红外二极管感应电路分析
红外二极管感应电路工作原理
红外二极管感应电路工作原理
红外二极管感应电路是一种在红外二极管的感应作用下变化的电路。
其原理基于红外辐射的特性,即人体等物体在红外辐射范围内会发射出一定的红外线。
红外二极管作为一种发射和接收红外线的元件,当有红外线照射到其面前时,其会将红外线转化为电信号输出。
红外二极管感应电路基础的工作原理如下:
1. 利用DC电源给红外二极管提供供电,使其处于工作状态。
2. 当有人体或其他物体进入红外二极管的感应范围时,物体会发射出一定的红外线。
3. 这些红外线被红外二极管所接收,并将其转化为电信号。
4. 电信号经过放大电路进行增强,然后通过判别电路进行信号处理和判断。
5. 若判别电路判断出有人体或物体进入感应范围,则触发感应电路输出指定的信号或执行相应的控制动作。
红外二极管感应电路常用于安防监控系统、人体检测系统、自动照明系统等各种需要对环境中物体的存在与否进行感应判断并做出响应的应用场景。
红外接收二极管原理
红外接收二极管原理
红外接收二极管(Infrared Receiver Diode)是一种可以感知红外线信号并将其转换为电信号的电子器件。
它是由一对连接在一起的半导体材料构成的二极管。
通常,红外接收二极管由铟化镓(Indium Gallium Arsenide)或者锗材料制成。
红外接收二极管的工作原理基于光电效应。
光电效应是指光照射到材料表面时,光子与材料中的原子或分子相互作用,使得电子从材料的价带跃迁到导带上,从而产生电流。
在红外接收二极管中,当红外线照射到它的敏感区域时,光子的能量被吸收并导致电子在材料中跃迁,形成电流。
红外接收二极管的敏感区域通常由一个PN结构组成。
PN结构是由一对P型(正向掺杂)和N型(反向掺杂)半导体材料构成的。
在没有外加电压的情况下,PN结会形成一个反向偏置,在此情况下,红外接收二极管不会产生电流。
然而,当从红外线源发出的光线照射到PN结上时,光子将导致电子从Valence带跃迁到Conduction带,形成载流子对。
这减轻了PN结上的反向偏置,并产生一个电流,在外电路中产生电压信号。
电路中的其他元件和电路设计,如滤波电路和放大电路,可用于增强红外接收二极管的性能和功能。
结果就是可以将接收到的红外线信号转换为数字信号或模拟信号,以供其他电子设备进行处理和使用。
在红外遥控器以及许多其他应用中,红外接收二极管是一个重要的部件,它可以将红外线光信号转换为控制信号,使得设备可以接收和执行特定命令。
红外线传感器的工作原理
红外线传感器的工作原理红外线传感器是一种常见的电子设备,用于检测和感应周围环境中的红外线信号。
它广泛应用于安防系统、自动化控制、家用电器、机器人等领域。
本文将介绍红外线传感器的工作原理及其应用。
一、红外线传感器的基本原理红外线是一种电磁波,其波长范围大致在0.75至1000微米之间。
红外线传感器利用物体在特定波长范围内的热辐射来感知物体的存在和位置。
一般来说,红外线传感器包括发射器和接收器两部分。
1. 发射器:发射器通常使用红外二极管,以频率为大约38kHz的脉冲信号作为源发射红外线。
红外线发射器将电能转化为红外线能量,并向周围环境发射红外线信号。
2. 接收器:接收器通常使用光电二极管或红外线传感器芯片,用于接收从物体反射回来的红外线信号。
当红外线信号照射到接收器上时,光电二极管或红外线传感器芯片将其转换为电能信号。
二、红外线传感器的工作过程红外线传感器的工作过程可以总结为以下几个步骤:1. 发射红外线信号:红外线传感器中的发射器产生一个特定频率的脉冲信号,将电能转化为红外线信号。
这些红外线信号以一定的范围散射到周围环境中。
2. 接收红外线信号:接收器接收周围环境中反射回来的红外线信号。
当有物体进入传感器的感应范围内时,物体会反射一部分红外线信号,并被接收器接收到。
3. 转换为电信号:接收器中的光电二极管或红外线传感器芯片将接收到的红外线信号转换为相应的电信号。
信号的强度和频率将被转化为电压或频率的变化。
4. 预处理和信号处理:接收到的电信号将进一步进行预处理,如放大、滤波和去噪。
然后,信号经过处理电路进行分析和解码。
5. 结果输出:最终,红外线传感器将根据所接收到的信号进行输出。
根据不同的应用需求,输出信号可以是模拟信号或数字信号。
三、红外线传感器的应用领域红外线传感器凭借其便捷、高效和可靠的特性,在许多领域得到了广泛应用。
1. 安防系统:红外线传感器被广泛应用于安防系统,用于检测人体或其他物体的存在。
红外二极管感应电路分析
红外二极管感应电路分析一、电路功能概述红外二极管感应电路可以实现用手靠近红外发射管和红外接收管时,蜂鸣器发声,LED灯点亮,手移开后立即停止发声、LED灯熄灭,灵敏度非常高.该电路设计思路来源于银行自动开门关门的生活场景,人走进银行,门自动打开,离开后门自动关闭.或者说来源于肯德基等高档餐厅的水龙头,当手放在水龙头下,水自动流出,离开后水自动关闭.该电路应用的生活场景非常多,是电路设计人员必须掌握的一种电路.特别注意,本电路制作成功后,必须调试后才能达到相应的效果,只有掌握了红外感应电路的工作原理后才能调试好相关的参数,所以工作原理是学习重点.二、电路原理图三、原理图工作原理红外感应电路的设计采用模拟电路中的电阻分压取样电路、红外二极管感应电路、三极管电路、运算比较器组成的电压比较电路等相关知识点,请制作者务必学习.红外感应电路由以红外发射管VD1、红外接收管VD2为核心的红外感应电路,以可调电阻RP1、通用运算放大器LM358为核心的取样比较电路,以三极管9012 VT1、VT2、蜂鸣器HA1、发光二极管LED1为核心元件的声音输出、显示电路构成.通上5V电源,红外发射管VD1导通,发出红外光〔眼睛是看不见的〕,如果此时没有用手挡住光,则红外接收管VD2没有接受到红外光,红外接收管VD2仍然处于反向截止状态.红外接收管VD2负极的电压仍然为高电平,并送到LM358的3脚.LM358的2脚的电压取决于可调电阻RP1,只要调节可调电阻RP1到合适的时候〔用万用表测量LM358的2脚的电压大概为2.5V左右〕,就能保证LM358的3脚的电压大于LM358的2脚的电压,根据比较器的工作原理,当V+ > V-的时候, LM358的1脚就会输出高电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2截止,蜂鸣器HA1不发声,发光二极管LED1熄灭.