单相全桥控制电路

合集下载

单相全桥逆变电路原理

单相全桥逆变电路原理

单相全桥型逆变电路原理电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间+-U VD 3VD 4单相半桥电压型逆变电路工作波形全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得其中基波幅值Uo1m 和基波有效值Uo1分别为上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2ddo1m 27.14U U U ==πdd1o 9.022U U U ==πO OONu o U m - U m ioVD1VD 2VD1VD2⎪⎭⎫ ⎝⎛+++= t t t U u ωωωπ5sin 513sin 31sin 4d ouo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现t 1时刻前V 1和V 4导通,输出电压u o为u dt 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形u u u u u i o o 实际就是调节输出电压脉冲的宽度• 各IGBT 栅极信号为180°正偏,180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补• V3的基极信号不是比V 1落后180°,而是只落后θ ( 0<θ <180°)• V 3、V 4的栅极信号分别比V 2、V 1的VD 3VD 4采用移相方式调节逆变电路的输出电压u u u u u i o o t 2时刻V 1和V 2栅极信号反向, V 1截止, V 2不能立即导通,VD 2导通续流,和VD 3构成电流通道,输出电压为-U d到负载电流过零开始反向, VD 2和VD 3截止, V 2和V 3开始导通, u o 仍为- U du u u u u i o o t 3时刻V 3和V 4栅极信号再次反向,V 3截止, V 4不能立刻导通, VD 4导通续流, u o 再次为零 输出电压u o 的正负脉冲宽度各为θ ,改变θ ,可调节输出电压。

单相全桥逆变电路的工作原理

单相全桥逆变电路的工作原理

单相全桥逆变电路的工作原理1. 引言嘿,大家好!今天咱们来聊聊一个非常有趣的电路——单相全桥逆变电路。

听起来很高大上对吧?其实它在我们的生活中无处不在,比如说咱们的太阳能发电系统,还有一些小家电。

没错,这玩意儿可是个“神奇小子”,能把直流电(DC)转化为交流电(AC),就像变魔术一样,咱们快来看看它的工作原理吧!2. 基本原理2.1 单相全桥逆变电路的构成首先,单相全桥逆变电路的名字可能让你觉得复杂,但它的构成其实挺简单的。

