第五章-微扰理论-习题答案.doc
微扰理论
第五章 微扰理论Chapter five perturbation Theory§5-1 非简并定态微扰理论一、体系本征方程nn n E H ψ=ψˆ here '0ˆˆˆH H H+= 二、方程近似解设 +ψ+ψ+ψ=ψ)2()1()0(n n nn+++=)2()1()0(nnnn E E E E))(())(ˆˆ()2()1()0()2()1()0()2()1()0(10 +ψ+ψ+ψ+++=+ψ+ψ+ψ+n n n n n n n n n E E E H H 零阶: )0()0()0(0ˆnn n E H ψ=ψ (零级就是未受微扰情况) (1) 一阶:)0(1)1()1()0(0)ˆ()ˆ(nnn H E E H ψ-=ψ- (2) 二阶:0(0)(2)(1)1(1)(2)(0)ˆˆ()()n n n n n nH E E H E -ψ=-ψ+ψ (3) 三阶:n 阶:…1.能量的一阶修正)1(nE(1)0*0ˆn n n E Hdx ψψ'=⎰conclusion: H ˆ在)0(nψ平均值即能量一阶修正 证明: )0()1()1()1()ˆ()ˆ(nn n n H E E H ψψ'-=- 上式两边和*)0(nψ然后对空间积分⎰⎰-=-τψψτψψd H E d E H n n nn n n)0(1)1()*0()1()0(0)*0()ˆ()ˆ( 左=⎰-τψψd E H n nn)1(*)0()0(0])ˆ[(=0 右=⎰-τψψd H E nnn)0()*0()1('ˆ⎰=τψψd H E nnn)0()*0()1('ˆ 2.波函数的一阶修正)1(n ψ∑-'=m n mn mn E E H )0()0()0()1(0ψψ证明:设(1)(0)n l a ψψ=∑()0()0(H n 是ψ本函)因:)0()1(nn a ψψ∑'=是方程(2)的解则∑+)0()0(na a ψψ也是(2)的解适当选a :消取a n 项 则)0()1(ψψa n '∑=撇“’”表示n ≠代入(2)式0(0)(0)(0)(0)ˆˆ(()n n nH E a E H ψψ''-∑=-) 两边采)*0(m ψ然后空间积分⎰⎰⎰-=ψ∑-τψψτψψτψd H d E d a E H n m n n m n m )0()*0()0()1((*))0()0(0)0('ˆ')ˆ(mn n m H d E E a 'ˆ)(')0()0()0()0(-=-∑⎰τψψmn n m H E E a ')(')0()0(-=-∑δ)0()0()0()0(''mn mnn m mn m E E H E E H a -=--=)0()0()0()1(''mmn mn n E E H ψψ-∑=3.能量二阶修正)2(n E (不讲推导)2200()()()''nmn mn mH E E E =∑-(注:*''m n nm H H m n =≠厄米矩阵)三、conclusion1.设,ˆˆˆ0H H H+=若)0()0('mn mnE E H -〈〈1式'ˆH 很小,且)0()0(m n E E -能级间隔较大则波函数 )2()1()0(n n n n ψ+ψ+ψ=ψ 能级 +++=)2()1()0(n n n n E E E E2.一般情况下能级修正到二阶,波函数修正到一阶(1)能级 1002200'()()*()()()()ˆ||'一级修正二级修正n n nnm nm n mE H dx H EE E ⎧=ψψ⎪⎨=∑⎪-⎩⎰(2)波函数一阶修正)0()0()0()1(''mmn mn mn E E H ψψ-∑= 参原讲义例题例题例题⎪⎭⎪⎬⎫321§5-2 简并的定态微扰理论一、体系的本征方程nn n E H ψ=ψˆ 'ˆˆˆ0H H H += 但in i E H ϕϕ=0ˆ k i ,2,1= (k 重简并) 设 +ψ+ψ+ψ=ψ2)1()0(n n n n +++=2)1()0(n n n n E E E E则()0110()()()()ˆˆ()'n n n nH E E H -ψ=-ψ 一阶方程 二、近似求解1.零阶波函数设001kniii c ψϕ==∑ k i ,2,1=2.久期方程对一阶方程两边同乘*ϕ,后对空间积分⎰ψ-=τϕd E H n n )1()0(0*)ˆ( 左0=⎰ψ-=τϕd H E nn )0()1(*)'ˆ( 右*(1)(0)ˆ(')n i iiE H c d ϕϕτ=-∑⎰10()**()ˆ['] ni i i iE d H d c ϕϕτϕϕτ=∑-⎰⎰(1)(0)[']0n i i iiE H c δ=∑-= (1)(0)(')0i n i iiH E c δ∑-=线性方程组11(1)(0)(0)'(0)111122133(0)'(1)(0)'(0)2112222331(')'02'()0n H E c H c H c H cH E cH c=-+++==+-++=(0)(0)(1)(0)1122'()0k k kk n k kH c H c H E c =+++-=(1)(0)1112131(2)(0)2122132(0)(1)123''''''0''''n n k k k k k n H E H H c H H E H c c H H H k H E ⎛⎫⎡⎤- ⎪⎢⎥- ⎪⎢⎥= ⎪⎢⎥ ⎪⎢⎥⎪⎢⎥-⎣⎦⎝⎭ (1) 齐次线性方程组0'''''''''')0(212)1(222111312)1(11=---nkk k k kn knE H H H H E H H H H H E H 久期方程 (2)三、conclusions1.求解方程(1)就可以得到能量的一阶修正和零阶波函数)0(n ψ2.求解步骤(1)先解久期方程,解出K 个根,若K 个根无重根,简并全部解除,若有重根则部分解除例第n 个能级 k j E E E njn nj 2,1)1()0(=+=)1()0()1(2)0(2)1(1)0(1njn nj n n n n n n E E E E E E E E E +=+=+=(2)将)1()1(2)1(1,nj n n E E E 代入原方程解出)0(i C例)0(1n E 代入可得出一组)0(i C则i ki i nC ψ=ψ∑=1)0()0(§5-3 氢原子的一阶stark 效应一、stark 效应(定义)原子在外电场的作用下,产生谱线分裂的现象叫~二、体系的Hamiltonianr e re H s ⋅+-∇=εμ2222ˆ'ˆˆ0H H+= ˆ'cos H e r e r εεθ=⋅= (设ε 沿Z 方向)三、方程求解 n=21.