动量历年高考题

合集下载

高考物理动量定理题20套(带答案)及解析

高考物理动量定理题20套(带答案)及解析

高考物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。

求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。

【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。

2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。

质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。

现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。

已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。

求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s3.甲图是我国自主研制的200mm离子电推进系统,已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出.在加速氙离子的过程中飞船获得推力.已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q.(1)将该离子推进器固定在地面上进行试验.求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B.推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N.(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况.通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法.【答案】(1)(2)(3)增大S可以通过减小q、U或增大m的方法.提高该比值意味着推进器消耗相同的功率可以获得更大的推力.【解析】试题分析:(1)根据动能定理有解得:(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv 电场对氙离子做功的功率P= nqU 则根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.4.如图所示,长为1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板,长木板与挡板的总质量为M =lkg ,板的上表面光滑,一个质量为m= 0.5kg 的物块以大小为 t 0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对物 块的冲量大小为2. 5N • s ,已知板与水平面间的动摩擦因数为μ= 0.5,重力加速度为g=10m/s 2,不计物块与挡板碰撞的时间,不计物块的大小。

高中物理动量综合试题及答案

高中物理动量综合试题及答案

高中物理动量综合试题及答案一、选择题1. 一个质量为2kg的物体,以10m/s的速度运动,其动量大小是多少?A. 20kg·m/sB. 40kg·m/sC. 60kg·m/sD. 80kg·m/s2. 两个物体发生完全非弹性碰撞,它们的动量守恒。

若碰撞前两个物体的动量分别为p1和p2,碰撞后它们的共同速度为v,求碰撞后物体的总动量。

A. p1 + p2B. p1 - p2C. p1vD. p2v3. 一个物体在水平面上受到一个恒定的力F,经过时间t后,其速度从0增加到v,根据动量定理,该物体的动量变化量是多少?A. FB. FtC. mvD. Fv二、填空题1. 动量守恒定律适用于______的相互作用,且相互作用的内力远大于外力。

2. 一个质量为m的物体,以速度v运动,其动量为______。

三、简答题1. 解释什么是动量守恒定律,并给出一个实际的例子。

四、计算题1. 一个质量为5kg的物体,从静止开始,受到一个恒定的水平力100N,经过4秒后,求物体的动量。

答案:一、选择题1. A2. A3. B二、填空题1. 封闭系统2. mv三、简答题动量守恒定律指的是在一个封闭系统中,如果没有外力作用,或者外力的矢量和为零,那么系统内各物体的总动量保持不变。

例如,当一个冰上滑冰者在冰面上抛出一个球时,如果不考虑冰面的摩擦力,滑冰者和球组成的系统动量守恒。

滑冰者向后滑,球向前飞出,但两者的动量之和保持不变。

四、计算题根据动量定理,动量变化量等于力乘以时间,即Δp = F × t。

将已知数值代入公式,Δp = 100N × 4s = 400kg·m/s。

因此,物体的动量为400kg·m/s。

结束语:通过本试题的练习,学生应该能够深入理解动量守恒定律的概念和应用,掌握动量计算的基本方法,并能够运用动量守恒定律解决实际问题。

希望同学们能够通过不断的练习,提高自己的物理思维和解题能力。

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编( 含答案 )一、高考物理精讲专题动量定理1.半径均为R 5 2m的四分之一圆弧轨道 1 和 2 如下图固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R,让质量为 1kg 的小球从圆弧轨道 1 的圆弧面上某处由静止开释,小球在圆弧轨道 1 上转动过程中,协力对小球的冲量大小为5N s ,重力加快度 g 取10m / s2,求:(1)小球运动到圆弧轨道 1 最低端时,对轨道的压力大小 ;(2)小球落到圆弧轨道 2 上时的动能大小。