这个电路主要有四个开关元件,通常是功率晶体管,比如MOSFET或者IGBT,就像四个小兄弟站在舞台上。

它们的工作就像跳舞一样,轮流开关,控制电流的方向。

然后呢,还有一个输出滤波器,负责把电流变得更平滑,别让它吵吵闹闹的,影响我们的家居生活。

2.2 工作过程接下来,咱们来聊聊它的工作过程。

这个电路的工作可以分为几个阶段。

在一个周期内,两个开关会交替打开,比如说第一个和第二个开关先一起打开,然后再换成第三个和第四个。

这个过程就像打乒乓球,电流在两个方向之间快速转换,从而实现了直流电向交流电的转变。

大家可能会想,这样转变的电流到底有什么用?其实啊,这样产生的交流电可以驱动各种电器,让它们欢快地工作。

3. 应用场景3.1 太阳能发电好啦,讲完了工作原理,咱们来看看单相全桥逆变电路的应用场景。

首先,太阳能发电是个大热门,大家都知道,太阳能电池板产生的电流是直流的,而我们日常使用的电器大多需要交流电。

这时候,逆变电路就派上用场了!它把太阳能转化的直流电变成交流电,让我们的家里满是阳光的味道,真是太赞了。

3.2 小家电其次,咱们的许多小家电,比如说电饭煲、微波炉等,都需要交流电来工作。

这个时候,逆变电路就像一位隐形的助手,默默地把直流电转化为交流电,保障了咱们的美好生活。

想象一下,如果没有它,咱们的饭可能就没法煮了,生活可就没那么方便了。

4. 小结总的来说,单相全桥逆变电路可真是个不可或缺的好帮手。

单相全桥PWM整流电路的工作原理

单相全桥PWM整流电路的工作原理

单相全桥PWM整流电路的工作原理整流电路的工作原理是将交流电转换为直流电。

在单相全桥PWM整流电路中,交流电源通过一个变压器降低电压并供电给四个开关管。

开关管在交流电的正、负半周上轮流导通和截止,来控制输出电压和电流的形状和幅度。

整流过程中的四个开关管可以分为上下两个桥臂,每个桥臂有两个开关管。

在整流过程中,交流源的正弦电压周期性地改变极性,正半周和负半周分别对应桥臂的不同导通方式。

正半周时,上桥臂导通,下桥臂截止;负半周时,上桥臂截止,下桥臂导通。

通过这种方式,可实现对输入电压的全波整流。

开关管导通过程中,电流从输入电源流向开关管和输出负载,而开关管截止时,电流则通过反向二极管回路流向输出负载和滤波电容。

开关管的导通和截止是通过PWM(脉冲宽度调制)信号控制的,PWM信号由控制电路产生。

PWM信号的主要功能是控制开关管的开通和断开时间,以控制整流电路输出电压的大小。

PWM信号有两个控制参数:占空比和频率。

占空比是指开关管导通时间占整个周期的比例,而频率则决定了PWM信号的周期。

通过调整这两个参数,可以实现整流电路输出电压的调节和稳定。

在整流过程中,由于交流电源和负载之间存在电感和电容等元件,电流和电压的变化会引起电压波形的畸变。

为了得到平滑的直流输出电压,需要在整流电路的输出端连接一个滤波电容。

滤波电容通过将电流平滑化,使得输出电压呈现近似直流的特性。

此外,PWM整流电路还需要考虑电流的保护和控制。

通常会加入过流保护电路来保护开关管和负载电路不受过电流的损坏。

同时,还可以通过控制PWM信号来控制输出电流的大小,实现对负载的精确控制。

总而言之,单相全桥PWM整流电路通过控制开关管的导通和截止,利用PWM技术对交流电进行整流,实现将交流电源转换为稳定的直流电。

该电路结构简单,功效高效,被广泛应用于各种电源和电动机控制系统中。

单相全桥逆变电路和单相半桥逆变电路

单相全桥逆变电路和单相半桥逆变电路

单相全桥逆变电路和单相半桥逆变电路在这个科技飞速发展的时代,逆变器就像是电路里的小精灵,把直流电变成交流电,真是让人眼前一亮!你有没有想过,为什么我们家的电器能那么“聪明”?这全靠那些逆变电路啦!今天咱们就来聊聊单相全桥逆变电路和单相半桥逆变电路。

哎呀,名字听上去有点复杂,不过别担心,我会让你轻松搞定这些“名词”。

单相全桥逆变电路,这可真是个“大玩家”!想象一下,它就像一位全能的舞者,四个开关器件在舞台上翩翩起舞。

每一个开关都能开能关,组合起来,就能把直流电源的电流换成漂亮的交流电。

这种电路的好处就像是买了一张VIP通行证,功率大、效率高,真是个小猛兽。

电流的波形美得就像是艺术品,咱们说这是一种“正弦波”。

这种电路还能实现更好的电压控制,哇,简直是电气工程师的梦想啊!你知道吗?这个全桥逆变电路就像是在你的家里举办了一场大型派对,四个开关器件像朋友一样互相配合,搞得热闹非凡。

这样一来,逆变器的性能就像是在喝了红牛,瞬间变得强大。

可是,有好就有坏,使用这个电路的时候,元件的损耗也会比较大。

你想啊,开关频繁地开关,那电流的热量可得要控制得当,不然可就“烧成灰”了,哈哈。

再说说单相半桥逆变电路。

听上去是不是没那么复杂?它其实就像是全桥的“小弟弟”。

这个电路只有两个开关器件,所以运行起来简单很多。

就像是你和好友一起去游乐场,少了几个伙伴,但乐趣依旧不少。

这种电路的好处是它对电源的要求相对简单,适合家庭用电,轻松搞定小家电的需求。

虽然功率没全桥那么大,但在日常生活中,这已经绰绰有余了。

半桥逆变电路的波形虽然没有全桥的那样完美,但也是相当不错。

想想你喝的饮料,虽然不是特别高档,但足够解渴就行,对吧?这个电路在成本上也更亲民,尤其是对于那些不想花大钱但又想体验“逆变生活”的家庭,真是个理想的选择。

别以为电路的运行就只有这些,实际上,它们的工作状态可是能让你大吃一惊!你知道电流在电路中流动的感觉吗?就像是一场音乐会,节奏起伏,气氛热烈。

单相全控整流电路详解

单相全控整流电路详解

第一题说明全控型整流电路的工作原理,并设计出一个单相全控整流电路及其控制电路(开环)1.单相全控型PWM整流电路的结构单相电压型桥式PWM整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1-1所示。

每个桥臂由一个全控器件和反并联的整流二极管组成。

u s是正弦波电网电压,u d是整流器的直流侧输出电压,Ls为交流侧附加的电抗器,Ls包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。

起平衡电压,支撑无功功率和储存能量的作用。

全桥电路直流侧电容只要一个就可以。

由图1-1所示,能量可以通过构成桥式整流的二极管VD1-VD4完成从滞留测到交流侧的传递,也可以经过全控型器件V1-V4从直流侧你变为交流,反馈给电网。

图1-1所以PWM整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视V1-V4的脉宽调制方式而定。

2.单相全控型PWM整流电路的工作原理用正弦信号波和三角波相比较的方法对图1-1中的V1-V4进行SPWM控制,就可以在桥的交流输入端AB产生一个SPWM波u AB。