能量一阶修正003221200200000322221021100322321121110032242112111002rrr r1r (),))()1(),))cos 1r(),))()sin 1r (),))()sin =((((((((a a a i a i R r Y ea a R r Y e a R r Y ee a a R r Y e e a a ϕϕϕθϕϕθϕθϕθϕθϕθϕθ-------=ψ-=ψ==ψ==ψ=1111''*ˆH H d ϕϕτ=⎰⎰⎰ 4242''*ˆH Hd ϕϕτ=⎰⎰⎰ 110'H = 22111111000''**ˆcos sin H H d r dr d d ππϕϕτϕϕϕθθθ∞==⎰⎰⎰⎰⎰⎰20000cos sin sin sin (sin )|1=2d d πππθθθθθθ==⎰⎰ 110'H =01212000211232''*ˆ()()()cos cos sin ra r r H H d e e xa a a r r drd d ϕϕτθεπθθθϕ-==-⨯⎰⎰⎰⎰⎰⎰1!x n n n e x dx αα∞-+=⎰1203'H e a ε=-同理可以求得其他矩阵元0000003003)1(2)1(2)1(2)1(2=------E E E a e a e E εε解行列式方程得:33)1(24)1(23)1(220)1(21==-==E Ea e E a e E εε2.零阶波函数求解(1)0)1(213a e E ε=⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000003000030000330033a e a e a e a e a e a e εεεεεε(0)1(0)2(0)3(0)4c c c c ⎛⎫ ⎪⎪⎪ ⎪ ⎪⎝⎭=0 解得到 (0)(0)340c c ==(0)(0)12c c =- ∴ (0)(0)(0)(0)211122i i icc c ϕϕϕψ==+∑(0)(0)1112c c ϕϕ=- (0)(0)12001210c c =ψ-ψ⎰=ψψ1)0(21*)0(21τd 得(0)1c = 由此得零级近似波函数为:)(21210200)0(21ψ-ψ=ψ∴同理 12203()E e a ε=-当解出:000034120()()()()c c c c === 由此得零级近似波函数为:)(21210200)0(22ψ+ψ=ψ1122()()340 E E =当=时解出: 010*********0300000000()()()()00 0 0 0=c e a c e a c c εε⎛⎫-⎛⎫ ⎪⎪- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭00000()()()()1234 和为不同时等于零的常数。
量子力学第五章习题
第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知()()0ˆHU r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即()2004ze U r rπε=-()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为()204ze U r rπε=-在0r r <的区域, ()U r 可由下式()r U r e Edr ∞=-⎰其中电场为()()30233000002014,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε⎧=≤⎪⎪=⎨⎪>⎪⎩则有:()()()()22320002222222000330000001443848r rr r rr U r e Edr e EdrZe Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞∞=--=--=---=--≤⎰⎰⎰⎰因此有微扰哈密顿量为()()()()222200300031ˆ220s s Ze r Ze r r r r r H U r U r r r ⎧⎛⎫--+≤⎪ ⎪'=-=⎨⎝⎭⎪>⎩其中s e =类氢原子基态的一级波函数为()(321001000003202exp 2Zra R Y Z a Zr a Z ea ψ-==-⎫=⎪⎭按定态微扰论公式,基态的一级能量修正值为()()()00*00111110010032222222000000ˆ131sin 4422Zrr a s s E H Hd Ze Ze Z r d d e r dr a r r r ππψψτϕθθπ-''==⎡⎤⎛⎫⎛⎫=--+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰00322222430000031422ZrZr Zr r r r a a a s Z Ze e r dr e r dr erdr a r r ---⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎰⎰⎰ 完成上面的积分,需要作作三个形如0b m y y e dy -⎰的积分,用分部积分法,得00002220002222000000022112222Zr Zr r a a y Zr Zr a a a erdr ye dyZ a Zr a a a e e r Z a Z Z Z ----⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-=-++⎢⎥⎨⎬ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎰⎰00002222332200000002322000000222222222222Zr Zr Zrr a a a y Zr a a a Zr Zr er dr y e dy e Z Z a a a a a a er r Z Z Z Z ----⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥==-++-⎨⎬ ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭⎛⎫⎛⎫⎛⎫=-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰0000225440002500000000040002222224242412422424222Zr