与技术要求
1. 标准贯入试验必须与钻探配合,以钻机设备为基础。 钻进方法:为保证钻孔质量,要求采用回转钻进,并保 持孔内水位略高于地下水水位,当钻进至试验标高以上 15cm时,停止钻进。 还应注意: 仔细清除孔底残土到试验标高,换用标准贯入器, 并量得深度尺寸; 在地下水位以下钻进时,或遇承压含水砂层时,孔 内水位应始终高于地下水位,以减少对土的振动扰动; 当下套管时,要防止套管下过头,否则在管内做试 验会使N值偏大。
触探杆
穿心锤
标贯与一般动探的主要区别在于探头不同
1.贯入器 标准规格的贯入器是由对开管和管靴两部分组成的探 头。对开管是由两个半圆管合成的圆筒型取土器;管靴是 一底端带刃口的圆筒体。二者通过螺纹连接,管靴起到固 定对开管的作用。贯入器的外径、内径、壁厚、刃角与长 度都有标准化尺寸,见表5-1。 2.穿心锤 重63.5kg的铸钢件,中间有一直径45mm的穿心孔,此 孔为放导向杆用。国际、国内的穿心锤除重量相同外,锥 形上不完全统一。落锤能量受落距控制,落锤方式有自动 脱钩和非自动脱钩两种。目前国内普遍使用自动脱钩装置。
' Nx
二、 绘制Nx-h曲线
三、 划分土层界线
动力触探的类型

动力触探规范

动力触探规范

公路工程地基承载力测试方法使用规范的说明2009年4月1日实施的中华人民共和国国家标准GB/T50480-2008《冶金工业岩土勘察原位测试规范》总则1.0.2规定:本规范适用于冶金工业建设项目岩土工程勘察中的原位测试,其他行业同类工作可按本规范执行。

目前该规范是我国最新提到使用动力触探试验来测试地基承载力的国家标准,交通部对于桥涵地基承载力—动力触探试验方法还未有标准作详尽说明,为遵循“国标-行标-地标”原则,在无行标、地标的情况下,公路工程地基承载力亦可按此规范试验方法执行。

一、现将《冶金工业岩土勘察原位测试规范》动力触探试验规程摘录如下:7 动力触探试验7.1 一般规定7.1.1 动力触探试验适用于判定一般黏性土、砂类土、碎石类土、极软岩层的物理力学特性。

7.1.2 轻型动力触探可用于评价一般黏性土、砂类土和素填土的地基承载力;重型和超重型动力触探可用于评价砂类土、碎石类土、极软岩的地基承载力及测定砾石土、卵(碎)石土的变形模量。

7.1.3 动力触探试验孔数应结合场地大小和场地地基的均匀程度确定,同一场地主要岩土单元的有效测试数据不应小于3孔位。

7.2 试验设备7.1.2 动力触探试验设备应包括落锤、座垫及导杆、触探杆和探头等机件。

各类型动力触探试验机件的规格和加工要求应符合本规范附录D图D.0.2、表D.0.2的规定。

7.2.2 探头应采用高强度钢材制作,表面淬火后硬度应满足HRC=45~50。

7.2.3 落锤应采用圆柱形,其中心通孔直径应比导杆外径大3~4mm,重型和超重型动力触探试验设备须配备自动落锤装置。

7.2.4 重型和超重型动力触探的座垫直径应不小于100cm,且不大于落锤底面直径的一半;导杆长度应符合试验锤击标准落距的要求,座垫和导杆的总质量不应超过25Kg。

