柔性石墨烯聚苯胺纳米纤维复合薄膜超级电容器的研究

合集下载

石墨烯聚苯胺复合材料的制备及其电化学性能

石墨烯聚苯胺复合材料的制备及其电化学性能

石墨烯聚苯胺复合材料的制备及其电化学性能一、本文概述本文旨在探讨石墨烯聚苯胺复合材料的制备工艺及其电化学性能。

石墨烯,作为一种二维的碳纳米材料,因其出色的电导性、高比表面积和良好的化学稳定性,在电化学领域具有广泛的应用前景。

聚苯胺,作为一种导电聚合物,具有良好的电化学活性和环境稳定性。

将石墨烯与聚苯胺复合,可以充分发挥两者的优势,提高复合材料的电化学性能。

本文将首先介绍石墨烯和聚苯胺的基本性质,然后详细阐述石墨烯聚苯胺复合材料的制备方法,包括溶液混合法、原位聚合法等。

随后,通过对制备的复合材料进行结构表征和电化学性能测试,分析其电化学性能的影响因素及优化条件。

本文还将讨论石墨烯聚苯胺复合材料在超级电容器、锂离子电池等电化学器件中的应用潜力,并展望其未来的发展前景。

通过本文的研究,旨在为石墨烯聚苯胺复合材料的制备和应用提供理论支持和实践指导,推动其在电化学领域的广泛应用。

二、石墨烯聚苯胺复合材料的制备方法石墨烯聚苯胺复合材料的制备是一个融合了化学合成和纳米材料制备技术的复杂过程。

这种方法的关键步骤包括石墨烯的制备、聚苯胺的合成以及两者的复合。

我们需要制备高质量的石墨烯。

这通常通过化学气相沉积(CVD)法、氧化还原法或剥离法实现。

其中,氧化还原法是最常用的一种方法,它通过将天然石墨与强氧化剂反应,生成氧化石墨,再经过热还原或化学还原得到石墨烯。

接下来,我们合成聚苯胺。

聚苯胺的合成通常通过化学氧化聚合法进行,如使用过硫酸铵作为氧化剂,在酸性条件下将苯胺单体氧化聚合,生成聚苯胺。

制备石墨烯聚苯胺复合材料的核心步骤是将石墨烯和聚苯胺进行有效复合。

这可以通过溶液混合法、原位聚合法或熔融共混法实现。

其中,溶液混合法是最常用的一种方法。

将石墨烯分散在适当的溶剂中,然后加入聚苯胺溶液,通过搅拌或超声处理使两者充分混合。

随后,通过蒸发溶剂或热处理使复合材料固化。

为了进一步提高复合材料的性能,我们还可以在制备过程中引入其他添加剂或进行后处理。

超级电容器材料的研究及应用

超级电容器材料的研究及应用

超级电容器材料的研究及应用超级电容器是一种利用电场存储电能的能量存储器,其在电化学和电磁学理论上都有一定的发展。

超级电容器具有高能量密度、快速充放电、长寿命等优点,在现代航空、汽车、宇航和智能电网等领域有着广泛的应用。

而超级电容器的核心是电极材料,所以先进的电极材料能够带来超级电容器工作性能更好的表现。

一、超级电容器电极材料的研究现状目前,超级电容器电极材料的研究集中在以下领域:(1)金属氧化物材料的研究。

金属氧化物,如钼酸锂、钴酸镍等,具有优异的电极电化学性能,同时元素资源广泛,价格低廉,因此在超级电容器电极材料领域得到了广泛的研究与应用。

(2)碳材料的研究。

碳材料是制备超级电容器电极材料的主要原材料之一,具有良好的导电性和热稳定性。

而以活性炭为代表的多孔碳材料还具有大表面积、高比电容等优良性质,因此在超级电容器电极材料以及电池、传感器等领域应用广泛。

(3)二维材料的研究。

二维材料,如石墨烯和硼氮化物,具有高比表面积、方便处理的优势,已被广泛研究作为超级电容器电极材料。

尤其石墨烯由于其优异的导电性、机械强度和化学稳定性等特性,在超级电容器电极材料研究中被广泛关注。

(4)金属有机骨架材料的研究。

金属有机骨架材料,即MOFs,是由金属离子和有机配体组成的晶态材料,具有极大的内孔体积以及可调控的孔径和结构。

这种新型材料具有极高的表面积和储能密度,是超级电容器电极材料研究的热点之一。

二、超级电容器电极材料的制备方法超级电容器电极材料的制备方法主要分为化学还原法、水热法、煅烧法、氧化还原电位法等。

其中化学法是制备超级电容器电极材料的常规方法,其通过调节反应条件,可控制电化学行为,实现材料的优异电化学性能;而水热合成是在相对低的温度和压力下,通过压剂或表面修饰剂,实现材料形貌和结构的微观调控;氧化还原电位法是通过扫描电位电化学法控制电位,调控材料的化学反应,从而实现精准控制。

三、超级电容器材料的应用超级电容器在现代工业、航空、军事、医学等领域得到了广泛的应用。

聚苯胺纳米纤维的界面聚合法制备及电化学电容特性研究的开题报告

聚苯胺纳米纤维的界面聚合法制备及电化学电容特性研究的开题报告

聚苯胺纳米纤维的界面聚合法制备及电化学电容特性研究的开题报告一、研究背景在能源存储和转化领域,电化学超级电容器作为一种高能量密度和高功率密度的能量储存设备,吸引了越来越多的关注。

聚苯胺作为一种主要的电化学电容材料,其具有较高的比电容和良好的循环稳定性等特点。

然而,其电化学性能仍然需要进一步提高。

近年来,纳米纤维材料因其较大的比表面积和良好的导电性能成为一种非常有前途的电化学电容材料。

二、研究内容本课题拟通过界面聚合法制备聚苯胺纳米纤维,并对其电化学电容特性进行研究。

具体实验内容包括:1.制备聚苯胺纳米纤维:采用聚乙烯醇-聚丙烯酸钠共混物作为模板,在其表面吸附阳离子表面活性剂(例如十六烷基三甲基溴化铵),使模板表面带正电荷。

然后将苯胺等单体溶解在负离子表面活性剂(例如十二烷基硫酸钠)水溶液中,通过静电作用使单体分子在模板表面排列,随后进行氧气氧化聚合反应制备聚苯胺纳米纤维。

2.表征聚苯胺纳米纤维:使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和傅里叶红外光谱(FTIR)等技术对聚苯胺纳米纤维进行表征。

3.制备聚苯胺纳米纤维电极:将制备的聚苯胺纳米纤维作为电极材料,通过涂布或者染料敏化方法制备超级电容器电极。

4.测试电化学性能:使用循环伏安(CV)、恒流充放电(GCD)等电化学测试技术,对聚苯胺纳米纤维电极的电化学电容特性进行测试分析。

三、研究意义本研究旨在探究界面聚合法制备聚苯胺纳米纤维及其在超级电容器中的应用,为电化学超级电容器的研究和应用提供新思路和新材料。

同时,也为聚合物纳米纤维材料的合成和应用提供一种新方法和新技术。

超级电容器电极材料研究进展

超级电容器电极材料研究进展

超级电容器电极材料研究进展一、本文概述随着能源危机和环境污染问题日益严重,高效、环保的能源存储和转换技术成为了全球科研工作的热点。

超级电容器,作为一种新型的储能器件,因其具有高功率密度、快速充放电、长循环寿命等优点,在电动汽车、电子设备、可再生能源系统等领域具有广阔的应用前景。

电极材料作为超级电容器的核心组成部分,其性能直接影响着超级电容器的整体性能。

因此,研究和开发高性能的超级电容器电极材料成为了当前的研究重点。

本文旨在全面综述超级电容器电极材料的研究进展,包括各类电极材料的性能特点、合成方法、改性策略及其在超级电容器中的应用。

文章首先介绍了超级电容器的基本原理和分类,然后重点分析了碳材料、金属氧化物、导电聚合物等常见电极材料的性能优势和存在的问题。

接着,文章综述了近年来通过纳米结构设计、复合改性、表面修饰等手段提高电极材料性能的研究进展。

文章展望了超级电容器电极材料未来的发展方向和潜在应用领域。

通过本文的阐述,期望能够为超级电容器电极材料的研究和应用提供有益的参考和启示。

二、超级电容器电极材料分类超级电容器的性能与电极材料的特性密切相关,因此,对电极材料的研究一直是超级电容器领域的热点。

根据材料种类的不同,超级电容器的电极材料主要分为碳材料、金属氧化物/氢氧化物、导电聚合物以及复合材料等几大类。

碳材料:碳材料是超级电容器中应用最广泛的一类电极材料,包括活性炭、碳纳米管、石墨烯等。

这类材料具有比表面积大、导电性好、化学稳定性高等优点,适合用作双电层电容器的电极材料。

然而,碳材料的储能机制主要是物理吸附,因此其能量密度相对较低。

金属氧化物/氢氧化物:金属氧化物/氢氧化物如RuO₂、MnO₂、NiOOH 等,具有较高的赝电容特性,能够实现快速的氧化还原反应,从而提供更高的能量密度。

然而,这类材料的导电性较差,且在充放电过程中体积变化较大,容易导致电极结构破坏,影响循环稳定性。

导电聚合物:导电聚合物如聚吡咯、聚噻吩等,具有良好的导电性和赝电容特性,是超级电容器电极材料的另一类重要选择。

石墨烯/氧化锰/聚苯胺微纳米复合材料的制备及其超级电容器性质的研究

石墨烯/氧化锰/聚苯胺微纳米复合材料的制备及其超级电容器性质的研究

Re s e a r c h O n t he F a b r i c a io t n a n d S u p e r ap c a dt o r Cha r a c t e is r t i c s o f
Gr a p h e n e / Mn OJ Po l y a n i l i n e Mi c r o 。 _ _ - Na n o Co mp o s i t e s
A b s t r a c t :T h e g r a p h e n e / ma ng a n e s e o x i d e ・ / p o l y a n i l i n e mi c r o — — n a n o c o m p o s i t e s w e r e f a b r i c a t e d a n d i t s c a p a c i t i v e p r o p e r t i e s
要 :本文主要对石墨烯/ 氧化锰/ 聚苯胺微纳米复合物作 为超级 电容 器电极材料 的制备及其 电容性质进行 了研 究。红 外
光谱 、x一 射线光电子能谱 和扫描 电镜等测试结果表 明 已成 功合成 了三元微纳米复合物。通过循环伏安测试和恒电流充放 电
测试表明石墨烯与氧化锰 以 1: 5 的质量 比进行复合得 到的产物电化 学储 能性质最好 。三元复合 时,随着苯胺的增加 ,三元 复合物的充放 电时间逐渐增 长,苯胺与石 墨烯/ 氧化锰 复合材料的质量比为2: 1 时 ,复合物的 比电容为 3 1 1 F / g ,比石墨烯/ 氧化锰的比电容 ( 1 7 1 F / g )高出近一倍 ,由此 可知 ,聚苯胺的加入显著提 高了二元复合 物的比电容。 关键词 :超级电容器;石墨烯 ;复合 材料 中图分类号 : 06 文献标识码 :A 文章编号 :1 6 7 2 ~ 9 8 7 O ( 2 O 1 3 ) O 6 一O 0 9 O 一 0 3