Zrr a a y Zr a a er dr y e dyZ a Zr Zr Zr Zr e Z a a a a a a a Z Z Z ---⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥ ⎪=+--+++ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭⎛⎫⎛⎫⎛=-+ ⎪ ⎪⎝⎭⎝⎭⎰⎰0002325234000000025234432000000000023412424222233324222Zr a Zr a a a a r r r r e Z Z Z a a a a a a r r r r e Z Z Z Z Z Z --⎛⎫⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭我们可以计算11E ,0000003232122000010020025234432000000000032340203422222233312422222Zr a s Zr a Zr a a a a a Z E Ze e r r a r Z Z Z Z a a a a a a r r r r e r Z Z Z Z Z Z a e Z ---⎧⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪=--+++⎢⎥⎨ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎪⎣⎦⎩⎡⎤⎛⎫⎛⎫⎛⎫--+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎛⎫-- ⎝00200022222000223230000022333332222Zr a ssa a r Z Z a a a Z Ze e Ze r Zr Z r r Z r a -⎫⎡⎤⎛⎫⎛⎫⎪++⎢⎥⎬⎪⎪ ⎪⎭⎝⎭⎝⎭⎢⎥⎪⎣⎦⎭⎛⎫⎛⎫=-++--- ⎪ ⎪⎝⎭⎝⎭但是既然是近似计算,我们再适当地作一次近似.氢原子的半径约为13~10r cm -, 而80~10aa cm Z -=.所以有5213510821010~110r a r e e a ------=≈≈ 于是022223222212522001003333000004314311222232525rrs s s s s a s Ze Ze Ze r Ze Ze r r E er dr r Ze r a r r r a r r a -⎡⎤⎛⎫⎡⎤=--+=-++=⎢⎥ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎰这就是基态能量的一级修正.而准确到一级近似的能量为()()222222222000011113220024411252525s s s s Ze Ze r Ze r Z e Z r E EEa a a a a a ⎛⎫⎛⎫=+=-+=--=-- ⎪ ⎪⎝⎭⎝⎭5.2 转动惯量为I ,电偶极矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰法求转子基态能量的一级修正。
第五章微扰理论
2b 2 2 nπx 2b nπx ( 0 )∗ (0) = ∫ψ n H 'ψ n dx = − sin dx + sin 2 dx ∫ ∫ a 0 a a a a 0
a a 2 nπ
a
2b =− nπ
=−
2b sin ydy + ∫ nπ 0
2
2
nπ
n
∫ sin π
2
2
ydy ⎞ ⎟=0 。 ⎠
−n
2 3
)
[1 − (− 1) ] sin mLπ x
m+ n
。
⎧− b,0 ≤ x ≤ a / 2, 例 4、粒子处于宽为 a 的一维无限深势阱中,若微扰为 H ' = ⎨ 试求粒子 ⎩ b, a / 2 ≤ x ≤ a, ,
能量和波函数的一级修正。 解: (1)能量的一级修正,按公式
E
(1) n
m+ n
−1
] [
,
所以波函数的一级修正为:
(1) (x ) = ψn
∑
m
'
2 μL2 4 Lamn (− 1)m+ n − 1 ⋅ 2 2 2 2 2 2 2 2 π h (n − m ) (m − n ) π
]
2 mπ sin x L L
4
8μL3 an = 4 2 π h
2 L
∑
m
'
(m
m
2
2
。
E ( 0) + b a ⎞ ( 0) ˆ ( 0) 表象中的表示为 H = ⎛ ⎜ 1 ⎟ ,其中 E1 例 1、设体系的哈密顿在 H , E (20) 为 (0) ⎜ a ⎟ E2 + b⎠ ⎝
第五章微扰理论
Hˆ Hˆ (0) Hˆ
Hˆ Hˆ (0) Hˆ
H(0) 所描写的体系是可以精确求解的,其本征
值 E n (0) ,本征矢 |ψn(0)> 满足如下本征方程:
Hˆ (0)
第五章 近似方法
基本要求
1 掌握定态微扰理论. 2 了解原子在外电场中的能级分裂--斯 塔克效应(定态微扰理论的应用举例) 3 掌握含时微扰理论. 4 掌握原子的光发射和光吸收过程以及 原子跃迁的选择定则. 5 掌握变分法
教学内容
§1 非简并定态微扰理论
§1
§2 简并微扰理论
§2
§3 斯塔克效应
§3
|
(2) n
Hˆ (1)
|
(1) n
]
2
E (0) n
|
(0 n
)
[
E (0) n
|
(1) n
E
(1) n
|
(0 n
)
]
[
E
(0) n
|
(2 n
)
E
(1) n
|
(1) n
E (2) n
|
(0) n
]
3
[] 3
[]
根据等式两边λ同幂次的系数应该相等,可得到
如下一系列方程式:
0 :
Hˆ (0) |
E | (0)
(0)
n
n
( 0 )
n
1 :
Hˆ (0)
| (1) n
Hˆ (1)
| (0) n
E (0) n
第五章-微扰理论-习题答案.doc
第五章微扰理论221.设氢原子中价电子所受有效作用班厂)二-玉-几兽 其中£, r 厂 4矶试用微扰理论求基态能屋(准确到一级)。
[解]:氢原子基态波函数•••Eo = E : + E 冷…「El 守-a2r 2r=一手臥九J7石dMQ-2aal&入航•••E O = E : + E ;+・・・2 •设在方。
表象中方的矩阵为= _4a\[^£a 。
