(完整版)人教版八下数学第十八章《平行四边形》单元测试题及答案【1】,推荐文档
2020年人教版初中数学八年级下册第18章《平行四边形》单元综合测试题含答案
平行四边形一.选择题(共10小题)1.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC2.平行四边形两邻角的平分线相交所成的角的大小是()A.90°B.60°C.45°D.30°3.下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形4.下列说法正确的有()①对角线互相平分的四边形是平行四边形;②平行四边形的对角互补;③平行线间的线段相等;④两个全等的三角形可以拼成一个平行四边形;⑤平行四边形的四内角之比可以是2:3:2:3.A.1个B.2个C.3个D.4个5.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.56.如图,在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),则点B坐标为()A.(0,2)B.(0,)C.(0,1)D.(0,2)7.下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形8.如图,在△ABC中,∠BAC=90°,AB=8,AC=6,M为BC上的一动点,ME⊥AB于E,MF⊥AC于F,N为EF的中点,则MN的最小值为()A.4.8 B.2.4 C.2.5 D.2.69.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断10.把一张长方形纸片ABCD按如图方式折一下,就一定可以裁出()纸片ABEF.A.平行四边形B.菱形C.矩形D.正方形二.填空题(共8小题)11.如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E、F两点,AB=6,BC=10,则EF的长度是.12.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC =∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)13.如图,将两条宽度都是为2的纸条重叠在一起,使∠ABC=45°,则四边形ABCD的面积为.14.如图,矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A﹣B﹣C﹣D以4cm/s的速度运动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s),当t=时,四边形APQD 也为矩形.15.如图,在平行四边形ABCD中,AB=8,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=3,则AE的边长为.16.在▱ABCD中,AE平分∠BAD交边BC于E,DF⊥AE,交边BC于F,若AD=10,EF=4,则AB=.17.矩形ABCD与CEFG,如图放置,点B、C、E共线,点C、D、G共线,连接AF,取AF的中点H,连接GH,若BC=EF=4,CD=CE=2,则GH=.18.如图,正方形OABC在直角坐标系中,点B(﹣2,2),点D为BC的中点,点E在线段OC上运动,射线ED交AB延长线于点F,设E(0,t),当△AEF是以AE为腰的等腰三角形时,点E的坐标是.三.解答题(共7小题)19.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E为BC中点.求DE 的长.20.在▱ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:四边形DFBE是平行四边形;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以GH为边或对角线的所有平行四边形.21.已知:如图,在矩形ABCD中,点M、N在边AD上,且AM=DN,求证:BN=CM.22.如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作ME∥CD交BC于点E,作MF∥BC交CD于点F.求证:AM=EF.23.已知,如图,∠ABC=∠ADC=90°,点E、F分别是AC、BD的中点,AC=10,BD=6.(1)求证:EF⊥BD;(2)求EF的长.24.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB 的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.25.如图,在平行四边形ABCD中,过点D作DE⊥BC交BC于点E,且DE=AD,F为DC上一点,且AD=FD,连接AF与DE交于点G.(1)若∠C=60°,AB=2,求GF的长;(2)过点A作AH⊥AD,且AH=CE,求证:AB=DG+AH.第《18章平行四边形》单元测试题参考答案与试题解析一.选择题(共10小题)1.【分析】根据三角形的中位线定理即可判断;【解答】解:∵CM=MA,CNB,∴MN∥AB,MN=AB,∵MN=18m,∴AB=36m,故A、B、D正确,故选:C.【点评】本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.2.【分析】根据平行四边形的性质得到∠DAB+∠ABC=180°,由角平分线可得∠BAO+∠ABO=90°,根据三角形的内角和定理得∠AOB=90°,即可得到所选选项.【解答】解:▱ABCD的∠DAB的平分线和∠ABC的平分线交于O,∴∠DAB+∠ABC=180°,∠DAO=∠BAO=∠DAB,∠ABO=∠CBO=∠ABC,∴∠BAO+∠ABO=90°,∴∠AOB=180°﹣90°=90°.故选:A.【点评】本题主要考查了平行四边形的性质,角平分线的定义,三角形的内角和定理等知识点,能综合利用性质进行证明是解此题的关键.3.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,即可选出答案.【解答】解:根据平行四边形的判定定理,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.【点评】此题主要考查学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.4.【分析】根据平行四边形的判定定理以及性质定理即可判断.【解答】解:①正确;②平行四边形的对角相等,命题错误;③平行线间的平行线段相等,命题错误;④正确;⑤正确.故选:C.【点评】本题考查了平行四边形的判定定理以及性质定理,正确理解定理的内容是关键.5.【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.【分析】根据菱形的性质可得∠OAB=∠BAD=60°,∠AOB=90°,解直角△AOB,求出OB,即可得到点B坐标.【解答】解:∵在菱形ABCD中,∠BAD=120°,点A坐标是(﹣2,0),∴∠OAB=∠BAD=60°,∠AOB=90°,在直角△AOB中,∵OA=2,∴OB=OA•tan∠OAB=2×=2,∴点B坐标为(0,2).故选:D.【点评】本题考查了菱形的性质,掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角是解题的关键.也考查了锐角三角函数定义,坐标与图形性质.7.【分析】根据平行四边形和菱形的性质对各个选项进行分析从而得到最后答案.【解答】解:根据平行四边形和菱形的性质得到ACD均正确,而B不正确,因为对角线互相垂直的四边形也可能是梯形.故选:B.【点评】主要考查了平行四边形和特殊平行四边形的特性,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.菱形的特性是:四边相等,对角线互相垂直平分.8.【分析】过点A作AM⊥BC于点M′,根据勾股定理求出BC的长,再由三角形的面积公式求出AM′的长.根据题意得出四边形AEMF是矩形,故可得出AM=EF,MN=AM,当MN最小时,AM最短,此时M与M′重合,据此可得出结论.【解答】解:过点A作AM⊥BC于点M′,∵在△ABC中,∠BAC=90°,AB=8,AC=6,∴BC==10,∴AM′==.∵ME⊥AB于E,MF⊥AC于F,∴四边形AEMF是矩形,∴AM=EF,MN=AM,∴当MN最小时,AM最短,此时点M与M′重合,∴MN=AM′==2.4.故选:B.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AM的最小值是关键.9.【分析】由条件可知AB∥CD,AD∥BC,再再证明AB=BC即可解决问题.【解答】解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.【点评】本题考查了菱形的判定,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.10.【分析】根据折叠定理得:所得的四边形有三个直角,且一组邻边相等,所以可以裁出正方形纸片.【解答】解:由已知,根据折叠原理,对折后可得:∠FAB=∠B=∠AFE=90°,AB=AF,∴四边形ABEF是正方形,故选:D.【点评】此题考查了正方形的判定和折叠的性质,关键是由折叠原理得到四边形有三个直角,且一组邻边相等.二.填空题(共8小题)11.【分析】根据平行四边形的性质可知∠DEC=∠ECB,又因为CE平分∠BCD,所以∠DCE=∠ECB,则∠DEC=∠DCE,则DE=DC,同理可证AF=AB,那么EF就可表示为AF+ED﹣BC=2AB﹣BC,继而可得出答案.【解答】解:∵平行四边形ABCD,∴∠DEC=∠ECB,又CE平分∠BCD,∴∠DCE=∠ECB,∴∠DEC=∠DCE,∴DE=DC,同理可证:AF=AB,∴2AB﹣BC=AF+ED﹣BC=EF=2.