ARMLinux移植基本概念

合集下载

arm-linux下usb转串口移植手册

arm-linux下usb转串口移植手册

arm-linux下usb转串口移植手册:讲述在嵌入式平台上,移植usb转串口的步骤:1、配置Kernel2、文件系统配置等。

Kernel:在配置内核时:加入usb转串口的支持、加入usb转串口器件的支持。

不同厂家的usb转串口工具需要的驱动可能不一样。

Device Drivers --->USB support --->--- USB port driversUSB Serial Converter support ---><*> USB Serial Converter support[*] USB Serial Console device support[*] USB Generic Serial drivert< > USB AIRcable Bluetooth Dongle Driver (EXPERIMENTAL)<*> USB FTDI Single Port Serial Driver (EXPERIMENTAL)本次实验才用的是FTDI的usb转串口工具在配置Kernel时,还可以加入对其他厂家的驱动支持。

文件系统:1、在/dev目录下建立设备文件/dev/ttyUSB0mknod /dev/ttyUSB0 c 188 02、在运行/sbin/getty登陆命令之前要先设置好:usb转串口对应端口的波特率、停止位等。

int usb_to_serial_init(viod){iUSBTORS232 = open( "/dev/ttyUSB0", O_RDWR);if (iUSBTORS232 iRS232 < 0){printf("Can't open device dev/ttyUSB00");return -1;}set_speed(iUSBTORS232 iRS232,BAUDRA TE);set_Parity(iUSBTORS232 iRS232,8,1,'n');close(iRS232);}3、在/etc/inittab 加入如下命令。

arm linux recovery 原理

arm linux recovery 原理

arm linux recovery 原理ARM Linux恢复原理ARM是一种广泛应用于移动设备、嵌入式系统和其他低功耗设备的处理器架构。

在ARM Linux恢复原理中,我们将重点关注如何恢复ARM架构上运行的Linux操作系统。

恢复ARM Linux的原理主要涉及以下几个方面:1. 引导加载程序(Bootloader):恢复ARM Linux的第一步是确保正确的引导加载程序已被加载到设备的内存中。

引导加载程序负责初始化硬件并加载操作系统内核。

常见的ARM引导加载程序包括U-Boot和GRUB。

2. 操作系统内核:恢复ARM Linux需要正确的操作系统内核镜像。

内核是操作系统的核心部分,负责管理系统资源、驱动硬件设备、执行任务调度等功能。

内核镜像通常以uImage或zImage格式存在,并包含设备树(Device Tree)等必要的配置信息。

3. 文件系统:恢复ARM Linux还需要正确的文件系统镜像。

文件系统是用来组织和管理文件数据的方法。

常见的ARM Linux文件系统包括EXT4、Btrfs和SquashFS等。

4. 恢复过程:具体的恢复过程可以根据恢复原因和需求而不同。

一般情况下,恢复ARM Linux可能包括以下步骤:- 加载引导加载程序:将引导加载程序加载到设备的内存中,使其能够启动。

- 初始化硬件:引导加载程序负责初始化设备上的硬件资源,如内存控制器、外设等。

- 加载内核镜像:引导加载程序从存储介质(如闪存或SD卡)中读取并加载内核镜像到设备的内存中。

- 启动内核:引导加载程序将控制权交给内核,使其开始执行。

- 挂载文件系统:内核根据设备树中的配置信息将文件系统镜像挂载到指定的挂载点上。

- 运行用户空间:内核启动后,会启动用户空间程序,提供各种应用服务。

ARM Linux恢复原理是确保设备能够正常启动和运行,保障系统的可靠性和稳定性。

了解ARM Linux恢复原理有助于开发人员和系统管理员在设备遇到故障或异常情况时进行相应的维护和修复。

交叉编译HTOP并移植到ARM嵌入式Linux系统

交叉编译HTOP并移植到ARM嵌入式Linux系统

交叉编译HTOP并移植到ARM嵌⼊式Linux系统原创作品,允许转载,转载时请务必以超链接形式标明⽂章、作者信息和本声明,否则将追究法律责任。

最近⼀直在完善基于Busybox做的ARM Linux的根⽂件系统,由于busybox是⼀个精简的指令集组成的简单⽂件系统,其优点就是极精简,满⾜了Linux基本的启动需求,由于它⼏乎没有什么后台服务,对于追求极度裁剪的系统开发者⽽⾔是⼀个⾮常好的体验,不过,也正是由于其精简,很多我们在开发测试中使⽤的⼯具或者库也可能都没有,这对于开发者⽽⾔也增加了⼀定的移植⼯作量,笔者最近正被各种移植⼯具软件和库⽂件深深折磨着,今天主要说⼀下⼀个⽐较实⽤的⼯具HTOP的移植过程。

htop是什么 htop——⼀个可以让⽤户与之交互的进程查看器。

作为⽂本模式的应⽤程序,主要⽤于控制台或X终端中。

当前具有按树状⽅式来查看进程,⽀持颜⾊主题,可以定制等特性。

与top相⽐,htop有以下优点: 1、可以横向或纵向滚动浏览进程列表,以便看到所有的进程和完整的命令⾏。

2、在启动上,⽐ top 更快。

3、杀进程时不需要输⼊进程号。

4、htop ⽀持⿏标操作。

5、top 已经很⽼了。

htop移植  1、编译环境 Host机:ubuntu-16.10(64bit) Target: arm 交叉⼯具链:arm-linux-gnueabi-gcc ⼯具包: ncurses-5.9.7: https:///cMkkk9pDiuu7G (提取码:2488) htop-1.0.2: https:///cMkknBsW6T5kp (提取码:b16f) 2、编译前准备 下载两个压缩包,放在/home/liangwode/test⽬录下,解压缩两个压缩⽂件夹,并创建编译安装⽬录。