【答案】( 1)5(22)N (2)62.5J 2【分析】【详解】(1)设小球在圆弧轨道 1 最低点时速度大小为v0,依据动量定理有I mv0解得 v05m / s在轨道最低端,依据牛顿第二定律,2F mg m v0R2N解得 F 5 22依据牛顿第三定律知,小球对轨道的压力大小为 F 522N 2(2)设小球从轨道 1 抛出抵达轨道 2 曲面经历的时间为t,水平位移:x v0t竖直位移:y 1gt 2 2由勾股定理:x2 y2R2解得 t1s竖直速度:v y gt 10m / s 可得小球的动能E k 1 mv21m v02v y262.5J222.如下图,一质量m1=0.45kg 的平顶小车静止在圆滑的水平轨道上.车顶右端放一质量m2=0.4 kg 的小物体,小物体可视为质点.现有一质量m0 =0.05 kg 的子弹以水平速度v0=100 m/s射中小车左端,并留在车中,已知子弹与车互相作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最后小物体以 5 m/s的速度走开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】( 1)4.5N s( 2)5.5m【分析】① 子弹进入小车的过程中,子弹与小车构成的系统动量守恒,有:m0 v o (m0 m1 )v1,可解得 v110m / s ;对子弹由动量定理有:I mv1mv0 ,I4.5N s (或kgm/s);② 三物体构成的系统动量守恒,由动量守恒定律有:(m0 m1 )v1 (m0m1 )v2m2 v ;设小车长为 L,由能量守恒有:m2 gL 1( m0 m1 )v121(m0 m1 )v221m2v2 222联立并代入数值得 L= 5.5m;点睛:子弹击中小车过程子弹与小车构成的系统动量守恒,由动量守恒定律能够求出小车的速度,依据动量定理可求子弹对小车的冲量;对子弹、物块、小车构成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律能够求出小车的长度.3.质量0.2kg 的球 ,从 5.0m高处自由着落到水平钢板上又被竖直弹起,弹起后能达的最大高度为 4.05m. 假如球从开始着落到弹起达最大高度所用时间为 1.95s,不考虑空气阻力,g 取210m/s .求小球对钢板的作使劲.【分析】【详解】自由落体过程v12= 2gh1,得 v1=10m/s;v1=gt1得 t1=1s小球弹起后达到最大高度过程0- v22= -2 gh2,得 v2=9m/s0-v2=-gt2得 t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t ′=mv2-( -mv1)此中 t′=t-t1-t2 =0.05s得 F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作使劲大小为78N,方向竖直向下;4.如图,一轻质弹簧两头连着物体 A 和 B,放在圆滑的水平面上,某时辰物体小为的水平初速度开始向右运动。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案

高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。

专题07 动量-三年(2019-2021)高考物理真题分项汇编(解析版)

专题07 动量-三年(2019-2021)高考物理真题分项汇编(解析版)

【答案】D
【解析】
A. N 不是国际单位制基本单位,根据冲量的定义 I Ft 可知, N s 是冲量的的单位,A 错误; B.根据功率的计算公式 P Fv 可知功率的单位可以表示为 N m/s ,但 N 不是国际单位制基本单位,B 错
误;
C.根据动量的定义 p mv 可知, kg m/s 是动量的单位,C 错误;
2as1 v02 v12
甲乙碰撞时由动量守恒定律
v1=0.3m/s
mv1 mv2 mv3
解得碰后乙的速度
然后乙做减速运动,当速度减为零时则
v3=0.2m/s
x
v32 2a
0.22 2 1
m=0.02m
s2
10
可知乙恰好能滑到边框 a; (2)甲与乙碰前运动的时间
速度 g 取10m/s2 。 (1)通过计算,判断乙算珠能否滑动到边框 a; (2)求甲算珠从拨出到停下所需的时间。
【答案】(1)能;(2)0.2s 【解析】 (1)由牛顿第二定律可得,甲乙滑动时均有
f mg ma
则甲乙滑动时的加速度大小均为
a g 1m/s2
甲与乙碰前的速度 v1,则 解得
对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )
A.动量守恒,机械能守恒 B.动量守恒,机械能不守恒 C.动量不守恒,机械能守恒 D.动量不守恒,机械能不守恒 【答案】B 【解析】 因为滑块与车厢水平底板间有摩擦,且撤去推力后滑块在车厢底板上有相对滑动,即摩擦力做功,而水平 地面是光滑的;以小车、弹簧和滑块组成的系统,根据动量守恒和机械能守恒的条件可知撤去推力后该系 统动量守恒,机械能不守恒。 故选 B。 6.(2021·浙江卷)在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪。爆炸物自 发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为 2:1、初速度均沿水平方向的两个碎块。遥控 器引爆瞬开始计时,在 5s 末和 6s 末先后记录到从空气中传来的碎块撞击地面的响声。已知声音在空气中的