超级电容器复合电极材料制备及电化学性能研究

超级电容器复合电极材料制备及电化学性能研究

超级电容器复合电极材料制备及电化学性能研究1. 本文概述随着现代科技的发展,能源存储技术正面临着前所未有的挑战和机遇。

超级电容器作为一种重要的能源存储设备,因其高功率密度、快速充放电能力、长寿命周期和环境友好性而受到广泛关注。

在超级电容器的构造中,复合电极材料的研发尤为关键,其直接决定了超级电容器的电化学性能和整体效能。

本文旨在探讨超级电容器复合电极材料的制备方法及其电化学性能。

本文将对目前广泛研究的几种复合电极材料,如碳材料、金属氧化物、导电聚合物等,进行系统的综述。

这些材料在超级电容器中的应用优势和面临的挑战将被详细讨论。

接着,本文将重点介绍几种创新的复合电极材料制备技术,包括化学气相沉积、水热合成、溶胶凝胶法等。

这些方法在制备过程中对材料结构和形貌的控制,以及对电化学性能的影响将被深入分析。

本文将通过实验数据,评估所制备的复合电极材料在超级电容器中的实际应用性能,包括比电容、能量密度、循环稳定性等关键指标。

通过这些研究,本文旨在为超级电容器复合电极材料的发展提供新的视角和技术路径,推动能源存储技术的进步。

2. 文献综述超级电容器,也称为电化学电容器,是一种介于传统电容器和电池之间的能量存储设备。

它们的主要特点是具有高功率密度、长循环寿命和快速充放电能力。

超级电容器的储能机制主要是双电层电容,涉及电极材料与电解质之间的电荷分离。

这一领域的研究起始于20世纪50年代,随着材料科学和电化学技术的进步,超级电容器在能量存储领域的重要性日益凸显。

超级电容器的性能在很大程度上取决于电极材料的性质。

近年来,研究者们广泛关注复合电极材料,因其能够结合不同材料的优点,从而提高超级电容器的整体性能。

常见的复合电极材料包括碳基材料、金属氧化物、导电聚合物等。

这些材料通过不同的复合策略(如物理混合、化学接枝、层层自组装等)进行组合,旨在提高比电容、能量密度和循环稳定性。

电化学性能是评估超级电容器电极材料的关键指标。

《2024年石墨烯的制备及在超级电容器中的应用》范文

《2024年石墨烯的制备及在超级电容器中的应用》范文

《石墨烯的制备及在超级电容器中的应用》篇一一、引言随着科技的进步,纳米材料的应用已经引起了科学界的广泛关注。

在众多纳米材料中,石墨烯因其独特的物理、化学性质,特别是其超高的电导率和极大的比表面积,已成为近年来材料科学领域的研究热点。

本篇论文旨在深入探讨石墨烯的制备方法以及其在超级电容器中的应用。

二、石墨烯的制备石墨烯的制备方法多种多样,常见的包括机械剥离法、化学气相沉积法、氧化还原法等。

1. 机械剥离法:此方法主要是通过机械力将石墨薄片剥离成单层或多层石墨烯。

此法虽然可以制备出高质量的石墨烯,但生产效率较低,不适合大规模生产。

2. 化学气相沉积法:此法通过在高温条件下使气体中的碳原子在基底上沉积形成石墨烯。

此法可以制备大面积的石墨烯,但制备过程需要高温和特定的气体环境。

3. 氧化还原法:此法首先通过强酸等化学试剂将天然石墨氧化,形成氧化石墨(GO),然后通过还原GO得到石墨烯。

此法生产效率高,成本低,适合大规模生产。

三、石墨烯在超级电容器中的应用超级电容器是一种具有高能量密度和高功率密度的储能器件,而石墨烯因其独特的物理性质,使其成为超级电容器的理想材料。

1. 石墨烯的电化学性质:石墨烯具有超高的比表面积和良好的导电性,这使其在电化学反应中能够提供更多的活性位点,从而提高电容器的电容量。

2. 石墨烯在超级电容器中的应用:由于石墨烯的优异性能,其被广泛应用于超级电容器的电极材料。

在电极中,石墨烯不仅可以提供大量的电荷传输通道,还可以通过其大比表面积提供更多的电荷存储空间。

此外,石墨烯的优异导电性可以降低电极的内阻,从而提高电容器的充放电速率。

四、结论随着科技的发展,石墨烯的制备技术已经越来越成熟,其在超级电容器中的应用也越来越广泛。

未来,随着对石墨烯性能的深入研究以及制备技术的进一步优化,石墨烯在超级电容器以及其他领域的应用将更加广泛。

同时,我们也需要关注到石墨烯在实际应用中可能面临的问题和挑战,如成本、环境影响等,以期在未来的研究中找到更好的解决方案。

高性能石墨烯材料在超级电容器中的应用

高性能石墨烯材料在超级电容器中的应用

高性能石墨烯材料在超级电容器中的应用随着科技的快速发展,人们对储能技术的需求也越来越高。

传统电池的能量密度相对较低,而超级电容器由于具有高能量密度、快速充放电和长寿命等特点,逐渐成为储能技术研究的焦点领域之一。

在超级电容器的研究中,石墨烯材料表现出了令人瞩目的应用潜力,具有了广泛的应用前景。

1. 背景介绍超级电容器是一种以电吸附和电双层电容为储能机制的设备。

它能以高速率吸附和释放电荷,储能效率高,循环寿命长,是现代电子器件和电力系统中理想的储能技术之一。

然而,传统超级电容器的能量密度相对较低,限制了其在实际应用中的推广。

2. 石墨烯材料在超级电容器中的优势石墨烯是一种由碳原子单层构成的二维材料,具有出色的电学、光学、导热和机械性能。

这些特性使得石墨烯成为超级电容器领域的研究热点。

使用石墨烯材料制备的超级电容器相比传统电容器具有以下优势:2.1 高能量密度石墨烯的大表面积和高电导率使得其能够存储更多的电荷。

其高比表面积可以提供更多的吸附位点,从而增加了电荷的储存量。

与此同时,石墨烯的高电导率也能够有效地减少电池内阻,提高能量转化效率。

2.2 快速充放电速度石墨烯的高电导率和低内阻使得超级电容器具有快速充放电的特点。

相比传统超级电容器,石墨烯材料能够更快地吸附和释放电荷,从而实现高速充电和高速放电。

2.3 长循环寿命传统超级电容器的循环寿命较短,会在充放电循环过程中出现性能衰减。

而石墨烯具有出色的力学稳定性和化学稳定性,能够有效地抵抗充放电过程中的机械和化学破坏,从而延长超级电容器的寿命。

3. 石墨烯材料在超级电容器中的应用案例随着对石墨烯材料性能了解的进一步加深,科学家们不断探索石墨烯在超级电容器中的应用。

以下是一些石墨烯材料在超级电容器领域的应用案例:3.1 改进电解液结构石墨烯材料能够通过调控电解液组分和结构,提高电解液的电导率和离子迁移速率。

通过在超级电容器的电解液中添加适量的石墨烯材料,可以有效地提高超级电容器的能量密度和充放电速度。

石墨烯纳米复合材料的制备与应用研究进展

石墨烯纳米复合材料的制备与应用研究进展

石墨烯纳米复合材料的制备与应用研究进展宋月丽;谈发堂;王维;乔学亮;陈建国【摘要】石墨烯是近年被发现和合成的一种新型二维碳质纳米材料.由于其独特的结构和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点.综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望.%Graphene is a new type of two-dimensional carbon nanomaterial, which has been discovered and synthesized in recent years. Graphene has great potential in terms of improving the thermal,mechanical and e-lectrical properties of its composites,which is also a new hot research area of nanocomposites,due to its unique structure and novel physical and chemical properties. In this article,advances in preparation and application of graphene nanocomposites were reviewed and future development of graphene nanocomposites was also proposed.【期刊名称】《化学与生物工程》【年(卷),期】2012(029)009【总页数】5页(P6-10)【关键词】石墨烯;纳米复合材料;制备;应用【作者】宋月丽;谈发堂;王维;乔学亮;陈建国【作者单位】华中科技大学材料科学与工程学院材料成形与模具技术国家重点实验室,湖北武汉430074;平顶山学院电气信息工程学院,河南平顶山467000;华中科技大学材料科学与工程学院材料成形与模具技术国家重点实验室,湖北武汉430074;华中科技大学材料科学与工程学院材料成形与模具技术国家重点实验室,湖北武汉430074;华中科技大学材料科学与工程学院材料成形与模具技术国家重点实验室,湖北武汉430074;华中科技大学材料科学与工程学院材料成形与模具技术国家重点实验室,湖北武汉430074【正文语种】中文【中图分类】O613.71;TB33石墨烯(Graphene)是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。