u AB中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。

当正弦信号波频率和电源频率相同时,i s也为与电源频率相同的正弦波。

由于Ls的滤波作用,谐波电压只使i s产生很小的脉动。

u s一定时,i s 幅值和相位仅由u AB中基波u ABf的幅值及其与u s的相位差决定。

改变u ABf的幅值和相位,可使i s和u s同相或反相,i s比u s超前90°,或使i s与u s相位差为所需角度。

u s> 0时,(V2、VD4、VD1、Ls)和(V3、VD1、VD4、Ls)分别组成两个升压斩波电路,以(V2、VD4、VD1、Ls)为例。

V2通时,u s通过V2、VD4向Ls储能。

V2关断时,Ls中的储能通过VD1、VD4向C充电。

【精品】单相全桥可控整流电路实验

【精品】单相全桥可控整流电路实验

【精品】单相全桥可控整流电路实验单相全桥可控整流电路是一种常用的电力电子器件,广泛应用于交流电源中。

本实验旨在通过实际搭建和测试单相全桥可控整流电路,掌握其工作原理和性能特点。

实验原理:单相全桥可控整流电路由四个可控硅器件组成,分别是V1、V2、V3和V4。

当输入交流电压正半周时,V1和V3导通,V2和V4不导通;当输入交流电压负半周时,V2和V4导通,V1和V3不导通。

通过控制可控硅的导通角,可以实现对输入交流电压的整流和调控。

实验步骤:1. 准备实验所需的器材和元件,包括可控硅、电阻、电感、电容等。

2. 按照电路图搭建单相全桥可控整流电路,确保连接正确。

3. 接入交流电源,调节交流电压和频率,确保实验安全。

4. 接入示波器,观察输入交流电压和输出电压的波形。

5. 通过调节可控硅的触发角,观察输入电压的整流效果和输出电压的波形变化。

6. 测量和记录不同触发角下的输出电压和电流的数值,并绘制相应的波形图。

7. 对实验数据进行分析和总结,比较不同触发角下的整流效果和输出性能。

实验注意事项:1. 在搭建电路时,要注意元件的连接正确性,确保电路能够正常工作。

2. 使用示波器时,要注意安全操作,避免触电事故。

3. 在调节交流电源时,要小心操作,避免触电和电源过载。

4. 在测量电压和电流时,要使用合适的测量仪器,并注意测量范围和精度。

5. 在操作可控硅时,要注意触发角的控制和可控硅的散热,避免过热损坏。

实验结果分析:通过实验可以得到不同触发角下的输出电压和电流的波形图。

可以观察到,当触发角为0时,输出电压为正弦波;当触发角为90度时,输出电压为脉冲波;当触发角为180度时,输出电压为负弦波。

通过调节触发角,可以实现对输出电压的调节和控制。

实验总结:通过本实验,我对单相全桥可控整流电路的工作原理和性能特点有了更深入的了解。

掌握了搭建和测试单相全桥可控整流电路的方法和技巧,并对实验结果进行了分析和总结。

这对我今后的学习和实践具有重要的意义,为我深入理解电力电子技术奠定了基础。

实验二 单相桥式全控整流电路 一、实验目的

实验二 单相桥式全控整流电路 一、实验目的
锯齿波触发电路的调试; (2) 锯齿波触发电路各点电压波形的观察、记录; (3) 单相桥式全控整流电路带电阻性负载时波形观察、记录。
图 2 单相桥式全控整流电路
五、实验方法 (1)锯齿波触发电路的调试 将 DJK01 电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为 200V,用两 根导线将 200V 交流电压接到 DJK03-1 的 “外接 220V” 端, 按下 “启动” 按钮, 打开 DJK03-1 电源开关,用示波器观察锯齿波同步触发电路各观察孔的电压波形。调节 RP1、RP2、RP3 观察对各点波形的影响。利用示波器观察同步电压信号和“TP6”点触发信号,调节 RP3 到 适量的值,保证只调整 RP2 调相范围可达到 0°~180°。 (2)单相全桥可控整流电路的调试 按图 2 接线,按下“启动”按钮,保持 RP2 或 RP3 中一个不变(由第一个调试结果而 定) ,调整另外一个变阻器,在α=60°、90°、120°时,用示波器观察电阻负载两端电压 波形,并记录电源电压 U2 和负载电压 Ud 的数值于下表中。 表 1 电源电压 U2 和负载电压 Ud α U2 Ud(计算值) Ud(记录值) 其中 Ud 的计算值应为: 60° 90° 120°
1 cos U d 0.9U 2 2
(1-1)
六、实验报告撰写要求 (1) 写出实验目的、实验所需挂件及附件; (2) 画出实验整体原理图; (3) 画出α=60°时,锯齿波触发电路的 TP1、TP2、TP3、TP4、TP5、TP6 的波形; (4) 填写表 1 中的数据; (5) 画出α=60°时,电阻性负载 Ud 的波形; (6) 回答思考题: a. 在锯齿波触发电路中,在控制移相电压端,为什么需要有两个变阻器(RP2、RP3) 来控制? 七、注意事项 (1) 示波器在没有“共地”的情况下,不能同时直接测量两处信号,尤其是控制电路和 主电路; (2) 在实验中,触发脉冲是从外部接入 DJK02 面板上晶闸管的门极和阴极,此时,应将 所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,避免误 触发。 (3) 在主电路未接通时,首先要调试触发电路,只有触发电路工作正常后,才可以接通 主电路。