故答案为2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.12.【分析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再证明△AOD≌△COB可得BO=DO,然后再根据对角线互相平分的四边形是平行四边形可得答案.【解答】解:可选条件①③,∵AD∥BC,∴∠DAO=∠OCB,∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB(AAS),∴DO=BO,∴四边形ABCD是平行四边形.故答案为:①③.【点评】此题主要考查了平行四边形的判定,关键是掌握对角线互相平分的四边形是平行四边形.13.【分析】根据折叠的性质易知,重合部分为菱形,然后根据菱形的面积公式计算即可.【解答】解:如图,过点A作AE⊥BC于点E,AF⊥CD于点F.则AE=AF=2.∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是2,∴S四边形ABCD=BC×2=CD×2,∴BC=CD,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.∴四边形ABCD的面积为2×2×=4.故答案是:4.【点评】本题主要考查菱形的性质和特殊角的三角函数值,通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.【分析】四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可.【解答】解:根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20﹣t,解得t=4(s).故答案是:4.【点评】本题考查了矩形的判定与性质.此题利用了矩形的对边相等的性质进行解题的.15.【分析】由平行四边形的性质和角平分线证出AD=DF,由F为DC中点,AB=CD,求出AD与DF 的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由AAS证明ADF≌△ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=4,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD中,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=2×2=4,故答案为:4【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形全等是解本题的关键.16.【分析】根据平行线的性质得到∠ADF=∠DFC,根据角平分线的定义得到∠BAE=∠DAE,推出AB=BE,根据已知条件推出∠ADF=∠ADC,得到∠DFC=∠CDF,推出CF=CD,于是得到结论.【解答】解:①如图1,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE+CF﹣EF=2AB﹣EF=2AB﹣4=10,∴AB=7;②如图2,在▱ABCD中,∵BC=AD=10,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∵DF⊥AE,∴∠DAE+∠ADF=90°,∵∠BAD+∠ADC=180°,∴∠ADF=∠ADC,∴∠ADF=∠CDF,∵∠ADF=∠DFC,∴∠DFC=∠CDF,∴CF=CD,∴AB=BE=CF=CD∵EF=4,∴BC=BE++EF+CF=2AB+EF=2AB+4=10,∴AB=3;综上所述:AB的长为7或3.故答案为:7或3.【点评】本题考查了等腰三角形的判定和性质,平行线的性质,平行四边形的性质,解答本题的关键是判断出AB=BE=CF=CD.17.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=2,GH=PH=PG,再利用勾股定理求得PG=2,从而得出答案.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=4、GF=CE=2,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=2,PH=HG=PG,∵PD=AD﹣AP=2,GD=GC﹣CD=4﹣2=2∴GP==2∴GH=GP=故答案为:【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.18.【分析】由ASA证明△DBF≌△DCE,得出BF=CE=2﹣t,得出AF=AB+BF=4﹣t,即可得出点F的坐标;分两种情况:①当AE=AF时,根据勾股定理得出AE2=OA2+OE2,得出方程22+t2=(4﹣t)2,解方程即可求出t的值;②当AE=EF时,点E在AF的垂直平分线上,得出OE=AF,即t=(4﹣t),解方程即可求出t的值,从而求解.【解答】解:(1)∵四边形OABC是正方形,∴OA=AB=BC=OC=2,∠AOC=∠ABC=∠BCO=90°,∴∠FBD=90°,∵D是BC的中点,∴BD=CD,在△DBF和△DCE中,,∴△DBF≌△DCE(ASA),∴BF=CE=2﹣t,∴AF=AB+BF=4﹣t,∴D的坐标为(﹣2,4﹣t),当△AEF是以AE为腰的等腰三角形时,分两种情况:①当AE=AF时,∵AE2=OA2+OE2,∴22+t2=(4﹣t)2,解得:t=1.5;②当AE=EF时,点E在AF的垂直平分线上,∴OE=AF,即t=(4﹣t),解得:t=.综上所述:当△AEF是以AE为腰的等腰三角形时,点E的坐标是(0,1.5)或(0,).故答案为:(0,1.5)或(0,).【点评】考查了正方形的性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质等知识;本题综合性强,有一定难度,需要进行分类讨论才能得出结果.三.解答题(共7小题)19.【分析】延长BD与AC相交于点F,根据等腰三角形的性质可得BD=DF,再利用三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF,然后求解即可.【解答】解:如图,延长BD与AC相交于点F,∵AD平分∠BAC,BD⊥AD,∴∠DAB=∠DAF,AD=AD,∠ADB=∠ADF,∴△ADB≌△ADF,∴AF=AB,BD=DF,∵AB=6,AC=10,∴CF=AC﹣AF=AC﹣AB=10﹣6=4,∵E为BC中点,∴DE是△BCF的中位线,∴DE=CF=×4=2.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的判定与性质,作辅助线构造出以DE为中位线的三角形是解题的关键.20.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF,即可得出四边形DFBE是平行四边形;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF,又∵DE∥BF,∴四边形DFBE是平行四边形;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE;以GH为对角线的平行四边形有GFHE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.21.【分析】由矩形的性质可得出BA=CD、∠A=∠D,由AM=DN可得出AN=DM,进而即可证出△ABN≌△DCM(SAS),根据全等三角形的性质可证出BN=CM.【解答】证明:∵四边形ABCD为矩形,∴BA=CD,∠A=∠D.∵AM=DN,∴AN=DM.在△ABN和△DCM中,,∴△ABN≌△DCM(SAS),∴BN=CM.【点评】本题考查了矩形的性质以及全等三角形的判定与性质,利用全等三角形的判定定理SAS 证出△ABN≌△DCM是解题的关键.22.【分析】延长EM交AD于点P,延长FM交AB于点Q,根据正方形的性质可得出:四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,进而可得出AQ=FM,QM=ME,结合∠AQM=∠FME=90°即可证出△AQM≌△FME(SAS),再利用全等三角形的性质可证出AM=EF.【解答】证明:延长EM交AD于点P,延长FM交AB于点Q,如图所示.∵四边形ABCD为正方形,点M为对角线BD上一点,∴四边形PMFD、BEMQ为正方形,四边形AQMP、MECF为矩形,∴AQ=PM=FM,QM=ME.在△AQM和△FME中,,∴△AQM≌△FME(SAS),∴AM=EF.【点评】本题考查了全等三角形的判定与性质、正方形的性质以及矩形的性质,利用全等三角形的判定定值SAS证出△AQM≌△FME是解题的关键.23.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,可求BE=DE,根据等腰三角形的性质,可得结论;(2)根据题意可得BE=5,BF=3,根据勾股定理可求EF的长【解答】证明:(1)连接BE,DE∵∠ABC=∠ADC=90°,点E是AC的中点,∴BE=AC,DE=AC∴BE=DE∵点F是BD的中点,BE=DE∴EF⊥BD(2)∵BE=AC∴BE=5∵点F是BD的中点∴BF=DF=3在Rt△BEF中,EF===4【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半是本题的关键.24.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,根据菱形的判定得出即可;(2)设CE=2x,AC=3x,求出BC=4x,DF=AC=3x,根据菱形的面积公式求出x,求出EF和CE,根据勾股定理求出CF即可.