tar xvzf ncurses.tar.gztart xvzf htop-1.0.2.tar.gzmkdir install_ncursesmkdir install_htop 3、编译ncurses 由于htop依赖于ncurses库,因此需要先编译ncurses,进⼊ncurses⽬录,并配置交叉编译cd ncurses-5.9./configure --prefix=/home/test/install_ncurses --host=arm-linux-gnueabi --without-cxx --without-cxx-binding --without-ada --without-manpages --without-progs --without-tests --with-shared 编译并安装ncurses库make && make install 这样在/home/test/install_ncurses⽬录下就⽣成了ncurses的库和头⽂件等⽂件bin include lib share 4、编译htop 进⼊htop⽬录,并配置htop交叉编译选项,注意需通过LDFLAGS指定ncurses库所在的⽬录并通过CPPFLAGS指定ncurses头⽂件所在的⽬录cd htop-1.0.2./configure --prefix=/home/liangwode/test/install_htop --disable-unicode --host=arm-linux-gnueabi LDFLAGS=-L/home/liangwode/test/install_ncurses/lib CPPFLAGS=-I/home/liangwode/test/install_ncurses/include/ncurses 编译并安装htopmake && make install完可成后可以在在/home/liangwode/test/install_htop⽬录下⽣成安装完⽂件。

基于ARM平台Linux内核移植论文

基于ARM平台Linux内核移植论文

基于ARM平台的Linux内核移植中图分类号:tp 文献标识码:a 文章编号:1007-0745(2011)10-0204-01摘要:linux是一个可移植性非常好的操作系统,它广泛支持了许多不同体系结构的计算机。

可移植性是指代码从一种体系结构移植到另外一种不同的体系结构上的方便程度。

本文介绍了基于arm 开发板的linux内核移植过程,主要包括二方面的内容:交叉编译器的安装、内核的配置与移植。

本文要求读者具备一定的linux操作系统使用经验。

关键词:移植内核 linux一、概述一个嵌入式linux系统的启动顺序可以分为四步:1、引导加载程序(bootloader)。

2、加载linux内核。

3、挂载根文件系统。

4、运行应用程序。

所以要想使linux内核在开发板上运行,就必须对以上四步的相关源代码进行移植操作,使其可运行于嵌入式平台。

本文主要介绍内核移植部分,其余部分可参考相应书箱或文档。

二、开发环境的建立2.1、安装虚拟机、fedora13操作系统及相关的开发工具(gcc、gedit等),本文的所有操作均是在这种开发环境下进行,本文的工作目录为 \work,且都是在root权限下操作。

2.2、交叉编译器(arm-linux-gcc)的安装。

交叉编译器是嵌入式linux开发的基础,后续的移植过程都要用到此编译器,在linux pc平台下,利用arm-linux-gcc编译器可编译出针对arm linux平台的可执行代码。

安装过程如下:a、网上获取arm-linux-gcc-4.3.2.tgz源代码包并保存于/work 目录中。

b、解压命令(tar xvzf arm-linux-gcc-4.3.2.tgz -c /)注意上面的命令必须是大写c且后面有个空格,这样将源代码解压至目录/usr/local/arm/4.3.2中。

c、配置编译环境路径。

输入命令(gedit /root/.bashrc)打开.bashrc文件,在最后一行加入如下内容:exportpath=/usr/local/arm/4.3.2/bin:$path保存关闭文件,用root重新登录系统,输入命令:(arm-linux-gcc –v)如果安装成功将会显示arm-linux-gcc的版本号。

ARM开发教程之ARM Linux系统移植步骤

ARM开发教程之ARM Linux系统移植步骤
千锋3G嵌入式移动互联网技术研发中心 千锋3G嵌入式移动互联网技术研发中心 3G
ARM开发教程之ARM LINUX系统移植步骤 ARM开发教程之ARM LINUX系统移植步骤 开发教程之
ARM简介 Linux简介 系统的制作移植建立交叉编译环境 引导程序 内核 修改内核 内核的配置编译 根文件系统 结束语

千锋3G嵌入式移动互联网技术研发中心 千锋3G嵌入式移动互联网技术研发中心 3G
ARM开发教程之引导程序 引导程序
对于计算机系统来说,从开机上电到操作系统启动需要一个引导程 序。嵌入式linux系统同样离不开引导程序,这个引导程序叫做 Bootloader[1]。通过这段小程序,可以初始化硬件设备、建立内存 空间的映射表,从而建立适当的系统硬件环境,为最终调用操作系 统内核做好准 备。 vivi[4]是韩国MIZI公司为其arm9系列产品而研发的Bootloader, 小而灵巧,这里选用它作为小型Linux系统的Bootloader。 首先要修改vivi源代码中的Flash分区信息,新的分区信息如表1 所示。 根据表1,在vivi源码arch/s3c2410/smdk.c文件中作出相应的 修改。 然后在配置菜单中导入smdk2410的默认配置,编译成功将在 vivi源代码目录下生成所需的Bootloader文件,文件名为vivi。 接着,便可把vivi下载到目标板Flash的相应位置。

千锋3G嵌入式移动互联网技术研发中心 千锋3G嵌入式移动互联网技术研发中心 3G
ARM开发教程之ARM简介
Arm9S3C2410微处理器与Linux的结合越来越紧密,逐 渐在嵌入式领域得到广范的应用。目前,在便携式消 费类电子产品、无线设备、汽车、网络、存储产品等 都可以看到S3C2410与Linux相结合的身影。 S3C2410微处理器是一款由Samsung公司为手持 终端设计的低价格、低功耗、高性能,基于arm920T 核的微处理器。它带有内存管理单元 (MMU),采用 0.18mm工艺和AMBA新型总线结构,主频可达203MHz。 同时,它支持Thumb 16位压缩指令集,从而能以较小 的存储空间获得32位的系统性能。