当用手靠近红外发射管VD1时,将红外光档住并反射到红外接收管VD2上,红外接收管VD2接受到红外光,立刻导通,使得红外接收管VD2负极的电压急速下降,该电压送到LM358的3脚上.LM358的3脚电压下降到低于2脚的电压,根据比较器的工作原理,V+ < V-的时候, LM358的1脚就会输出低电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2导通蜂鸣器HA1发声,发光二极管LED1点亮.通过以上调试步骤,可以实现当手移动到红外发射管VD1和红外接收管VD2的上面时,蜂鸣器发声,发光二极管点亮.当手离开红外发射管VD1和红外接收管VD2的上面时,蜂鸣器停止发声,发光二极管熄灭,产生了感应手的效果.四、组装与调试技巧请根据红外二极管感应电路的原理图和PCB布局图〔如下图〕,按照红外发射电路、红外接收电路、电压取样电路、电压比较电路、报警电路、LED显示电路的顺序安装.安装前一定要学习红外感应电路工作原理,并熟记电路原理图, 以便正确安装.安装的时候请注意:图中左边的红外发射管VD1是白色的,右边的红外接收管VD2是黑色的,右边的红外接收管〔黑色的〕是反向接法〔负极接正电压,正极接地〕,和稳压二极管的接法类似.在确保所有线路焊接完全正确、没有漏焊、假焊,焊接安装成功的情况下,可以进入下面的调试.首先用黑电胶布把红外发射管和红外接收管包好,只留下顶端,请参考实物图.然后通上5V直流电压,用万用表测LM358的3脚电压,并用手放到红外发射管和红外接收管上面,造成红外接收管能接收反射的红外光,记下此时的电压值〔我们制作的产品的电压值大概是1V左右〕.然后拿开手后,再记下此时的电压值〔我们制作的产品的电压值大概是3V左右〕.上面的调试步骤就是为了得到LM358的3脚电压值的变化X围,然后用万用表测LM358的2脚电压,调节可调电阻R3,使得LM358的2脚电压在2V左右〔目的是处于LM358的3脚电压变化X围内〕.调试完成后,可以稳定的用手遮挡调试,性能非常稳定,如下图所示:图中红外发射管〔左边白色的〕和红外接收管〔右边黑色的〕已经用黑电胶布把包好,包好后很难分清颜色.特别要说明的红外接收管〔右边黑色的〕是反向接法〔负极接正电压,正极接地〕,和稳压二极管的接法一样,可别接错哦,下图是焊接电路的反面走线.如果制作、调试没有成功,请从下面几个方面进行检修与调试:1、观察法:检查每个元件是否安装正确,特别要注意红外发射二极管和红外接收二极管的正负极,可调电位器的的引脚顺序,LM358的引脚顺序和三极管9012的引脚顺序.2、电阻法:根据原理图检查线路是否正常连通,可用万用表检测每条线路是否导通.电子初学者,焊接的线路多有虚焊、漏焊、假焊等情况,电路搭建错误,所以首先检查每条线路是否焊接好,也就是电气性能是否保证.3、电阻法:检测每处GND是否和电源负极接头是否连通;检测每处VCC是否和电源接头是否连通.4、以上检测没有问题的情况下,可以用黑电胶布把红外发射管和红外接收管包好,只留下顶端,请参考实物图.5、红外发射电路的检修.红外发射电路发射的红外光,人的肉眼是看不见的,但是可以用手机的照相功能看见红外光.检修过程中可以借助于手机的照相机功能查看红外发光电路是否正常.主要查看限流电阻的阻值和红外发光二极管的正负极性是否安装正确.6、红外接收电路的检修.主要用万用表测红外接收二极管的负极,观察当用手放到红外发射管时的电压值〔是否为低电平〕和当手移开红外接收管上面时的电压值〔是否为高电平〕.因为火中含有大量的红外光,因此可以用打火机打火〔模拟红外光的照射〕检查红外接收电路是否正常.7、电压取样电路的检修.主要是测试可调电阻RP1的第三脚电压值是否在2.5V左右,旋转可调电阻时电压值是否可变.8、电压比较电路的检修.主要用万用表测LM358的1脚电压,观察当用手放到红外发射管时LM358的1脚的电压值〔是否为低电平〕和当手移开红外接收管上面时LM358的1脚的电压值〔是否为高电平〕.9、报警电路、LED显示电路的检修.可用电源地直接加在V1、V2的基极,看看是否报警和LED点亮.损坏的元件可能是9012和发光二极管.经过以上步骤的检查、检测后,基本上可以排除故障,可以实现当用手放到红外发射管和红外接收管上面时,蜂鸣器报警,LED灯亮;当用手移开红外发射管和红外接收管上面时,蜂鸣器停止报警,LED熄灭.。
北邮红外感应照明灯自动控制电路实验报告
实验报告《电子测量与电子电路》综合设计型实验实验名称:红外感应照明灯自动控制电路实验学生(学号): XXXXXXXXXXXXXXXXXX 所属班级: XXXXXXXXXXXXXXXXXX 班内序号: XXXXXX所属学院: XXXXXXXXXXXXXX2018年4月摘要当今社会,随着人类生产活动的愈发频繁,能源问题越来越严重,生态环境遭到破坏,节能环保成为当今社会一大重要主题。
为了节能环保的目的公共场所的走廊过道都尽量使用自动控制照明灯,实现“人来灯亮,人走灯灭”,既能很好的节约能源,也能给人们的生活带来方便。
实现控制的方法可以是声控,光控,红外感应,触摸或遥控等,根据使用的环境可以选用适当的方法。
本题选用热释电红外感应控制。
关键词:热释红外感应;自动控制;光敏;延时。
目录引言--------------------------------------------------------------------------4 第一章实验设计要求1.1设计概述------------------------------------------------------------------ 4 1.2设计任务要求-------------------------------------------------------------- 4 第二章电路设计2.1系统组成框图-------------------------------------------------------------- 4 2.2系统整体设计思路---------------------------------------------------------- 5 2.3模块电路设计思路2.3.1 第一级放大电路设计--------------------------------------------------52.3.2 第二级放大电路设计--------------------------------------------------62.3.3 