石墨烯制成的超级电容器将取代电池

石墨烯制成的超级电容器将取代电池

俄亥俄州代顿市Nanotek Instruments公司新研制的石墨烯超级电容器,单位质量可储存的能量相当于镍氢电池,打破了世界纪录,而且充电或放电只需要短短几分钟、甚至几秒钟,有望取代电池。

相关研究论文发表在Nano Letter上。

该超级电容器电极的制备采用了石墨烯,混合5%的超级P(一种乙炔黑,作用相当于导电添加剂)和10%的聚四氟乙烯(PTFE)结合剂。

研究人员把产生的悬浮液涂在集电器表面,把硬币大小的电容器安装在隔离箱里。

电解质-电极界面的制备,采用了“Celguard隔膜-3501”,而电解液是一种化学品,叫做EMIMBF4。

该公司对硬币大小超级电容器的测试表明,石墨烯电极的超级电容器的能量密度为85.6 Wh/kg,而镍氢电池和锂离子电池分别为40-100 Wh/kg和120 Wh/kg,这是有史以来基于碳纳米材料的双电层超级电容器所达到的最高值。

研究小组成员还包括来自Angstron材料研究所的科学家,他们正在努力工作以进一步提高超级电容器的能量密度。

电容器电极材料研制方面取得系列进展。

超级电容器是介于传统物理电容器和电池之间的一种新型储能器件,具有绿色环保、充电时间短、使用寿命长和工作温度范围宽等优点,其核心部件是性能优异的电极材料。

石墨烯片(GS),作为一种新型的碳材料,具有良好的导电性和大的比表面积,预计将其作为超级电容器的电极材料具有广阔的应用前景。

但是纯石墨烯表面缺少功能基团导致其很难与其它材料复合或在器件上进行组装,从而限制了其深入应用。

因此,对石墨烯表面进行化学修饰以便于获得各种功能复合材料是当前研究的一个热点。

图1:不同PANi含量的PSS-GS/PANi“纸”电极(左)和PSS-GS与PANi纳米纤维之间的静电吸附示意图(右)图2 :PSS-GS与二氧化锰在基底上的层层自组装示意图固体润滑国家重点实验室研究人员利用化学修饰后的石墨烯(PSS-GS)与聚苯胺(PANi)纳米纤维之间的静电吸附作用,制备了PSS-GS/PANi 复合材料胶体溶液,然后抽虑成膜得到了柔性的PSS-GS/PANi复合“纸”电极材料。

基于石墨烯基复合材料的超级电容器研究现状

基于石墨烯基复合材料的超级电容器研究现状

基于石墨烯基复合材料的超级电容器研究现状超级电容器是一种发展成本低、环境友好、能量密度高的新型绿色能源装置,具有充电时间短、放电速度快、使用寿命长、节约能源和绿色环保等优点,得到了科学界的一致追捧,而影响超级电容器最关键的因素就是电极材料的性能。

过渡金属氧化物如Mn02,ZnO,C0304和NiO等虽是较好的电极材料,但导电性能较差,会产生较大的内阻,使得在充放电过程中,容易导致电极材料结构的破坏而影响其充放电容量和循环性能。

将过渡金属负载到碳材料例如石墨烯上可以较好的解决这一难题,这方面研究国内外已有很多相关报道。

作为碳材料中重要的一员,石墨烯由于导电性能强、导热性好、质量轻、比表面积大而备受关注,在储能装置、电化学器件、功能性复合材料等方面都具有重要的应用。

将石墨烯应用到超级电容器上,改善了超级电容器的电容量和循环稳定性。

但石墨烯层与层之间的分子问作用力导致石墨烯容易团聚,从而降低了石墨烯的比表面积和比容量。

将过渡金属氧化物和石墨烯组装成复合材料,既能提高电极材料的导电性和充放电容量,又能增强其循环稳定性。

1过渡金属氧化物与石墨烯复合材料在超级电容器中的应用1.1二氧化锰/石墨烯在超级电容器的研究中,锰作为过渡元素较先受到关注。

虽然它资源比较丰富,且易获取,但电化学性能较弱,尤其是导电性能差阻碍了人们进一步研究的步伐。

通过与石墨烯的复合,能在一定程度上改善二氧化锰存在的问题,大幅度提高其比电容和循环性能。

Li等制备的石墨烯/Mn02复合纸电极具有无黏结剂、柔韧性好的特性,并发现其具有良好的循环稳定性,且在浓度为0.1 mol/L 的Na2SO4水溶液中,当电极的Mn02含量为24%,电流密度为O.5 A /g时,该复合纸电极的比容量为256 F/g。

Wei等通过高锰酸钾还原成二氧化锰沉积在石墨烯表面制备出了二氧化锰/石墨烯复合材料,该复合材料在超级电容器性能测试中显示了较好的循环寿命,其电容为114 F/g。

超级电容器的电极材料的研究进展

超级电容器的电极材料的研究进展

超级电容器的电极材料的研究进展一、本文概述随着科技的不断进步和新能源领域的飞速发展,超级电容器作为一种高效、快速储能器件,已逐渐引起科研工作者和工业界的广泛关注。

作为超级电容器的核心组件,电极材料的性能直接影响着超级电容器的电化学性能和实际应用效果。

研究和开发高性能的电极材料对于提升超级电容器的整体性能、推动其在新能源领域的应用具有十分重要的意义。

本文旨在对超级电容器的电极材料的研究进展进行全面的梳理和综述。

文章首先介绍了超级电容器的基本原理和电极材料在其中的作用,然后重点阐述了当前常用的电极材料类型,包括碳材料、金属氧化物、导电聚合物等,并分析了它们各自的优势和存在的问题。

接着,文章综述了近年来在电极材料研究方面取得的重要突破和进展,包括材料结构设计、复合材料的开发、表面改性等方面的研究。

文章对超级电容器电极材料的研究趋势和未来发展方向进行了展望,以期为相关领域的研究者提供参考和借鉴。

二、超级电容器概述超级电容器(Supercapacitor),亦称为电化学电容器(Electrochemical Capacitor),是一种介于传统电容器和电池之间的储能器件。

其具有高功率密度、快速充放电、长循环寿命以及良好的环境适应性等特点,因此在能源储存和转换领域引起了广泛关注。

超级电容器的储能原理主要基于电极材料表面和近表面的快速、可逆的法拉第氧化还原反应或非法拉第的静电吸附过程。

相比于传统电容器,超级电容器能够提供更高的能量密度而相较于电池,它又具备更高的功率密度和更快的充放电速度。

这些独特的性能使得超级电容器在电动汽车、可再生能源系统、移动通讯、航空航天等领域具有广泛的应用前景。

超级电容器的电极材料是其性能的决定性因素。

理想的电极材料应具备高比表面积、高电导率、良好的化学稳定性和环境友好性等特点。

目前,研究者们已经开发出多种类型的电极材料,包括碳材料、金属氧化物、导电聚合物等。

这些材料各有优势,但也存在一些问题,如比能量低、循环稳定性差等。

一种石墨烯纳米纤维复合薄膜电容器研究

一种石墨烯纳米纤维复合薄膜电容器研究

纤维纳米 ,原则上可 以分成天然纳米纤维和人造纳米 纤维两种 。 随着 目前 国内外 的开发热潮 , 伴 将纳米颗粒
填 充 到 其 它 物 质 中去 ,或 者 在 其 他 物 质 中增 加 纳 米 材
料, 来达 到改善其性能 的作用 , 而且采用性能不 同的材
质 , 以产 生 相 对 应 功 能 不 同 的纤 维 材 料 , 在 多 种 有 可 故
高 的电学和热学传导性 、 高的机械 强度 。 特别像是通过
原位 化学或者 电化学 的方法将P N A 和石 墨烯聚合 , 有
着潜在 的低成本 ,在储 能装置和纳米复合材料方面 已
米技术 已经渗透到 日常生活 中的各个层面 ,其 中纳米
材 料 一 词 更 为 广 泛 , 基 础 定 义 为 直 径 是 1 10n 其 ~ 0 m的
L ig IJn
(o hU iesyo hn ; a u n0 0 5 , hn) N r nvrt f ia T i a 3 0 C ia t i C y 1
Ab t a t o o i l c p ct r ft e c mp st l i a ly r d sr cu e n t i p p r i u e n g a h n n sr c :c mp st f m a a i s o h o o i f m s a e e tu t r ,i h s a e s s d i r p e e a d ei o ei n n mee i e p cn o ai l,S h tt e c p c trme h n c lp r r n e f r e mp o e ,h s a s n r a e a o tr f r s a i g c mp t e O t a h a a i c a ia ef ma c u t ri rv d a lo ic e s d b b o o h i ot e s h o g x e i n s f r e r v ,c mp st l c p ct r c n u t i s t d t n ln n me e b rf m t s f s ,t r u h e p r s n me t u t rp o e o o i f m a a i o d ci t i r i o a a o t rf e l h ei o vy a i i i c p c trb b u 0 t s a a i y a o t1 i . o me Ke r s g a h n ; a o b r c p ctr y wo d : r p e e n n f e ; a a i i o

石墨烯复合材料在超级电容器中的进展

石墨烯复合材料在超级电容器中的进展

Value Engineering碳元素广泛存在于自然界,除了最为人们所熟知的石墨和金刚石外,1985年发现的富勒烯和1991年发现的碳纳米管扩大了碳材料的家族。

也使人们对碳元素的多样性有了更深刻的认识。

同时,富勒烯和碳纳米管所引发的纳米科技对人类社的发展在未来有着极其重大的意义。

作为碳材料中最新的一员—石墨烯是拥有sp2杂化轨道的二维碳原子晶体,由英国曼彻斯特大学的Geim等[1]于2004年发现,并能稳定存在,这是目前世界上最薄的材料—单原子厚度的材料。

石墨烯不仅有优异的电学性能(室温下电子迁移率可达200000cm2V-1s-1)[2],质量轻,导热性好(5000Wm-1K-1)[3],比表面积大(2630m2g-1)[4],它的杨氏模量(1100GPa)和断裂强度(125GPa)[5]也可与碳纳米管相媲美,而且还具有一些独特的性能,如量子霍尔效应、量子隧穿效应[6]等。