基于ARM平台的Linux内核分析与移植研究

基于ARM平台的Linux内核分析与移植研究

是 Ln x iu 支持的体系结构的简称 2 . 在 .3 6 2的 内核代码
中 已经 完 全 包 含 了对 S C 4 0 件 体 系 的支 持 Ln x 3 24 硬 iu
内核 主要 由 5个 子 系 统 组 成 : 程 调 度 、 进 内存 管 理 、 虚
拟文件 系统 、 网络接 口、 进程 间通信 。 iu Ln x内核代码非 常庞大 , 整体代码结构如 图 1 所示 。
3 编 译 内核
内 核 编 译 的方 式 与 引 导 程 序 移 植 大 体 相 同 .利 用
m k m g 命 令 即 可 进 行 编 译 。 当 编 译 完 成后 , 编 a ez ae l 把 译 生 成 的 映 像 z ae 过 VV 下 载 到 硬 件 平 台上 . l g通 m II 就
体 的研 究和 开 发 , 并对 内核 进 行 相 应 的修 改 和优 化 。通 过 配置 、 译 完成 整 个移 植 过 程 . 编 为
Ln x 内 核 移 植 提 供 借 鉴 。 iu
关 键 词 :Ln x 内核 ;¥ C2 4 A;内核 移 植 ;Neftr iu 3 40 tl ie
nt 而 ¥ C 4 0 理 器 包 含 了 MM i, 3 24 处 1 U模 块 , 以需 要 针 所 对 该 体 系结 构选 择 对 Ln x内核 对 MMU模 块 的 支 持 。 iu dvr: 目录 包 含 了 内 核 中 所 有 的 设 备 驱 动 程 i s该 e 序 。该 目录 占据 了 L u i x内核 的 大部 分 代码 , 常 庞大 。 n 非 是 进行 内核移 植 时需 要 重点 关 注 的 目录 . 如 L D显 示 例 C 驱 动程 序 、 摸屏 驱 动程 序 等 源代 码都 放 在该 目录下 。 触

ARM和LINUX的关系

ARM和LINUX的关系

在这方面我们深蓝科技目前没有计划提供相应的例程,主要是开发板的提供商会提供很丰富的例程,我们不做重复工作,只提供他们没有的、最有价值的东西给大家。
第三,研究完整的linux系统的的运行过程。
所谓完整的linux系统包括哪些部分呢?
三部分:bootloader、linux kernel(linux内核)、rootfile(根文件系统)。
第一,学习基本的裸机编程。
对于学硬件的人而言,必须先对硬件的基本使用方法有感性的认识,更必须深刻认识该硬件的控制方式,如果一开始就学linux系统、学移植那么只会马上就陷入一个很深的漩涡。我在刚刚开始学ARM的时候是选择ARM7(主意是当时ARM9还很贵),学ARM7的时候还是保持着学51单片机的思维,使用ADS去编程,第一个实验就是控制led.学过一段时间ARM的人都会笑这样很笨,实际上也不是,我倒是觉得有这个过程会好很多,因为无论做多复杂的系统最终都会落实到这些最底层的硬件控制,因此对这些硬件的控制有了感性的认识就好很多了学习裸机的编程的同时要好好理解这个硬件的构架、控制原理,这些我称他为理解硬件。所谓的理解硬件就是说,理解这个硬件是怎么组织这么多资源的,这些资源又是怎么由cpu、由编程进行控制的。比如说,s3c2410中有AD转换器,有GPIO(通用IO口),还有nandflash控制器,这些东西都有一些寄存器来控制,这些寄存器都有一个地址,那么这些地址是什么意思?又怎么通过寄存器来控制这些外围设备的运转?还有,norflash内部的每一个单元在这个芯片的内存中都有一个相应的地址单元,那么这些地址与刚刚说的寄存器地址又有什么关系?他们是一样的吗?而与norflash相对应的nandflash内部的储存单元并不是线性排放的,那么s3c2410怎么将nandflash的地址映射在内存空间上进行使用?或者简单地说应该怎么用nandflash?再有,使用ADS进对arm9行编程时都需要使用到一个初始化的汇编文件,这个文件究竟有什么用?他里面的代码是什么意思?不要这个可以吗?

arm-linux usb wifi移植

arm-linux usb wifi移植

arm-linuxusbwifi模块的添加与AP的建立一、内核的配置在内核源码的根目录下执行以下命令打开内核配置菜单:$ make ARCH=arm menuconfig根据下面的菜单进行配置:内核配置完成后,重新编译内核,并将编译出来的内核镜像下载到开发板。

如果仅仅是编译驱动,可以不用将系统烧进板子。

二、驱动源码的编译(1)驱动内容的更改:如果不更改驱动代码,在编译时会遇见缺少create_proc_entry,和create_proc_read_entry 这两个函数的问题(原因在于官方的源码适用于内核小于3.9的linux系统,而本系统上使用的系统内核为3.12.10)。

下载文https:///raspberrypi/linux/rpi-.10.y/drivers/net/wireless/rtl8192cu/os_dep/linux/os_intfs.c并替换原文件中的os_intfs.c文件。

参考:/group/topic/347735/和/entry/125504在驱动源文件下的Makefile中添加一行:CONFIG_PLATFORM_ARM_AM437X = y并设置:CONFIG_PLATFORM_I386_PC =n同时添加:ifeq ($(CONFIG_PLATFORM_ARM_AM437X), y)EXTRA_CFLAGS += -DCONFIG_LITTLE_ENDIANARCH := armCROSS_COMPILE := arm-linux-gnueabihf- #这是你的交叉编译器KVER := 3.12.10 #系统的版本KSRC := /home/hjiahu/Desktop/CrossFiles/linux-3.12.10 #这是第一步编译后的源码文件夹endif(2)为了使用硬件同时支持AP与STA模式,在源码中的include/autoconf.h中将CONFIG_CONCURRENT_MODE的注释去掉(其他方法可以参考源码中的文档)。