电压比较器模块设计--------------------------------------------------72.3.4 555定时器模块设计------------------------------------------------- 8第三章电路仿真3.1 前2级放大电路仿真-------------------------------------------------------10 3.2 电压比较模块仿真---------------------------------------------------------11 3.3 电路整体仿真-------------------------------------------------------------11 第四章电路搭建与调试4.1 组合调试中的故障与问题分析-----------------------------------------------12 4.2系统最终演示效果和所实现的功能------------------------------------------- 12 第五章实验总结与结论5.1&5.2 实验总结(搭建与调测)------------------------------------------------ 15 5.3 实验结论-----------------------------------------------------------------15 5.4 心得体会 ----------------------------------------------------------------15 第六章实验元件和仪器资料6.1 实验元件6.1.1 热释红外传感器PIR ------------------------------------------------ 156.1.2 集成运放芯片LM358 ------------------------------------------------ 166.1.3 光敏电阻 ----------------------------------------------------------176.1.4 NE555定时器 -------------------------------------------------------19 6.2 实验仪器 ----------------------------------------------------------------19 第七章参考书籍及资料 -------------------------------------------------------19引言:随着社会的进步,节能环保已经深入人心,成为当今社会重要主题之一。
红外通信电路工作原理
红外通信电路工作原理
红外通信是一种利用红外线传输信息的无线通信技术。
其基本原理是利用红外线载波进行信息的发送和接收。
红外通信电路主要由发射器和接收器组成。
发射器中包含一个发光二极管(LED),当通电时,LED会发出红外线信号。
接收器中包含一个光敏二极管(光电二极管),它能够感受到接收到的红外线信号。
当发射器中的LED发出红外线信号时,经过空气传播到接收器位置。
接收器中的光敏二极管会感受到这一红外线信号,并将其转化为电信号。
接收到的电信号经过放大和解调后,可以得到原始的信息信号。
红外通信电路的工作原理可以分为发送和接收的两个过程。
在发送过程中,发射器中的LED通过电流驱动,发出红外线信号。
在接收过程中,接收器接收到发射器发出的红外线信号,并将其转化为电信号。
整个通信过程实际上是通过红外线的发射和接收来实现信息的传输。
红外通信电路的优点包括无线传输、抗干扰能力强、成本低廉等。
然而,也存在一些缺点,比如传输距离相对较短、受到环境干扰较大等。
红外通信电路在日常生活中有广泛的应用,如遥控器、红外线测温仪、红外线遥感器等。
它不仅可以用于远程控制设备,还可以用于数据传输、通信连接等领域。
红外对管 原理
红外对管原理红外对管是一种常用的红外传感器,具有高灵敏度、快速响应和相对较低的成本等特点。
该传感器主要由红外发光二极管(IR LED)和红外接收二极管(IR Photodiode)组成。
红外对管的工作原理基于光电效应,即将红外光转化为电信号。
首先,红外发光二极管会发射一定频率的红外光束。
这些红外光束通过氮化镓(GaN)或砷化镓(GaAs)等材料制成的发光器件,其能带宽度与所释放的光子的波长相匹配。
红外发光二极管的工作电流通过在PN结上的注入和偏置,使电流流过发光材料,从而激发产生光子。
接下来,红外光束会穿过环境传播到红外接收二极管。
红外接收二极管一般采用硅(Si)或锗(Ge)等材料,其材质特性与红外光波长相匹配,因此能够高效地吸收红外光。
当红外光照射到红外接收二极管上时,它会产生一个光电流,这是由于光子能量转化为材料中的电子能量所引起的。
接下来,该电流信号会被传感器的电路进行放大和处理。
常见的处理电路包括放大电路、滤波电路和输出电路。
放大电路通常用于放大由红外接收二极管产生的微弱电流信号,以便进行后续处理。
滤波电路主要用于滤除噪声信号,提高传感器的信噪比。
输出电路则可以将处理后的电信号转换为数字信号或模拟信号。
最后,经过处理的信号被送至控制器或微处理器进行进一步的分析和判断,以实现不同的应用需求。
例如,可以通过监测红外发射二极管和接收二极管之间的反射和干扰来检测到物体的存在与否。
当有物体进入传感器的感知范围时,红外光线将被物体吸收或反射,从而改变接收二极管上的光电流大小,进而被传感器检测到。
通过监测光电流的变化,可以判断物体的存在与否,并进行相应的控制操作。
红外对管主要应用于人体检测、自动照明、安防系统、无人驾驶、自动门禁系统等领域。
通过感知物体的红外特征,红外对管可以实现对环境的快速反应和准确控制。
在人体检测领域,红外对管可以通过检测人体的红外辐射来实现人体的识别和跟踪。
在自动照明领域,红外对管可以通过感知到人体或动物的存在来自动开启或关闭照明设备。
红外红外传感器电路图及工作原理
红外红外传感器电路图及⼯作原理红外红外传感器电路图及⼯作原理Infrared IR Sensor Circuit Diagram and Working Principle红外传感器是⼀种电⼦设备,它发射是为了感知周围环境的某些⽅⾯。