单相全桥pwm整流电路等效电路

单相全桥pwm整流电路等效电路

单相全桥pwm整流电路等效电路1. 什么是单相全桥PWM整流电路?嘿,朋友们!今天我们来聊聊单相全桥PWM整流电路。

这名字听起来像是从科幻电影里跳出来的,其实它就是把交流电变成直流电的一种方式,简单说就是把“摇摇晃晃”的电流变成“稳稳当当”的电流。

说到这里,有没有感觉到有点像把一杯摇晃的水倒入一个稳稳的杯子里?这个过程可不仅仅是把水换个地方那么简单哦!在这个过程中,PWM(脉宽调制)技术就像是一个魔法师,帮我们调整电流的“强度”和“频率”,让电流变得更加平稳。

2. 工作原理2.1 全桥结构首先,我们得了解全桥的构造。

这就像是搭积木一样,全桥由四个开关(通常是晶体管)组成。

想象一下,这四个开关就像是四个朋友,彼此配合得天衣无缝,来控制电流的流向。

你可能会问,这四个开关是怎么工作的呢?其实,他们的工作原理就像是在跳舞,有时这两个开关打开,有时那两个开关打开,最终把交流电的正负半周都用上了。

2.2 PWM调制接下来就是PWM调制的部分了。

这一步就像是在调音台上调节音量。

通过改变开关打开和关闭的时间比例,我们可以精确控制输出电压。

这种方法就像是用遥控器调整电视音量,有时音量大,有时音量小,真是好玩又神奇!这样做的好处是可以让输出电流更加稳定,减少波动,就像把一条河流修整成了缓缓流淌的小溪。

3. 优势与应用3.1 优势哎呀,说到优势,这个整流电路简直是如虎添翼。

首先,它的效率高得让人惊叹!在许多应用场合,比如电源转换器、UPS(不间断电源)等,单相全桥PWM整流电路能够以极高的效率把电能转化过来,让电流流得更顺畅。

再者,电路的设计相对简单,故障率低,维修起来也很方便。

想象一下,你的电器故障了,修起来就像换个灯泡那么简单,多舒服呀!3.2 应用那么,这种电路到底用在哪些地方呢?举个简单的例子,像是电动汽车的充电桩,单相全桥PWM整流电路就是它们的重要组成部分。

它帮助把市电转换成电动汽车所需的直流电,让电动汽车能够顺利地充电。

单相全桥逆变器电路图 单相桥式逆变器的工作原理和波形图详解

单相全桥逆变器电路图 单相桥式逆变器的工作原理和波形图详解

单相全桥逆变器电路图单相桥式逆变器的工作原理和波形图详解
一、单相全桥(逆变器)是什么?
单相全桥逆变器基本上是电压源逆变器,单相全桥逆变器的(电源电路)图下图所示。

为了简单,没有标出SCR触发电路和换向电路。

单相全桥逆变器采用2线直流(电源)、4个续流(二极管)和4个(可控硅)。

T1和可T2同时导通,其频率为f=1/T。

同样,T3 和T4同时开启。

(T1和T2 )和(T3和T4)的相位差有180℃。

单相全桥逆变器
二、单相全桥逆变器电路工作原理
单相全桥逆变器的工作分为4种模式:模式℃:(t1
模式℃(t1
模式II (T/2
模式III(t2
三、单相全桥逆变波形
这里S1、S2、S3、S4也就是T1、T2、T3、T4。

1、当负载为:负载为R、L、RL
1)纯(电感负载)L 负载:
电流Io 关于t 轴对称,因此直流分量= 0,并且电流从最小峰值电流(-Ip) 到最大峰值电流(+Ip) 呈线性。

在这种情况下:D1 和D2在0
负载为R、L、RL
2、当负载为纯阻性负载
输出电压(U0)和输出电流(I0)波形如下:
Ig1和Ig2为门脉冲,用于接通S1、S2和S3、S4。

对于阻性负载,在0
负载为纯阻性负载
3、任何负载的输出电压(U0)波形
负载的输出电压(U0)波形
对于任何类型的负载,输出电压波形将保持相同,但电流波形取决于负载的性质。

输出电压波形是半波对称的,因此不存在所有偶次谐波。

四、单相全桥逆变优点
电路中无电压波动
适合高输入电压
高效节能
功率器件的额定电流等于负载电流。

实验51-DC-AC SPWM单相全桥逆变电路设计及研究

实验51-DC-AC SPWM单相全桥逆变电路设计及研究

实验五十一DC/AC SPWM单相全桥逆变电路设计及研究(信号与系统—自动控制理论—检测技术-电力电子学综合实验)一、实验原理SPWM单相全桥逆变电路的主要工作原理是依靠四个开关管的通、断状态配合,利用冲量等效原理,采用正弦脉宽调制(SPWM)策略将输入的直流电压变换成正弦波电压输出。