基于ARM平台的引导程序分析与移植研究

基于ARM平台的引导程序分析与移植研究

基于ARM平台的引导程序分析与移植研究摘要:以S3C2440处理器和嵌入式Linux为平台,对嵌入式系统中的引导程序vivi进行分析和移植研究,总结了vivi在S3C2440A 处理器上的移植方法和步骤,通过了具体测试,取得了较好效果。

关键词:引导程序;嵌入式系统;vivi;部署和移植1.1嵌入式系统软件结构嵌入式平台是一种软硬件结合的平台,其特点是具有专门的嵌入式操作系统和专门的硬件构架,如:比较流行的Linux和Android系统。

嵌入式系统软件结构所划分的层次如图1所示。

用户应用程序文件系统嵌入式操作系统内核(Kernel)引导加载程序(Bootloader)图1嵌入式系统软件层次结构引导加载程序:即Bootloader程序,它是固化在硬件FLASH 上的一段程序,用于完成硬件的一些基本配置和初始化,引导嵌入式操作系统启动。

嵌入式操作系统内核:它是为众多应用程序提供对计算机硬件安全访问的一部分软件,这种访问是有权限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。

文件系统:操作系统中负责管理和存储文件信息的软件机构由3部分组成:与文件管理有关的软件、被管理的文件以及实施文件管理所需的数据结构。

文件系统是对文件存储器空间进行组织和分配,负责文件的存储并对存入的文件进行保护和检索的系统。

用户应用程序:针对具体应用、为实现特定功能开发的应用程序。

1.2BootLoader在嵌入式平台的重要性分析引导程序是系统上电后运行的第一段软件代码,嵌入式系统的BootLoader类似于普通PC机的BIOS程序,在完成硬件检测和资源分配后,BootLoader的主要运行任务就是将内核映象从存储上读取到RAM 中,然后跳转到内核的入口点运行,即开始启动操作系统。

嵌入式平台通常没有像PC体系结构下BIOS那样的固件程序,因此整个系统加载启动任务就完全由BootLoader来完成。

在基于ARM920T构架的S3C2440的系统中,系统上电或复位是从0X00000000处开始执行,而在这个地址存放的就是的BootLoader程序。

maplay移植arm-linux-mini2440-

maplay移植arm-linux-mini2440-

Mini2440下移植媒体播放器MadPlayer宿主机:Linux—RedHat5开发板:mini2440本次移植所需的四个文件分别为:madplay-0.15.2b.tar.gzlibmad-0.15.1b.tar.gzlibid3tag-0.15.1b.tar.gzzlib-1.2.5.tar.bz2编译器:gcc 4.1.2 arm-linux-gcc-4.4.3一、搭建交叉编译器arm-linux-gcc●将软件包arm-linux-gcc-4.4.3.tar.gz放在Linux的/opt/mywork下●直接解压该软件包到当前目录下:tar zxvf arm-linux-gcc-4.4.3.tar.gz解压后要获得其绝对路径:/opt/mywork/opt/FriendlyARM/toolschain/4.4.3/bin 添加该交叉编译器的环境变量到vi /etc/profileunset iunset pathmunge#PATH=$PATH:/opt/host/armv4l/binPATH=$PATH:/opt/mywork/opt/FriendlyARM/toolschain/4.4.3/bin-- INSERT –输入source /etc/profile使它生效●编一个hello.c的文件来测试一下交叉编译器是否能用,得到下面结果:root@bogon mywork]# arm-linux-gcc hello.c -o hello/opt/mywork/opt/FriendlyARM/toolschain/4.4.3/bin/../libexec/gcc/arm-none-linu x-gnueabi/4.4.3/cc1: /usr/lib/libstdc++.so.6: version `GLIBCXX_3.4.9' not found (required by /opt/mywork/opt/FriendlyARM/toolschain/4.4.3/lib/libppl_c.so.2) /opt/mywork/opt/FriendlyARM/toolschain/4.4.3/bin/../libexec/gcc/arm-none-linu x-gnueabi/4.4.3/cc1: /usr/lib/libstdc++.so.6: version `GLIBCXX_3.4.9' not found (required by /opt/mywork/opt/FriendlyARM/toolschain/4.4.3/lib/libppl.so.7)●这是因为原来的libstdc++.so.6版本低了,用libstdc++.so.6.0.10来代替,作如下操作:⏹[root@bogon mywork]# rm /usr/lib/libstdc++.so.6rm:是否删除符号链接“/usr/lib/libstdc++.so.6”? y[root@bogon mywork]# cp /mnt/hgfs/share/libstdc++.so.6.0.10 /usr/lib[root@bogon mywork]# ln -s /usr/lib/libstdc++.so.6.0.10/usr/lib/libstdc++.so.6看结果来检验是否替换完成[root@bogon mywork]#strings /usr/lib/libstdc++.so.6 |grep GLIBCXXGLIBCXX_3.4GLIBCXX_3.4.1GLIBCXX_3.4.2GLIBCXX_3.4.3GLIBCXX_3.4.4GLIBCXX_3.4.5GLIBCXX_3.4.6GLIBCXX_3.4.7GLIBCXX_3.4.8GLIBCXX_3.4.9GLIBCXX_3.4.10GLIBCXX_FORCE_NEWGLIBCXX_DEBUG_MESSAGE_LENGTH●重新测试交叉编译器是否能用,得到下图结果:查看文件的运行平台file hello结果如下hello: ELF 32-bit LSB executable, ARM, version 1 (SYSV), for GNU/Linux 2.6.32, dynamically linked (uses shared libs), for GNU/Linux 2.6.32, not stripped这表示该交叉编译器已经正确编译了。

arm-linux学习笔记之minigui移植

arm-linux学习笔记之minigui移植

arm-linux学习笔记之minigui移植/u3/90065/showart_1793732.htmlminigui-1.6.10在s3c2410平台的移植开发板:SBC2410CPU:S3C2410linux-2.6.25.5fs:jffs2LCD:TFT320 X 240PC:fc8 linux-2.6.25.5(一)准备工作下载软件包libminigui-1.6.10.tar.gzmg-samples-1.6.10.tar.gzminigui-res-1.6.10.tar.gzmg-samples-str-1.6.2.tar.gz在/home/arm/创建一个minigui的目录,然后把这些载在的软件包放在该目录下,在分别解压缩。