红外传感器既能测量物体的热量,⼜能检测物体的运动。
这些类型的传感器只测量红外辐射,⽽不是发射被称为被动红外传感器。
通常,在红外光谱中,所有物体都会发出某种形式的热辐射。
这些类型的辐射对我们的眼睛是看不见的,可以通过红外传感器探测到。
发射器只是⼀个红外发光⼆极管(发光⼆极管),探测器只是⼀个红外光电⼆极管,对红外发光⼆极管发出的相同波长的红外光敏感。
当红外光照射到光电⼆极管上时,电阻和输出电压将随接收到的红外光的⼤⼩⽽成⽐例变化。
红外传感器电路图及⼯作原理红外传感器电路是电⼦设备中最基本、最常⽤的传感器模块之⼀。
这种传感器类似于⼈类的视觉感官,可以⽤来检测障碍物,是实时检测中常⽤的应⽤之⼀。
该电路由以下部件组成· 2 IR transmitter and receiver pair· Resistors of the range of kilo-ohms.· Variable resistors.· LED (Light Emitting Diode).LM358 IC2红外收发对千欧姆范围内的电阻器。
可变电阻器。
LED(发光⼆极管)。
IR Sensor Circuit在本项⽬中,发射器部分包括红外传感器,其发射连续的红外射线以供红外接收器模块接收。
接收器的红外输出端根据其接收到的红外光线⽽变化。
由于这种变化不能这样分析,因此可以将该输出馈送到⽐较器电路。
这⾥使⽤LM 339的运算放⼤器(运放)作为⽐较器电路。
当红外接收器不接收信号时,反转输⼊处的电势⾼于⽐较器IC的⾮反转输⼊(LM339)。
因此⽐较器的输出变低,但LED不发光。
红外对管的工作原理及应用
红外对管的工作原理及应用一、工作原理红外对管是一种常见的红外传感器,其工作原理基于半导体材料的光电效应。
具体而言,红外对管由发射器和接收器组成。
1. 发射器发射器通常使用红外发光二极管(LED),其外部电流通过二极管,将电流转化为红外光。
红外光具有较高的频率和短波长,适用于传感器应用。
2. 接收器接收器是由光敏电阻构成的。
当红外光照射到光敏电阻上时,光敏电阻的电阻值会发生变化。
接收器将这个变化转化为电信号,供后续电路处理。
3. 工作方式红外对管的工作原理是利用发射器发射红外光,接收器接收红外光,并将接收到的光信号转化为电信号。
通过测量接收到的红外光的强度变化,可以检测到外部的物体或者障碍物。
二、应用领域红外对管由于其便捷和灵敏的特点,被广泛应用于各个领域。
以下是一些典型的应用领域:1. 运动检测与安防红外对管可以用于运动检测和安防系统。
当有物体靠近或者经过红外对管时,接收器接收到的红外光信号强度会发生变化,从而触发警报或者相应的反应。
2. 手势识别红外对管也可以用于手势识别。
通过分析接收器接收到的红外光信号强度的变化,可以识别手势的动作,实现例如控制电视、音响等家电的功能。
3. 自动照明红外对管还可以用于自动照明系统。
通过检测到人体的存在,红外对管可以根据实际需求来自动开启或关闭照明设备,实现节能的效果。
4. 自动门窗在一些公共场所,如商场、机场等,红外对管也常常被用于自动门窗的控制。
当有人靠近时,红外对管感应到信号的变化,从而触发门窗的打开或关闭。
5. 温度测量通过调整红外对管的特定指标,还可以将其用于温度测量。
当红外对管接收到物体所发射的红外光时,可以通过测量其信号的强度,来估计物体的温度。
三、总结红外对管是一种常见的红外传感器,其工作原理基于半导体材料的光电效应。
通过发射器发射红外光、接收器接收红外光,并将接收到的光信号转化为电信号,可以实现对物体或障碍物的检测。
由于其广泛应用于运动检测、手势识别、自动照明、自动门窗等领域,红外对管在现代科技中具有重要的地位。
红外线发射二极管驱动电路[资料]
红外线发射二极管驱动电路[资料] 红外线发射二极管驱动电路红外线发光二极管驱动电路使用红外线发光二极管时,驱动电路的设计相当重要,好的设计能使红外线发光二极管的发光效率最高,且使用寿命增长,所以在此要特别介绍驱动电路。
1.电阻负载驱动:红外线发射二极管在使用时,须由电流驱动,又其发光强度是与电流成比例变化,所以电流控制方式的重要性就相对的增加了。
图8所示为其电阻负载驱动方式,这是最简单的驱动方式,驱动电源是以直流为之,根据图9所示的正向电压、电流特性可绘出其负载线,并求出其工作点。
该工作点所对应的电压、电流分别为VF及IF ,其算式为:图8发光二极管的驱动电路图9发光二极管正向电流,电压特性及工作点在进行设计时,最重要的是在IF电流的控制,设计出的IF不能太大,若大于IF(max)则元件有烧毁之虑,IF若太小,则其发射束就会变小。
另外在电源电压的取得亦须注意其稳定性,为求得发射光束的稳定,电源电压的稳定要求相对的提高,所以在精密的红外线控制中,应尽量做到电源的稳定,有时为求其稳定性也可将电源提高,电源提高之后,为保持电流的不变,所使用的限流电阻亦相对的提高,此时电源的微量变动,对电流影响就不大了,以下就介绍电阻负载驱动设计例:假设电源电压VCC=5V,电流IF取小于IF (max)为20mA,由图8的特性曲线求得电压VF=1.2V代入驱动公式可得:得R =190Ω,此时R须采用190Ω,红外线发射二极管即可取得20mA的驱动电流。
2.多个红外线发射二极管的串、并联驱动有时候用一个发光二极管的发射,其输出能力是不够的,因此也可同时采用多个发光二极管做发射,以加强其输出能力,多个红外线发光二极管的驱动有两种,一是串联,一是并联。
图10是串联驱动的方式,图11是并联驱动的方式,每一支路电流,所以电源总共提供了N×If的电流。
图10串联的发光二极管的驱动方式图11并联的发光二极管之驱动方式3.用晶体管做为定电流的驱动电路为求红外线发光二极管所发射出光束的稳定,也可借定电流电路驱动之,定电流电路的设计可采用如图12所示三种方式为之,图中采用稳压二极管做定电压,可以得到IE电流,又,所以IF?(Vz-VBE)/RE,式中VZ,VBE,RE皆为定数,所以IF固定不变,因此可以在晶体集极串接很多个红外线发光二极管。
「红外发送接收电路原理」
「红外发送接收电路原理」红外发送接收电路是一种用于红外线通信的电路,它通过发送和接收红外信号来实现信息的传输。
本文将介绍红外发送接收电路的原理,并详细解释其工作过程。
首先,我们需要了解红外线的基本原理。
红外线是指波长范围在760纳米到1毫米之间的电磁辐射,其波长较长,人眼不可见。