高考物理力学知识点之动量经典测试题含解析

高考物理力学知识点之动量经典测试题含解析

高考物理力学知识点之动量经典测试题含解析一、选择题1.一种未知粒子跟静止的氢原子核正碰,测出碰撞后氢原子核的速度是7v。

该未知粒子(速度不变)跟静止的氮原子核正碰时,测出碰撞后氮原子核的速度是v。

已知氢原子核的质量是m H,氮原子核的质量是14m H,上述碰撞都是弹性碰撞,则下列说法正确的是A.碰撞前后未知粒子的机械能不变B.未知粒子在两次碰撞前后的方向均相反C.未知粒子的质量为76H mD.未知粒子可能是α粒子2.质量为1.0kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5.0m.小球与软垫接触的时间为1.0s,在接触时间内小球受到合力的冲量大小为(空气阻力不计,g取10m/s2)A.10N·s B.20N·s C.30N·s D.40N·s3.质量为m的子弹以某一初速度v击中静止在粗糙水平地面上质量为M的木块,并陷入木块一定深度后与木块相对静止,甲、乙两图表示这一过程开始和结束时子弹和木块可能的相对位置,设地面粗糙程度均匀,木块对子弹的阻力大小恒定,下列说法正确的是()A.若M较大,可能是甲图所示情形:若M较小,可能是乙图所示情形B.若0v较小,可能是甲图所示情形:若0v较大,可能是乙图所示情形C.地面较光滑,可能是甲图所示情形:地面较粗糙,可能是乙图所示情形D.无论m、M、0v的大小和地面粗糙程度如何,都只可能是甲图所示的情形4.质量为m的质点作匀变速直线运动,取开始运动的方向为正方向,经时间t速度由v变为-v,则在时间t内A.质点的加速度为2v tB.质点所受合力为2mvtC.合力对质点做的功为2mvD.合力对质点的冲量为05.“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一.摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动.下列叙述正确的是()A.摩天轮转动过程中,乘客的机械能保持不变B.在最高点,乘客重力大于座椅对他的支持力C.摩天轮转动一周的过程中,乘客重力的冲量为零D.摩天轮转动过程中,乘客重力的瞬时功率保持不变6.如图所示,光滑绝缘水平轨道上带正电的甲球,以某一水平速度射向静止在轨道上带正电的乙球,当它们相距最近时,甲球的速度变为原来的15.已知两球始终未接触,则甲、乙两球的质量之比是A.1:1B.1:2C.1:3D.1:47.将充足气后质量为0.5kg的篮球从1.6m高处自由落下,篮球接触地面的时间为0.5s,竖直弹起的最大高度为0.9m。

动量高考题

动量高考题

动量高考题集锦1、如图,小球a、b用等长细线悬挂于同一固定点O。

让球a静止下垂,将球b向右拉起,使细线水平。

从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°。

忽略空气阻力,求〔i〕两球a、b的质量之比;〔ii〕两球在碰撞过程中损失的机械能与球b在碰前的最大动能之比。

[答案]〔1〕1n (或中子),17.6 〔2〕12-,221-[解析]2、〔09·天津·10〕如下图,质量m1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。

物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求〔1〕物块在车面上滑行的时间t;〔2〕要使物块不从小车右端滑出,物块滑上小车左端的速度v′不超过多少。

答案:〔1〕0.24s (2)5m/s解析:此题考查摩擦拖动类的动量和能量问题。

涉及动量守恒定律、动量定理和功能关系这些物理规律的运用。

〔1〕设物块与小车的共同速度为v ,以水平向右为正方向,根据动量守恒定律有 ()v m m v m 2102+= ① 设物块与车面间的滑动摩擦力为F ,对物块应用动量定理有022v m v m t F --= ② 其中 g m F 2μ= ③ 解得()gm m v m t 2101+=μ代入数据得 s 24.0=t ④ 〔2〕要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v ′,那么()v m m v m '+='2102 ⑤ 由功能关系有()gL m v m m v m 22212022121μ+'+=' ⑥ 代入数据解得 0v '=5m/s 故要使物块不从小车右端滑出,物块滑上小车的速度v 0′不能超过5m/s 。

3、如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度0v 向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.解析:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次撞墙。

高考物理动量守恒定律题20套(带答案)含解析

高考物理动量守恒定律题20套(带答案)含解析

高考物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s4.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。

高中物理动量试题及答案

高中物理动量试题及答案

高中物理动量试题及答案一、选择题1. 一个质量为2kg的物体,以10m/s的速度运动,其动量大小是多少?A. 20kg•m/sB. 40kg•m/sC. 60kg•m/sD. 80kg•m/s2. 两个物体发生碰撞,碰撞前后的总动量守恒,如果碰撞前A物体的动量为3kg•m/s,B物体的动量为-5kg•m/s,碰撞后A物体的动量变为-2kg•m/s,那么B物体的动量变化量是多少?A. 1kg•m/sB. 6kg•m/sC. 8kg•m/sD. 10kg•m/s二、填空题3. 动量守恒定律适用于所有类型的碰撞,包括______和______。

4. 一个物体的质量为5kg,速度为3m/s,它的动量大小为______kg•m/s。

三、计算题5. 一个质量为1.5kg的物体在水平面上以4m/s的速度运动,与一个静止的质量为2kg的物体发生碰撞。

如果碰撞后两个物体粘在一起,求碰撞后它们的共同速度。

6. 一辆质量为1200kg的汽车以15m/s的速度行驶,突然撞上一个质量为200kg、以5m/s速度行驶的自行车,如果两车碰撞后速度相同,求碰撞后的速度。

四、简答题7. 简述动量守恒定律的适用范围和条件。

8. 为什么在实际生活中,我们通常观察到的碰撞不总是动量守恒?答案:1. A2. B3. 弹性碰撞;非弹性碰撞4. 155. 2m/s6. 13.33m/s(保留两位小数)7. 动量守恒定律适用于所有类型的碰撞,包括弹性碰撞和非弹性碰撞,但必须在没有外力作用的条件下。