九-—< 2丿 002——0<2<1__L 2-r’E ;)0 a 、H= 0 E ; b 其中 E ; < E ; < E ; 问,问《卑a b" E ;\ 3/试用微扰理论求能量木征方程的木征值,准确到二级。
/\ /V[解]表象中的H 的若无微扰吋,应是一个对角矩阵,而此题中H 不是对角阵,但 它的项应是对角阵。
曾\a0 0、<00 a } H = 0E ; h—E : 0 + 00 b♦ aE 為(OE 為* 2胪 o >曾0、‘0 0 a '第一项就是H.=0 E; 0 第二项是H'= 0 0 h,0 \E 為♦ /?* 0, 若准确到二级対三个能级 耳 爲耳则E 严 E :)+ E :+E ;+…E' = E ; + E ; + E ;+…式中已知,只要求出0尽即可・・• E \ = H\ E\ = H ;2・・・ H ;2 = o H ;3 = a・•. E ;=于g由的矩阵元中对知 H :H ;=码=0 即 E ; = E ;= £;=()・・ F 2=y \H nn] =yr()m m.R ⑺_ V 冋“」1—乙耳)_£;(m 工1) m = 1.3此吋只有三项E' 耳-E ; ' El-El同理圧=工磐雷m 匕2 一L m (m工2)2 ・•・对于E 严E ; + E ;+E :+.,耳+ -^― +… E? = E ; + E ; + E ; + …=E ; + +.・・匕2 —匕3E 产耳+ & +砖+…二耳七3 一匕\匕3 一匕23. 转动惯量为I,电偶极矩为方的空间转了处于匀强电场E +,若电场很小, 算转了基态能量的二级修下。
周世勋《量子力学教程》(第2版)-微扰理论笔记和课后习题(含考研真题)详解(圣才出品)
第5章微扰理论5.1复习笔记一、定态微扰理论1.适用范围及使用条件求分立能级及所属波函数的修正。
适用条件是:一方面要求H 可分成两部分,即'0H H H +=,同时0H 的本征值和本征函数已知或较易计算;另一方面又要求0H 把H 的主要部分尽可能包括进去,使剩下的微扰'H 比较小,以保证微扰计算收敛较快,即'(0)(0)(0)(0)1,mnn mn mH E E E E <<≠-(1)非简并情况微扰作用下的哈密顿量可表示为:'0H H H +=第n 个能级可近似表示为:∑+-++=mmnnmnn nn EEH H E E)0()0(2''')0(相应的波函数可近似表示为:∑+-+=mm mn mn nn E E H )0()0()0('')0(ψψψ(2)简并情况能级的一级修正由久期方程0det )1('=-v k v E H μμδ即)1(''2'1'2)1('22'21'1'12)1('11=---nkk k k knknE H H H H E H H H H E H给出。
个实根,记为有k k f E )1(k k f E ,,2,1,)1( =αα,分别把每一个根)1(αk E 代入方程∑==-kf v v v k va E H 1)1('0)(μαμδ,即可求得相应的解,记为v a α,于是可得出新的零级波函数∑>>=vkv vkv a φα||。
相应的能量为:)1()0(αk k k E E E +=。
2.氢原子的一级斯塔克效应(1)斯塔克(Stark)效应:原子在外电场作用下所产生的谱线分裂的现象。
(2)用简并情况下的微扰论解释氢原子的斯塔克效应:由于电子在氢原子中受到球对称的库仑场的作用,第n 个能级有2n 度简并。
第五章 微扰理论
第五章微扰理论经常遇到许多问题,体系哈密顿算符比较复杂,不能精确解,只能近似解,微扰论就是其中一个近似方法,其基本思想是逐级近似。
微扰论方法也就是抓主要矛盾。
如何分?假设本征值及本征函数较容易解出或已有现成解,是小量能看成微扰,在已知解的基础上,把微代入方程同次幂相等((1)(2)(3)①求能量的一级修正(2)式左乘并对整个空间积分能量的一级修正等于在态中的平均值。
②求对波函数一级修正将仍是方程 (2) 的解,选取 a 使展开式不含将上时代入式 (2)以左乘上式,对整个空间积分令上式化简为:③求能量二级修正把代入(3)式,左乘方程(3)式,对整个空间积分左边为零讨论:(1)微扰论成立的条件:(a)可分成,是问题主要部分,精确解已知或易求(b) <<1(2)可以证明例:一电荷为e的线性谐振子受恒定弱电场作用,电场沿x正方向,用微扰法求体系的定态能量和波函数。
【解】是的偶函数利用递推公式波函数的一级修正利用能级移动可以直接准确求出令:§5.2 简并情况下的微扰理论假设是简并的k 度简并已正交归一化代入上式以左乘上式两边,对整个空间积分左边右边不全为零解的条件是由久期方程可得到能量一级修正的k个根由于具有某种对称性,因此不考虑时,能级是k度简并的,考虑后,哈密顿量的对称性破坏,使能级的简并度降低或完全消除。
要确定,需求出,将代入上式,可求出。
§5.3 氢原子的一级斯塔克效应斯塔克(stark)效应:氢原子在外电场作用下所产生的谱线分裂现象。
( 是均匀的,沿z轴)下面研究n=2时的能级分裂现象:n=2,有4个简并度求只有两个态角量子数差 , 时, 矩阵元才不为零和不为零为实的厄密算符带入久期方程没有外电场时,原来简并的能及在一级修正中分裂为三个,兼并部分消除①当时②当时③当时,和为不同时为零的常数。
§5.4 变分法应用微扰论应很小,否则微扰论不能应用,本节所介绍的变分法不受上述条件限制。
第5章 微扰理论
(0)* 左乘,并积分, 以 ψm (m ≠ n ) 左乘,并积分,并注意 ψ l(0) 的正交归 (0)* 得到: 一性 ψm ψl(0)dτ = δml 得到:
∫
∑
l
′
( ( ( (El(0) En0) )al(1)δml = ∫ψ m0)*H′ψ n0)dτ
(17) 17) (18) 1
令微扰矩阵元 则 :
10
5.1 非简并定态微扰理论(续4)
Chapter 5. Perturbation Theory
为求 En
(0)* n
(1),以 ψ ( 0 )左乘(9)式两边,并对空间积分: 左乘( 式两边,并对空间积分:
n
(0)* (0) (0)* (0) (0) E (0))ψ(1)dτ = En(1) ψn ψn dτ ψn H′ψn dτ ∫ ∫ ∫ψ (H n n
将此式展开, 将此式展开,便得到一个两边均为 λ 的幂级数等 式,此等式成立的条件是两边 λ 同次幂的系数应相 于是得到一列方程: 等,于是得到一列方程:
8
5.1 非简并定态微扰理论(续2)
Chapter 5. Perturbation Theory
λ: 1 λ : (H(0) En(0) )ψn(1) =(H(1) En(1) )ψn(0)