在通信中,红外线被用作传输介质,可以实现近距离的无线通信。
红外线通信常用于遥控器、无线电视等设备。
红外发送接收电路主要包括红外发射器和红外接收器两个部分。
红外发射器用于发送红外信号,而红外接收器用于接收并解码红外信号。
红外发射器的主要元件是红外发光二极管。
这是一种特殊的发光二极管,其内部有一个发射二极管(Emitter)和一个热发射晶体(Emitter Crystal)。
当发射二极管加上电压时,它会产生红外光线,并通过热发射晶体放大和过滤。
红外发射二极管的工作电流一般为30mA,工作电压为1.2V。
红外接收器的主要元件是红外接收二极管。
当红外光线射到红外接收二极管上时,它会产生一个微弱的电流。
这个电流随着所接收到的红外光线的强度而变化。
红外接收二极管的工作电流一般为5mA,工作电压为1.5V。
红外发送接收电路的工作过程如下:1.发送信号:当红外线遥控器的按键被按下时,控制信号被传送到电路中的红外发射二极管。
红外发射二极管接收到控制电流后,会产生红外光线,并将其发射出去。
2.接收信号:红外接收二极管接收到红外光线后,会产生微弱的电流信号。
这个电流信号被放大并转化为数字信号,并通过红外接收电路传送到电子设备的处理器。
3.信号解码:处理器会根据接收到的红外信号进行解码,将其转换为相应的控制信号。
这个控制信号可以用来控制电子设备的各种功能,如调节音量、更换频道等。
红外发送接收电路的原理是通过红外发射二极管发送红外信号,再由红外接收二极管接收并解码红外信号。
这样可以实现设备之间的无线通信。
红外发送接收电路广泛应用于各种领域,如消费电子产品、自动化控制系统等。
红外对射模块电路
红外对射模块电路
红外对射模块电路是一种常用的电子元件,用于检测物体是否通过红外光束的阻断。
它由发射器和接收器两部分组成。
发射器部分包括红外发射二极管和相关电路。
当发射二极管被通电时,它会发出红外光束。
这个红外光束是不可见的,类似于我们平时看到的遥控器发出的红外光。
接收器部分包括红外接收二极管和相关电路。
接收二极管用于接收发射器发出的红外光束。
当物体遮挡住红外光束时,接收二极管会感应到光束的阻断,并通过相关电路产生信号。
红外对射模块电路通过检测这个信号来确定物体是否通过红外光束的阻断区域。
当物体通过时,信号会发生变化,系统会做出相应的反应,比如触发警报或者控制其他设备的运行。
红外对射模块电路在很多领域有着广泛的应用。
比如在安防领域,它可以用于门禁系统,当有人闯入时触发警报;在自动化控制领域,它可以用于物体检测,当物体进入或离开某个区域时触发相应的控制信号。
总的来说,红外对射模块电路是一种简单而有效的检测装置,可以用于实现物体的检测和控制。
它的工作原理简单,但在实际应用中有着广泛的用途。
通过合理的设计和搭配,可以实现各种应用需求。
红外感应RGB_LED点阵-动态图
西南交通大学课程设计(报告)红外感应RGB_LED灯色彩控制年级: 12级组员: 俞程玮20122156 通信二班蒋耀泽20122152通信二班刘颖杰20122129通信二班组号: 红外三组****: **二零一四年七月设计任务及要求设计并制作一红外感应颜色控制RGB-LED灯。
1.基本要求:(1)每感应一次(挥手),RGB-LED颜色变化一次。
(2)颜色至少8 种(彩虹颜色)。
2.提高部分:(1)将单RGB-LED换成RGB-LED点阵。
(2)其他感应方式改变RGB-LED颜色。
摘要本篇报告主要是介绍红外感应RGB-LED灯色彩控制的实现电路。
LED灯使用的是8*8的点阵。
红外控制,是通过接收器接收红外对管的发射信号,行成脉冲,并计数,从而实现八种动态图画变化。
通过感应(如手势)的变化而实现LED灯的灯亮序变化形成图形字母,电路结构简单,设计功耗小。
通过这次实习,我们学习了如何把理论知识和实践相结合起来。
用红外线做信号载波具有成本低、传播范围和方向可以控制、不产生电磁辐射干扰和被干扰等诸多优点,因此被广泛地应用在各个技术领域中。
关键词:RGB_LED;红外感应;动态图;点阵;目录设计任务及要求 (II)第1章绪论 (5)1.1本论文的背景和意义 (5)1.2本论文的主要内容 (5)2.1电路设计 (6)2.1.1 LED驱动电路的介绍 (6)2.1.2 发射信号的产生 (7)2.1.3 接收电路 (8)2.2PCB设计 (9)2.3程序设计 (12)2.4调试 (15)2.5测试 (17)2.5.1 测试目的 (17)2.5.2 测试方法 (18)2.5.3 测试结果 (18)第1章绪论1.1 本论文的背景和意义发光二极管简称为LED。
由含镓(Ga)、砷(As)、磷(P)、氮(N)、硅(Si)等的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管。
在电路及仪器中作为指示灯,或者组成文字或数字显示。
红外发射及接收二极管组成的收发电路原理
U1为比较器LM393 , R103为10K 可调电阻,用于改变比较器比较电压,
F2为红外发射管 (发射管缺口边为负),J3为红外接收管(接收管缺口边为正),R1为比较器输出上拉电阻 1K , R2为指示灯电阻6.8K , R3为红外发射串联电阻 120R ,R4为红外接收管下拉电阻 10K 。
红外接受管返回来的信号为模拟信号, 需用AD 口才能读取信号,但是经过比较器后可直接
输出数字信号,为I/O 所读取,输出为5V 或者0V ,灵敏度通过调节 R103可调电阻来改变 比较器比较电压。
Z1为排针接口,其中 VCC 为+5V ,GND 为负极,OUT 为信号输出,直接接单片机 I/O 口。
电路图如下所示:
R3 LI e R2 LH393 :r sochanqe
G tLGI R1 3K el a e hi zl -IH l.e le O N CD B XINt。
北邮红外感应照明灯自动控制电路实验报告
实验报告《电子测量与电子电路》综合设计型实验实验名称:红外感应照明灯自动控制电路实验学生(学号):XXXXXXXXXXXXXXXXXX 所属班级:XXXXXXXXXXXXXXXXXX 班序号:XXXXXX所属学院:XXXXXXXXXXXXXX2018年4月摘要当今社会,随着人类生产活动的愈发频繁,能源问题越来越严重,生态环境遭到破坏,节能环保成为当今社会一大重要主题。
为了节能环保的目的公共场所的走廊过道都尽量使用自动控制照明灯,实现“人来灯亮,人走灯灭”,既能很好的节约能源,也能给人们的生活带来方便。