再在/home/arm/minigui下创建一个miniguitmp的目录,用于安装编译以后的库文件。

(二)编译libminigui首先修改configure文件,在文件的开头加入交叉编译的路径CC=arm-9tdmi-linux-gnu-gccCPP=arm-9tdmi-linux-gnu-cppLD=arm-9tdmi-linux-gnu-ldAR=arm-9tdmi-linux-gnu-arRANLIB=arm-9tdmi-linux-gnu-ranlibSTRIP=arm-9tdmi-linux-gnu-strip然后执行[root@localhost libminigui-1.6.10]# ./configure --prefix=/home/arm/minigui/miniguitmp/ \--build=x86_64-linux \--host=arm-unknown-linux \--target=arm-unknown-linux[root@localhost libminigui-1.6.10]# make[root@localhost libminigui-1.6.10]# make install这个过程基本上不会有什么错误的执行make install的时候会把编译以后的资源安装到/home/arm/minigui/miniguitmp中,在这之下会有etc include lib usr几个目录产生。

基于ARM9的UDA1341驱动在Linux下移植方法

基于ARM9的UDA1341驱动在Linux下移植方法

基于ARM9的UDA1341驱动在Linux下移植方法刘文;王晓辉;盛文婷;李智【摘要】嵌入式系统的驱动程序是应用程序与嵌入式系统硬件之间的一个中间接口层,操作系统只有通过这个接口,才能控制硬件设备工作。

在嵌入式系统开发过程中,音频设备的驱动程序移植问题非常多,为了系统化地解决移植过程中遇到的各类问题,针对已经建立的S3C2410硬件平台,在嵌入式Linux平台上移植UDA1341声卡驱动,分析了UDA1341芯片的技术特点和音频驱动程序主要模块的设计思路,总结了驱动程序在嵌入式系统平台上的移植方法和步骤,分析并解决了移植通用UDA1341驱动程序过程中遇到的各类问题,并且通过了具体测试(实%Embedded system driver is the interface layer between application and hardware of the embedded system.Operating system only controls the hardware devices through this interface.In the development process of the embedded system,there is so much problem about driver transplantation of audio equipment.In order to solve the migration problems systematically,in accordance with the hardware platform of S3C2410,the UDA1341 sound card driver is transplanted on the embedded Linux platform,the characteristics and the audio driver design idea of the main modules on the UDA1341 chip technology are analyzed.The methods and procedures of the driver transplantation in the embedded system platform are summed up.Different kinds problem of transplanting the common UDA1341 drive are analyzed and solved,the specific test and is passed good results(implement all the features of the audio device,such as recording,volume control,etc.) are achieved.【期刊名称】《电子设计工程》【年(卷),期】2011(019)014【总页数】3页(P1-3)【关键词】嵌入式系统;S3C2410;UDA1341驱动;Linux内核调试【作者】刘文;王晓辉;盛文婷;李智【作者单位】新疆机电职业技术学院电气工程系,新疆乌鲁木齐830000 ;新疆机电职业技术学院电气工程系,新疆乌鲁木齐830000 ;新疆农业大学科学技术学院,新疆乌鲁木齐830091;新疆农业大学科学技术学院,新疆乌鲁木齐830091【正文语种】中文【中图分类】TP309S3C2410处理器是Samsung公司生产的基于ARM920T核心、采用0.18 μm制造工艺的32位微控制器,带IIC-BUS和IIS-BUS接口。

linux arm移植命令

linux arm移植命令

linux arm移植命令1. 什么是ARMARM(Advanced RISC Machine)是一种基于RISC(Reduced Instruction Set Computer)架构的处理器设计,常被用于嵌入式系统领域。

由于其低功耗、高性能和成本效益等优势,ARM架构广泛应用于移动设备、物联网和家庭娱乐等领域。

2. 为什么需要ARM移植移植指的是将某个操作系统或软件移植到不同的硬件平台上。

ARM移植即将Linux操作系统移植到ARM架构的处理器上。

由于ARM处理器与传统的x86处理器架构有所不同,因此需要对Linux进行移植以在ARM设备上运行。

3. ARM移植命令步骤ARM移植涉及多个步骤,以下是常见的移植命令及其说明:## 3.1. 配置内核源码### 3.1.1. make menuconfig执行`make menuconfig`命令可进入内核配置界面,通过界面可进行内核配置,包括硬件支持、设备驱动等。