( ( ( ′ E n1) = ∫ψ n0 )* H ′ψ n0 ) dτ = H nn
( ( ( ( ( ( ψ n0)* (H (0) En0) )ψ n1)dτ = ∫[(H (0) En0) )ψ n0) ]*ψ n1)dτ = 0 ∫
( ′ 在 ψ n0)态中的平均值。 能量的一级修正值 E 等于 H 态中的平均值 。
是基本部分, 其中 H (0) 是基本部分,与它对应的本征值和本征函 数由以下方程求出
第五章微扰理论
∵ r < a = 10 −15 m, ∴ e
E1( 0) − es2 = ≈ −13.6eν 2 a0
≈1
(0) 微扰使能级较 E1 有微小的提高。
如果设核是电荷均匀分布的小球
e2 3 1 r 2 − s( − ) 2 a 2 2a U (r ) = 2 − e s r
µes4
a0
为Байду номын сангаас尔半径
(0 ˆ (0 ′ E1(1) = H11 = ∫ψ 100)* H ′ψ 100)*dτ
4π = 3 πa0 4es2 ≈ 3 a0
∫ ∫
a
−
0 a
e
2r a0
es2 es2 2 ( − )r dr r a
0
1 1 2 ( − )r dr r a
a = 10 −15 m 为球壳半径,
- E )a
/
(0) m
(1) m
′ = H mn
a
(1) m
′ H mn = ( 0) (0) En - Em
(10)
(1) n
=∑
m
′ H mn ( ψ m0 ) ( ( En0 ) - Em0 )
m≠ n
( / ′ En = En0 ) + H nn + ∑ m
′ H nm E
(0) n
2 (0) m
并
( ψ m0 )*ψ l( 0 ) dτ = δ ml ∫
∴
∑E a
/ l
(0) n
0 (1) l l ml
( ( δ - El0 ∑ l(1)δ ml = -∫ψ m0 )* H ′ψ n0) dτ a
l
′ 令 H mn =
量子力学教程习题答案周世勋
2
1(x) 1(x) 2
4 2 2
x 2e 2x2
2 3 x e2 2x2
d1 (x) 2 3 [2x 2 2 x3 ]e 2x2
dx
令 d1(x) 0 ,得 dx
x 0
x1
x
由1(x) 的表达式可知, x 0,x 时,1(x) 0 。显然不是最大几率的位置。
2m
i
[
( r )
*
(
r
)
*
( r )
(r)]
2m
可见 J与t 无关。
9
2.2 由下列定态波函数计算几率流密度:
(1) 1
1 ei k r r
(2) 2
1 e i k r r
从所得结果说明 1 表示向外传播的球面波, 2 表示向内(即向原点) 传播的球面波。
解: J1和J 2只有r分量
而 d 21 (x) 2 3 [(2 6 2 x 2 ) 2 2 x(2x 2 2 x3 )]e2x2
dx 2
4 3 [(1 5 2 x 2 2 4 x 4 )]e 2x2
d 21(x) dx2
x 1
4 3 2
1 0, e
可见 x 1
是所求几率最大的位置。
2
#
17
2.6 在一维势场中运动的粒子,势能对原点对称:U (x) U (x) ,证明粒子的定态波函数具有确定的
在球坐标中
r0
r
e
1 r
e
1 r s i n
(1)
J1
i 2m
(
1
* 1
1* 1 )
i [1 2m r
eikr
r
(1 r
量子力学周世勋第二版课后习题解答第5章
5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出,⎰∞-=rE d rer U )( ⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr er U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H+∇-=<<'μ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r r d ra e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = 5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。
第五章微扰理论1
微扰(外场) Hercos
由球谐函数的奇偶性可得不为零的矩阵元为
H 1 2 H 2 1 3ea0
久期方程
E2(1)
3ea0
0
0
3ea0
E2(1) 0
0
0 0 E2(1) 0
0 0
0 0 E2(1)
能量一级修正
E(1) 2
3ea0,0,0
能级分裂 简并部分消除。
进一步求解可得归一化的新的零级近似波函数
m
Hm n En(0) Em (0)
(0) m
矩阵元:
Hm n
m (0)*H
d (0)
n
(所有本征态) 无限
(2)简并
能量: 一级修正
H11En(1) H2 1
Hk1
H12 H2 2En(1)
Hk2
H1k
H2k
0
HkkEn(1)
k
k
波函数: 零级近似
(Hli En(1)
最后写成:
En En(0) Hn n
m
| Hn m|2 En(0) Em(0)
n
(0) n
m
Hm n En(0) Em(0)
(0) m
(4)说明
①用微扰矩阵元 H m n求解时,要“对号入座”,如
E3E3 (0)H3 3m3E|3 (0 H ) 3 m E |2 m (0)
(n 3)
基态能量的一级近似为
E 1 e s 2 /2 a 0 2 e s 2 /a 0 ( 1 4 ) E 1 ( 0 )
例2 二维空间哈密顿算符H 在能量表象中的矩阵表示为
HE1(0b) a E2(0b) a
其中 a , b 为实数。
山东大学量子力学 第五章 微扰理论
(0) n
H kn ( 0) ( 0) k ( 0) k n En - Ek
(14)
(13)、(14)式成立的条件(逐步近似法适用的条件)为
| ck | 1,
即
( 0) ( 0) || En | Hkn - Ek |
(15)
(0) 如果紧靠着 En 存在别的 Ek(0) ,即使 H H 0 ,
-
n 2
1 ( 0) n -1 ( 0) (0) E n - E n -1
n1 2
-
e
n 2
1 (0) n -1
1
3
n1 2
1 (0) n1 -
(0) - n n -1
e
2
n 1
(0) n1
微扰论也不适用。
例
带电量为e的一维谐振子,受到恒定弱电场 的微 扰 H -ex 作用 试用微扰论求能级的变化,并与精确解比较。