【解答】(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∴四边形BDCF是菱形;(2)解:∵tan∠EAC==,∴设CE=2x,AC=3x,∵四边形BDCF是菱形,∴BE=CE=2x,∴BC=4x,∵四边形ADFC是平行四边形,∴DF=AC=3x,∵四边形BDCF的面积为24,∴=24,解得:x=2(负数舍去),∴CE=4,DF=6,∴DE=EF=×6=3,∵DE⊥BC,∴∠CEF=90°,∴由勾股定理得:CF===5.【点评】本题考查了勾股定理,平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.25.【分析】(1)过G作GH⊥CD于H,根据三角形的内角和得到∠CDE=60°,根据平行四边形的性质得到AD∥BC,AB=CD=2,得到∠ADC=120°,解直角三角形即可得到结论;(2)根据全等三角形的性质得到∠ADH=∠EDC,∠H=∠C,DH=DC,根据平行四边形的性质得到AB=CD,AB∥CD,推出∠DFA=∠C,在DH上截取HM=AH,得到∠HAM=∠HMA,求得∠DAM =∠H,根据全等三角形的性质即可得到结论..【解答】解:(1)如图1,过G作GH⊥CD于H,∵DE⊥BC,∴∠DEC=90°,∵∠C=60°,∴∠CDE=60°,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=2,∴∠ADC=120°,∵AD=DF,∴∠DAF=∠DFA=30°,∴∠GDF=∠DFG,∴DG=GF,∵CD=2,∴DF=,∴HF=DF=,∴GF=1;(2)∵AH⊥AD,DE⊥BC,∴∠DAH=∠DEC=90°,在△ADE与△DEC中,,∴△ADE≌△DEC(SAS),∴∠ADH=∠EDC,∠H=∠C,DH=DC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠DAB=∠C,∠DFA=∠BAF,∵AD=DF,∴∠DAF=∠DFA,∴∠DFA=∠C,如图2,在DH上截取HM=AH,∴∠HAM=∠HMA,∴∠H=180°﹣2∠HAM,∵∠MAD=90°﹣∠HAM,∴∠DAM=∠H,∴∠MAD=∠GFD,在△ADM与△FDG中,,∴△ADM≌△FDG(ASA),∴DM=DG,∵AB=CD=DH=HM+DM,∴AB=AH+DG.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.。
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)
八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。
人教版八年级下册第十八章平行四边形单元练习题(含答案)
第十八章平行四边形一、选择题1.如图,在▱ABCD中,点E是BC延长线上一点,且∠A=120°,则∠DCE的度数是( )A.120°B.60°C.45°D.30°2.如图,已知四边形ABCD的四边相等,等边△AMN的顶点M、N分别在BC、CD上,且AM=AB,则∠C为( )A.100°B.105°C.110°D.120°3.如图,△AB C中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,则四边形AEDF的周长是( )A. 24B. 28C. 32D. 364.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有( )A. 0个B. 1个C. 2个D. 3个5.正方形具有而菱形不一定具有的性质是( )A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等6.菱形的周长为8 cm,高为1 cm,则菱形两邻角度数比为( )A.4∶1B.5∶1C.6∶1D.7∶17.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP 的最小值为( )A. 1B. 2C. 3D. 48.如图,平行四边形ABCD中,对角线AC与BD相交于点O,且AB⊥AC,AB=3,OC=4,则BD的长为( )A. 4B. 5C. 10D. 12二、填空题9.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,已知a=2b=6c,其面积是__________.(用含c的代数式表示)10.在平行四边形ABCD中,AB=5,BC=6,若AC=BD,则平行四边形ABCD的面积为__________.11.如图,平行四边形ABCD的对角线AC、BD交于一点O,AB=11,△OCD的周长为27,则AC +BD=________.12.在四边形ABCD中,对角线AC、BD交于点O,从①AB=CD;②AB∥CD;③OA=OC;④OB =OD;⑤AC=BD;⑥∠ABC=90°这六个条件中,可选取三个推出四边形ABCD是矩形,如①②⑤→四边形ABCD是矩形.请再写出符合要求的两个:__________;______________.13.如图,直线AE∥BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE的面积为________.14.如图,在Rt△ABC中,∠AC B=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=____________.15.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是____________.16.在学习了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD是平行四边形,请添加一个条件,使得▱ABCD是矩形.”经过思考,小明说:“添加AC=BD.”小红说:“添加AC⊥BD.”你同意__________的观点,理由是__________________.三、解答题17.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.18.如图,在△ABC中,AB=6 cm,AC=10 cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.19.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.20.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,AE=CF,连接AF,BF,DE,CE,分别交于H、G.求证:(1)四边形AECF是平行四边形.(2)EF与GH互相平分.21.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:(1)BE=CF;(2)四边形BECF是平行四边形.答案解析1.【答案】B【解析】∵四边形ABCD是平行四边形∴AB∥CD,AD∥BE∴∠B=180°-∠A=60°∴∠DCE=∠B=60°.故选B.2.【答案】A【解析】∵四边形ABCD的四边都相等,∴四边形ABCD是菱形,∴∠B=∠D,∠DAB=∠C,AD∥BC,∴∠DAB+∠B=180°,∵△AMN是等边三角形,AM=AB,∴∠AMN=∠ANM=60°,AM=AD,∴∠B=∠AMB,∠D=∠AND,由三角形的内角和定理,得∠BAM=∠NAD,设∠BAM=∠NAD=x,则∠D=∠AND=180°-60°-2x,∵∠NAD+∠D+∠AND=180°,∴x+2(180°-60°-2x)=180°,解得x=20°,∴∠C=∠BAD=2×20°+60°=100°.故选A.3.【答案】解∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∠EAD=∠FDA. ∵AD平分∠BAC,∴∠EAD=∠FAD=∠FDA,∴FA=FD,∴平行四边形AEDF为菱形.∵AF=6,∴C菱形AEDF=4AF=4×6=24. 故选A.【解析】根据DE∥AC、DF∥AB,即可得出四边形AEDF为平行四边形,再根据AD平分∠BAC即可得出∠FAD=∠FDA,即FA=FD,从而得出平行四边形AEDF为菱形,根据菱形的性质结合AF =6即可求出四边形AEDF的周长.4.【答案】B【解析】由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分,只有①③④可以,故选B.5.【答案】B【解析】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误;故选B.6.【答案】B【解析】如图所示:∵四边形ABCD是菱形,菱形的周长为8,∴AB=BC=CD=DA=2,∠DAB+∠B=180°,∵AE=1,AE⊥BC,∴AE=AB,∴∠B=30°,∴∠DAB=150°,∴∠DAB∶∠B=5∶1;故选B.7.【答案】C【解析】作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.8.【答案】C【解析】∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=OC=4,∵AB⊥AC,AB=3,∴∠BAO=90°,在Rt△ABO中,由勾股定理,得BO==5,∴BD=2BO=10,故选C.9.【答案】10c2【解析】本题中空白部分的面积=矩形ABCD的面积-阴影部分的面积.矩形ABCD的面积为a×b=ab;阴影部分的面积为a×c+b×c-c×c=ac+bc-c2;那么空白部分的面积为ab-ac-bc+c2;因为a=2b=6c,所以ab-ac-bc+c2=6c·3c-6c·c-3c·c+c2=18c2-6c2-3c2+c2=10c2.10.【答案】30【解析】∵平行四边形ABCD中,AC=BD,∴四边形ABCD是矩形.∴矩形ABCD的面积是5×6=30.11.