8. 在实际生活中,由于存在摩擦力、空气阻力等外力作用,碰撞通常不是完全的弹性碰撞或非弹性碰撞,因此动量守恒定律可能不完全适用。

结束语:以上就是高中物理动量试题及答案的全部内容,希望对同学们的学习和理解有所帮助。

动量守恒定律是物理学中非常重要的一个概念,掌握它对于解决物理问题至关重要。

历年(2019-2023)高考物理真题专项(动量)练习(附答案)

历年(2019-2023)高考物理真题专项(动量)练习(附答案)

历年(2019-2023)高考物理真题专项(动量)练习 一、单选题A.铝框所用时间相同C.铝框中的电流方向相同3.(2022ꞏ重庆ꞏ高考真题)在测试汽车的安全气囊对驾乘人员头部防护作用的实验中,A.速度的变化量等于曲线与横轴围成的面积C.动能变化正比于曲线与横轴围成的面积④着陆阶段,运动员落地时两腿屈膝,两臂左右平伸。

下列说法正确的是( )A .助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力B .起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度C .飞行阶段,运动员所采取的姿态是为了增加水平方向速度D .着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间5.(2022ꞏ北京ꞏ高考真题)质量为1m 和2m 的两个物体在光滑水平面上正碰,其位置坐标x 随时间t 变化的图像如图所示。

下列说法正确的是( )A .碰撞前2m 的速率大于1m 的速率B .碰撞后2m 的速率大于1m 的速率C .碰撞后2m 的动量大于1m 的动量D .碰撞后2m 的动能小于1m 的动能 6.(2022ꞏ江苏ꞏ高考真题)上海光源通过电子-光子散射使光子能量增加,光子能量增加后( )A .频率减小B .波长减小C .动量减小D .速度减小 7.(2022ꞏ海南ꞏ高考真题)在冰上接力比赛时,甲推乙的作用力是1F ,乙对甲的作用力是2F ,则这两个力( )A .大小相等,方向相反B .大小相等,方向相同C .1F 的冲量大于2F 的冲量D .1F 的冲量小于2F 的冲量8.(2022ꞏ湖北ꞏ统考高考真题)一质点做曲线运动,在前一段时间内速度大小由v 增大到2v ,在随后的一段时间内速度大小由2v 增大到5v 。

前后两段时间内,合外力对质点做功分别为W 1和W 2,合外力的冲量大小分别为I 1和I 2。

下列关系式一定成立的是( )A . 213W W =,213I I ≤B . 213W W =,21I I ≥C .217W W =,213I I ≤D .217W W =,21I I ≥9.(2022ꞏ湖南ꞏ统考高考真题)1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成。

物理动量试题及答案

物理动量试题及答案

物理动量试题及答案一、选择题1. 一个物体的动量是其质量和速度的乘积,以下哪个选项正确描述了动量?A. 动量是物体的惯性量度B. 动量是物体的能量量度C. 动量是物体的角动量量度D. 动量是物体的加速度量度答案:A2. 根据动量守恒定律,以下哪个选项描述了两个物体碰撞后的状态?A. 两个物体的总动量保持不变B. 两个物体的总动能保持不变C. 两个物体的总质量保持不变D. 两个物体的速度方向相反答案:A二、填空题1. 动量的定义是物体的________和________的乘积。

答案:质量;速度2. 在没有外力作用的情况下,一个系统的总动量________。

答案:守恒三、计算题1. 一个质量为2kg的物体以10m/s的速度向东运动,求其动量的大小和方向。

答案:动量的大小为20kg·m/s,方向向东。

2. 两个物体分别以3m/s和5m/s的速度向北运动,它们的质量分别为1kg和2kg,求它们的总动量。

答案:总动量为7kg·m/s,方向向北。

四、简答题1. 描述动量守恒定律在现实生活中的一个应用。

答案:在冰上滑行的运动员在旋转时,如果他们将手臂向内收缩,他们的旋转速度会增加。

这是因为手臂收缩减少了系统的总动量,而根据动量守恒定律,旋转速度必须增加以保持总动量不变。

2. 解释为什么在碰撞中,如果两个物体的质量相同,它们交换速度后,总动量仍然守恒。

答案:在碰撞中,两个物体的质量相同意味着它们的动量大小相等但方向相反。

即使它们交换了速度,动量的矢量和仍然保持不变,因为每个物体的动量变化量大小相等且方向相反,从而总动量保持守恒。

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)