SPWM的调制原理是通过对每个周期内输出的脉冲个数和每个脉冲宽度来调节逆变器输出电压的频率和幅值。

要使输出的电压波形接近标准的正弦波,就要尽量保证SPWM电压波在每一时间段都与该时段中正弦电压等效。

除要求每一时间段的面积相等外,每个时间段的电压脉冲宽度还必须很窄,这就需要在一个正弦波形内脉冲的数量很多。

脉波数量越多,不连续的按正弦规律改变宽度的多脉冲电压就越等效于正弦电压。

目前,在电力电子控制技术中,SPWM技术应用极为广泛,SPWM波形的形成一般有自然采样法、规则采样法等等。

前者主要用于模拟控制中,后者适用数字控制。

本实验采用的是DSP控制的单相全桥逆变电路,采用对称规则采样法。

对称规则采样的基本思想是使SPWM波的每个脉冲均以三角载波中心线为轴线对称,因此在每个载波周期内只需一个采样点就可确定两个开关切换点时刻。

具体算法是过三角波的对称轴与正弦波的交点,做平行于时间轴的平行线,该平行线与三角波的两个腰的交点作为SPWM波“开通”和“关断”的时刻。

由于在每个三角载波周期中只需要进行一次采样,因此使得计算公式得到简化,并且可以根据脉宽计算公式实时计算出SPWM波的脉宽时间,可以实现数字化控制。

图51-1 对称规则采样法生成SPWM波根据相似三角形定理,可以分析出图1对称规则采样法生成的SPWM波脉宽时间T n为:()21sin n n T T MN Nπ−= (51-1) 式中,M 为调制度,T 为正弦调制波周期,N 为载波比。