由于以上独特的纳米结构和优异的性能,石墨烯可应用于许多的先进材料与器件中,如薄膜材料[7]、储能材料[4]、液晶材料[8]、机械谐振器[9]等。

石墨烯是单层石墨,原料易得,所以价格便宜,不像碳纳米管那样价格昂贵,因此石墨烯有望代替碳纳米管成为聚合物基碳纳米复合材料的优质填料。

在石墨烯诸多性质中,其中比表面积高和导电性好,最重要的是石墨烯本身的电容为21μF/cm2,达到了所有碳基双电层电容器的上限,这比其他碳材料都要高,是制造超级电容器的理想材料。

超级电容器(Supercapacitors),也叫电化学电容器(Electrochemical capacitors)是一种能量密度和功率密度介于传统电容器和电池之间的新型储能器件,超级电容器兼具蓄电池和传统电容器的优点,如能量密度高、功率密度高、可快速充放电、循环寿命长、具有瞬时大电流放电及对环境无污染等特性,是近十年来发展起来的新型储能、节能设备。

由于石墨烯是理想的超级电容器填充材料,所以将其与其他材料复合来制备超级电容器材料备受大家关注。

《石墨烯-导电聚合物复合材料的制备及其电化学性能的研究》

《石墨烯-导电聚合物复合材料的制备及其电化学性能的研究》

《石墨烯-导电聚合物复合材料的制备及其电化学性能的研究》石墨烯-导电聚合物复合材料的制备及其电化学性能的研究摘要:本文研究了石墨烯与导电聚合物复合材料的制备方法,并对其电化学性能进行了深入探讨。

通过合理的制备工艺,我们成功制备了具有优异导电性能和电化学稳定性的复合材料。

本文详细描述了实验过程、结果及分析,以期为相关研究提供有益的参考。

一、引言随着科技的发展,石墨烯因其独特的物理和化学性质,在材料科学领域引起了广泛的关注。

石墨烯与导电聚合物的复合材料因其在电化学储能、传感器、电磁屏蔽等领域的潜在应用价值,成为了研究的热点。

本文旨在研究石墨烯/导电聚合物复合材料的制备方法及其电化学性能。

二、实验材料与方法1. 材料准备实验所需材料包括石墨烯、导电聚合物(如聚吡咯、聚苯胺等)、溶剂(如乙醇、水等)以及其他添加剂。

2. 制备方法采用溶液混合法或原位聚合法制备石墨烯/导电聚合物复合材料。

具体步骤包括:将石墨烯与导电聚合物在溶剂中混合,并通过搅拌或超声处理使两者充分混合;然后进行聚合反应,得到复合材料。

三、电化学性能测试通过循环伏安法(CV)、恒流充放电测试、电化学阻抗谱(EIS)等方法,对制备的复合材料进行电化学性能测试。

四、结果与讨论1. 制备结果通过优化制备工艺,我们成功制备了具有良好分散性和导电性能的石墨烯/导电聚合物复合材料。

SEM和TEM结果表明,石墨烯与导电聚合物在纳米尺度上实现了良好的复合。

2. 电化学性能分析(1)循环伏安法(CV)测试:复合材料在充放电过程中表现出稳定的电化学行为,无明显极化现象。

(2)恒流充放电测试:复合材料具有较高的比电容和优异的循环稳定性。

在一定的电流密度下,其比电容随循环次数的增加而略有增加,表现出良好的充放电性能。

(3)电化学阻抗谱(EIS)分析:复合材料的内阻较小,电子传递速度快,表现出优异的电导率和良好的电荷传输能力。

通过分析不同因素(如石墨烯含量、聚合条件等)对电化学性能的影响,我们发现合理的复合比例和制备工艺是获得高性能复合材料的关键。

高能量密度超级电容器材料的研究与开发

高能量密度超级电容器材料的研究与开发

高能量密度超级电容器材料的研究与开发近年来,随着电子技术的飞速发展,电池作为电能储存的主要装置已经无法满足人们对高能量密度储存设备的需求。

而超级电容器,作为一种新型的能量储存装置,具有高能量密度、长寿命、高充放电效率等优点,备受人们的关注。

然而,要实现超级电容器在大规模商业应用方面的突破,材料的研究与开发显得尤为关键。

在当前超级电容器材料的研究与开发中,最具潜力的是碳基材料。

碳基材料拥有较高的比表面积和丰富的孔隙结构,可以提供更多的储能空间。

其中,活性炭、碳纳米管和石墨烯是最为常见的碳基材料。

活性炭的特点是具有较高的孔隙结构和比表面积,但其能量密度相对较低;碳纳米管具有优异的导电性能和高比表面积,但对于大规模生产存在难题;石墨烯则是一种具有单层碳原子结构的二维材料,拥有超高的电导率和良好的力学强度。

因此,石墨烯在超级电容器材料的研究中备受关注,被认为是一种具有巨大潜力的材料。

然而,单纯依靠碳基材料还不足以满足超级电容器的发展需求。

许多科研人员开始探索其他材料的潜力,如金属氧化物、金属硫化物等。

这些材料具有较高的比容量和电导率,可以在一定程度上提高电容器的能量密度。

其中,金属氧化物中的锰氧化物、钴氧化物和镍氧化物,以及金属硫化物中的钼二硫化物和钼三硫化物等材料受到了广泛关注。

这些材料不仅具有较高的能量密度,而且在电化学稳定性和循环寿命方面也表现出色。

除了新型材料的研发,改良现有超级电容器材料的结构和性能也是一个重要的研究方向。

一种被广泛研究的方法是引入纳米结构。

通过纳米化处理,可以增加材料的比表面积,提高储能空间。

同时,纳米材料还可以减少电子和离子传输的阻抗,提高电容器的充放电效率。

此外,还有一种方法是通过调控电解质的配方和性质,来改善电容器的性能。

目前,高离子传导率和低电阻率的电解质已经成为超级电容器领域的研究热点。

在超级电容器材料的研究与开发过程中,需要充分发挥理论和实验的相互作用。

理论模拟可以为实验研究提供指导,同时也能为新材料的设计和优化提供方向。

石墨烯-聚苯胺杂化超级电容器电极材料

石墨烯-聚苯胺杂化超级电容器电极材料

而, 在掺杂和去掺杂过程中 , 导电聚合物容易发生溶胀和收缩行为, 这往往会破坏电极并使其 电化学
收稿 日期 : 2 0 1 3  ̄5 - 3 1 . 基金项 目:国家 自然科 学基金 ( 批准号 : 5 0 7 7 3 0 1 2, 5 1 1 7 3 0 2 7 ) 、国家重点基础研 究发展计划 ( 批准号 : 2 0 1 1 C B 6 0 5 7 0 2 ) 和 海纳米 科技项 目( 批准号 :i 0 5 2 n n ' J X  ̄ 0 0) 资助. 联系人简介 : 卢红斌 , 男 ,博士 , 教授 , 博士生导师 , 主要从事多尺度石墨烯基复合材料 的可控制备 、 性能及应用研究.
装置 ,以面对不 可再 生资源 的 E l 益 枯竭 以及环境 污染 的加 剧.超 级 电容器 作 为一种 兼 有传 统 电容器 与
二次 电池优 点 的新 型储 能器件 ,能提供 高于传 统 电容 器 的能量 密度 ,以及 相较 于 二次 电池 更加 优异 的
功率 密度 和循环 寿命 , 有望 广泛应 用在 能量 转 化 、航 天 系统 、 通 讯 工程 以及微 电子器 件 等领 域 .众 所
们 的广 泛关 注 . 导 电聚 合物基 超级 电容器 通常是 赝 电容器 ,通过 在 电极 本 体材 料 中发 生 氧化 还 原反 应储 存 电荷.
相较 于碳基 的双 电层 电容 器 , 赝 电容器通 常具有 更高 的能量 密 度和 相对 较低 的功率 密度 .这是 因为 赝
电容器在整个电极 内部均可发生反应 , 而碳基电容器仅能在其电化学表面储存 电荷.然而, 考虑到 电
1 7 0 V
0 . 3 A g ~ 3 A -e m
7 9 % / 8 0 0 c y c l e s 3 3 0 F ・e m一 / 1 0 0 0 c y c l e s 9 0 . 7 % / 5 0 0 c y c l e s 6 7 % / 4 0 0 c y c l e s 7 4% / 1 0 0 0 c y c l e s 9 0% / 5 0 0 c y c l e s 9 8 % / 1 0 0 0 c y c l e s 7 9% / 1 0 0 0 c y c l e s 7 3% / 5 0 0 c y c l e s 6 4% / 5 0 0 c y c l e s