### 3.1.2. make oldconfig执行`make oldconfig`命令可根据当前配置文件生成一个新的配置文件,用于更新配置文件中的新选项。

## 3.2. 编译内核执行`make`命令即可进行内核的编译,编译过程可能会持续一段时间。

## 3.3. 生成根文件系统根文件系统是指Linux运行时所需要的文件及目录结构。

可以通过`buildroot`等工具生成根文件系统。

## 3.4. 烧录内核及根文件系统编译完成后,将生成的内核镜像和根文件系统烧录到ARM设备的存储介质中,例如SD卡或eMMC存储器。

## 3.5. 启动ARM设备将存储介质插入到ARM设备中,通过开发板或串口终端连接到设备,随后可以启动ARM设备并进入Linux操作系统。

4. ARM移植的挑战和注意事项ARM移植相对复杂且涉及多方面的技术,以下是一些挑战和注意事项:- 硬件驱动:需要确保所选的硬件能与Linux内核进行良好的兼容性,并确保相关的设备驱动可用。

基于ARM的嵌入式linux内核的裁剪与移植

基于ARM的嵌入式linux内核的裁剪与移植

基于ARM的嵌入式linux内核的裁剪与移植前言嵌入式系统一直是计算机行业中的领域之一。

在许多应用程序中,嵌入式系统越来越流行。

嵌入式系统通常使用嵌入式芯片,如ARM芯片,并且它们通常运行Linux内核。

Linux内核是一个开放源代码的操作系统内核。

在嵌入式领域,Linux 内核可以被用于实现各种应用程序。

本文将重点介绍如何基于ARM平台的嵌入式Linux内核进行裁剪和移植。

ARM平台ARM处理器是一种RISC(Reduced Instruction Set Computer)处理器。

这种类型的处理器可用于嵌入式系统开发,因为它具有较低的功耗和高效的性能。

ARM处理器有许多版本,其中包括ARMv6和ARMv7。

ARMv6通常用于嵌入式系统,而ARMv7则用于智能手机和平板电脑等高端设备。

Linux内核的裁剪在嵌入式系统中,Linux内核需要进行裁剪,以适应嵌入式设备的需求。

与桌面计算机相比,嵌入式系统拥有更少的资源,包括RAM、闪存和存储空间。

因此,在将Linux内核移植到嵌入式系统之前,必须将内核进行裁剪。

在裁剪内核之前,您必须确定哪些内核模块是必需的。

一些模块可以从内核中移除,以减少内核的大小。

通常,将不必要的模块和其他功能从内核中移除可以使内核变得更小并具有更好的性能。

另外,裁剪内核时应确保其他组件与内核兼容。

例如,在新内核中可能需要更改驱动程序或实用程序以适应修改后的内核。

裁剪内核可能是一项比较困难的工作,需要深刻了解Linux内核的各个方面,以确保正确地裁剪内核。

移植Linux内核到ARM移植内核是将Linux内核适应新硬件的过程。

在开始移植内核之前,您必须了解嵌入式设备的硬件架构以及所需的内核组件。

移植Linux内核到ARM可以分为以下步骤:1.选择合适的ARM平台和处理器并确定所需的内核选项。

2.下载最新的内核源代码。

3.配置内核选项,并使其适应新硬件。

4.使用交叉编译器编译内核。

ARM技术概述

ARM技术概述

03
ARM处理器核心技术
ARM处理器核心技术简介
01
02
03
低功耗设计
ARM处理器以其低功耗设 计而著称,使得移动设备 能够拥有更长的续航时间 。
高性能
ARM处理器提供了出色的 性能,能够满足各种复杂 任务的处理需求。
广泛应用
ARM处理器在智能手机、 平板电脑、嵌入式设备等 多个领域得到了广泛应用 。
现状
至今,ARM技术已经成为全球使用 最广泛的处理器架构之一,特别是 在移动设备和嵌入式系统领域占据 主导地位。
ARM技术的应用领域
移动设备领域
ARM技术被广泛应用于手机、平 板电脑等移动设备中,提供了强 大的处理性能和出色的电池续航
能力。
嵌入式系统领域
ARM架构也常用于各种嵌入式系 统,如工业控制、医疗设备、智 能家居等,其高效能与低功耗特
基于ARM开发板的实验教程
基础实验
包括LED灯控制、按键输入处理、串口通信等基础实验, 帮助初学者熟悉ARM开发板的基本操作和GPIO、串口等 外设接口的使用。
进阶实验
涉及PWM信号生成、ADC模拟信号采集、I2C和SPI总线 通信等进阶实验,进一步提高学习者对ARM嵌入式系统的 理解和应用能力。
发和实现ARM技术的各种应用。
02 03
常见型号
常见的ARM开发板包括Raspberry Pi、STM32 Nucleo、NVIDIA Jetson Nano等,它们采用不同的ARM处理器,并配备了相应的外设 接口和实验资源。
特性与优势
ARM开发板通常具有低功耗、高性能、接口丰富等特点,适用于各种 嵌入式系统和物联网应用的开发。
ARM处理器通常具有多级流水线,如五级 、七级等,级别越高,处理器性能越强。

基于计算机嵌入式系统移植研究

基于计算机嵌入式系统移植研究

基于计算机嵌入式的系统移植研究摘要:linux系统具有开源、可裁减、免费、完全支持tcp/ip 协议、可移植性好、运行稳定等特点,armlinux继承了这些优良特性。

arm9处理器具有mmu,支持一般操作系统的虚拟内存机制,这就使在arm9上运行一个完全的armlinux系统成为可能。

本文主要基于arm的嵌入式linux系统移植进行研究。

关键词:arm;嵌入式;linux系统移植armlinux是以linux为基础,经过裁减之后适用于arm核心嵌入式设备的嵌入式linux操作系统,广泛应用在移动电话、pda、媒体播放器、消费性电子产品以及航空航天等领域。

不同的处理器需要的内核代码是不同的,需要为2410处理器修改linux内核源代码,主要完成下面几个丁作:指定目标平台为2410处理器;指定交叉编译器;设置内核在flash中保存的位置;设置内核最终被解压缩到内存中的起始位置;修改linux的配置菜单;修改处理器初始化文件;配置中断;指定内存块的容量、数量,内存块的起始地址。

一、linux内核概述1.进程调度(processschedule)进程调度控制进程对cpu的访问。

当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。

可运行进程实际上是仅等待cpu资源的进程,如果某个进程在等待其他资源,则该进程是不可运行进程。

linux使用了比较简单的基于优先级的进程调度算法选择新的进程。

2.进程间通信(intev-processcommunication,简称ipc)linux的进程间通信机制包括fifo、管道(pipe)等机制以及systemvipc的共享内存(shm)、消息队列(msg)和信号灯(sem)。

3.内存管理(memorymanagement,简称mm)内存管理允许多个进程安全的共享主内存区域。

linux的内存管理支持虚拟内存,即在计算机中运行的程序,它的代码、数据和堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。