高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。

高中物理动量试题及答案

高中物理动量试题及答案

高中物理动量试题及答案一、选择题(每题3分,共30分)1. 一个物体以速度v从静止开始做匀加速直线运动,经过时间t后,其动量变化量为:A. 0B. mvC. mv^2D. 0.5mv^22. 在没有外力作用的情况下,一个物体的动量:A. 保持不变B. 逐渐减小C. 逐渐增大D. 先减小后增大3. 两个质量不同的物体,以相同的速度相向而行,它们碰撞后:A. 动量守恒B. 动能守恒C. 动量不守恒D. 动能不守恒4. 一个物体在水平面上以速度v运动,受到一个与速度方向相反的恒定力F作用,经过时间t后,物体的动量变化量为:A. FvB. -FvC. -FtD. Ft5. 一个质量为m的物体从高度h自由落下,落地时的动量为:A. mghB. m√(2gh)C. m√(gh)D. 06. 动量守恒定律适用于:A. 只有重力作用的系统B. 只有弹力作用的系统C. 没有外力作用的系统D. 有外力作用但外力为零的系统7. 一个物体以速度v1向另一个静止物体以速度v2运动,两物体碰撞后,如果动量守恒,则碰撞后两物体的速度分别为:A. v1, v2B. (m1v1 + m2v2) / (m1 + m2), (m1v1 - m2v2) / (m1 + m2)C. (m1v1 + m2v2) / (m1 + m2), (m1v1 + m2v2) / (m1 + m2)D. (m1v1 - m2v2) / (m1 + m2), (m1v1 + m2v2) / (m1 + m2)8. 一个物体在光滑水平面上以速度v运动,受到一个与速度方向相同的恒定力F作用,经过时间t后,物体的动量变化量为:A. FvB. FtC. Fv + FtD. 09. 两个质量相同的物体,以相同的速度相向而行,它们碰撞后:A. 动量守恒B. 动能守恒C. 动量不守恒D. 动能不守恒10. 一个物体在竖直方向上以速度v向上抛出,忽略空气阻力,物体在最高点的动量为:A. -mvB. mvC. 0D. 2mv二、填空题(每题4分,共20分)1. 一个物体的质量为2kg,速度为4m/s,其动量为______。

动量大题经典题型及解析

动量大题经典题型及解析

动量大题经典题型及解析一、碰撞类问题1. 题目- 质量为m_1 = 1kg的小球以v_1 = 4m/s的速度与质量为m_2 = 2kg静止的小球发生正碰。

碰撞后m_1的速度为v_1' = 1m/s,方向与原来相同。

求碰撞后m_2的速度v_2'。

- 根据动量守恒定律m_1v_1=m_1v_1'+m_2v_2'。

- 已知m_1 = 1kg,v_1 = 4m/s,m_2 = 2kg,v_1' = 1m/s。

- 将数值代入动量守恒定律公式可得:1×4 = 1×1+2× v_2'。

- 即4 = 1 + 2v_2',移项可得2v_2'=4 - 1=3,解得v_2'=(3)/(2)m/s = 1.5m/s。

2. 题目- 两个小球在光滑水平面上沿同一直线、同一方向运动,B球在前,A球在后,m_A = 1kg,m_B= 2kg,v_A = 6m/s,v_B = 3m/s。

当A球与B球发生碰撞后,A、B两球的速度可能是()- A. v_A' = 4m/s,v_B' = 4m/s- B. v_A' = 2m/s,v_B' = 5m/s- C. v_A'=-4m/s,v_B' = 6m/s- D. v_A' = 7m/s,v_B' = 2.5m/s- 首先根据动量守恒定律m_Av_A+m_Bv_B=m_Av_A'+m_Bv_B'。

- 代入数据可得1×6+2×3 = 1× v_A'+2× v_B',即12=v_A'+2v_B'。

- 然后根据碰撞的合理性,碰撞后系统的总动能不增加,碰撞前总动能E_k0=(1)/(2)m_Av_A^2+(1)/(2)m_Bv_B^2=(1)/(2)×1×6^2+(1)/(2)×2×3^2=27J。

动量守恒定律(2012-2016年高考真题)

动量守恒定律(2012-2016年高考真题)