柔性电极材料的国内外研究进展

柔性电极材料的国内外研究进展

文章编号:1001-9731(2021)02-02039-11柔性电极材料的国内外研究进展*武畏志鹏,邹华,宁南英,田明(北京化工大学材料科学与工程学院,北京100029)摘要:近年来,随着柔性可穿戴设备㊁触觉反馈设备㊁能量收集器等领域的快速发展,介电弹性体(D E)及超级电容器(S C)因能够提共高能量㊁高储能效率以及可小型化而备受关注,有着非常广泛的应用㊂由于柔性电极的性能直接影响D E的发电和驱动效率以及S C的储能效率,因而其是D E和S C的重要组成部分㊂基于柔性电极材料的不同类型,本文首先对碳电极㊁金属电极㊁复合型电极等几种典型的电极材料及其性能进行了详细介绍㊂然后,对电极的制备方法进行了阐述㊂接着,总结了由柔性电极材料组装的D E和S C在各领域的应用,并对电极材料所面临的问题及挑战进行了分析㊂最后,对柔性电极材料的发展趋势进行了展望㊂关键词:介电弹性体;超级电容器;碳电极;金属电极;复合电极中图分类号: T B34;T B333;T B324文献标识码:A D O I:10.3969/j.i s s n.1001-9731.2021.02.0060引言电极材料属于一种导体材料,用作固体㊁气体或电解质溶液等导电介质中输入或输出电流的两个端㊂柔性电极一般用在介电弹性体或超级电容器中,所以它们必须在保持导电性的同时具备轻薄㊁大形变㊁高可拉伸性的特点,能够进行数百万次的循环㊂在介电弹性体及超级电容器中,由于电极材料是与橡胶或电解质配合使用,需要通过形变输出或储存电能㊂因而,为了提高能量的输出,电极材料必须足够柔顺,降低对电介质刚度的影响㊂另外,与普通电极不同的是,柔性电极能够在电介质基体上形成精确的图案,使电荷可以在规定的位置工作,从而允许在单个膜上具有多个电极和明确定义的独立有源区域的复杂结构㊂P e l r i n e 等[1]人说过: 理想电极具有高导电性,完全柔顺且可图案化,并且相对于基体厚度可以更薄㊂ 基于柔性电极材料的不同类型,我们将其分为碳电极㊁金属电极㊁复合型电极三类㊂1碳电极1.1炭黑电极导电炭黑是一种有着较低电导率的半导体材料,将其分散到特殊制品中,可使制品起到导电或防静电的作用㊂其特点为粒径小,比表面积大且粗糙,结构度高,表面洁净(化合物少)等㊂采用刷涂或喷涂的方式将炭黑粉末通过物理作用黏附在D E基体上是早期介电弹性体致动器(D E A)用柔性电极的主要材料㊂由于炭黑粒子间没有强的相互作用力,所以导电炭黑的主要优点是其对D E基体的刚度不产生影响㊂但是炭黑电极也有以下两个缺点影响其导电性:一是由于炭黑粒子间相互作用弱,所以在大应变下电极会产生断裂带,切断了电荷传输路径;二是在反复拉伸-回复过程中,炭黑粉末会产生脱落㊂P e l r i n e等[1]人通过喷涂的方式将溶解于有机溶剂中的碳粉喷洒在预应变为32%的D E基体上㊂待溶液挥发后,碳粉附着在D E基体上,制成介电弹性体致动器(D E A)㊂研究表明,在300V电压下D E A的形变量达到20%㊂张治安等[2]人利用油压机,将高比表面积㊁高导电性的工业炭黑固定到集流体上,制成电极片㊂研究结果表明使用纯炭黑作为柔性电极材料的比容量大约为60~70F/g,相对较低㊂1.2碳纳米管电极碳纳米管是一种具有高机械强度㊁良好导电性的一维纳米材料,可应用于高强度复合材料㊁信息存储㊁纳米电子器件等㊂由于碳纳米管有着大长径比㊁高比表面积以及良好的导电性等特点,使得其作为柔性电极材料在D E G和D E A上有着广泛的应用㊂张东智等[3]人将C N T用静电自组装的方法粘附在D E基体上,制备出了28μm后的D E G㊂与手套结合,制成了手套式发电机,如图1所示㊂研究表明,当手指弯曲90ʎC,此时为可输出的最大电压,大约为3.7V,如图2所示㊂接着该团队又制备出鞋垫式发电机,通过足部运动使介电弹性体产生压缩-回复的变化㊂研究表明, D E的相对介电常数为12,可输出的最大电压为1V,最大电容为1.37n F㊂93020武畏志鹏等:柔性电极材料的国内外研究进展*收到初稿日期:2020-08-18收到修改稿日期:2020-09-30通讯作者:邹华,E-m a i l:1252528362@q q.c o m 作者简介:武畏志鹏(1995 ),男,山东济南人,硕士,师承邹华副教授,从事导电纳米复合材料研究㊂图1 手指弯曲度检测示意图F i g 1I l l u s t r a t i o no f f i n g e r -b e n d i n g te st 图2 不同弯曲角度下E A P 薄膜的输出电压-时间曲线F i g 2C u r v e so fo u t p u tv o l t a ge -t i m ef o rE A Pf i l -m u n d e r d i f f e r e n t b e n d i ng a n gl e s 近年来研究人员对C N T 不断的深入研究,使得其也迅速成为超级电容器领域的研究热点㊂D u 等[4]以镍片做衬底,使用C N T 分散液将C N T 均匀分散,制备出了排列整齐的C N T 电极㊂研究表明,其质量比容量为20F /g ,功率密度为30k W /k g㊂Z h a o 等[5]采用喷涂的方法将多壁碳纳米(MW C N T )管固定到钢网上,如图3所示,制备出了质量比容量为155F /g 的碳纳米管电极㊂经过100次弯折循环后,MW C N T 没有脱落,表现出优异的循环稳定性㊂图3 通过静电相互作用保持的P E I /C N T 膜排列示意图F i g 3S c h e m a t i co f t h eP E I /C N Tf i l m a r r a n ge m e n t h e l db y el e c t r o s t a t i c i n t e r a c t i o n 1.3 石墨烯电极石墨烯具有导电导热性好㊁比表面积大㊁循环寿命长,机械强度高等特点,并且在水性电解质中有着优异的耐腐蚀性,使得其在柔性电极方面运用广泛㊂C h e n 等[6]人采用真空抽滤的方法制备了超薄透明的石墨烯薄膜(厚度为25~100n m ),测试结果表明,薄膜的电导率在800~1000s /m ㊂将其应用到超级电容器时,25n m 的薄膜比电容为135F /g,功率密度为7.2k W /k g,透光率70%㊂随着厚度的增加,性能降低㊂H o l l o w a y 等[7]人使用射频等离子体增强化学气相沉积工艺在加热的镍基板上直接生长了垂直取向的石墨烯纳米片,如图4所示㊂测试结果表明,其比表面积约为1100m 2/g ,120H z 下比电容为175F /c m 2㊂W a n g等[8]采用氧化还原法得到了单层石墨烯,验证了单层石墨烯作为电极材料的优势㊂研究表明,在电解质水溶液中以28.5W h /k g 的能量密度获得的最大比电容为205F /g ,功率密度为10k W /k g ㊂并且经过1200次循环测试后保留了约90%的比电容,显示出优异的循环稳定性㊂图4 不同生长时间下垂直取向石墨烯纳米片的S E M照片F i g 4S E M i m a g e s o f v e r t i c a l l y a l i g n e d g r a ph e n e n a n o s h e e t s u n d e r d i f f e r e n t g r o w t h t i m e s1.4 碳纤维电极由于碳纤维有着极高的纵横比,使得其有着良好的电子传输路径,导电性优异㊂并且碳纤维还有着高度可修饰的纳米结构㊁良好的循环使用寿命等特点㊂近年来,以碳纤维作为柔性电极也成为了超级电容器领域的研究热点㊂Z HO U 等[9]通过对碳纤维进行酸氧化处理,制备出了多孔核-壳碳纤维㊂研究表明,0.5A /g 电流密度下,比电容为98F /g ㊂在1A /g 的电流密度下进行3000次充放电循环后,电容保持率约为96%㊂表现出出色的电化学性能和机械性能以及良好的循环稳定性㊂L i u 等[10]用生物型棉纤维制备出碳纤维,通过一定程度的煅烧来塑造多孔微管结构,作为电极材料㊂研究表明,其比表面积约为584.49m 2/g ㊂在0.3A /g 的电路密度下,比容量约为221.72F /g ,经过两次6000次循环后,电容的损失率仅有4.6%㊂2 金属电极虽然金属材料作为电极有着优良的导电性,但其也有两个非常明显的缺点:一是金属的杨氏非常高,通常高于介电弹性体几个数量级,会增加基体的刚度㊂40202021年第2期(52)卷R o s s e t 等[11]人通过研究表明,在30.6μm 的硅橡胶上溅射8n m 的金层,使得基体的模量由最初的0.77M P a 增加到了4.2M P a ,增长率达到440%㊂二是金属的弹性极限在2%~3%,若超过该极限金属将会破裂,阻碍电子的传输路径,影响导电性㊂为提高金属的柔韧性,许多研究人员进行了广泛的探索㊂目前常用的方法主要有三种:(1)改变金属电极的形貌来提高柔韧性,如褶皱电极㊁波纹电极等;(2)将金属做到纳米级尺度;(3)使用液态金属㊂L a c o u r 等[12]人将A u 沉积到因加热而膨胀的硅橡胶基体上㊂然后将硅橡胶冷却至室温,使其恢复原状,这时硅橡胶表面产生褶皱金属,如图5(a)所示㊂研究表明,在23%的应变下A u 仍具有导电性,此时已远远超过了A u 的屈服应变㊂接着该团队在10%~20%预拉伸的硅橡胶基体上沉积厚度为25n m 的A u 电极,撤去外力后基体恢复原状产生褶皱金属㊂研究表明,A u 电极最大可拉伸至28%仍保持导电性,如图5(b )所示㊂B e n s l i m a n e 等[13]人将橡胶放在具有正弦波纹轮廓的模具上硫化,制备具有波纹形状的弹性体,并在其上沉积A