实现控制的方法可以是声控,光控,红外感应,触摸或遥控等,根据使用的环境可以选用适当的方法。
本题选用热释电红外感应控制。
关键词:热释红外感应;自动控制;光敏;延时。
目录引言--------------------------------------------------------------------------4 第一章实验设计要求1.1设计概述------------------------------------------------------------------ 4 1.2设计任务要求-------------------------------------------------------------- 4 第二章电路设计2.1系统组成框图-------------------------------------------------------------- 4 2.2系统整体设计思路---------------------------------------------------------- 5 2.3模块电路设计思路2.3.1 第一级放大电路设计--------------------------------------------------52.3.2 第二级放大电路设计--------------------------------------------------62.3.3 电压比较器模块设计--------------------------------------------------72.3.4 555定时器模块设计------------------------------------------------- 8第三章电路仿真3.1 前2级放大电路仿真-------------------------------------------------------10 3.2 电压比较模块仿真---------------------------------------------------------11 3.3 电路整体仿真-------------------------------------------------------------11 第四章电路搭建与调试4.1 组合调试中的故障与问题分析-----------------------------------------------12 4.2系统最终演示效果和所实现的功能------------------------------------------- 12 第五章实验总结与结论5.1&5.2 实验总结(搭建与调测)------------------------------------------------ 15 5.3 实验结论-----------------------------------------------------------------15 5.4 心得体会----------------------------------------------------------------15 第六章实验元件和仪器资料6.1 实验元件6.1.1 热释红外传感器PIR ------------------------------------------------ 156.1.2 集成运放芯片LM358 ------------------------------------------------ 166.1.3 光敏电阻----------------------------------------------------------176.1.4 NE555定时器-------------------------------------------------------19 6.2 实验仪器----------------------------------------------------------------19第七章参考书籍及资料-------------------------------------------------------19引言:随着社会的进步,节能环保已经深入人心,成为当今社会重要主题之一。
北邮红外感应照明灯自动控制电路实验报告
北邮红外感应照明灯自动控制电路实验报告随着社会的进步,节能环保已经深入人心,成为当今社会重要主题之一。
通过红外感应来实现自动控制的功能电器已经悄悄影响着人们的生活,生活中处处可以看到红外感应自动控制设备的影子。
本实验设计利用热释电红外传感器PIR获得电压,然后通过LM358来实现两级电压放大,然后经过电压比较器,二极管D1导通,使555构成的单稳态触发器反转进入暂稳态,3脚输出高电平,将LED灯点亮,实现红外感应自动控制。
第一章实验设计要求1.1设计概述本设计是在指导老师给定课题的基础上经过分析,采用热释电红外传感器PIR,能根据生命体从传感器旁经过的距离长短作为触发信号(实验中用手划过传感器来模拟),使LED二极管发光并延退10秒以上熄灭。
1.2设计任务要求基本要求用发光二极管模拟照明灯,在白天保持熄灭状态,在夜间有人从附近10cm经过灯便点亮,延退10秒后熄灭。
电源用5伏直流电源,传感器用RE200B红外热释电传感器。
电路工作稳定可靠。
提高要求延长感应距离到20cm或30cm。
第二章电路设计热释传感器PIR放大器2.1热释传感器PIR放大器电压比较器单稳态触发器= 照明灯zxl延时电路2.2系统总体设计思路PIR热释传感器能够因为红外线的变化在其S端输出微弱的超低频交流信号,,经C2加到三极管Q1输入端放大,再经运放U1A组成的放大器进一步放大,使信号增益达到几十dB,后进入电压比较器反向输入端。
信号幅度高于比较电压时,比较器输出低电平,二极管D1导通,使555构成的单稳态触发器反转进入暂稳态,3脚输出高电平,将LED灯点亮。
由于要求LED灯延时熄灭,还要加入RC延时电路,调节电位器可以改变灯点亮的时间2.3模块电路设计思路2.3.1第一级放大电路设计原理简述:由于PIR输出的是超低频交流信号,为了保障电路的稳定,采用深度负反馈电路(电压并联负反馈),耦合电容C2的作用是阻直流,通交流,一般采用容量较大的电解电容器,本实验采用C2=47uF,F (反馈系数)=-1/R2,由于输入的信号十分微弱,不妨设Ii=10mA (实际电流大于10mA ),则Vo=If*R2+1 ,通过静态工作点的设置,Ib=-If=(Vce-Vbe)/R2,得到R1 取值为10千欧,R2的取值为1兆欧,第一级放大倍数约为120 :2.3.2第二级放大电路设计原理简述:(此处忽略电容)R' =0 )。