【答案】32【解析】∵平行四边形ABCD的对角线AC、BD交于一点O,AB=11,∴CD=11,∵△OCD的周长为27,∴CO+DO=27-11=16,∴A C+BD=32.12.【答案】①②⑥③④⑥【解析】①②⑥或③④⑥,理由是∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形.∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵∠ABC=90°,∴平行四边形ABCD是矩形,13.【答案】10【解析】过点A作AF⊥BD于点F,∵△ABD的面积为16,BD=8,∴BD·AF=×8×AF=16,解得AF=4,∵AE∥BD,∴AF的长是△ACE的高,∴S△ACE=×AE×4=×5×4=10.14.【答案】10°【解析】∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD-∠DCA=10°,15.【答案】5或4或5【解析】如图所示:①当AP=AE=5时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=5;②当PE=AE=5时,∵BE=AB-AE=8-5=3,∠B=90°,∴PB==4,∴底边AP===4;③当PA=PE时,底边AE=5;综上所述:等腰三角形AEP的对边长为5或4或5.16.【答案】小明对角线相等的平行四边形是矩形【解析】根据是对角线相等的平行四边形是矩形,故小明的说法是正确的,根据对角线互相垂直的平行四边形是菱形,故小红的说法是错误的.17.【答案】(1)证明∵AE⊥AC,BD垂直平分AC,∴AE∥BD,∵∠ADE=∠BAD,∴DE∥AB,∴四边形ABDE是平行四边形;(2)解∵DA平分∠BDE,∴∠BAD=∠ADB,∴AB=BD=5,设BF=x,则52-x2=62-(5-x)2,解得x=,∴AF==,∴AC=2AF=.【解析】(1)根据已知和角平分线的定义证明∠ADE=∠BAD,得到DE∥AB,又AE∥BD,根据两组对边分别平行的四边形是平行四边形证明即可;(2)设BF=x,根据勾股定理求出x的值,再根据勾股定理求出AF,根据AC=2AF得到答案.18.【答案】解∵AD平分∠BAC,BD⊥AD,∴AB=AF=6,BD=DF,∴CF=AC-AF=4,∵BD=DF,E为BC的中点,∴DE=CF=2.【解析】根据等腰三角形的判定和性质定理得到AB=AF=6,BD=DF,求出CF,根据三角形中位线定理计算即可.19.【答案】证明∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,∴△AOE≌△COF(ASA),∴AE=CF.【解析】由四边形ABCD是平行四边形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.20.【答案】证明(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴四边形AECF是平行四边形.(2)由(1)得:四边形AECF是平行四边形,∴AF∥CE,∵AE=CF,AB∥CD,AB=CD,∴BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∴BF∥DE,∴四边形EGFH是平行四边形,∴EF与GH互相平分.【解析】(1)由平行四边形的性质得出AB∥CD,AB=CD,由AE=CF,即可得出结论;(2)由平行四边形的性质得出AF∥CE,再证明四边形BFDE是平行四边形,得出BF∥DE,证出四边形EGFH是平行四边形,即可得出结论.21.【答案】证明(1)∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,∴△AEB≌△DFC(ASA),∴BE=CF;(2)∵BE⊥AD,CF⊥AD,∴BE∥CF,∵BE=CF,∴四边形BECF是平行四边形.【解析】(1)通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF;(2)由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.易得四边形BECF是平行四边形.。
人教版八年级数学下第18章《平行四边形》单元测试题(含答案)
第十八章 平行四边形单元测试题时限:100分钟 满分:150分一、选择题(每小题4分,共40分)1.在平行四边形ABCD 中,∠B=60°,那么下列各式中,不能成立的是( )A .∠D=60°B . ∠A=120°C .∠C+∠D=180°D .∠C+∠A=180°2.矩形,菱形,正方形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线平分一组对角D .对角线互相垂直3.如图,▱ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长为( )A . 6cmB . 12cmC . 4cmD . 8cm第3题 第4题 第5题4.如图所示,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12,BD=10,AB=m ,则m 的取值范围是( )A .10<m <12B .2<m <22 C. 1<m <11 D .5<m <65.如图,如果平行四边形ABCD 的对角线AC 和BD 相交于点O ,那么图中的全等三角形共有( )A . 1对B . 2对C . 3对D . 4对6.已知菱形的边长为6cm ,一个内角为60°,则菱形较短的对角线长是( )A . 6cmB . cmC . 3cmD .cm7.(2017河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O .求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =,②∴AO BD ⊥,即AC BD ⊥.③∵四边形ABCD 是菱形, ④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②8.菱形的周长为20cm ,两邻角的比为1:2,则较长的对角线长为( )A . 4.5cmB . 4cmC . 5cmD . 4cm9.矩形的四个内角平分线围成的四边形( )A .一定是正方形B .是矩形C .菱形D .只能是平行四边形10.在△ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为( )A . 9.5B .10.5C . 11D . 15.5二、填空题(每小题4分,共32分)11.已知正方形的一条对角线长为4cm ,则它的面积是 cm 2.12.菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为 cm ,面积为 cm 2.13.如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 . 14.(2017年十堰)如图:菱形ABCD 中,AC 交BD 于O ,OE BC ⊥于E ,连接OE ,若140ABC ∠=︒,则OED ∠= ..第13题 第14题 第15题 第16题15.如图,在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,若△ABC 的周长为12cm ,则△DEF 的周长是 cm .16.(2017宁夏)如图,将平行四边形CD AB 沿对角线D B 折叠,使点A 落在点'A 处.若1250∠=∠= ,则'∠A 为 .17.(2017六盘水市)如图,在正方形ABCD 中,等边三角形AEF 的顶点E 、F 分别在边BC 和CD 上,则AEB =∠ 度.18.将七个边长都为1的正方形如图所示摆放,点A 1、A 2、A 3、A 4、A 5、A 6分别是六个正方形的中心,则这七个正方形重叠形成的重叠部分的面积是 .三、解答题(共7小题,共78分)19.(10分)如图,在△ABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点.证明:四边形DECF 是平行四边形.20.(2017大连)(10分)如图,在▱ABCD 中,BE ⊥AC ,垂足E 在CA 的延长线上,DF ⊥AC ,垂足F 在AC 的延长线上,求证:AE=CF .21.(10分)已知:如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;第17题 第18题22.(2017安顺)(10分)如图,DB∥AC,且DB=错误!未找到引用源。
人教新版八年级下册数学《第18章 平行四边形》单元测试卷及答案详解(PDF可打印)