7.2.5 探杆接头与探杆应有相同的外径,接头连接容许偏心度为0.5%。

7.2.6 探头直径磨损不得大于2mm,锥尖高度磨损不得大于5mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
图3-1 现场动力触探试验
3
现场动力触探试验
4
根据所用穿心锤的质量将动力触探试验分为轻型、中型、重 型和超重型等种类。动力触探类型及相应的探头和探杆规格见表 3-1。
5
图3-2 轻型动力触探仪(单位:mm)
偏心轮缩径式脱钩装置
6
国际上使用的探 头规格较多,而我国 的常用探头直径约5种, 锥角基本上只有60一 种。图3-4是重型和超 重型探头的结构图。
11
(二)标准贯入试验
1.试验方法 (1)先用钻具钻至试验土层标高以上0.15m处,清除残土。 (2)将贯入器放入孔内,避免冲击孔底,注意保持贯入器、 钻杆、导向杆联接后的垂直度。测定贯入器所在深度,要求残土 厚度不大于0.1m。 ( 3 ) 将 贯 入 器 以 每 分 钟 击 打 15~30 次 的 频 率 , 先 打 入 土 中 0.15m,不计锤击数;然后开始记录每打入0.10m及累计0.30m的锤 击数N,并记录贯入深度与试验情况。若遇密实土层,锤击数超过 50击时,不应强行打入,并记录50击的贯入深度。 (4)旋转钻杆,然后提出贯入器,取贯入器中的土样进行鉴 别、描述记录,并测量其长度。将需要保存的土样仔细包装、编 号,以备试验之用。
(3)若需描述土层情况时,可将触探杆拨出,取下探头,换 钻头进行取样。
(4)如遇密实坚硬土层,当贯入0.30m所需锤击数超过100击 或贯入0.15m超过50击时,即可停止试验。如需对下卧土层进行试 验时,可用钻具穿透坚实土层后再贯入。
(5)本试验一般用于贯入深度小于4m的土层。必要时,也可
在贯入4m后,用钻具将孔掏清,再继续贯入2m。
16
土,20~30cm为一阵击;软土,3~5击为一阵击),并按(3-11)
式换算为每贯入10cm的实测击数,再按(3-12)式进行杆长击
第3章 内 容
3.1 试验设备和方法 3.2 基本测试原理 3.3 试验成果的整理分析 3.4 试验成果的应用 3.5 小 结
1
3.1 试验设备和方法
一、试验设备 动力触探使用的设备如图3-1,包括动力设备和贯入系统两大
部分。动力设备的作用是提供动力源,为便于野外施工,多采用 柴油发动机;对于轻型动力触探也有采用人力提升方式的。贯入 部分是动力触探的核心,由穿心锤、探杆和探头组成。
13
标贯和圆锥动力触探测试方法的不同点,主要是不能连续贯 入,每贯入0.45m必须提钻一次,然后换上钻头进行回转钻进至下 一试验深度,重新开始试验。另外,标贯试验不宜在含有碎石的 土层中进行,只宜用于粘性土、粉土和砂土中,以免损坏标贯器 的管靴刃口。
14
3.2 基本测试原理
动力触探是将重锤打击在一根细长杆件(探杆)上,锤击 会在探杆和土体中产生应力波,如果略去土体震动的影响,那 么动力触探锤击贯入过程可用一维波动方程来描述。
标准贯入使用的 仪器除贯入器外与重 型动力触探的仪器相 同。我国使用的贯入 器如图3-5。
7
8
二、试验方法
(一)轻型、重型、超重型动力触探的测试程序和要求
1.轻型动力触探
(1)先用轻便钻具钻至试验土层标高以上0.3m处,然后对所 需试验土层连续进行触探。
(2)试验时,穿心锤落距为(0.500.02)m,使其自由下落。 记录每打入土层中0.3每贯入0.1m所需锤击数连续三次超过50击时,即停止试 验。如需对下部土层继续进行试验时,可改用超重型动力触探。
(7)本试验也可在钻孔中分段进行,一般可先进行贯入,然 后进行钻探,直至动力触探所测深度以上1m处,取出钻具将触探器 放入孔内再进行贯入。
3.超重型动力触探 (1)贯入时穿心锤自由下落,落距为(1.000.02)m。贯入 深度一般不宜超过20m,超过此深度限值时,需考虑触探杆侧壁摩 阻的影响。 (2)其他步骤可参照重型动力触探进行。
(5)重复1~4步骤,进行下一深度的标贯测试,直至所需深 度。一般每隔1m进行一次标贯试验。
12
2.注意事项: 钻孔时应注意下列各条。
(1)须保持孔内水位高出地下水位一定高度,以免塌孔,保 持孔底土处于平衡状态,不使孔底发生涌砂变松,影响N值;
(2)下套管不要超过试验标高; (3)须缓慢地下放钻具,避免孔底土的扰动; (4)细心清除孔底浮土,孔底浮土应尽量少,其厚度不得大 于10cm; (5)如钻进中需取样,则不应在锤击法取样后立刻做标贯, 而应在继续钻进一定深度(可根据土层软硬程度而定)后再做标 贯,以免人为增大N值; (6)钻孔直径不宜过大,以免加大锤击时探杆的晃动;钻孔 直径过大时,可减少N至50%,建议钻孔直径上限为100mm,以 免影响N值。
9
2.重型动力触探 (1)试验前将触探架安装平稳,使触探保持垂直地进行。垂 直度的最大偏差不得超过2%。触探杆应保持平直,连结牢固。 (2)贯入时,应使穿心锤自由落下,落锤高度为(0.760.02) m。地面上的触探杆的高度不宜过高,以免倾斜与摆动太大。 (3)锤击速率宜为每分钟15-30击。打入过程应尽可能连续, 所有超过5min的间断都应在记录中予以注明。 (4)及时记录每贯入0.10m所需的锤击数。其方法可在触探杆 上每0.1m划出标记,然后直接(或用仪器)记录锤击数;也可以记 录每一阵击的贯入度,然后再换算为每贯入0.1m所需的锤击数。最 初贯入的lm内可不记读数。 (5)对于一般砂、圆砾和卵石,触探深度不宜超过12~15m; 超过该深度时,需考虑触探杆的侧壁摩阻影响。
动力触探基本原理也可以用能量平衡法来分析。
15
3.3 试验成果的整理分析
1.检查核对现场记录 在每个动探孔完成后,应在现场及时核对所记录的击数、 尺寸是否有错漏,项目是否齐全;核对完毕后,在记录表上签 上记录者的名字和测试日期。 2.实测击数校正 (1)轻型动力触探 1)轻型动力触探不考虑杆长修正,根据每贯入30cm的实测 击数绘制N10~h曲线图。 2)根据每贯入30cm的锤击数对地基土进行力学分层,然后 计算每层实测击数的算术平均值。 (2)中型动力触探 贯入时,应记录一阵击的贯入量及相应锤击数(一般粘性
相关文档
最新文档