动量守恒定律的应用1、<2016年全国Ⅰ卷,10分〕某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板〔面积略大于S〕;水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求〔i〕喷泉单位时间内喷出的水的质量;〔ii〕玩具在空中悬停时,其底面相对于喷口的高度.2、<2016年全国Ⅱ卷,10分〕如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3m〔h小于斜面体的高度〕.已知小孩与滑板的总质量为m1=30kg,冰块的质量为m2=10kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10m/s2.〔i〕求斜面体的质量;〔ii〕通过计算判断,冰块与斜面体分离后能否追上小孩?3、<2016年全国Ⅲ卷,10分〕如图,水平地面上有两个静止的小物块a和b,其连线与墙垂直;a和b相距L,b与墙也相距L;a的质量为m,b的质量为3m/4两物块与地面间的动摩擦因素均相同,现使a以初速度v0向右滑动,此后a与b发生弹性碰撞,但b没有与墙发生碰撞.重力加速度为g.求物块与地面之间的动摩擦因素满足的条件.4、〔2015全国Ⅰ卷,10分>如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间,A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.5、〔2015全国Ⅱ卷,10分>滑块a、b沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段.两者的位置x随时间t变化的图像如图所示.求:<i>滑块a、b的质量之比;<ii>整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械能之比.〔2014全国Ⅰ卷,9分>如图,质量分别为m A,m B的两个弹性小球A、B静止在地面上方,B 6、球距地面的高度h=0.8m,A球在B球的正上方,先将B球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3s 时,刚好与B 球在地面上方的P 点处相碰.碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g =10m/s 2,忽略空气阻力与碰撞中的动能损失,求<1>B 球第一次到达地面时的速度;<2>P 点距离地面的高度.7、〔2014全国Ⅱ卷,10分>现利用图<a>所示装置验证动量守恒定律.在图<a>中,气垫导轨上有A 、B 两个滑块,滑块A 右侧带有一弹簧片,左侧与打点计时器〔图中未画出〕的纸带相连;滑块B 左侧也带有一弹簧片,上面固定一遮光片,光电计数器〔未完全画出〕可以记录遮光片通过光电门的时间.实验测得滑块A 的质量m 1=0.301kg,滑块B 的质量m 2=0.108kg,遮光片的宽度d =1.00cm ;打点计时器所用交流电的频率f =50.0Hz. 将光电门固定在滑块B 的右侧,启动打点计时器,给滑块A 一向右的初速度,使它与B 相碰.碰后光电计数器显示的时间为Δt B =3.500ms,碰撞前后打出的纸带如图<b>所示.若实验允许的相对误差绝对值〔100%碰撞前后总动量之差碰前总动量〕最大为5%,本实验是否在误差范围内验证了动量守恒定律?写出运算过程8、〔2013全国Ⅰ卷,9分>在粗糙的水平桌面上有两个静止的木块A 和B,两者相距为d .现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d .已知两木块与桌面之间的动摩擦因数均为μ,B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.9、〔2013全国Ⅱ卷,9分〕如图,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C . B 的左侧固定一轻弹簧〔弹簧左侧的挡板质量不计〕.设A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.求从A 开始压缩弹簧直至与弹簧分离的过程中.〔1〕整个系统损失的机械能;〔2〕弹簧被压缩到最短时的弹性势能.10、〔2012全国新课标,9分〕如图,小球a 、b 用等长细线悬挂于同一固定点O.让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求〔i 〕两球a 、b 的质量之比;〔ii 〕两球在碰撞过程中损失的机械能与球b 在碰前的最大动能之比. 1.91 图<b> 〔cm 〕1.92 1.93 1.94 3.25 4.004.02 4.03 4.05 图<a>光电门 遮光片 纸带 A B a bO。

动量高考真题汇总

动量高考真题汇总

【真题汇编-2022之前】1.(2015·北京·高考真题)“蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下.将蹦极过程简化为人沿竖直方向的运动.从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是()A .绳对人的冲量始终向上,人的动量先增大后减小B .绳对人的拉力始终做负功,人的动能一直减小C .绳恰好伸直时,绳的弹性势能为零,人的动能最大D .人在最低点时,绳对人的拉力等于人所受的重力2.(2018·全国·高考真题)高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动.在启动阶段,列车的动能( )A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的动量成正比3.(2014·北京·高考真题)带电粒子a 、b 在同一匀强磁场中做匀速圆周运动,它们的动量大小相等,a 运动的半径大于b 运动的半径.若a 、b 的电荷量分别为q a 、q b ,质量分别为m a 、m b ,周期分别为T a 、T b .则一定有( )A .q a <q bB .ma <m bC .Ta <T bD .a b a bq q m m = 4.(2007·全国·高考真题)如图所示,PQS 是固定于竖直平面内的光滑的14圆周轨道,圆心O 在S 的正上方,在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑。

以下说法正确的是( )A .a 比b 先到达S ,它们在S 点的动量不相同B .a 与b 同时到达S ,它们在S 点的动量不相同C .a 比b 先到达S ,它们在S 点的动量相同D .b 比a 先到达S ,它们在S 点的动量不相同5.(2021·湖南·高考真题)物体的运动状态可用位置x 和动量p 描述,称为相,对应p x -图像中的一个点。