将 Hamilton 量分成H0 + H’ 两部分,在弱电 场下,上式最后一项很小,可看成微扰。 (1)电谐振子Hamilton 量
2 2 d ˆ H 2 2 dx 1 2
n 1,2,Lk L
(3)
(6)
( 0) ( 0) ˆ ) ( 0) c ( E ( 0) H ˆ ) ( 0) E ( 0) E ( En H c k k n k n n n k k k n k n
用 n
(0)*
左乘(6)式并积分就得到
(0) c k H nk En H nn En k n
ˆ H ˆ ) E (H 0 n n n
(4)
ˆ H ˆ )( ( 0) C ( 0) ) E ( ( 0) c ( 0) ) (H k k k k 0 n n n
量子力学 微扰理论
(5) ( 6)
注意:各级修正具有不同的数量级。
第五章 微扰理论 5.1、 非简并定态微扰理论
5.1.1、一般情况
将 En 及 n 的展开式代入本征值方程,
ˆ (0) H ˆ (1) )( (0) (1) 2 (2) L ) (H n n n
上述等式成立要求等式两边λ 同幂次的系数相等, 由此得,
5.1.2、 非简并情况下的微扰
m
(2) (0) (0) (0) (2) (0) (1) (0) Cm Em m En m H ' Cm m Cm m m (1) (1) (0) (2) (0) En m En n ' Cm m
(1) ,得, 利用, En H nn
H mn
因此,要求,
2
(0) (0) En Em
1
(0) (0) ( En Em )
(24)
很小,即: H 是一个小的扰动; a) 矩阵元 H mn
(0) (0) Em b) 能级间的间距 En 较大
第五章 微扰理论 5.1、 非简并定态微扰理论
5.1.3、讨论
例如,库仑场中体系的能级与量子数 n 的平方成反比, 当 n 增大时,能级间的距离很小,这时微扰理论就不适用 了,因此微扰理论只适用于计算低能级的修正。 当(24)式满足时,计算一级修正一般就可得到相当 精确的结果。 但如果一级修正为零, 则必须计算二级修正。
C E
(1) m m
(0) m
(0) (0) ˆ E (1) (0) En H m n n
(12)
以 k(0)* 左乘上式两边,并对全空间积分,
量子力学 第五章 微扰理论
分成两部分:
Hˆ Hˆ (0) Hˆ ,
Hˆ (0)
E (0)
(0)
n
n
(0) n
待求解的体系Ĥ叫做微扰体系。本征值和本征
函数可精确求解的体系Ĥ(0)叫做未微扰体系,Ĥ′可
以看做微扰。微扰论的具体形式多样但基本精神
相同,即逐级近似。
微扰理论适用范围:分立能级及所属波函数的修正 7
§5.1 非简并定态微扰理论
而此处所讨论的两个级数的高级项都不知道。无法
判断级数的收敛性,我们只能要求级数已知项中,
后项远小于前项。由此我们得到微扰理论适用条件
是:
H m n
E(0) n
注意:ψn(1) 和ψn(1) +aψn(0)(a为任意常数)都是
第二个方程的解。
12
§5.1 非简并定态微扰理论
由这组方程可以逐级求得其各级修正项,即求得
能量和波函数的近似解. λ的引入只是为了按数量级 分出以上方程,达到此目的后,便可省去。
Hˆ Hˆ (1)
En
E(0) n
E (1) n
E(2) n
l
a(1) (0) ll
可使得展开式中不含ψn(0)
n
(0) n
n(1() 假定波函数只含一级修正,且是归一化的)
n nd
(
(0) n
(1) n
)
(
(0) n
(1) n
)d
(0)
n
n(0)d
n(0) n(1)d
(1)
n
n(0)d
n(1) n(1)d
1
(an(1)
a(1) n
一.非简并微扰体系方程 Hˆ Hˆ (0) Hˆ
量子力学第五章微扰理论
量子力学第五章微扰理论微扰理论在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可数。
因此,引入各种近似方法以求解薛定谔方程的问题就显得十分重要。
常用的近似方法有微扰论、变分法等。
不同的近似方法有不同的适用范围。
在本章中将讨论分立谱的微扰理论、变分法。
由于体系的哈密顿算符既可以显含时间,又可以不显含时间,因此,近似方法也可以分为适用于定态的和适用于非定态的两类。
本章将先讨论定态的微扰理论、变分法,然后再讨论含时间的微扰理论以及光的发射和吸收等问题。
§5. 1 非简并定态微扰理论近似方法的精神是从已知的简单问题的准确解出发,近似地求较复杂一些的问题的解。
当然,我们还希望了解这些求解方法的近似程度,估算出近似解和准确解之间的最大偏离。
本节将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。
假定体系的哈密顿量H不显含t,能量的本征方程:Hψ=Eψ (5.1.1)满足下述条件:(1) H可分解为H(0)和H'两部分,而且H'远小于H(0)H=H(0) + H' (5.1.2) H'H(0) (5.1.3)(5.1.3)式表示,H与H(0)的差别很小,H'可视为加于H(0)上的微扰。
(5.1.3)式的严格意义将在后面再详细说明。
由于H 不显含t,因此,无论H(0)或是H'均不显含t。
(2) H(0) 的本征值和本征函数已经求出,即H(0)的本征方程(0)(0)(0)H(0)ψn=Enψn (5.1.4)中,能级En及波函数ψn都是已知的。
微扰论的任务就是从H(0)的本征值和本征函数出发,近似求出经过微扰后,H的本征值和本征函数。
(3) H(0)的能级无简并。
严格说来,是要求通过微扰论来计算它的修正的那个能级无简并,例如,要通过微扰论计算H'对H(0)的第n个能级En的修正,就要求En不简并,它相应的波函数(0)ψn只有一个。
第五章 微扰理论b
第五章 微扰理论§5.1 学习指导应用量子力学理论解决实际问题,通常需要求解薛定谔方程。
除了前几章中介绍过的几个高度理想化的简单模型外,绝大多数实际量子体系的薛定谔方程都不能精确求解。
因此在量子力学基本理论的基础上,寻找有效的近似方法,求出实际量子体系的近似解是量子力学的重要内容之一。
量子力学中常用的近似方法有微扰近似、准经典近似和变分法等,这些方法在实际问题中有广泛的应用。
微扰近似方法是在已知精确解的量子力学模型的基础上进行的,该方法把系统的哈密顿算符分为两个部分:无微扰哈密顿算符0ˆH 和微扰项H 'ˆ,其中无微扰哈密顿算符可以精确求解,微扰项相对很小。
这样就可以在无微扰时精确解的基础上,通过逐级近似的方法来求出加上微扰项后引起的修正,从而得到系统的近似解。