本实验中程序采用DSP 控制方式,载波频率固定为10KHZ ,调制波频率为50HZ 频率。

单相全桥电压型逆变电路的工作原理

单相全桥电压型逆变电路的工作原理

单相全桥电压型逆变电路是一种常用于将直流电源转换为交流电源的电路。

它通过控制开关器件的开关状态来实现对输出电压的调节。

该电路由四个开关器件(一般为可控硅或晶闸管)和一个中心点连接到输出负载的变压器组成。

工作原理如下:
1. 输入:直流电源通过一个滤波电容提供给变压器的两个输入端,同时接地。

2. 开关控制:四个开关器件被分为上下两组,每组包含两个对称的开关。

这些开关器件通过控制电流的导通和截断来控制电路的工作方式。

3. 上半桥工作:在某个时刻,上半桥的两个开关器件之一导通,另一个截断。

这样,直流电源的正极与变压器的中点连接,产生一个正脉冲,使得变压器的一侧输出高电平。

4. 下半桥工作:在另一个时刻,下半桥的两个开关器件之一导通,另一个截断。

这样,直流电源的负极与变压器的中点连接,产生一个负脉冲,使得变压器的一侧输出低电平。

5. 输出:通过交替切换上半桥和下半桥的工作状态,可以产生一个周期性的方波输出。

通过变压器的绕组比例,可以将方波转换为所需的交流电压,并将其提供给负载。

6. 控制:通过调节开关器件的导通和截断时间,可以改变输出的频率和有效值。

常用的控制方法包括脉宽调制(PWM)和谐波控制等。

总结来说,单相全桥电压型逆变电路利用四个开关器件以及变压器的绕组比例,将直流电源转换为交流电源,并通过控制开关器件的导通和截断来实现对输出电压的调节。

1。

单相桥式全控整流电路设计

单相桥式全控整流电路设计

单相桥式全控整流电路设计首先,我们需要明确单相桥式全控整流电路的基本原理。

单相桥式全控整流电路主要由四个可控硅和一个储能电感组成。

可控硅是一种半导体器件,可以控制导通角度,从而实现对输出电流的调节。

储能电感则可以平滑输出电流,减小谐波噪声。

接下来,我们将介绍单相桥式全控整流电路的设计步骤:1.确定输出电压和电流要求:首先,需要确定所需的输出电压和电流。

这取决于具体的应用场景和负载要求。

2.计算储能电感参数:根据所需的输出电流和电压,可以计算出储能电感的参数。

储能电感需要能够平滑输出电流,并具有足够的电感值来减小谐波噪声。

3.选择可控硅参数:根据所需的输出电流和电压,选择合适的可控硅参数。

可控硅的主要参数包括最大耐压、最大电流和导通角度等。

4.设计触发电路:触发电路可以根据输入信号来控制可控硅的导通角度。

常见的触发电路有正弦升波触发电路和微处理器触发电路等。

在选择触发电路时,需要考虑其适用于具体的应用场景和控制要求。

5.选择滤波电路:为了进一步减小谐波噪声和提高输出电压质量,可以选择合适的滤波电路。

滤波电路可以根据具体需求,选择低通滤波器、电解电容器等。

6.完成电路连接:根据设计要求,将可控硅、储能电感、触发电路和滤波电路连接在一起。

确保连接正确、稳定可靠。

7.进行测试和调试:根据设计要求,对整个电路进行测试和调试。

通过实际测量,调整触发角度和控制信号,以实现所需的输出电流和电压。

最后,值得注意的是,在进行单相桥式全控整流电路设计时,需要遵循安全操作规范,并严格遵守相关的电气安全要求。

单相桥式全控整流电路原理

单相桥式全控整流电路原理

单相桥式全控整流电路原理一、概述单相桥式全控整流电路是一种广泛应用于电力电子领域的电路形式,它具有输入电流为正弦波、输出电压为全波整流电压、功率因数为接近1等优点,因此在各种电力电子应用场景中得到了广泛应用。

本篇文章将详细介绍单相桥式全控整流电路的工作原理、电压和电流波形以及控制方式。

二、工作原理单相桥式全控整流电路主要由四个晶闸管组成,其中两个为反向并联晶闸管,它们串联在交流电源和直流负载之间。

工作原理如下:1.电源电压经变压器降压后,再经二极管D1、D2对电容C1进行半波整流,得到一个按正弦规律变化的半波脉冲。

2.当输入电压的正半周来临时,触发A晶闸管,通过电感使B晶闸管导通,C晶闸管处于阻断状态,电源电压经B晶闸管和负载构成回路,将电容C1上的直流电压经负载送出。

3.当输入电压的负半周来临时,触发B晶闸管,通过电感使A晶闸管导通,C晶闸管仍处于阻断状态,由于电感电流不能突减,晶闸管C截止。

此时电源通过触发A和二极管D2向电容C充电。

由于电容电压不能突变,输出电压波形为一个正弦波。

三、电压和电流波形在单相桥式全控整流电路中,输入电流和输出电压的波形均为正弦波。

输入电流的大小和相位与输入电压同步,电流的波形受触发脉冲的控制。

输出电压的幅值取决于交流电源的电压和负载的大小。

当负载变化时,输出电流的波形也会随之变化。

在整流电路中,通常使用电容滤波来提高输出电压的稳定性。

四、控制方式单相桥式全控整流电路的控制方式主要包括电压控制、电流控制和复合控制三种。

电压控制通过调节触发脉冲的相位来实现输出电压的调节;电流控制通过调节触发脉冲的宽度来实现输出电流的调节;复合控制则同时考虑输出电压和电流的调节。

在实际应用中,需要根据具体需求选择合适的控制方式。

五、结论单相桥式全控整流电路是一种具有广泛应用价值的电力电子电路形式,具有输入电流为正弦波、输出电压为全波整流电压、功率因数为接近1等优点。

本篇文章详细介绍了单相桥式全控整流电路的工作原理、电压和电流波形以及控制方式,希望能为相关人员提供有益的参考。

单相全桥逆变电路原理

单相全桥逆变电路原理

单相全桥逆变电路原理单相全桥逆变电路的原理基于桥式整流电路的基本结构,它由四个开关管和一组负载组成。

其中两个开关管位于直流电源的正负极之间,分别称为上桥臂和下桥臂;另外两个开关管位于负载的正负两端,分别称为左桥臂和右桥臂。

根据控制开关管的导通和断开状态,可以确定电流的流向,从而实现逆变功能。

在正半周期中,上桥臂的开关管(Q1)闭合,下桥臂的开关管(Q2)断开。

此时,电流从正极流向负极,经过左桥臂、负载和右桥臂,形成一个回路。

由于右桥臂的开关管(Q4)闭合,左桥臂的开关管(Q3)断开,电流只能通过负载。

因此,负载上的电压为正。

在负半周期中,上桥臂的开关管(Q1)断开,下桥臂的开关管(Q2)闭合。

此时,电流从负极流向正极,经过右桥臂、负载和左桥臂,形成一个回路。

由于左桥臂的开关管(Q3)闭合,右桥臂的开关管(Q4)断开,电流只能通过负载。

因此,负载上的电压为负。

通过改变开关管的导通和断开状态,可以控制上述两个半周期的开关时间比例,从而改变输出的交流电压的幅值和频率。

具体来说,如果正半周期的开关时间比例较大,负半周期的开关时间比例较小,那么输出的交流电压的幅值将较大;反之,则输出的交流电压的幅值将较小。

同样地,通过改变开关时间比例,可以改变输出的交流电压的频率。

1.在正半周期中,上桥臂的开关管(Q1)闭合,下桥臂的开关管(Q2)断开,电流从正极流向负极,经过负载。

2.在负半周期中,上桥臂的开关管(Q1)断开,下桥臂的开关管(Q2)闭合,电流从负极流向正极,经过负载。

3.通过改变开关管的导通和断开状态,可以控制输出的交流电压的幅值和频率。

单相全桥逆变电路具有高效率、输出波形质量好、容量大等优点。

它广泛应用于工业控制、电力电子、电力变换、电力输配等领域。

在逆变器、变频器、电动机驱动器等系统中发挥着重要作用。

通过对其原理的深入理解,可以更加灵活地设计和控制逆变电路,提高电能的使用效率和质量。

单相桥式全控整流电路

单相桥式全控整流电路

1. 单相桥式全控整流电路(阻-感性负载)1.1单相桥式全控整流电路电路结构(阻-感性负载)单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。