高考动量经典题型(含答案)

高考动量经典题型(含答案)

动量专项测试题(能力卷)1.物体在运动过程中加速度不为零,则下列说法正确的是( ) A .物体速度的大小一定随时间变化 B .物体速度的方向一定随时间变化C .物体动能一定随时间变化D .物体动量一定随时间变化 1.D2.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前。

这样做可以( ) A .减小球对手的冲量 B .减小球对人的冲击力 C .减小球的动量变化量 D .减小球的动能变化量 2.B3.(湖北省襄樊四中2012届高三上学期月考试卷)如图所示,在光滑水平面上,用等大异向的F 1、F 2分别同时作用于A 、B 两个静止的物体上,已知a m <b m ,经过相同的时间后同时撤去两力,以后两物体相碰并粘为一体,则粘合体最终将( )A .静止B .向右运动C .向左运动D .无法确定3.A4.( 四川省仁寿县城区五校2012届高三(上)第三次月考联考理综卷)物体在恒定的合力作用下做直线运动,在时间t 1内动能由零增大到E 1,在时间t 2内动能由E 1增加到2 E 1,设合力在时间t 1内做的功为W 1,冲量为I 1,在时间t 2内做的功是W 2,冲量为I 2,则( )A .I 1< I 2,W 1=W 2B .I 1>I 2,W 1=W 2C .I 1> I 2,W 1<W 2D .I 1=I 2,W 1<W 2 4.B5.现代采煤方法中,有一种方法是用高压水流将煤层击碎而将煤采下,水流从高压水枪中射出,喷射速度很大,水流能将煤层击碎是因为水流 ( )A .有很大的动能B .有很大的动量C .和煤层接触时有很大的动量变化D .和煤层接触时单位面积上的动量变化率很大 5.D6.如图所示,木块B 与水平弹簧相连放在光滑水平面上,子弹A 沿水平方向射入木块后留在木块B 内,入射时间极短,而后木块将弹簧压缩到最短.关于子弹和木块组成的系统,下列说法中正确的是( )①子弹射入木块的过程中系统动量守恒 ②子弹射入木块的过程中系统机械能守恒 ③木块压缩弹簧过程中,系统总动量守恒④木块压缩弹簧过程中,子弹、木块和弹簧组成的系统机械能守恒 A .①③ B .②③C .①④D .②④6.C7.(北京市第六十六中学2012届高三上学期期中考试)如图所示,在光滑水平面上有一质量为M 的木块,木块与轻弹簧水平相连,弹簧的另一端连在竖直墙上,木块处于静止状态,一质量为m 的子弹以水平速度v 0击中木块,并嵌在其中,木块压缩弹簧后在水平面做往复运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量历年高考题标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
动量历年高考题
一、选择题【共6道小题,31分】
1、【6分】质量为M的物块以速度V运动,与质量为m的静止物块发生正碰,碰撞后两者的动量正好相等。

两者质量之比M/m可能为( )
2、【6分】21.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动。

两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为- 4 kg·m/s,则………………………………………………………………………()
A.左方是A球,碰撞后A、B两球速度大小之比为2∶5
B.左方是A球,碰撞后A、B两球速度大小之比为1∶10
C.右方是A球,碰撞后A、B两球速度大小之比为2∶5
D.右方是A球,碰撞后A、B两球速度大小之比为1∶10
3、【4分】质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为
(A)向下,m(v1-v2) (B)向下,m(v1+v2)
(C)向上,m(v1-v2) (D)向上,m(v1+v2)
4、【6分】20.一位质量为m的运动员从下蹲状态向上起跳,经Δt时间,身体伸直并刚好离开地面,速度为v。

在此过程中,
A.地面对他的冲量为mv+mgΔt,地面对他做的功为mv2
B.地面对他的冲量为mv+mgΔt,地面对他做的功为零
C.地面对他的冲量为mv,地面对他做的功为mv2
D.地面对他的冲量为mv-mgΔt,地面对他做的功为零
5、【6分】18.如图所示,位于光滑水平桌面上的小滑块P和Q都可视作质点,质量相等。

Q与轻质弹簧相连。

设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞。

在整个碰撞过程中,弹簧具有的最大弹性势能等于
A P的初动能
B P的初动能的1/2
C P的初动能的1/3
D P的初动能的1/4
6、【3分】3.一质量为m的物体放在光滑水平面上.今以恒力F沿水平方向推该物体,在相同的时间间隔内,下列说法正确的是
(A)物体的位移相等 (B)物体动能的变化量相等
(C)F对物体做的功相等 (D)物体动量的变化量相等
二、非选择题
9、【15分】17.如图所示,质量均为m的A、B两个弹性小球,用长为2l
的不可伸长的轻绳连接.现把A、B两球置于距地面高H处(H足够大),间
指向A球水平抛出.求:
距为l.当A球自由下落的同时,B球以速度v
(1)两球从开始运动到相碰,A球下落的高度.
(2)A、B两球碰撞(碰撞时无机械能损失)后,各自速度的水平分量.
(3)轻绳拉直过程中,B球受到绳子拉力的冲量大小.
10、【15分】选考题30D.(物理——选修3-5)
在光滑的水平面上,质量为m1的小球A以速率v0向右运动。