人教新版八年级下册《第18章平行四边形》单元测试卷(2)一、单选题1.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm2.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为25,则平行四边形ABCD的两条对角线的和是()A.18B.28C.38D.463.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等4.如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N 分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是()A.AB=CD,AB⊥CD B.AB=CD,AD=BCC.AB=CD,AC⊥BD D.AB=CD,AD∥BC5.如图,已知在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10cm B.6cm C.5cm D.4cm6.顺次连接矩形四边中点所得的四边形是()A.矩形B.菱形C.正方形D.平行四边形7.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是()A.5B.7C.7D.8.如图,已知l1∥l2,AB∥CD,CE⊥l2,FG⊥l2,下列说法错误的是()A.l1与l2之间的距离是线段FG的长度B.CE=FGC.线段CD的长度就是l1与l2两条平行线间的距离D.AC=BD9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5a,AE=a,CF=2a,则BG长是()A.a B.a C.a D.a二、填空题11.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是.12.直角三角形中,两直角边长分别为12和5,则斜边中线长是.13.如图,在平行四边形ABCD中,点E是BC的中点,∠BOE=30°,OD=2,cos∠ADB =.则CD=.14.如图,△ABC中,∠BAC=90°,∠ACB=30°,AB=a,点D在边AC上运动(不与A,C重合),以BD为边作正方形BDEF,使点A在正方形BDEF内,连接EC,则下列结论:①△BCD≌△ECD;②当∠ADE=30°时,CD=2AD;③点F到直线AB的距离为a;④△CDE面积的最大值是.其中正确的结论是(填写所有正确结论的序号).15.如图,点P在正方形ABCD的对角线AC上,PE⊥PB于点P,交AD于点E,若△PAE 的面积占正方形ABCD面积的,则=.16.一个长方形院子要在三面建砖墙,院子的对角线长比一面砖墙长2m,另外的两面砖墙都是长10m,则三面砖墙共长米.三、解答题17.在四边形ABCD中,对角线AC、BD交于点O,若AD=12,OD=OB=5,AC=26,∠ADB=90°,求证:四边形ABCD为平行四边形.18.如图,在矩形ABCD中,点E在边AB上,连接DE,将矩形ABCD沿DE折叠,点A 的对称点F落在边CD上,连接EF.求证:四边形ADFE是正方形.19.如图,△ABC是边长为a的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB 分别交AC,BC于点E,F,过点P作GH∥BC分别交AB,AC于点G,H,过点P作MN∥AC分别交AB,BC于点M,N,猜想EF+GH+MN的值是多少.其值是否随点P位置的改变而改变?并说明理由.四、综合题20.如图,点E,F分别是锐角∠A两边上的点,分别以点E,F为圆心,以AF,AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)若AE=AF,请判断此四边形的形状,并说明理由.21.如图,点O是菱形ABCD对角线的交点,CE∥BD,BE∥AC,连接OE.(1)求证:OE=CB;(2)若菱形的边长为2,∠ADC=60°,求四边形OCEB的面积.人教新版八年级下册《第18章平行四边形》单元测试卷(2)参考答案与试题解析一、单选题1.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm【考点】平行四边形的性质.【分析】根据平行四边形的性质可得AD=BC,AB=CD,再由周长为40cm可得邻边之和为20cm,然后根据AB和BC的关系计算出BC即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,故选:D.2.如图,平行四边形ABCD的对角线交于点O,且AB=6,△OCD的周长为25,则平行四边形ABCD的两条对角线的和是()A.18B.28C.38D.46【考点】平行四边形的性质.【分析】根据平行四边形的性质解得即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,∵△OCD的周长为25,∴OD+OC=25﹣6=19,∵BD=2OD,AC=2OC,∴▱ABCD的两条对角线的和BD+AC=2(OD+OC)=38.故选:C.3.平行四边形的对角线一定具有的性质是()A.相等B.互相平分C.互相垂直D.互相垂直且相等【考点】平行四边形的性质.【分析】根据平行四边形的对角线互相平分可得答案.【解答】解:平行四边形的对角线互相平分,故选:B.4.如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC的中点,点M,N 分别是AC,BD的中点,连接EM,MF,FN,NE,要使四边形EMFN为正方形,则需添加的条件是()A.AB=CD,AB⊥CD B.AB=CD,AD=BCC.AB=CD,AC⊥BD D.AB=CD,AD∥BC【考点】正方形的判定;三角形中位线定理;平行四边形的判定与性质.【分析】证出EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,得出EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,证出四边形EMFN 为平行四边形,当AB=CD时,EN=FM=ME=NF,得出平行四边形EMFN是菱形;当AB⊥CD时,EN⊥ME,则∠MEN=90°,即可得出菱形EMFN是正方形.【解答】解:∵点E,F分别是AD,BC的中点,点M,N分别是AC,BD的中点,∴EN、NF、FM、ME分别是△ABD、△BCD、△ABC、△ACD的中位线,∴EN∥AB∥FM,ME∥CD∥NF,EN=AB=FM,ME=CD=NF,∴四边形EMFN为平行四边形,当AB=CD时,EN=FM=ME=NF,∴平行四边形EMFN是菱形;当AB⊥CD时,EN⊥ME,则∠MEN=90°,∴菱形EMFN是正方形;故选:A.5.如图,已知在▱ABCD中,AD=3cm,AB=2cm,则▱ABCD的周长等于()A.10cm B.6cm C.5cm D.4cm【考点】平行四边形的性质.【分析】利用平行四边形的对边相等的性质,可知四边长,可求周长.【解答】解:∵四边形ABCD为平行四边形,∴AD=BC=3,AB=CD=2,∴▱ABCD的周长=2×(AD+AB)=2×(3+2)=10cm.故选:A.6.顺次连接矩形四边中点所得的四边形是()A.矩形B.菱形C.正方形D.平行四边形【考点】中点四边形.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:B.7.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是()A.5B.7C.7D.【考点】正方形的性质.【分析】如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,推出△ADM是等腰直角三角形,推出AD=AM,推出当AM的值最大时,AD的值最大,利用三角形的三边关系求出AM的最大值即可解决问题;【解答】解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,∴AD的最大值为,故选:D.8.如图,已知l1∥l2,AB∥CD,CE⊥l2,FG⊥l2,下列说法错误的是()A.l1与l2之间的距离是线段FG的长度B.CE=FGC.线段CD的长度就是l1与l2两条平行线间的距离D.AC=BD【考点】平行线之间的距离;垂线.【分析】根据平行四边形的性质、平行线之间距离的定义对各选项进行逐一分析即可.【解答】解:A、∵FG⊥l2于点G,∴l1与l2两平行线间的距离就是线段FG的长度,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴四边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误;D、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AC=BD,故本选项正确;故选:C.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB 中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.=S△ACD+S△ADB,解法二:根据S△ABC可得×6×8=×6×x+×10×x,解得x=3.故选:B.10.如图,正方形ABCD,点E,F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5a,AE=a,CF=2a,则BG长是()A.a B.a C.a D.a【考点】正方形的性质.=EF•BG=S正方形ABCD 【分析】连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF﹣S△BCF﹣S△DEF,列出方程即可解决问题.﹣S△ABE【解答】解:如图,连接BE、BF.∵四边形ABCD是正方形,∴AB=BC=CD=AD=5a,∵AE=a,AF=2a,∴DE=4a,DF=3a,∴根据勾股定理求得EF=5a,=•EF•BG=S正方形ABCD﹣S△ABE﹣S△BCF﹣S△DEF,∵S△BEF∴•5a•BG=25a2﹣•5a•a﹣•5a•2a﹣•3a•4a,∴BG=.故选:B.二、填空题11.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是(7,4).【考点】平行四边形的性质;坐标与图形性质.【分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解答】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(6,0),点C的坐标是(1,4),∴BC=OA=6,6+1=7,∴点B的坐标是(7,4);故答案为:(7,4).12.直角三角形中,两直角边长分别为12和5,则斜边中线长是.【考点】直角三角形斜边上的中线;勾股定理.【分析】根据勾股定理求出斜边,根据直角三角形斜边上的中线是斜边的一半计算即可.【解答】解:∵直角三角形中,两直角边长分别为12和5,∴斜边==13,则斜边中线长是,故答案为:.13.如图,在平行四边形ABCD中,点E是BC的中点,∠BOE=30°,OD=2,cos∠ADB=.