单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1. 单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1)在u2正半波的(0~α)区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。

假设电路已工作在稳定状态,则在0~α区间由于电感释放能量,晶闸管VT2、VT3维持导通。

2)在u2正半波的ωt=α时刻及以后:在ωt=α处触发晶闸管VT1、VT4使其导通,电流沿a→VT1→L→R→VT4→b→Tr的二次绕组→a流通,此时负载上有输出电压(ud=u2)和电流。

电源电压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。

3)在u2负半波的(π~π+α)区间:当ωt=π时,电源电压自然过零,感应电势使晶闸管VT1、VT4继续导通。

在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。

4)在u2负半波的ωt=π+α时刻及以后:在ωt=π+α处触发晶闸管VT2、VT3使其导通,电流沿b→VT3→L→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载上,负载上有输出电压(ud=-u2)和电流。

此时电源电压反向加到VT1、VT4上,使其承受反压而变为关断状态。

晶闸管VT2、VT3一直要导通到下一周期ωt=2π+α处再次触发晶闸管VT1、VT4为止。

1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2 单相双半波可控整流电路仿真模型(阻-感性负载)电源参数,频率50hz,电压100v,如图3图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟α/360*0.02,如图4图4. 单相桥式全控整流电路脉冲参数设置VT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5图5. 单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。

单相桥式全控整流电路电阻负载

单相桥式全控整流电路电阻负载

单相桥式全控整流电路电阻负载1. 简介单相桥式全控整流电路是一种常见的电力电子器件,用于将交流电转换为直流电。

它由四个可控硅元件组成,通过适当的触发脉冲控制,实现对交流电的整流和调节。

本文将详细介绍单相桥式全控整流电路在电阻负载下的工作原理、特点和应用。

2. 工作原理单相桥式全控整流电路由四个可控硅元件组成,分别为两个正向可控硅(SCR)和两个反向可控硅。

其拓扑结构如下图所示:+---->----+| |+------+ +------+| | | || SCR1 +---+---+---+ SCR2 || | | | | |+------+---+---+---+------+D1 D2 D3 D4当输入交流电源施加到该电路时,通过适当的触发脉冲,可以实现对正向可控硅和反向可控硅的导通和关断。

在正半周周期内,当SCR1导通时,D1反向偏置,SCR2关断,电流从SCR1、负载和D2依次流过。

在负半周周期内,当SCR2导通时,D4反向偏置,SCR1关断,电流从SCR2、负载和D3依次流过。

通过适当的触发角控制SCR1和SCR2的导通时间,可以实现对输出直流电压的调节。

3. 特点3.1 全控整流单相桥式全控整流电路能够实现对输入交流电的全波整流,并且可以通过调节触发角来控制输出直流电压的大小。

这种全控整流方式使得输出具有较好的稳定性和可调性。

3.2 高效率由于可控硅元件具有较低的导通压降和较高的导通效率,在单相桥式全控整流电路中使用可控硅元件进行整流可以提高系统的能量转换效率。

3.3 适应性强单相桥式全控整流电路适用于各种负载类型,包括阻性负载、感性负载和容性负载等。

无论是纯阻性负载还是复杂的非线性负载,该电路都能够正常工作并提供稳定的输出。

3.4 可靠性高可控硅元件具有较高的耐压能力和较低的温升,因此单相桥式全控整流电路具有较好的可靠性和稳定性。

同时,可控硅元件寿命长,能够满足长时间工作的要求。

单相全桥控制电路

单相全桥控制电路

单向桥式全控整流电路仿真1.建立仿真模型根据单相桥式原理建立的仿真模型如图所示:元器件名称提取元器件路径元器件名称提取元器件路径交流电压SimPower systems/electrical soyres RLC串联电路SimPower systems/elements单相变压器SimPower systems/Elements 示波器Simulink/sinks 晶闸管SimPowersystems/powerelectronics 常数模块simulink/source平均值测量模块SimPowersystems/extra library/measurments信号分解simulink/singalrouting脉冲发生器SimPower systems/ extra library/control blocks 电流测量SimPower systems/measurment电压测量SimPower systems/mensurements 终端模块simulink/Sinks在simulink模型库中没有专用的单相桥式整流电路的触发模块,这里使用了三相VT3的触发脉冲。