g ㊂研究表明,A g 电极最大可拉伸至33%仍保持导电性㊂图5 (a )15%预拉伸释放后的金表面波的三维轮廓;(b )机械循环过程中的电阻介于0%和15%之间F i g 5T h r e e -d i m e n s i o n a l pr o f i l e o f aA us u r f a c ew a v ea f t e r r e l e a s e f r o m15%p r e s t r e t c ha n de l e c t r i c a l r e -s i s t a n c e d u r i n g m e c h a n i c a l c y c l i n g be t w e e n0%a n d15%s t r a i n 纳米材料与传统材料不同的是,纳米材料通常具有表面与界面效应㊁小尺寸效应㊁量子尺寸效应㊁宏观量子隧道效应等特性,因而纳米材料具有独特的光学㊁电学㊁磁学㊁热学㊁力学等方面的性质㊂正因为如此,纳米金属材料与宏观金属材料相比具有更优异的综合性能,可弥补宏观材料的一些不足㊂C h e n 等[14]人通过使用具有适当离子强度的电解质溶液处理银纳米线(A gNW ),如图6所示,可以解吸其表面的绝缘活性剂层(聚乙烯吡咯烷酮,P V P )㊂研究表明,制备的A g-NW 膜电导率显著提高,电阻仅为26.4Ω/s q,透光率为92.5%,并且使A gNW 网络更加致密㊂弯曲循环4000次后,电导率几乎无变化,显示出良好的循环稳定性㊂L e e 等[15]人通过对大长径比(长度>100μm )的A gNW s 进行固溶处理,随后通过低温纳米焊接形成渗流网络,开发出具有高度可拉伸性的金属电极㊂研究表明,其方阻仅为9Ω/s q,最大可拉伸至460%㊂C u 的导电性与A g 相差不多,而价格仅为A g 的1%,而且储量巨大㊂所以铜纳米线(C u NW s)因为其极高的性价比而受到广泛的关注㊂Z e n g 等[16]人在低温(60ħ)下,通过水还原途径制备出了直径为90~120n m ㊁图6 (a )不同电解质溶液处理后A g NW 薄膜的薄层电阻的相对变化;(b )电解质溶液处理后的A gNW 网络的S E M 图像F i g 6R e l a t i v e c h a n g e s i n t h e s h e e t r e s i s t a n c e o fA g NWf i l m s a f t e r t r e a t m e n tw i t hd i f f e r e n t e l e c t r o l yt e s o l u t i o n s a n dS E Mi m a g e o fA g NW n e t w o r k s a f t e r e l e c t r o l yt e s o l u t i o n t r e a t m e n t 14020武畏志鹏等:柔性电极材料的国内外研究进展长度为40~50μm的大长径比C u NW s㊂W i l e y等[17]人改进了制备方法,换用聚乙烯吡咯烷酮(P V P)加入到混合液中,以防止C u NW的聚集,并且降低反应温度,在冰水浴中生长C u NW,得到了直径<60n m㊁长度>20μm的具有更大长径比的高透光率的C u NW,然后将其涂覆到聚合物基材上㊂研究表明,C u NW薄膜具有优良的导电性,电阻为30Ω/s q,透光率为85%㊂经过1000次弯折循环后,薄膜电导率无明显变化㊂液态金属一般采用低温熔炼制备工艺,将不同的金属材料(多以镓㊁铟类合金为基础材料)按照一定的配比,通过温度控制使其充分融合而形成,是一种不定型㊁可流动的特殊金属材料㊂因而其在拥有高导电性的同时还有这极高的柔韧性(杨氏模量几乎为0)㊂但是由于其具有流动性,若不加以复合或封装则无法使用㊂3复合电极不管是碳电极还是金属电极,在他们单独使用时总会有许多不尽人意之处,使得它们的性能无法发挥到极致㊂所以目前对于柔性电极的研究多集中于碳-碳㊁碳-金属㊁碳(金属)-聚合物等复合材料上,以弥补各自性能上的不足㊂以下我们将把复合型电极分为本征型电极和填充型电极两类㊂3.1本征型电极我们将本征型复合电极定义为主要由两种或两种以上的具有导电能力的材料构成的电极㊂如碳材料(碳纳米管㊁碳纤维㊁石墨烯)㊁纳米金属材料和导电聚合物(聚吡咯㊁聚苯胺)等本身就有着非常高的柔韧性,将其选择性的进行复合,以期望获得性能上的提升㊂具有优良导电性㊁大比表面积㊁高机械强度以及自支撑特性的石墨烯及其复合材料被认为是超级电容器的理想电极材料㊂冯先强等[18]人将碳纤维(C F)㊁沥青(M P)㊁石墨烯(G)3种材料通过真空抽滤法制备了具有三维网络结构的自支撑G-C F-M P复合薄膜㊂研究表明,沥青在其中增强了碳纤维与石墨烯的粘结强度,使得网络结构更加稳定㊂3种材料协同作用,提高了薄膜的导电性,方阻仅为0.229Ω/s q㊂聚苯胺(P A N I)具有简单易得㊁电容值高㊁化学稳定性强等特点,在超级电容器的电极材料中有着非常广泛应用㊂尚嘉茵等[19]利用原位聚合㊁层-层自组装的方法将MW C N T㊁G Q D㊁P A N I负载至碳布表面,制备出了MWN T/ G Q D/P A N I/碳布柔性电极材料,如图7所示㊂研究表明,MW C N T/G Q D提高了P A N I在碳布上的负载量,且分布更加均匀㊂电极材料的比电容为361.5m F/c m2,经过1000次循环后,电容损失率为15%㊂图7 MWN T/G Q D/P A N I/碳布柔性织物电极制备示意图F i g7S c h e m a t i c d i a g r a m o f p r e p a r a t i o n o fMWN T/G Q D/P A N I/c a r b o n c l o t h f l e x i-b l e f a b r ic e l e c t r od e二氧化锰作是一种电化学活性和比电容高的过渡金属氧化物,但是其导电性较差㊂张燕等[20]人以柔性C N T薄膜为基底,通过水热法将M n O2覆盖在C N T 薄膜上,制备出C N T/M n O2复合电极材料,如图8所示㊂研究表明,M n O2呈现泡沫状,使得薄膜具有较大的比表面积,提高了薄膜电极的比电容,达到了297F/ g㊂经过500次充放电循环后,电容损失率仅为6%,显示出良好的循环稳定性,如图9所示㊂张亚妮等[21]人发明了一种专利㊂将过渡金属(TM)层溅射到碳纤维(C F)表面,采用原位生长法将C N T覆盖在其表面㊂制备出C F/T M/C N T柔性复合电极材料㊂结果表明,电极材料柔韧性高㊁寿命长,电导率高达104S/c m ㊂图8碳纳米管膜/M n O2电极材料的透射电镜图F i g8T E Mi m a g e s o fC N T F/M n O2图9碳纳米管膜和碳纳米管膜/M n O2电极材料的循环稳定性曲线F i g9C y c l i n g s t a b i l i t y o fC N T Fa n dC N T F/M n O2纳米金属材料长时间暴露在空气中时极易被氧化,影响其电学性能㊂由于石墨烯能够对水和氧气进行有效的隔绝,以及自身优异的化学稳定性,当其覆盖在金属表面时,能够保护金属材料不被氧化㊂C h e n 等[22]人通过在金属上生长石墨烯,将石墨烯包裹在金240202021年第2期(52)卷属表面,然后在200ħ的环境中加热4小时㊂研究表明,与未覆盖石墨烯的金属相比,被包裹金属的氧化速率得到了有效的减缓,且对金属的物理㊁化学性质没有影响㊂李云飞等[23]进一步改进工艺,采用化学气相沉积法在C u纳米粒子表面原位生长石墨烯,制备出C u 纳米粒子-石墨烯复合结构㊂研究表明,C u纳米粒子与石墨烯间的相互作用非常强,且抑制了C u在空气中的氧化速度㊂L e e等[24]人通过真空抽滤法制备出了A g NW-S W C N T复合电极,如图10(a),将其黏附到V H B4910弹性体上,制成了D E A㊂研究表明,其应变高达146%,且相较于单独使用低初始电导率的A g-NW电极时,加入少量C N T后,电极电阻下降了3个数量级,如图10(b),击穿强度增加了183%㊂图10(a)掺入C N T后的A g NW的S E M图像;(b)四种不同的A g NW薄膜(S1-4)的薄层电阻(黑点掺入C N T之前,红点掺入C N T之后)F i g10S E Mi m a g eo fA g NW d o p e dw i t hC N Ta n ds h e e t r e s i s t a n c eo f f o u rd i f f e r e n tA g NWf i l m s(S1-4)(b l a c kd o t s b e f o r e d o p i n g C N T,r e dd o t s a f t e r d o p i n g C N T)3.2填充型电极填充型电极一般是将导电性物质分散到聚合物中,在保证导电性的同时,又具有极强的柔韧性,能承受较大的应变㊂碳脂电极是将炭黑分散到硅油(低分子量硅胶)等一些粘性基质中,在D E A电极材料中有着广泛应用㊂碳脂电极模量低,有着优异的伸缩性能,不会阻碍D E基体的形变㊂但是其也有以下几个缺点:一是油脂在重力作用下会产生蠕变,降低电极的使用寿命,特别对与垂直存放的设备;二是油脂类物质随着时间推移会逐渐干涸,柔韧性降低;三是像硅油等油脂类材料一般都是绝缘的有机物,会影响炭黑等导电填料的电导率㊂以炭黑为导电填料制成的导电橡胶是常用的电极材料㊂橡胶本身是绝缘性材料,若想使橡胶复合材料具有一定的导电性,那么炭黑的填充量必须高于逾渗阈值㊂黄英等[25]人分别用N330㊁E C