则CD=.【考点】平行四边形的性质;三角形中位线定理.【分析】先由已知条件求出∠ADB=30°,再由平行四边形的性质得出∠ADB=∠CBD =30°,证出OE是△BCD的中位线,得出OE∥CD,证出BC=CD,得出四边形ABCD 是菱形,得出AC⊥BD,根据三角函数即可求出CD.【解答】解:∵cos∠ADB=,∴∠ADB=30°,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD=2,∴∠ADB=∠CBD=30°,∵点E是BC的中点,∴OE是△BCD的中位线,∴OE∥CD,∴∠CDB=∠BOE=30°,∴∠CBD=∠CDB,∴BC=CD,∴四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴CD===;故答案为:.14.如图,△ABC中,∠BAC=90°,∠ACB=30°,AB=a,点D在边AC上运动(不与A,C重合),以BD为边作正方形BDEF,使点A在正方形BDEF内,连接EC,则下列结论:①△BCD≌△ECD;②当∠ADE=30°时,CD=2AD;③点F到直线AB的距离为a;④△CDE面积的最大值是.其中正确的结论是②③④(填写所有正确结论的序号).【考点】正方形的性质;全等三角形的判定与性质;含30度角的直角三角形.【分析】①根据“两边对应相等,而夹角不一定相等,这样的两个三角形不一定全等”进行判断;②由勾股定理求得AC,进而解Rt△ABD得∠ADB,便可得∠ADE的度数;③过F作FG⊥AB于点G,证明△ABD≌△GFB得AB=GF=a便可;④过点E作EH⊥AC于点H,证明△ABD≌△HDE,得AD=EH,进而解直角三角形,用a表示AD、CD,再根据三角形的面积公式求得△CDE面积关于a的解析式,利用完全平方式求得其最小值.【解答】解:①∵四边形BDEF是正方形,∴BD=ED,∠BDE=90°,∵CD=CD,当∠ADB≠45°时,∠ADB≠∠ADE,此时∠BDC≠∠EDC,则△BCD不全等于△ECD,故①错误;②∵△ABC中,∠BAC=90°,AB=BC=a,∴AC=a,∵CD=2AD,∴AD=a,∴tan∠ADB==,∴∠ADB=60°,∴∠ADE=∠BDE﹣∠ADB=30°,故②正确;③过F作FG⊥AB于点G,∵四边形BDEF是正方形,∴BD=FB,∠DBF=∠BAD=∠FGB=90°,∴∠ABD+∠ABF=∠ABF+∠GFB=90°,∴∠ABD=∠GFB,∴△ABD≌△GFB(AAS),∴AB=GF=a,∴点F到直线AB的距离为a,故③正确;④过点E作EH⊥AC于点H,∵四边形BDEF是正方形,∴BD=DE,∠BDE=∠BAD=∠DHE=90°,∴∠ABD+∠BDA=∠BDA+∠HDE=90°,∴∠ABD=∠HDE,∴△ABD≌△HDE(AAS),∴AD=HE,∵AD=AB•tan∠ABD=a•tan∠ABD,AC=a,∴CD=AC﹣AD=(﹣tan∠ABD)a,=CD•HE∴S△CDE=(﹣tan∠ABD)a•a•tan∠ABD=(﹣tan2∠ABD+tan∠ABD)a2=[﹣(tan∠ABD﹣)2]a2≤a2,∴△CDE面积的最大值是a2,故④正确;故答案为:②③④.15.如图,点P在正方形ABCD的对角线AC上,PE⊥PB于点P,交AD于点E,若△PAE的面积占正方形ABCD面积的,则=.【考点】正方形的性质;全等三角形的判定与性质.【分析】过P作PF⊥AD于F,PH⊥AB于H,根据正方形的性质和全等三角形的判定和性质解答即可.【解答】解:如图,过P作PF⊥AD于F,PH⊥AB于H,∵∠FPE+∠EPH=∠BPH+∠EPH,∴∠FPE=∠BPH,∵四边形AFPH为正方形,∴PF=PH,∵∠PFE=∠PHB,∴△PFE≌△PHB(ASA),∴EF=BH,又∵PF=AF=AE+EF,且AE+EF=AH,AH+BH=AB=AD=AF+FD,∴BH=FD=EF,∴AE+2EF=AD,∴EF=,=S正方形ABCD,∵S△P AE∴AE×PF=AD2,∴AE[AE+]=AD2,∴AE2+AE×AD﹣AD2=0,∴(AE﹣AD)(AE+AD)=0,解得:=或=﹣(舍);故答案为:.16.一个长方形院子要在三面建砖墙,院子的对角线长比一面砖墙长2m,另外的两面砖墙都是长10m,则三面砖墙共长44米.【考点】勾股定理的应用.【分析】先设出未知面墙的长度,再根据勾股定理列出方程求解即可.【解答】解:设未知面墙的长度为x米,则院子对角线的长为(x+2)米,由勾股定理得,(x+2)2=x2+102,解得x=24米.故三面砖墙共长为10+10+24=44米.三、解答题17.在四边形ABCD中,对角线AC、BD交于点O,若AD=12,OD=OB=5,AC=26,∠ADB=90°,求证:四边形ABCD为平行四边形.【考点】平行四边形的判定.【分析】根据勾股定理得出AO,进而利用平行四边形的判定解答即可.【解答】证明:∵AD=12,OD=5,∠ADB=90°,∴AO=13,∵AC=26,∴AO=OC=13,且DO=OB=5,∴四边形ABCD为平行四边形.18.如图,在矩形ABCD中,点E在边AB上,连接DE,将矩形ABCD沿DE折叠,点A 的对称点F落在边CD上,连接EF.求证:四边形ADFE是正方形.【考点】正方形的判定;矩形的性质.【分析】根据矩形的性质和判定以及正方形的判定解答即可.【解答】证明:∵四边形ABCD是矩形,∴∠A=∠ADC=90°.由折叠,得∠A=∠DFE=90°∴∠A=∠ADF=∠DFE=90°.∴四边形AEFD是矩形.∵AE=AD,∴四边形AEFD是正方形.19.如图,△ABC是边长为a的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB 分别交AC,BC于点E,F,过点P作GH∥BC分别交AB,AC于点G,H,过点P作MN∥AC分别交AB,BC于点M,N,猜想EF+GH+MN的值是多少.其值是否随点P位置的改变而改变?并说明理由.【考点】平行四边形的判定与性质;等边三角形的性质.【分析】根据题意判定四边形AMPE是平行四边形,则根据平行四边形的性质和等边△AGH的性质将EF+GH+MN转化为AM+GB+AM+MG+MG+GB=2(AM+MG+GB)=2AB =2a.【解答】解:EF+GH+MN=2a,EF+GH+MN的值不随点P位置的改变而改变.理由如下:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°.∵GH∥BC,∴∠AGH=∠B=60°,∠AHG=∠C=60°.∴△AGH是等边三角形,∴GH=AG=AM+MG.①同理△BMN是等边三角形,∴MN=MB=MG+GB.②∵MN∥AC,EF∥AB,∴四边形AMPE是平行四边形,∴PE=AM.同理可证四边形BFPG是平行四边形,∴PF=GB.∴EF=PE+PF=AM+GB.③由①②③,得EF+GH+MN=(AM+GB)+(AM+MG)+(MG+GB)=2(AM+MG+GB)=2AB=2a.四、综合题20.如图,点E,F分别是锐角∠A两边上的点,分别以点E,F为圆心,以AF,AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的形状,并说明理由;(2)若AE=AF,请判断此四边形的形状,并说明理由.【考点】菱形的判定;平行四边形的判定.【分析】(1)根据题意得出ED=AF,AE=DF,进而利用平行四边形的判定解答即可;(2)由AE=AF=ED=DF,根据四条边都相等的四边形是菱形,即可证得:四边形AEDF 是菱形;【解答】解:(1)四边形AEDF是平行四边形,理由如下:根据题意可得:ED=AF,AE=DF,∴四边形AEDF是平行四边形;(2)四边形AEDF是菱形.理由如下:根据题意可得:ED=AF,AE=DF,∵AE=AF,∴AE=AF=ED=DF,∴四边形AEDF是菱形;21.如图,点O是菱形ABCD对角线的交点,CE∥BD,BE∥AC,连接OE.(1)求证:OE=CB;(2)若菱形的边长为2,∠ADC=60°,求四边形OCEB的面积.【考点】矩形的判定与性质;全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质.【分析】(1)由CE∥BD、EB∥AC可得出四边形OBEC为平行四边形,由菱形的性质可得出∠BOC=90°,进而可得出四边形OBEC为矩形,根据矩形的性质即可证出OE=CB.(2)解直角三角形求出OC,OB即可解决问题.【解答】(1)证明:∵CE∥BD,EB∥AC,∴四边形OBEC为平行四边形.∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC为矩形,∴OE=CB.(2)∵四边形ABCD是菱形,∴∠ADC=∠ABC=60°,∴∠CBO=∠ABC=30°,∵BC=2,∠BOC=90°,∴OC=BC=1,OB=OC=,∴矩形COBE的面积=.。
八年级数学下《第十八章平行四边形》单元测试卷(人教版含答案)