Linux内核移植与根文件系统构建

Linux内核移植与根文件系统构建

Linux内核移植
10、SCSI device support
如果有SCSI 设备(SCSI 控制卡,硬盘或光驱等)则选上这项。目前SCSI 设备类型已经比较多,要具体区分它们你得先了解他们所使用的控制 芯片类型。2.6.X 内核中对各类型SCSI设备已经有更具体详细的支持。 <*> scsi support; <*>scsi disk support;
Linux内核移植
5、Networking option
网络选项,它主要是关于一些网络协议的选项。Linux 功能也就是在于 对网络功能的灵活支持。这部分内容相当多,根据不同情况,一般我 们把以下几项选上。 5.1、 packet socket 包协议支持,有些应用程序使用Packet 协议直接同网络设备通讯, 而不通过内核中的其它中介协议。同时它可以让你在TCP 不能用时找 到一个通讯方法。 5.2、 unix domain socket 对基本UNIX socket 的支持 5.3、 TCP/IP networking 对TCP/IP 协议栈的支持,当然要。如果你的内核很在意大小,而且 没有什么网络要就,也不使用类似X Window 之类基于Unix Socket 的应用那你可以不选,可节省大约144K 空间。
二、内核与根文件系统实验
• • • • 安装完成后依次执行以下命令: [root# root] Make dep [root# root] Make [root# root] Make PREFIX=./root install
由于根文件系统是内核启动时挂载的第一个文件系统那么根文件系统就要包括linux启动时所必须的目录和关键性的文件例如linux启动时都需要有init目录下的相关文件在linux挂载分区时linux一定会找etcfstab这个挂载文件等根文件系统中还包括了许多的应用程序bin目录等任何包括这些linux系统启动所必须的文件都可以成为根文件系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ARM的嵌入式Linux移植体验之基本概念日前,笔者作为某嵌入式ARM(硬件)/Linux(软件)系统的项目负责人,带领项目组成员进行了下述工作:(1)基于ARM920T内核S3C2410A CPU的电路板设计;(2)ARM处理下底层软件平台搭建:a.Bootloader的移植;b.嵌入式Linux操作系统内核的移植;c.嵌入式Linux操作系统根文件系统的创建;d.电路板上外设Linux驱动程序的编写。

本文将真实地再现本项目开发过程中作者的心得,以便与广大读者共勉。

第一章将简单地介绍本ARM开发板的硬件设计,第二章分析Bootloader的移植方法,第三章叙述嵌入式mizi Linux的移植及文件系统的构建方法,第四章讲解外设的驱动程序设计,第五章给出一个已构建好的软硬件平台上应用开发的实例。

如果您有嵌入式系统的开发基础,您将非常容易领会本文讲解地内容。

即便是您从来没有嵌入式系统的开发经历,本文读起来也不会生涩。

您可以通过如下email与作者联系:21cnbao@。

2.ARM体系结构作为一种RISC体系结构的微处理器,ARM微处理器具有RISC体系结构的典型特征。

还具有如下增强特点:(l)在每条数据处理指令当中,都控制算术逻辑单元(ALU)和移位器,以使ALU和移位器获得最大的利用率;(2)自动递增和自动递减的寻址模式,以优化程序中的循环;(3)同时Load和Store多条指令,以增加数据吞吐量;(4)所有指令都条件执行,以增大执行吞吐量。

ARM体系结构的字长为32位,它们都支持Byte(8位)、Halfword(16位)和Word(32位)3种数据类型。

ARM处理器支持7种处理器模式,如下表:大部分应用程序都在User模式下运行。

当处理器处于User模式下时,执行的程序无法访问一些被保护的系统资源,也不能改变模式,否则就会导致一次异常。

对系统资源的使用由操作系统来控制。

User模式之外的其它几种模式也称为特权模式,它们可以完全访问系统资源,可以自由地改变模式。

其中的FIQ、IRQ、supervisor、Abort和undefined 5种模式也被称为异常模式。

在处理特定的异常时,系统进入这几种模式。

这5种异常模式都有各自的额外的寄存器,用于避免在发生异常的时候与用户模式下的程序发生冲突。

还有一种模式是system模式,任何异常都不会导致进入这一模式,而且它使用的寄存器和User模式下基本相同。

它是一种特权模式,用于有访问系统资源请求而又需要避免使用额外的寄存器的操作系统任务。

程序员可见的ARM寄存器共有37个:31个通用寄存器以及6个针对ARM处理器的不同工作模式所设立的专用状态寄存器,如下图:ARM9采用5级流水线操作:指令预取、译码、执行、数据缓冲、写回。

ARM9设置了16个字的数据缓冲和4个字的地址缓冲。

这5级流水已被很多的RISC处理器所采用,被看作RISC结构的"经典"。

更多内容请看Linux集群技术、体验Linux的音影世界、Linux 驱动大全专题,或进入讨论组讨论。

3.硬件设计3.1 S3C2410A微控制器电路板上的ARM微控制器S3C2410A采用了ARM920T核,它由ARM9TDMI、存储管理单元MMU和高速缓存三部分组成。

其中,MMU可以管理虚拟内存,高速缓存由独立的16KB地址和16KB数据高速Cache组成。

ARM920T有两个内部协处理器:CP14和CP15。

CP14用于调试控制,CP15用于存储系统控制以及测试控制。

S3C2410A集成了大量的内部电路和外围接口:·LCD控制器(支持STN和TFT带有触摸屏的液晶显示屏)·SDRAM控制器·3个通道的UART·4个通道的DMA·4个具有PWM功能的计时器和一个内部时钟·8通道的10位ADC·触摸屏接口·I2C总线接口·12S总线接口·两个USB主机接口·一个USB设备接口·两个SPI接口·SD接口·MMC卡接口S3C2410A集成了一个具有日历功能的RTC和具有PLL(MPLL和UPLL)的芯片时钟发生器。