二极管实验报告
二极管实验报告二极管实验报告一、实验目的本实验的主要目的是了解二极管的工作原理、特性和应用,培养学生的实验技能,在实践中掌握掌握电子元件的测量和验证,并学会理解元器件在电路中的作用。
二、实验原理1. 二极管的结构二极管是由两个不同的半导体材料在一起构成的。
其中有一个被称为正性半导体,它的材料中含有大量的正空穴;另一个被称为负性半导体,它的材料中含有大量的自由电子。
这两个半导体材料分别被称为P型半导体和N型半导体。
当两种材料被堆在一起时,就形成了一个结,称为PN结。
2. 二极管的工作原理二极管是一种只允许电流单向通过的电子器件。
在正向偏置下,二极管可以工作;而在反向偏置下,二极管则基本不导电。
当二极管正向偏置时,P型半导体中的空穴受到外部电场的推动而向N型半导体移动,而N型半导体中的电子也受到电场的推动而向P型半导体移动。
由于在PN结处存在在空间电荷区,因此移动到PN结区域的电子和空穴会发生复合,从而产生少量的电流。
当反向偏置时,由于PN结区域内的空间电荷区宽度增加,从而可以阻挡电流流动。
3. 二极管的特性二极管的电流电压特性是非线性的。
在正向偏置下,二极管可以工作,但是随着正向电压的增大,二极管的电流增长速度会逐渐变慢,最终基本达到饱和。
在反向偏置下,二极管的电流几乎为0,只有微小的反向漏电流。
三、实验步骤1. 准备材料:二极管、电压表、电源、直流电动机、万用表等。
2. 接线:将二极管的正极接在电源的正极,负极接在电动机的正极上。
3. 测量电流电压特性:在实验过程中,测量二极管在不同电压下的电流,可以绘制出二极管的电流-电压特性曲线。
4. 应用实验:通过二极管的特性,可以制作不同应用场景下的电子元件,例如整流器、稳压器等等。
四、实验案例1. 二极管整流器二极管整流器是一种电子电路,用于将交流电转化为直流电。
在一个二极管单元中,通过迅速切换二极管的正向和反向导通,可以将交流电信号的负半周截掉,唯独只剩下正半周。
红外光接收运放电路
红外光接收运放电路红外光接收运放电路是一种用于接收和放大红外光信号的电路,常用于红外遥控、红外通信等领域。
本文将详细介绍红外光接收运放电路的工作原理、设计要点以及应用案例。
一、工作原理红外光接收运放电路的工作原理基于红外光的特性。
红外光是指在电磁波谱中波长较长的光,其波长范围一般为700nm至1mm。
红外光可以被物体反射、透过或发射,因此可以用于传输信息。
红外光接收运放电路的核心部件是红外光接收器,它是一种特殊的半导体器件,能够感应、接收红外光信号并将其转换为电信号。
接收器通常由红外光敏电阻、红外滤光片和红外二极管等组成。
当红外光照射到红外二极管上时,红外二极管会产生电流,其电流大小与照射到二极管上的红外光强度成正比。
接下来,将红外二极管输出的微弱电流信号输入到运放电路中,通过运放电路的放大作用,可以将微弱的红外光电流信号放大到足够的幅度,以便后续的处理和解码。
二、设计要点设计红外光接收运放电路时,需要考虑以下几个要点:1. 选择合适的红外光接收器:不同的应用场景对红外光接收器的要求有所不同。
一般来说,要选择响应速度快、灵敏度高的红外光接收器。
2. 选择合适的运放电路:运放电路是将红外光接收器输出的微弱电流信号放大的关键。
常用的运放电路有差分放大电路、电流放大电路等。
根据具体应用需求选择合适的运放电路。
3. 电源稳定性:红外光接收运放电路对电源的稳定性要求较高,需要提供稳定的电源电压以保证电路的正常工作。
4. 抗干扰能力:红外光接收运放电路通常工作在复杂的环境中,需要具备一定的抗干扰能力,以减少外界信号对电路的影响。
三、应用案例红外光接收运放电路广泛应用于各种红外遥控设备和红外通信系统中。
以红外遥控器为例,当用户按下遥控器上的按键时,遥控器会发送一组特定的红外光信号。
这些红外光信号经过传输后,被红外光接收器接收并转换为电信号。
接着,红外光接收运放电路将电信号放大并进行解码,最终将解码后的信号传递给控制电路,实现对被控设备的控制。
红外线光控开关电路图及工作原理
红外线光控开关电路图及工作原理一、特点该装置采用锁相环单音检测电路LM567构成自发射自接收的闭环控制形式。
就是说,把LM567产生的方波电信号调制在红外线光信号上并发射出去,红外线光敏二极管接收该信号,并把其变为电信号,经放大,又被该LM567自身检测。
这样,LM567自身的振荡频率与要接收的信号频率永远相同,即使由于某种原因使LM567的振荡频率发生了变化。
在一定的频带宽度内,由于LM567只对与自身振荡频率非常接近的信号产生响应,而对其他频率的干扰信号不响应,所以,该装置具有可靠性高、抗干扰性强、安装调试简单的特点。
该装置可应用于自动门、自动水龙头、防盗报警、危险区域误入报警、警戒区域侵入报警等控制。
二、工作原理电路原理图见图1。
红外线光敏二极管PH检测到由红外线发射二极管LE发出的红外线光信号,并将其转换成电信号。
该信号经由IC1A构成有源高通滤波器,滤除外界低频干扰信号;再经IC1B、IC1C两级固定增益放大器的放大、以及IC1D可调增益限幅放大器的放大,进入锁相环单音检测电路IC2的第③脚。
IC2检测到与自身振荡频率相同的信号后,其第⑧脚输出低电平,使继电器DL吸合,触点S1、S2接通,控制其他设备。
IC2第⑧脚的最大吸入电流为100mA。
IC2第⑤脚输出的方波信号,经C8、R16组成的微分电路和N1、N2驱动电路,使红外线发射二极管发出该频率调制的红外线光信号。
微分电路使正方波信号变为低占空比的方波信号。
用低占空比方波调制红外线发射管,可提高红外线发射管的工作效率,即其峰值电流很大,而平均工作电流却很小。
这样,有利于红外线光敏二极管的接收。
电阻R12、R13和电解电容E3是集成电路IC1的中点电位偏置电路,使IC1工作于单电源方式。
该装置有两种工作方式。
一种是:红外线发射二极管和红外线光敏二极管都在同一侧,构成反射检测方式,见图2。
另一种是:红外线发射二极管在一侧,而红外线光敏二极管在另一侧,构成对射式检测方式,见图3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外二极管感应电路分析