《平行四边形》单元提升测试卷一.选择题1.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角2.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD3.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=50°,那么∠CAD的度数是()A.20°B.25°C.30°D.40°4.菱形的两条对角线长分别为6,8,则它的周长是()A.5B.10C.20D.245.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2B.3.5C.7D.146.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接P A,以P A,PC为邻边作平行四边形P AQC,连接PQ,则PQ的最小值为()A.B.C.D.27.如图,在△ABC中,AE⊥BC于点E,BD⊥AC于点D;点F是AB的中点,连结DF,EF,设∠DFE=x°,∠ACB=y°,则()A.y=x B.y=﹣x+90C.y=﹣2x+180D.y=﹣x+908.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AB,交AC于点E,则下列结论不正确的是()A.∠CAD=∠BAD B.BD=CD C.AE=ED D.DE=DB9.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6B.8C.10D.1210.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB 的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是()A.2B.3C.4D.5二.填空题11.如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为.12.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.13.如图,矩形ACD面积为40,点P在边CD上,PE上AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF =.14.如图,在△ABC中,AB=AC,BC=6,点F是BC的中点,点D是AB的中点,连接AF和DF,若△DBF的周长是11,则AB=.15.如图,在Rt△BAC和Rt△BDC中,∠B AC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为.16.如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.三.解答题17.如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.18.如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD.(1)求证:OE⊥DC.(2)若∠AOD=120°,DE=2,求矩形ABCD的面积.19.如图,在矩形ABCD中,BD的垂直平分线分别交AB、CD、BD于E、F、O,连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若AB=8cm,BC=4cm,求四边形DEBF的面积.20.如图,在△ABC中,AD是△ABC的高线,CE是△ABC的角平分线,它们相交于点P.(1)若∠B=40°,∠AEC=75°,求证:A B=BC;(2)若∠BAC=90°,AP为△AEC边EC上中线,求∠B的度数.21.如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积S;(2)求证:∠EMC=2∠AEM.22.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.23.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点E作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.参考答案一.选择题1.解:∵矩形的对边平行且相等,对角线互相平分且相等,∴选项C正确故选:C.2.解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;B、∵OA=OC,AB∥CD,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;C、AB=CD,OA=OC,∴四边形ABCD不是平行四边形.故不能判定这个四边形是平行四边形;D、∠ADB=∠CBD,∠BAD=∠BCD,∴四边形ABCD是平行四边形或等腰梯形.故能判定这个四边形是平行四边形.故选:C.3.解:∵矩形ABCD中,对角线AC,BD相交于点O,∴DB=AC,OD=OB,OA=OC,∴OA=OD,∴∠CAD=∠ADO,∵∠CO D=50°=∠CAD+∠ADO,∴∠CAD=25°,故选:B.4.解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.5.解:∵四边形ABCD是菱形,且周长为28,∴AB=AD=BC=CD=7,BO=DO,AC⊥BD,∵点EAD中点,BO=DO,∴OE=AB=3.5故选:B.6.解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故选:B.7.解:∵AE⊥BC于点E,BD⊥AC于点D;∴∠ADB=∠BEA=90°,∵点F是AB的中点,∴AF=DF,BF=EF,∴∠DAF=∠ADF,∠EFB=∠BEF,∴∠AFD=180°﹣2∠CAB,∠BFE=180°﹣2∠ABC,∴x°=180°﹣∠AFD﹣∠BFE=2(∠CAB+∠CBA)﹣180°=2(180°﹣y°)﹣180°=180°﹣2y°,∴y=﹣x+90,故选:B.8.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD,A正确,不符合题意;BD=CD,B正确,不符合题意;∵DE∥AB,∴∠EDA=∠BAD,∵∠EAD=∠BAD,∴∠EAD=∠EDA,∴AE=ED,C正确,不符合题意;DE与DB的关系不确定,D错误,符合题意;故选:D.9.解:过点D作DE⊥AC于点E,∵在▱ABCD中,AC=8,BD=6,∴OD=BD=3,∵∠α=30°,∴DE=OD•sin∠α=3×=1.5,∴S=AC•DE=×8×1.5=6,△ACD=12.∴S▱ABCD=2S△ACD故选:D.10.解:∵四边形ABCD是平行四边形∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG∴EG=EF=AG=BG,故②正确,∵BG=EF,AB∥CD∥EF∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=AB,∴∠BAC=30°与题意不符合故⑤错误故选:C.二.填空题(共6小题)11.解:如图,过E作EH⊥AD于H,则△AEH是等腰直角三角形,∵AB =2+,△AOB 是等腰直角三角形,∴AO =AB ×cos45°=(2+)×=+1,∵DE 平分∠ODA ,EO ⊥DO ,EH ⊥DH , ∴OE =HE ,设OE =x ,则EH =AH =x ,AE =+1﹣x ,∵等腰Rt △AEH 中,∠AEH =45°,∴cos ∠AEH =,即=,∴=,解得x =1,∴线段OE 的长为1. 故答案为:1.12.解:∵四边形ABCD 是菱形 ∴AB =BC ,且∠B =60°, ∴△ABC 是等边三角形, ∴AB =AC =3,∵四边形ACEF 是正方形, ∴AC =EF =3 故答案为:313.解:如图,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形 ∴AO =CO =5=BO =DO ,∴S △DCO =S 矩形ABCD =10,∵S △DCO =S △DPO +S △PCO ,∴10=+×OC ×PE∴20=5PF +5PE∴PE +PF =4故答案为:414.解:∵AB =AC ,AF ⊥BC ,∴BF =CF =BC =×6=3,∵AF ⊥BC ,点D 是AB 的中点,∴AB =2BD =2DF ,∵△DBF 的周长是11,∴DB =DF =×(11﹣3)=4,∴AB =2DF =2×4=8.故答案为:8.15.解:在Rt △BAC 和Rt △BDC 中,∵∠BAC =∠BDC =90°,O 是BC 的中点,∴AO =BC ,DO =BC ,∴DO =AO ,∵AO =3,∴DO =3,故答案为3.16.解:如图,过点E 作EM ∥AB ,交AC 于点M ,∵四边形ABCD 是正方形∴AD =CD =BC =4,∠ADC =∠DAB =∠DCE =90°,∠ACE =45°,AB ∥CD ,∴∠CDE +∠ADE =90°,AC =4∵DF ⊥DE ,∴∠FDA +∠ADE =90°∴∠CDE=∠FDA,且∠DAF=∠DCE=90°,AD=CD,∴△ADF≌△CDE(AAS)∴AF=CE,∵点E是BC中点,∴CE=BE=BC=AF,∵ME∥CD∴∠DCE=∠MEB=90°,且∠ACB=45°∴∠CME=∠ACB=45°,∴ME=CE=BC,∵ME∥AB,AB∥CD,∴ME∥AB∥CD,∴,,,∴MQ=AQ,AM=CM=2,CP=2MP,∴MQ=,MP=∴PQ=MQ+MP=三.解答题(共7小题)17.证明:(1)∵△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E,∴DE是△ABC的中位线,∵DE∥BC,∴∠C=∠ADE,∵AB=BC,∴∠C=∠A,∴∠A=∠ADE,∴AE=DE;(2)∵△ABC中,AB=BC,∠C=65°,∴∠ABC=180°﹣65°﹣65°=50°,∵DE是△ABC的中位线,∴AE=BE,∵AE=DE,∴BE=DE,∴∠EBD=∠EDB,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠DBC=25°,∴∠EDB=25°.18.(1)证明:∵DE∥AC,CE∥BD,∴DE∥OC,CE∥OD,∴四边形ODEC是平行四边形,∵四边形ODEC是矩形,∴OD=OC=OA=OB,∴四边形ODEC是菱形,∴OE⊥DC,(2)∵DE=2,且四边形ODEC是菱形∴OD=OC=DE=2=OA,∴AC=4∵∠AOD=120,AO=DO∴∠DAO=30°,且∠ADC=90°∴CD=2,AD=CD=2=2×2=4∴S矩形ABCD19.