P和C B3100三种炭黑填充硅橡胶制成了导电硅橡胶,探究其渗流现象㊂研究表明,当炭黑粒径越小㊁结构度越高㊁比表面积越大时,炭黑粒子在硅橡胶中的分散性就越好,逾渗阈值越小㊂孙宗学等[26]人将炭黑填充到通过点击化学反应接枝了3-巯基丙酸的甲基乙烯基硅橡胶(VMQ)中,制备出了导电硅橡胶复合电极材料,然后将其喷涂到V H B4910丙烯酸酯弹性体上㊂测试结果表明电极不仅与基体的粘结性显著提高,而且在较小的电场下就能产生大的形变㊂J i a n g等[27]人把用硅烷偶联剂K H550改性处理过的多壁碳纳米管(MW C N T)填充到硅橡胶中,制备出了导电硅橡胶复合电极材料㊂研究表明,与未经修饰的MW C N T相比,填料在硅橡胶中分散的更加均匀,电导率显著增强,这是因为经表面改性的MW C N T与硅橡胶的相互作用得到增强㊂张玉刚等[28]人将炭黑与碳纳米管并用,采用溶液共混法制备出了炭黑/C N T/硅橡胶复合电极材料㊂研究表明,相较于单独使用两种碳材料时,并用使得复合材料的导电网络更加稳定,这得益于近程网络和远程网络的协同互补作用,如图11所示,并且还可以减少导电填料的用量㊂图11炭黑和碳纳米管的协同效应F i g11S y n e r g i s t i ce f f e c to f c a r b o nb l a c ka n dc a r-b o nn a n o t u b e s以纳米金属为导电填料制成的导电橡胶也是常用的电极材料㊂L i u等[29]人采用喷涂法将A g NW溶液喷涂在四氟板上,200ħ下加热使A g NW间产生融合,然后将P D M S粘性液体覆盖在上面进行固化㊂完成后,A g NW嵌入在P D M S中,成功制备出可拉伸薄膜电极㊂研究表明,薄膜电阻为20Ω/s q,1000次拉伸,弯折循环后,电导率无明显变化㊂R o s s e t等[30]人34020武畏志鹏等:柔性电极材料的国内外研究进展通过在弹性体表面下方的几十纳米处以低能量植入金属纳米团簇,如图12所示,这些金属粒子可以相对于彼此移动,因此形成比普通金属薄膜更柔顺的电极,并且因为它们位于弹性体基体内部,提高了纳米金属粒子在弹性体中的附着力,稳定性大大增强㊂雷海军等[31]人探究了金属填料的性质对硅橡胶复合材料性能的影响㊂结果发现,金属填料相同时,导电性与用量和细度有关,用量越大,细度越小,硅橡胶导电性就越好㊂复合金属系导电填料不仅可以减少金属的用量以降低成本,还可以提高填料整体的导电性㊂邹华等[32]人将镀镍石墨填充到甲基乙烯基硅橡胶中,制备出复合电极材料㊂结果表明,其拉伸性和导电性均较好㊂张立群等[33]人将镀镍石墨和镀镍碳纤维并用填充到硅橡胶中㊂研究表明,与单一材料填充相比,并用后所需的填料总量降低,复合材料硬度降低㊂且随着镀镍碳纤维比例的增加,逾渗阈值降低,导电稳定性提高㊂图12 A u/P D M S纳米复合材料的T E M截面F i g12T E Mc r o s s s e c t i o n o fA u/P D M Sn a n o c o m p o s i t e液态金属在保持着高导电性的同时还有着接近于0的模量,柔韧性极高㊂F a s s l e r等[34]人将液态金属(镓铟锡合金,液滴2~30μm)填充到硅橡胶中,制备出了液态金属/硅橡胶复合材料,如图13所示㊂研究表明,复合材料柔韧性非常好,杨氏模量为0.9~ 1.27M P a,最大形变量可达133%㊂产生形变时,表面压力使得液滴相互接触形成导电网络,电导率达到了1.05ˑ104S/m㊂在无应力时,若想具有导电性,可与其他导电填料并用,在金属液滴间产生导通,形成导电网络㊂Z h u等[35]人将液态金属(共晶镓铟合金)注入到空心聚合物S E B S(三嵌段共聚物)纤维的芯中㊂研究表明,液态金属对纤维的机械性能无影响,电导率最大可达3ˑ104S/c m㊂随着纤维拉伸程度的增加,电导率降低,500%时电导率约为5S/c m,增加到700%时仍具有较好的导电性㊂L i a n g等[36]人将液态金属(镓铟锡合金)注入到P D M S海绵中,制备出液态金属海绵㊂结果表明,P D M S海绵不仅可以储存液态金属,还具有3D互连的多孔结构,形成电子传输通路,电导率最高可达1.62ˑ104S/c m,在经过大量的拉伸-回复循环后,电导损失率小于7%㊂,循环稳定性优异㊂图13 可拉伸的液态金属/P D M S薄片嵌入到P D M S薄层中F i g13S t r e t c h a b l e l i q u i dm e t a l/P D M S s h e e t e m b e d-d e d i nP D M S t h i n l a y e r4制备方法电极材料作为D E和S C中最关键的组成部分,如何将其覆盖到基体材料上,并且能够满足特殊的需求(如特定的形状㊁特定的位置等),是现阶段亟待解决的问题㊂目前常用的制备方法有喷涂/涂覆法㊁化学沉积法(化学气相沉积㊁液相沉积)㊁喷墨印刷法等㊂4.1喷涂/涂覆法喷涂/涂敷方法是近年来基于传统成型技术上衍生而来的新技术,喷涂/涂敷工艺因具有设备简单㊁工艺易控制㊁掺杂方便等特点而被广泛应用㊂S h i e h 等[37]人通过在P D M S基体表面涂覆由石墨烯和多壁碳纳米管组成的混合电极,得到具有高比电容和良好循环稳定性的复合电极㊂2000次循环后,电容保持率达到93%㊂J e o n g等[38]人通过喷涂技术将还原的氧化石墨烯(r G O)/单壁碳纳米管(S WN T s)复合材料涂覆到聚己内酯(P C L)基底上,以制备柔性超级电容器㊂结果表明,未弯曲时比电容为52.5F/g,经过500次弯曲循环后比电容降至37.5F/g㊂接着又进行了不同弯曲角度下分别进行1000次充放电循环,电容仅下降约1%㊂S c h l a a k等[39]人将石墨悬浮液喷涂在硅橡胶上,然后再使硅橡胶交联固化,如此反复交替进行,开发出了一种可制造高达100层的D E A的生产方法㊂4.2化学沉积法化学沉积法是通过氧化还原反应,将电极材料沉积在基体表面的一种化学反应过程㊂化学沉积法有气相沉积和液相沉积两种㊂J a y e s h等[40]采用化学气相沉积法在碳纤维(C F)上合成了螺旋状盘绕的碳纳米管(H C N T),制备出C F/H C N T复合电极㊂结果表明,电极的最大比电容为125.7F/g,经过不同弯曲角440202021年第2期(52)卷度下的充放电循环以及15000次的弯折循环后,比电容几乎没有损失㊂J i a n g 等[41]基于化学气相沉积法将镍纳米粒子沉积到碳纳米管上,制备出镍纳米粒子@碳纳米管(N i @C N T )复合电极㊂使得N i 与C N T 间无粘合剂,提高了电极材料的性能㊂结果表明,其能量密度为1.39mW h /c m 3,功率密度为440mW /c m 3,10000次循环后仍具有良好的电化学稳定性,无电容损耗㊂L o w 等[42]人利用液相沉积法在高度拉伸4.2倍的丙烯酸酯橡胶基体上沉积银薄膜,然后松弛至2.5倍的预拉伸来制备褶皱电极㊂测试得到在1.8k V 的电压下电极面积扩展至128%,并且具有良好的循环稳定性㊂4.3 喷墨印刷法喷墨印刷是通过计算机控制,将细墨流射在基材上㊂它具有工艺简单㊁成本低㊁无接触㊁无污染㊁生产周期短等特点,有着巨大的使用潜力㊂M u s t o n e n 等[43]人利用喷墨印刷的方法将由单壁碳纳米管/导电聚合物(P E D O T -P S S)组成的墨水沉积在基体上,制备出复合透明电极㊂结果表明,在低印刷重复率下,与P E -D O T -P S S 电极相比,复合电极显示出更高的电导率,这是因为碳纳米管在P E D O T -P S S 导电相间建立了连接㊂90%的高透光率下,方阻为10k Ω/s q ㊂金属材料的导电性远远高于碳材料,因此金属墨水是现在最为最常用的㊂D o n g 等[44]人利用喷墨印刷法将高银含量的MO D (金属-有机分解)墨水沉积在P I 基体上㊂结果表明,固化后膜电极的电阻率为8.6μΩ㊃c m ,大弯曲下电极也无破裂现象,表现出良好的柔韧性㊂除了上述几种常用的方法外,还有电化学沉积法㊁激光刻蚀法㊁静电纺丝法㊁溅射法㊁湿法纺丝法㊁冲压法㊁3D 打印法等多种方法㊂图14 (a )(b )介电弹性体卫星夹持器示意图;(c )通过将三个D E M E S 旋转接头连接在一起形成的襟翼系统;(d)仿生鱼斜视图;(e)介电弹性体海浪发电机示意图F i g 14(a )S c h e m a t i cd i a g r a m o fd i e l e c t r i ce l a s t o m e r s a t e l l i t eh o l d e r ;(b )f l a p p i n g w i n g s ys t e mf o r m e df r o m j o i n i n g t h r e eD E M E S r o t a r y j o i n t s t o g e t h e ;(c )b i o n i c f i s ho b l i q u e v i e w ;(d )s c h e m a t i cd i a gr a mo f d i e -l e c t r i c e l a s t o m e r s e aw a v e g e n e r a t o r54020武畏志鹏等:柔性电极材料的国内外研究进展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柔性石墨烯/聚苯胺纳米纤维复合薄膜超级电容器的研究摘要:化学改性的石墨烯(CCG)与聚苯胺纳米纤维(PANI-NFs)薄膜通过真空过滤这两种混合分散的组成成分来制备。