在小球A的前方O点有一质量为m2的小球B处于静止状态,如图所示。

小球A与小球B发生正碰后小球A、B均向右运动。

小球B被在Q点处的墙壁弹回后与小球A在P点相遇,PQ=。

假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性的,求两小球质量之比m1/m2。

12、【16分】17.如图14所示,在同一竖直平面上,质量为2m的小球A静止在光滑斜面的
底部,斜面高度为H=2L,小球受到弹簧的弹性力作用后,沿斜面向上运动,离开斜面后,达到最高点与静止悬挂在此处的小球B发生弹性碰撞,碰撞后球B刚好能摆到与悬点O同一高度,球A沿水平方向抛射落在水平面C上的P点,O点的投影O′与P的距离为L/2.已知球B质量为m,悬绳长L,视两球为质点,重力加速度为g,不计空气阻力.求:
(1)球B在两球碰撞后一瞬间的速度大小;
(2)球A在两球碰撞前一瞬间的速度大小;
(3)弹簧的弹性力对球A所做的功.
13、【20分】有两个完全相同的小滑块A和B,A沿
光滑水平面以速度v0与静止在平面边缘O点的B发
生正碰,碰撞中无机械能损失。

碰后B运动的轨迹
为OD曲线,如图所示。

(1)已知滑块质量为m,碰撞时间为,求碰撞过程中A对B平均冲力的大小。

(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B平抛轨迹完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道)。

a.分析A沿轨道下滑到任意一点的动量p A与B平抛经过该点的动量p B的大小关系;
b.在OD曲线上有一M点,O和M两点连线与竖直方向的夹角为45°。

求A通过M点时的水平分速度和竖直分速度。

14、【18分】图中滑块和小球的质量均为m,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O由一不可伸长的轻绳相连,轻绳长为l。

开始时,轻绳处于水平拉直状态,小球和滑块均静止。

现将小球由静止释放,当小球到达最低点时,滑块刚好被一表面涂有粘住物质的固定挡板粘住,在极短的时间内速度减为零。

小球继续向左摆动,当轻绳与竖直方向的夹角θ=60°时小球达到最高点。


(1)从滑块与挡板接触到速度刚好变为零的过程中,挡板
阻力对滑块的冲量;
(2)小球从释放到第一次到达最低点的过程中,绳的拉力
对小球做功的大小。

15、【15分】如图,一质量为M的物块静止在桌面边缘,桌面离水平地面的高度为h。

一质量为m的子弹以水平速度v0射入物块后,以水平速度v0/2射出。

重力加速度为g。

求(1)此过程中系统损失的机械能;
(2)此后物块落地点离桌面边缘的水平距离。

16、【20分】一倾角为的斜面固定于地面,斜面顶端离地面的高度h0=1m,斜面底端有一垂直于斜面的固定挡板。

在斜面顶端自由释放一质量m=0.09kg的小物块(视为质点)。

小物块与斜面之间的动摩擦因数u=。

当小物块与挡板碰撞后,将以原速返回。


力加速度g=10 m/s2。

在小物块与挡板的前4次碰撞过程中,挡板给予小物块的总冲量是多少
17、【17分】如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45 m的1/4圆弧面,A和D.分别是圆弧的端点,BC段表面粗糙,其余段表面光
滑,小滑块P
1和P
2
的质量均为m,滑板的质量M=4m.P
1
和P
2
与BC面的动摩擦因数分别为
μ
1=和μ
2
=,最大静摩擦力近似等于滑动摩擦力,开始时滑板紧靠槽的左端,P
2
静止在粗糙
面的B点,P
1以v
=4.0 m/s的初速度从A点沿弧面自由滑下,与P
2
发生弹性碰撞后,P
1

在粗糙面B点上.当P
2滑到C点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P
2
继续滑
动,到达D.点时速度为零,P
1与P
2
视为质点.取g=10 m/s2.问:
(1)P
2
在BC段向右滑动时,滑板的加速度为多大
(2)BC长度为多少N、P
1和P
2
最终静止后,P
1
与P
2
间的距离为多少
参考答案与解析:(1)0.8 m/s2 (2)1.9 m 0.695 m。

相关文档
最新文档