一、电路功能概述
红外二极管感应电路可以实现用手靠近红外发射管和红外接收管时,蜂鸣器发声,LED灯点亮,手移开后立即停止发声、LED灯熄灭,灵敏度非常高。
该电路设计思路来源于银行自动开门关门的生活场景,人走进银行,门自动打开,离开后门自动关闭。
或者说来源于肯德基等高档餐厅的水龙头,当手放在水龙头下,水自动流出,离开后水自动关闭。
该电路应用的生活场景非常多,是电路设计人员必须掌握的一种电路。
特别注意,本电路制作成功后,必须调试后才能达到相应的效果,只有掌握了红外感应电路的工作原理后才能调试好相关的参数,所以工作原理是学习重点。
二、电路原理图
三、原理图工作原理
红外感应电路的设计采用模拟电路中的电阻分压取样电路、红外二极管感应电路、三极管电路、运算比较器组成的电压比较电路等相关知识点,请制作者务必学习。
红外感应电路由以红外发射管VD1、红外接收管VD2为核心的红外感应电路,以可调电阻RP1、通用运算放大器LM358为核心的取样比较电路,以三极管9012 VT1、VT2、蜂鸣器HA1、发光二极管LED1为核心元件的声音输出、显示电路构成。
通上5V电源,红外发射管VD1导通,发出红外光(眼睛是看不见的),如果此时没有用手挡住光,则红外接收管VD2没有接受到红外光,红外接收管VD2仍然处于反向截止状态。
红外接收管VD2负极的电压仍然为高电平,并送到LM358的3脚。
LM358的2脚的电压取决于可调电阻RP1,只要调节可调电阻RP1到合适的时候(用万用表测量LM358的2脚的电压大概为2.5V左右),就能保证LM358的3脚的电压大于LM358的2脚的电压,根据比较器的工作原理,当V+ > V-的时候, LM358的1脚就会输出高电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2截止,蜂鸣器HA1不发声,发光二极管LED1熄灭。
当用手靠近红外发射管VD1时,将红外光档住并反射到红外接收管VD2上,红外接收管VD2接受到红外光,立刻导通,使得红外接收管VD2负极的电压急速下降,该电压送到LM358的3脚上。
LM358的3脚电压下降到低于2脚的电压,根据比较器的工作原理,V+ < V-的时候, LM358的1脚就会输出低电平,并通过限流电阻R3送到PNP型三极管VT1、VT2的基极,致使三极管VT1、VT2导通蜂鸣器HA1发声,发光二极管LED1点亮。
通过以上调试步骤,可以实现当手移动到红外发射管VD1和红外接收管VD2的上面时,蜂鸣器发声,发光二极管点亮。
当手离开红外发射管VD1和红外接收管VD2的上面时,蜂鸣器停止发声,发光二极管熄灭,产生了感应手的效果。
四、组装及调试技巧
请根据红外二极管感应电路的原理图和PCB布局图(如下图),按照红外发射电路、红外接收电路、电压取样电路、电压比较电路、报警电路、LED显示电路的顺序安装。
安装前一定要学习红外感应电路工作原理,并熟记电路原理
图, 以便正确安装。
安装的时候请注意:图中左边的红外发射管VD1是白色的,右边的红外接收管VD2是黑色的,右边的红外接收管(黑色的)是反向接法(负极接正电压,正极接地),和稳压二极管的接法类似。
在确保所有线路焊接完全正确、没有漏焊、假焊,焊接安装成功的情况下,可以进入下面的调试。
首先用黑电胶布把红外发射管和红外接收管包好,只留下顶端,请参考实物图。
然后通上5V直流电压,用万用表测LM358的3脚电压,并用手放到红外发射管和红外接收管上面,造成红外接收管能接收反射的红外光,记下此时的电压值(我们制作的产品的电压值大概是1V左右)。
然后拿开手后,再记下此时的电压值(我们制作的产品的电压值大概是3V左右)。
上面的调试步骤就是为了得到LM358的3脚电压值的变化范围,然后用万用表测LM358的2脚电压,调节可调电阻R3,使得LM358的2脚电压在2V左右(目的是处于LM358的3脚电压变化范围内)。
调试完成后,可以稳定的用手遮挡调试,性能非常稳定,如下图所示:
图中红外发射管(左边白色的)和红外接收管(右边黑色的)已经用黑电胶布把包好,包好后很难分清颜色。
特别要说明的红外接收管(右边黑色的)是反向接法(负极接正电压,正极接地),和稳压二极管的接法一样,可别接错哦,下图是焊接电路的反面走线。
如果制作、调试没有成功,请从下面几个方面进行检修与调试:
1、观察法:检查每个元件是否安装正确,特别要注意红外发射二极管和红外接收二极管的正负极,可调电位器的的引脚顺序,LM358的引脚顺序和三极管9012的引脚顺序。
2、电阻法:根据原理图检查线路是否正常连通,可用万用表检测每条线路是否导通。
电子初学者,焊接的线路多有虚焊、漏焊、假焊等情况,电路搭建错误,所以首先检查每条线路是否焊接好,也就是电气性能是否保证。
3、电阻法:检测每处GND是否和电源负极接头是否连通;检测每处VCC是否和电源接头是否连通。
4、以上检测没有问题的情况下,可以用黑电胶布把红外发射管和红外接收管包好,只留下顶端,请参考实物图。
5、红外发射电路的检修。
红外发射电路发射的红外光,人的肉眼是看不见的,但是可以用手机的照相功能看见红外光。
检修过程中可以借助于手机的照相机功能查看红外发光电路是否正常。
主要查看限流电阻的阻值和红外发光二极管的正负极性是否安装正确。
6、红外接收电路的检修。
主要用万用表测红外接收二极管的负极,观察当用手放到红外发射管时的电压值(是否为低电平)和当手移开红外接收管上面时的电压值(是否为高电平)。
因为火中含有大量的红外光,因此可以用打火机打火(模拟红外光的照射)检查红外接收电路是否正常。
7、电压取样电路的检修。
主要是测试可调电阻RP1的第三脚电压值是否在2.5V左右,旋转可调电阻时电压值是否可变。
8、电压比较电路的检修。
主要用万用表测LM358的1脚电压,观察当用手放到红外发射管时LM358的1脚的电压值(是否为低电平)和当手移开红外接收管上面时LM358的1脚的电压值(是否为高电平)。
9、报警电路、LED显示电路的检修。
可用电源地直接加在V1、V2的基极,看看是否报警和LED点亮。
损坏的元件可能是9012和发光二极管。
经过以上步骤的检查、检测后,基本上可以排除故障,可以实现当用手放到红外发射管和红外接收管上面时,蜂鸣器报警,LED灯亮;当用手移开红外发射管和红外接收管上面时,蜂鸣器停止报警,LED熄灭。