复合薄膜是一个层状结构,PANI-NF 处在CCG层之间。

此外,它有机械稳定性和良好的柔性,因此,它能够弯曲较大的角度或者形成多种想要得到的结构。

含44%的CCG的复合薄膜的电导率(5.5×102Sm-1)大约为PANI-NFs薄膜的10倍。

这种导电柔性复合薄膜的超级电容器在放电率为0.3A/g时,显示出了较大的电化学电容(210F/g)。

它们也显示出了极大改进的电化学稳定性和速率性能。

关键词:石墨聚苯胺纳米纤维超级电容器复合柔性石墨烯,sp2杂化的二维单层碳原子,在最近几年吸引了人们大量的注意力,主要是因为它的非常高的电学和热学传导性、高的机械强度、高比表面积和潜在的低制造成本。

石墨烯在组装储电和储能装置、传感器、透明电极、超分子组装和纳米复合材料方面已经被研究用于应用。

特别是石墨烯与高分子复合材料是科学上与工业上的兴趣,因为由高电导率和石墨烯的强化性能引起的它们的强大的性能。

另一方面,导电高分子材料(CPs)也被广泛的研究和在多种有机装置中应用。

为了改进装置的性能或者提高其功能,CPs通常为纳米结构。

聚苯胺(PANI)是典型的高分子材料,它拥有良好的环境稳定性、引人关注的电导率和不同寻常的掺杂/去掺杂化学过程。

纳米结构的PANI可以通过多种化学方法合成。

例如,聚苯胺纳米纤维(PANI-NFs)可以通过界面或快速混合聚合很容易制备,它们被用于组装化学传感器、制动器、存储设备、电池和超级电容器。

然而,化学制备的纳米导电高分子材料(包括PANI-NFs)通常为粉末状和在去掺杂状态时为绝缘态。

因此,各种多孔碳材料(如活性炭、中孔碳和碳纳米管)和高分子粘合剂(如全氟磺酸)通常用作制备高分子电极的添加剂。

作为碳纳米材料的新种类,也被应用于制备高分子复合材料。

PAN和石墨烯、石墨氧化物和石墨烯纳米薄片或者石墨烯纸的复合材料通过原位化学或者电化学的方法聚合、共价或非共价功能化和自组装都能成功制备。

然而以前的大多数工作中,石墨氧化物或者石墨烯聚合物而不是稳定分散的石墨烯片层被作为原料使用。

可是,石墨氧化物是绝缘体,聚合的石墨没有了高的比表面积和石墨烯显著的单层电学特性。

这本论文中,我们报道了制备稳定水分散的CCG/PANI-NFs复合材料的新方法。

通过过虑混合分散液,制造出CCG和PANI-NFs(G-PNF)纸装复合薄膜。

在这些薄膜中,PANI-NFs都夹在CCG层中间。

另外,含质量分数44%CCG的复合薄膜与那些纯PANI-NFs薄膜相比,显示出优良的机械性能和电导率。

这些薄膜材料的超级电容器拥有高电容和高的循环稳定性。

结果与讨论在本研究使用的PANI-NFs是参照文献通过苯胺的界面聚合制备的。

这样制备得到的PANI-NFs被证明是以苯胺绿盐的形式填充的。

因此,有报道说这种形式的PANI-NFs能够稳定的复合材料,通过静电作用分散有负电荷氧化碳纳米管(OCNTs)。

另一方面,CCG片层也能带来负电荷,这是由于它的多余的羧基基团的原因。

因此可以预料,分散有CCG和PANI-NFs的复合材料也可通过相似过程来制备。

然而,CCG片层与OCNTs有很大的不同,主要体现在两方面:首先,CCG片层有很多羧基基团由于静电作用处在它们的边缘;第二,在pH值为2.6时,OCNTs和PANI-NFs都能够在水溶液中稳定的分散。

但是,CCG片层只能在弱碱性中间物(pH=10)稳定的分散。

混合CCG和当前制备的酸性PANI-NFs 的分散物(pH分别为10和2.6)可以形成有着高的盐浓度的混合物。

当CCG、(PANI-NFs+CCG)的重量比r G高于3%时,这种混合物并不稳定,并且在几天之内就能发生沉淀。

此外,对于一种组分选择一个合适的pH值,可以引起另一种组分发生聚集。

尤其是,CCG的聚集是高度不可逆的。

为了解决这种问题,我们通过对PANI-NFs进行24小时透析,除去过量的离子来净化PANI-NFs,然后与CCG胶质立刻混合来避免聚集(看方法部分)。

图1.(a)稳定分散在氨水中rG为30%的G-PNF复合材料(pH=9)(左)和在相同媒介中老化两周后沉淀出的纯PAN-NFs (右),(b)G-PNF复合材料和纯PANI-NFs(插图)的Tem图像通过超声处理来混合净化的PANI-NFs分散物与可控数量的CCG胶质(pH=10),可以得到pH值约为9的深蓝色混合物。

出人意料的是,当它的r G 高于20%时混合分散物相当稳定,仅以小部分复合材料(重量<5%)preticipated 重量比的范围是20-40%。

复合分散材料如此稳定以至于很少沉淀物在一个多月后或者是在1500转/分速度下离心10分钟被发现(图1a,左)。

作为对比,我们在氨溶液中调节净化的PANI-NFs分散物的pH值为9,两周后,大部分PANI-NFs 沉淀出来(图1a,右)。

图1b显示的是典型的G-PNF复合材料和PANI-NFs的透射电镜图像(TEM)。

正如图1b的插图看到的,PANI-NFs的平均直径大约为120nm,长度为0.5-3μm,这些数据与文献报道的一致。

在这种G-PNF复合材料中,PANI-NFs处在CCG 层之间(图1b)。

我们知道,在碱性媒介中,PANI-NFs处在中性状态,而CCG 片层处在负电荷状态。

结果,CCG/PANI-NFs纳米复合材料也带来了负电荷,由于静电排斥作用,它们能够形成稳定的分散物。

我们应该注意到,我们在复合材料的透射电镜图像中也发现了几个裸露的PANI-NFs;然而,它们通常经过老化或者经过离心处理后就发生沉淀。

图2.柔性G-PNF薄膜的数字照片通过多孔聚四氟乙烯(PTFE)膜过滤混合分散液,能够成功制备G-PNF复合薄膜。

经过HCl水溶液(0.1mol/L)处理后,薄膜中的PANI组分可以去掺杂。

因此,G-PNF薄膜的颜色会从深蓝色变为深绿色。

我们发现,这些包膜的机械性能是由混合分散液(r G)中CCG的含量决定的。

如果r G太低(如20%),制备的复合薄膜易碎。

当r G增加到30%时,就能得到高质量柔性薄膜(图2)。

当r G高于40%,复合薄膜在干燥后会发生收缩,原因可能是CCG片层的局部聚集。

因此,我们选择r G为30%(G-PNF)的复合薄膜用于以后的研究。

通过元素分析,我们决定G-PNF中CCG的含量为44%(支撑信息表S1和S2),高于之前的r G(30%)。

这主要是因为混合分散液在用棉花过滤的过程中,损失了一部分PANI-NFs。

图3.用真空过滤得到的G-PNF30 (a, b)、纯CCG (c) 和PANI-NF (d)薄膜的横截面的SEM图像。

G-PNF薄膜的横截面扫描电镜图像(SEM,图3a)显示出有一个层状结构,这种结构可能是由在过滤时石墨烯片层的流动组装效应。

放大的SEM图像(图3b)显示出PANI-NFs夹在CCG层之间。

CCG层之间的空隙范围处在10-200nm 之间。

与在同样条件下制备得到的致密的石墨烯相比,G-PNF薄膜的形貌赋予了它额更大的比表面积(图3c)。

过滤PANI-NFs分散液也能得到多孔薄膜(图3d)。

然而,这种薄膜的机械性能不好,它经常会干燥后破碎成小片。

因此,G-PNG 薄膜比纯石墨烯或者PANI-NFs薄膜在在组装超级电容器方面有几个优势。

首先,G-PNF薄膜自身长期性能和高柔顺性提供了利用方便的机械技术塑造材料为预期得到的结构的可能性。

其次,G-PNF有高电导率 5.5×102S/m,大约高出纯PANI-NFs(50S/m)10倍。

第三,这种复合薄膜可直接用于组装超级电容器装置,并不需要绝缘的粘合剂和低电容传到添加剂。

另外,G-PNF是柔性薄膜,在组装柔性电子装置中起着不可替代的作用,例如,可卷起的显示器、电子纸和智能布料。

图4.G-PNF、PANI-NF和CCG薄膜超级电容器的循环伏安曲线(a,扫描速率为5mV/s)和充放电曲线(b,充放电电流密度为0.3A/g)G-PNF组装的超级电容器的性能通过在两电极体系用循环伏安(CV)和恒流充放电来测试。

图4a表示的是G-PNF薄膜的CV图和与它相比较的相同重量的CCG或PANI-NF薄膜的CV图。

在G-PNF和PANI-NF薄膜的CV图中都显示出了两对氧化还原峰,这是由于PANI氧化还原的原因,分别对应于它的还原态聚苯胺/翠绿亚胺和翠绿亚胺/聚对苯亚胺结构转变。

这两个CV图都有大的矩形面积,表明这两种超级电容器都有大的双电层电容。

相比之下,CCG薄膜的CV图显示出了更小的矩形面积,主要是因为它的致密的形貌和电活性组分PANI 的缺少。

图4b显示的是在0.3A/g的电流密度下,超级电容器的恒流充放电曲线。

所有的超级电容器的电化学测试都是在两电极体系下进行的,这能更精确地测试它们的性能。

CCG薄膜组装的超级电容器显示出三角形的充放电曲线,意味着它的电容主要是由纯双电层电容(EDL)贡献的。

但是,G-PNF薄膜组装的超级电容器的放电曲线显示了两个电压阶段,分别在0.8-0.45V和0.45-0V。

在前一个阶段相对较短的放电持续时间的由于是EDL电容的原因,不过后一个更长放电时间阶段是因为EDL和PANI-NF法拉第电容组分共同作用的结果。

PANI-NF薄膜超级电容器的放电曲线与G-PNF薄膜放电曲线相似,然而它的IR降比G-PNF 超级电容器更大。

这种结果反映出PANI-NF超级电容器的内阻比G-PNF超级电容器内阻更大。

储能装置低内阻有很重要的作用,因为在充放电过程中,更少的能量会被浪费在生产不必要的热量。

因此,G-PNF薄膜比PANI-NF薄膜更适合组装安全的节能的超级电容器。

表1 G-PNF、PANI-NF和CCG薄膜的BET-SSA、重量密度(ρ)、重量电容(C m)与容积电容(C v)(i d=0.3A/g)G-PNF、PANI-NF和CCg薄膜的比电容从充放电曲线计算出的值在表1中列出。

从表1中可以非常清楚的知道,G-PNF和PANI-NF薄膜的比电容比CCG 薄膜的更大。

G-PNF膜的重量比电容(210F/g)比PANI-NF和CCG薄膜的比电容的平均值(214×0.56+57×0.44=145F/g)要高,表明这两种组分的共同效应。

这种效应主要是由于下面两个因素。

首先,CCG中混合了的PANI-NF,形成拥有高比表面积的多孔结构,大大改善了复合薄膜的双电层电容。

Brunauer-Emmett-Teller比表面积测试(BET-SSA,表1)显示G-PNF的比表面积比CCG膜的高。

相关文档
最新文档