用电压测量器取得变压器二次电压信号作为触发器的同步信号,同步信号从触发器AB端输入,触发器BC,CA端和Block端用常数模块设置‘0’。

Synchronized 6—Pulse Generator产生6路触发信号,通过Demux 分解并与变压器二次电压的相位比较,图(1)上为变压器二次电压波形,中为6路脉冲波形,下位4路脉冲触发波形,将脉冲相位与正弦波比较,这两路信号可以满足单相桥的触发和移相控制要求,因此将第6路触发脉冲链接VT1,VT4,第四路链接VT2和VT3。

模型中用示波器观测连接点上得波形,示波器Ud,Id 观测负载电压和电流,示波器Uvt1,Ivt1观测晶闸管VT1的电压和电流。

示波器Pulse观察电压电压和触发脉冲,并通过Mean Value计算负载两端的电压平均值。

单相桥式全控电路工作原理

单相桥式全控电路工作原理

单相桥式全控电路工作原理
单相桥式全控电路工作原理
单相桥式全控电路(Single-phase bridge full-controlled circuit)是一种利用桥式变压器(bridge transformer)的电路,通过改变桥式变压器的电路结构来调节电压和频率。

它由主备用电路方式构成,主用电路用于正常工作,备用电路用于过载或短路故障的处理。

单相桥式全控电路的主要组成部分有:电源母线(power line)、桥式变压器(bridge transformer)、控制电路(control circuit)、控制器(controller)、电流检测器(current detector)、变压器开关(transformer switch)、变频处理器(frequency converter)等。

工作原理
单相桥式全控电路的工作原理是:将电源母线的电压调整成本桥式变压器可以将交流电转换成直流电的输入电压。

该桥式变压器可以通过改变其电路结构来使其输出的直流电压调整到指定的值,而控制电路则可以根据电压的大小来控制桥式变压器的结构。

控制电路中的电流检测器则可以用来检测桥式变压器的电流,当桥式变压器的电流超过指定的值时,控制器就会发出信号控制变压器开关的断开,从而终止桥式变压器的工作,同时变频处理器(frequency converter)也会将桥式变压器的电压调整到指定的值,最终达到调节电压和频率的目的。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单向桥式全控整流电路仿真
1.建立仿真模型
根据单相桥式原理建立的仿真模型如图所示:
元器件名称提取元器件路径元器件名称提取元器件路径
交流电压SimPower systems/electrical soyres RLC串联电
路SimPower systems/elements
单相变压器SimPower systems/Elements 示波器Simulink/sinks 晶闸管SimPowersystems/powerelectronics 常数模块simulink/source
平均值测量模块SimPowersystems/extra library/
measurments
信号分解simulink/singal
routing
脉冲发生器SimPower systems/ extra library/control blocks 电流测量SimPower systems
/measurment
电压测量SimPower systems/mensurements 终端模块simulink/Sinks
在simulink模型库中没有专用的单相桥式整流电路的触发模块,这里使用了三相VT3的触发脉冲。

用电压测量器取得变压器二次电压信号作为触发器的同步信号,同步信号从触发器AB端输入,触发器BC,CA端和Block端用常数模块设置‘0’。

Synchronized 6—Pulse Generator产生6路触发信号,通过Demux 分解并与变压器二次电压的相位比较,图(1)上为变压器二次电压波形,中为6路脉冲波形,下位4路脉冲触发波形,将脉冲相位与正弦波比较,这两路信号可以满足单相桥的触发和移相控制要求,因此将第6路触发脉冲链接VT1,VT4,第四路链接VT2和VT3。

模型中用示波器观测连接点上得波形,示波器Ud,Id 观测负载电压和电流,示波器Uvt1,Ivt1观测晶闸管VT1的电压和电流。

示波器Pulse观察电压电压和触发脉冲,并通过Mean Value计算负载两端的电压平均
值。

图(1)
2 设置仿真参数
(1).交流电压源:电压峰值为220*sqrt(2),频率为50HZ,初始相位为0. (2).变压器:一次电压为220V(有效值),二次电压为100V。

(3).RLC负载:R=0.5, L=10*e-3
(4).脉冲发生器Synchronized 6—Pulse generator:同步频率为50hz,脉冲宽度取10。

(5) .给定角a=0°,30°,60°
(6) .设置仿真时间为0.1S,算法为ode23t。

3.启动仿真
(1).电阻性负载分析图(2)是a=0°时的负载电压和电流波形,其中电压波形中又瞬时值和计算的平均值,波形表明,电压和电流波形都是脉动的,反映了电源的交流电进过整流器后变成了直流电,实现了整流。

电压峰值为140V,与计算值Udmax=sqrt(2)U2相符,电流峰值为280A,与计算值Idmax=Udmax/相符。

图(3)是电阻负载a=60°时的负载电压和电流波形,波形已随控制角变化,除仿真起动的第一个0.01S,因为起动T=0时已经产生第一个脉冲,波形为正弦波外,以后周期与a=60°应有的波形相符。

图(4)是a=120°时电阻负载电压。

相关文档
最新文档