准经典近似方法是利用大量子数条件下量子力学与经典力学的对应原理为基础,求出量子理论对经典结果的修正。
变分法是利用能量本征方程中,基态能量的极小值特性,从一类试探函数中选择出使得能量最小的状态,作为基态波函数的近似。
虽然变分法的应用范围比较窄,但可以处理一些无法用微扰近似方法解决的问题。
本章的主要知识点有 1.定态微扰论 1)基本方法体系的哈密顿0ˆˆˆH H H λ'=+,其中0ˆH ,H 'ˆ均不含时间t ,λ为表示数量级的小量,0ˆH 的本征方程)0()0()0(0ˆnn n E H ψψ=可以精确求解。
将ˆH 的本征值与本征函数用小量λ展开为(0)(1)2(2)n n n n E E E E λλ=+++L 和(0)(1)n n n ψψλψ=++L ,代入本征方程ˆn n nH E ψψ=后得到(0)(1)(0)(1)2(2)(0)(1)0ˆˆ)()()()n n n n n n nH H E E E λψλψλλψλψ'+++=+++++L L L ( (5-1) 比较两边同阶量,立即得到本征方程的各级近似,进而可以求出本征值n E 与本征函数n ψ的各级修正。
量子力学答案课后 习题答案详解(周世勋)
量子力学习题及解答第一章 量子理论基础1.1。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学微扰理论
例:已知某表象中Hamilton量的矩阵形式
0 (1)设c << 1,应用微扰论求H本征值到二 1 c 级近似; H c 3 0 0 0 c 2 (2)求H 的精确本征值; (3)在怎样条件下,上面二结果一致。
解: (1)c << 1,可取 0 级和微扰 Hamilton 量分别为:
体系的能量 和态矢为
( ( ( E n E n0 ) E n1) E n2 ) ( ( ( n n0 ) n1) n2 ) 10
二、非简并定态的微扰近似
1、态矢和能量的一级近似
(1)能量一级修正En
(1)
左乘 <ψn(0) |
18
讨论
(1)在一阶近似下: 表明微扰态矢ψn 可以看成是无微 扰态矢ψm(0)的线性叠加。
( 0) n
n
H mn ( ( 0) m0) (0) m n En Em
(2)展开系数 Hmn /(En(0) - Em(0)) 表明第m个态矢ψm(0)对第n 个 态矢ψn 的贡献有多大。展开系数反比于扰动前状态间的能量间 隔,所以能量最接近的态影响最大。因此态矢一阶近似无须计 算无限多项,只要算出最近邻的有限项即可。 (3)由En = En(0)+Hnn可知,扰动后体系能量是由扰动前第n态 能量En(0)加上微扰Hamilton量 H在无微扰态ψn(0)中的平均值组 成。该值可能是正或负,引起原来能级上移或下移。
注意
a
k 1
(1) kn
(0) k
a
(1) nn
(0) n
(1) n
a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章微扰理论221.设氢原子中价电子所受有效作用班厂)二-玉-几兽 其中£, r 厂 4矶试用微扰理论求基态能屋(准确到一级)。
[解]:氢原子基态波函数•••Eo = E : + E 冷…「El 守-a2r 2r=一手臥九J7石dMQ-2aal&入航•••E O = E : + E ;+・・・2 •设在方。
表象中方的矩阵为= _4a\[^£a 。
九-—< 2丿 002——0<2<1__L 2-r’E ;)0 a 、H= 0 E ; b 其中 E ; < E ; < E ; 问,问《卑a b" E ;\ 3/试用微扰理论求能量木征方程的木征值,准确到二级。
/\ /V[解]表象中的H 的若无微扰吋,应是一个对角矩阵,而此题中H 不是对角阵,但 它的项应是对角阵。
曾\a0 0、<00 a } H = 0E ; h—E : 0 + 00 b♦ aE 為(OE 為* 2胪 o >曾0、‘0 0 a '第一项就是H.=0 E; 0 第二项是H'= 0 0 h,0 \E 為♦ /?* 0, 若准确到二级対三个能级 耳 爲耳则E 严 E :)+ E :+E ;+…E' = E ; + E ; + E ;+…式中已知,只要求出0尽即可・・• E \ = H\ E\ = H ;2・・・ H ;2 = o H ;3 = a・•. E ;=于g由的矩阵元中对知 H :H ;=码=0 即 E ; = E ;= £;=()・・ F 2=y \H nn] =yr()m m.R ⑺_ V 冋“」1—乙耳)_£;(m 工1) m = 1.3此吋只有三项E' 耳-E ; ' El-El同理圧=工磐雷m 匕2 一L m (m工2)2 ・•・对于E 严E ; + E ;+E :+.,耳+ -^― +… E? = E ; + E ; + E ; + …=E ; + +.・・匕2 —匕3E 产耳+ & +砖+…二耳七3 一匕\匕3 一匕23. 转动惯量为I,电偶极矩为方的空间转了处于匀强电场E +,若电场很小, 算转了基态能量的二级修下。
[解]在第三章中第13题,我们已知道转动惯屋为I 的刚性转了的能级为E ; 定态波函数H°= — fr21但基态1 = 0E :;=0 阮°尤)是非简并的。
可按定态非简并微扰处理为方便起见,我们选E 方向与坐标Z 轴方向一致,则H' = -D • E = -D^cosd( 0 与 £> 与 E 夹角)E —E 。
詔圧 — E ;2 = E ;_E ;加=2 或 m = 2 则 H^=a£2_y KJ23WEP(m 主3)% = b*:.E ;Et_E :)+ E ;_E ;E :产岡卬丽加%dO(-0 •肌 dQb 2用微扰法计«/ + 1)力2_~21 -=- [D EJQ 4龙」=--DE [cos Odd = 0 4兀」 而 H ;°= H ;)k1Ok=-誉 JX ;“Yi ()dG当k = \ m = 0吋 H"0 其余均为0・・・琦=D 2E 2I4. 设体系未受微扰时只有二个能级窣及毋,现在受到微扰H'作用,微扰矩阵元为 H[2 = H 2]= a, H := Ht=b ; a,b 都是实数,用微扰公式计算能量到二级修正.解:由微扰公式得E' =H rn nn~OE\Yi212I < DE 、 2 _ -D 2E 2IE —E 厂n0k< >/3> ~3忙心g 心~2k 即一级修正为0 DE■VF习Q”oDE2力217I ()H其中(cos %E (o )_ E (。