MPLL产生主时钟,能够使处理器工作频率最高达到203MHz。

这个工作频率能够使处理器轻松运行WinCE、Linux等操作系统以及进行较为复杂的信息处理。

UPLL则产生实现USB模块的时钟。

下图显示了S3C2410A的集成资源和外围接口:我们需要对上图中的AHB总线和APB总线的概念进行一番解释。

ARM核开发的目的,是使其作为复杂片上系统的一个处理单元来应用的,所以还必须提供一个ARM与其它片上宏单元通信的接口。

为了减少不必要的设计资源的浪费,ARM公司定义了AMBA(AdvancedMicrocontroller Bus Architecture)总线规范,它是一组针对基于ARM核的、片上系统之间通信而设计的、标准的、开放协议。

在AMBA总线规范中,定义了3种总线:(l)AHB-Advanced High Performace Bus,用于高性能系统模块的连接,支持突发模式数据传输和事务分割;(2)ASB-Advanced System Bus,也用于高性能系统模块的连接,支持突发模式数据传输,这是较老的系统总线格式,后来由AHB总线替代;(3)APB-Advanced PeriPheral Bus,用于较低性能外设的简单连接,一般是接在AHB或ASB系统总线上的第二级总线。

典型的AMBA总线系统如下图:S3C2410A将系统的存储空间分成8个bank,每个bank的大小是128M字节,共1G字节。

Bank0到bank5的开始地址是固定的,用于ROM或SRAM。

bank6和bank7可用于ROM、SRAM或SDRAM。

所有内存块的访问周期都可编程,外部Wait也能扩展访问周期。

下图给出了S3C2410A的内存组织:行测试的方法,极大地方便了系统电路的调试。

测试接入端口TAP的管脚定义如下:·TCK:专用的逻辑测试时钟,时钟上升沿按串行方式对测试指令、数据及控制信号进行移位操作,下降沿用于对输出信号移位操作;·TMS:测试模式选择,在TCK上升沿有效的逻辑测试控制信号;·TDI:测试数据输入,用于接收测试数据与测试指令;·TDO:测试数据输出,用于测试数据的输出。

S3C2410A调试用JTAG接口电路:3.2 SDRAM存储器SDRAM被用来存放操作系统(从FLASH解压缩拷入)以及存放各类动态数据,采用SAMSUNG公司的K4S561632,它是4Mxl6bitx4bank的同步DRAM,容量为32MB。

用2片K4S561632实现位扩展,使数据总线宽度达到32bit,总容量达到64MB,将其地址空间映射在S3C2410A的bank6。

SDRAM 所有的输入和输出都与系统时钟CL K上升沿同步,由输入信号RA S、CA S、WE组合产生SDRAM 控制命令,其基本的控制命令如下:SDRAM 在具体操作之前首先必须通过MRS命令设置模式寄存器,以便确定SDRAM 的列地址延迟、突发类型、突发长度等工作模式;再通过ACT命令激活对应地址的组,同时输入行地址;然后通过RD 或WR 命令输入列地址,将相应数据读出或写入对应的地址;操作完成后用PCH 命令或BT 命令中止读或写操作。

在没有操作的时候,每隔一段时间必须用ARF命令刷新数据,防止数据丢失。

下图给出了SDRAM的连接电路:3.3 FLASH存储器NOR和NAND是现在市场上两种主要的非易失闪存技术。

NOR的特点是芯片内执行(XIP,Execute In Place),即应用程序可直接在Flash闪存内运行,不必把代码读到系统RAM中。

NOR的传输效率很高,在1~4MB的小容量时具有很高的成本效益,但是很低的写入和擦除速度大大影响了它的性能。

NAND结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的速度也很快。

应用NAND的困难在于Flash的管理和需要特殊的系统接口,S3C2410A内嵌了NAND FLASH控制器。

S3C2410A支持从GCS0上的NOR FLASH启动(16位或32位)或从NAND FLASH 启动,需要通过OM0和OM1上电时的上下拉来设置:3.5以太网以太网控制芯片采用CIRRUS LOGIC公司生产的CS8900A,其突出特点是使用灵活,其物理层接口、数据传输模式和工作模式等都能根据需要而动态调整,通过内部寄存器的设置来适应不同的应用环境。

它符合IEEE803.3以太网标准,带有传送、接收低通滤波的10Base-T连接端口,支持10Base2,10Base5和10Base-F的AUI接口,并能自动生成报头,自动进行CRC检验,在冲突后自动重发。

CS8900A支持的传输模式有I/O和Memory模式。

当CS8900A有硬件复位或软件复位时,它将默认成为8位工作模式。

因此,要使CS8900A工作于16位模式,系统必须在访问之前提供给总线高位使能管脚(/SBHE)一个由高到低、再由低到高变化的电平。

3.6 USB接口USB 系统由USB 主机(USB Host)、USB集线器(USB Hub)和USB设备(USB Device)组成。

USB 和主机系统的接口称作主机控制器(Host Controller),它是由硬件和软件结合实现的。

根集线器是综合于主机系统内部的,用以提供USB的连接点。

USB的设备包括集线器(Hub)和功能器件(Function)。

S3C2410A集成了USB host和USB device,外部连接电路如下图:3.7电源LDO(Low Dropout)属于DC/DC变换器中的降压变换器,它具有低成本、低噪声、低功耗等突出优点,另外它所需要的外围器件也很少,通常只有1~2 个旁路电容。

在电路板上我们分别用两个LDO来实现5V向3.3V(存储接口电平)和1.8V(ARM 内核电平)的转换。

up监控电路采用MAX708芯片,提供上电、掉电以及降压情况下的复位输出及低电平有效的人工复位输出:4.小结本章讲解了基于S3C2410A ARM处理器电路板硬件设计的基本组成,为后续各章提供了总体性的准备工作。

相关文档
最新文档