)・・・能量的二级修正值为2E 厂 E ;+b +云5. 基态红原子处于平行电场屮,若电场是均匀的且随时间按指数下降,即当 t v 0W当t>o ( r>o 的参数)求经过长吋间后氢原子处于2p 态的儿率。
解:对于2p 态,^ = 1, m 可取0, ± 1三值,其相应的状态为氢原子处在2p 态的几率也就是从0100跃迁到0210、0211、021—1的几率Z 和。
由讣=詈側;肿恂(W z= ee (t )r cos 0)=^R 2l Y^e£(t )rcos0 R^Y^dr (取E 方向为 Z 轴方向)= ££(『)[ R 2[rR l0dr 得 E\ = H :严bE ;=H ;2=b•MLE —E :E2=X mI%』—/E ;-E 「E ;-E ;02100211hTJ ‘n210J00「£^IO ^OO cos&sin 阳&d©ee (t )f 「£ Y ];)* r i0 sin 0d6 d (p/ = { R ;i (厂)&o 0"),d 厂=& Qo1 1 4!x 25 5 _ 256石不丁心帀r°陽⑴ 256 128^2/、■TFilTT 厂FT 咬呱=«£(『)[ /?2i r£y,, cos 0Y^ sin&d&d/££(/) J /?2i 心io 刃『f K :咅Ko sin OdOdcp^21-1,100 =(021-1 穴 0100〃。
= «£(》)( /?2l r 3/?l ()Jr £「乙打 COS &E K ) sinFd 〃d©厉岭)s\n0dOd (p由上述结果可知,W1ST 2“ = W100T 210 +W100T 211 +"100—21-1^210,100丹211」00 砖⑴“ ;]]"OS 如 |(M叽2135h 2 2430 0A 如一一.e T -1_4(皀)2护尿2 方八2430 0其中◎广即二給(1冷)=豁二萨 力 2方 4 8力 8加()6•粒子处于宽为a 的一维无限深势阱中,若微扰为-b求粒了能量的一级修止。
当/Too 时,p-(243+b 当—<x<a2[解]对宽为a 的一维无限深势阱的木函 以兀)= 2 . nx— sin——x a a2 . nz e • nx t— sin — xH sin — xdx a a a^2 . nx z ; x . n7i f F 2 • —sin — x(-/?)sin ——xax+ L — sin } a a a a nx t . nx t —xbsin — xdx a a2b 备.2处, 2b $ . ° nx . ----- p sin —xdx H L sin —xdx a * a a \ acos+ — C(l-cosaa s2 ] ~~r®1 + 二 rb——+2 2 兀rt= --[x aa . 2nx ---- sin----- 2n 兀 a a . In7i---- s in ----- 2/77T a程]2=——sin n7t ----- s in 2n/r n7r 2nx =0即粒子能量的一级修正为07. 计算氢原了由第一激发态到基态的自发发射几率。
由选择定则心=±1,知2ET1S 是禁戒的故只需计算的儿率(Z )2I,”M()= f瞪(门&()(门广加• ”二 COS&V//2⑵211,10()=。
⑵ 21-1.100 = °⑵计算X 的矩阵元x = rsin&cos© = -^si n&(严 +严。
)(兀)21讪00 =*[/?;1(厂)尺0("加脱亦&(严+严%加解:3 mk212p 有三个状态,即0210,肖 211,021-1⑴先计算Z 的矩阵元 z = rcosO2於Z212箱+ Sm-\ )^=(2x r +2x r +i n=r⑷计算/f = f ^21(^)^10 (r)r 3dr = -^= aQ(兀)211,10021-1J00⑶计算y 的短阵元1 ・〃 •皿y = rsin/9sin^ = — rs\n0{e l (p -e *)2i R ;2)Rio (Cr 3dr ・ jYi :sin&(/=云厂j§(-盅1 -盅T )d (y )210J00 — °W210J00 = 0(y )2ii ・ioo(歹)2叽()')21-1」001 1 4!x25 525627^=8176^=^07?8血1°-•^ = 1.91x10^-r = — = 5.23 x 10_,05 = 0.52 xlO -9 人218. 用狄拉克符号求线性谐振了偶极跃迁的选择定则[解]因为线性谐振了跃迁几率 叱当W-枷工0时,跃迁才有可能发生即 X^k H o 且 W = V%4空 3hc 3 v 8 h 3 3应) 715 3928“迟437 丹 °,h 2• _2••• X =< m x k > mk1L 屮)=*[{才 £_I 〉+ J —2 R + I 〉]2 V2R+l 〉]£+1+ 1>即 Am = —1或 Am = 1时,X 脉工0 %»工0 当也等于其他值,即心心±1吋 X 腻=0 光》=0所以谐振子的偶极跃迁定则为 A/?? = ±l 即只有相邻能级发生跃进,其他都不能发牛。
9. 对于宽度为a 的一维无限深势阱中的粒子(质量为“))受到微扰 、/ v 2xv(x )=v o cos y x求能量(准确到二级)[解]宽为a 的一维无限深势阱的本函和能级.. [2 . nx厂 7r 2h 2n 20(兀)=—sin — 兀E n =-—rV a a 2m a a2 . nx XT 2/r . nx —I sin —xV () cos ——xsin — a a a a或当 m = k +1 时 X mk =—E,严空+ E :+E ;2v 0 p n7U 2TIX . mx - —-I som ——兀 cos sin ——xdx a a a a2V ()『・ 2 nx 2TT—[f cos ——(n + l)xdx+ [ cos ——(n-\)xdx]2a 山 a a二 r — [cos — (m -n)x- cos — (m + n)x] cos a 』)2 a a=— f cos —(m - n)x cos — xdxf cos —(m + /t)xcos a a aa a=— r [cos — (m -n-2)x + cos — (//?-n + 2)x]dx2a a aV()「[cos — (m + m 一 2)x + cos — (m + n + 2)x]dx 1a 2—xJx a71 — xdx a2a 闪 =0••・E :=09^.97 ••・E 产E :【+ E :+E 右字笃 2m (}a10.设在//()表彖中(1) (2) [解]: ‘E ;)+a b、b E ;+a用微扰法求能量至二级修正。