证明:(1)∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,且OB=OD∴四边形BEDF是平行四边形,∵EF垂直平分BD∴BE=DE∴四边形BEDF是菱形(2)∵四边形BEDF是菱形∴BE=DE,在Rt△ADE中,DE2=AE2+DA2,∴BE2=(8﹣BE)2+16,∴BE=5∴四边形DEBF的面积=BE×AD=20cm2.20.(1)证明:∵∠B=40°,∠AEC=75°,∴∠∠ECB=∠AEC﹣∠B=35°,∵CE平分∠ACB,∴∠ACB=2∠BCE=70°,∠BAC=180°﹣∠B﹣∠ACB=180°﹣40°﹣70°=70°,∴∠BAC=∠BCA,∴AB=AC.(2)∵∠BAC=90°,AP是△AEC边EC上的中线,∴AP=PC,∴∠P AC=∠PCA,∵CE是∠ACB的平分线,∴∠P AC=∠PCA=∠PCD,∵∠ADC=90°,∴∠P AC=∠PCA=∠PCD=90°÷3=30°,∴∠BAD=60°,∵∠ADB=90°,∴∠B=90°﹣60°=30°.21.(1)解:∵M为AD的中点,AM=2AE=4,∴AD=2AM=8.在▱ABCD的面积中,BC=CD=8,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=BC=4,∴AB=6,CE=4,∴▱ABCD的面积为:AB×CE=6×4=24;(2)证明:延长EM,CD交于点N,连接CM.∵在▱ABCD中,AB∥CD,∴∠AEM=∠N,在△AEM和△DNM中∵,∴△AEM≌△DNM(ASA),∴EM=MN,又∵AB∥CD,CE⊥AB,∴CE⊥CD,∴CM是Rt△ECN斜边的中线,∴MN=MC,∴∠N=∠MCN,∴∠EMC=2∠N=2∠AEM.22.(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.23.解:(1)DE=2﹣;(2)BF=2﹣;(3)DG=3﹣4.。
人教版八年级下《第十八章平行四边形》单元提升测试卷(含答案)
《平行四边形》单元提升测试卷一.选择题1.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角2.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD 3.如图,在矩形ABCD中,对角线AC,BD交于点O,若∠COD=50°,那么∠CAD的度数是()A.20°B.25°C.30°D.40°4.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.245.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.146.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为()A.B.C.D.27.如图,在△ABC中,AE⊥BC于点E,BD⊥AC于点D;点F是AB的中点,连结DF,EF,设∠DFE=x°,∠ACB=y°,则()A.y=x B.y=﹣x+90 C.y=﹣2x+180 D.y=﹣x+90 8.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AB,交AC于点E,则下列结论不正确的是()A.∠CAD=∠BAD B.BD=CD C.AE=ED D.DE=DB9.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD =6,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.1210.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是()A.2 B.3 C.4 D.5二.填空题11.如图,正方形ABCD的对角线AC、BD相交于点O,DE平分∠ODA交OA于点E,若AB=2+,则线段OE的长为.12.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为.13.如图,矩形ACD面积为40,点P在边CD上,PE上AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF=.14.如图,在△ABC中,AB=AC,BC=6,点F是BC的中点,点D是AB的中点,连接AF和DF,若△DBF的周长是11,则AB=.15.如图,在Rt△BAC和Rt△BDC中,∠B AC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为.16.如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.三.解答题17.如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.18.如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD.(1)求证:OE⊥DC.(2)若∠AOD=120°,DE=2,求矩形ABCD的面积.19.如图,在矩形ABCD中,BD的垂直平分线分别交AB、CD、BD于E、F、O,连接DE、BF.(1)求证:四边形BEDF是菱形;(2)若AB=8cm,BC=4cm,求四边形DEBF的面积.20.如图,在△ABC中,AD是△ABC的高线,CE是△ABC的角平分线,它们相交于点P.(1)若∠B=40°,∠AEC=75°,求证:A B=BC;(2)若∠BAC=90°,AP为△AEC边EC上中线,求∠B的度数.21.如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积S;(2)求证:∠EMC=2∠AEM.22.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.23.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,(1)求DE的长;(2)过点E作EF⊥CE,交AB于点F,求BF的长;(3)过点E作EG⊥CE,交CD于点G,求DG的长.参考答案一.选择题1.解:∵矩形的对边平行且相等,对角线互相平分且相等,∴选项C正确故选:C.2.解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;B、∵OA=OC,AB∥CD,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;C、AB=CD,OA=OC,∴四边形ABCD不是平行四边形.故不能判定这个四边形是平行四边形;D、∠ADB=∠CBD,∠BAD=∠BCD,∴四边形ABCD是平行四边形或等腰梯形.故能判定这个四边形是平行四边形.故选:C.3.解:∵矩形ABCD中,对角线AC,BD相交于点O,∴DB=AC,OD=OB,OA=OC,∴OA=OD,∴∠CAD=∠ADO,∵∠CO D=50°=∠CAD+∠ADO,∴∠CAD=25°,故选:B.4.解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.5.解:∵四边形ABCD是菱形,且周长为28,∴AB=AD=BC=CD=7,BO=DO,AC⊥BD,∵点EAD中点,BO=DO,故选:B.6.解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故选:B.7.解:∵AE⊥BC于点E,BD⊥AC于点D;∴∠ADB=∠BEA=90°,∵点F是AB的中点,∴AF=DF,BF=EF,∴∠DAF=∠ADF,∠EFB=∠BEF,∴∠AFD=180°﹣2∠CAB,∠BFE=180°﹣2∠ABC,∴x°=180°﹣∠AFD﹣∠BFE=2(∠CAB+∠CBA)﹣180°=2(180°﹣y°)﹣180°=180°﹣2y°,故选:B.8.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD,A正确,不符合题意;BD=CD,B正确,不符合题意;∵DE∥AB,∴∠EDA=∠BAD,∵∠EAD=∠BAD,∴∠EAD=∠EDA,∴AE=ED,C正确,不符合题意;DE与DB的关系不确定,D错误,符合题意;故选:D.9.解:过点D作DE⊥AC于点E,∵在▱ABCD中,AC=8,BD=6,∴OD=BD=3,∵∠α=30°,∴DE=OD•sin∠α=3×=1.5,∴S△ACD=AC•DE=×8×1.5=6,=2S△ACD=12.∴S▱ABCD故选:D.10.解:∵四边形ABCD是平行四边形∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG∴EG=EF=AG=BG,故②正确,∵BG=EF,AB∥CD∥EF∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=AB,∴∠BAC=30°与题意不符合故⑤错误故选:C.二.填空题(共6小题)11.解:如图,过E作EH⊥AD于H,则△AEH是等腰直角三角形,∵AB=2+,△AOB是等腰直角三角形,∴AO=AB×cos45°=(2+)×=+1,∵DE平分∠ODA,EO⊥DO,EH⊥DH,∴OE=HE,设OE=x,则EH=AH=x,AE=+1﹣x,∵等腰Rt△AEH中,∠AEH=45°,∴cos∠AEH=,即=,∴=,解得x=1,∴线段OE的长为1.故答案为:1.12.解:∵四边形ABCD是菱形∴AB=BC,且∠B=60°,∴△ABC是等边三角形,∴AB=AC=3,∵四边形ACEF是正方形,∴AC=EF=3故答案为:313.解:如图,设AC与BD的交点为O,连接PO,∵四边形ABCD是矩形∴AO=CO=5=BO=DO,∴S△DCO=S矩形ABCD=10,∵S△DCO=S△DPO+S△PCO,∴10=+×OC×PE∴20=5PF+5PE∴PE+PF=4故答案为:414.解:∵AB=AC,AF⊥BC,∴BF=CF=BC=×6=3,∵AF⊥BC,点D是AB的中点,∴AB=2BD=2DF,∵△DBF的周长是11,∴DB=DF=×(11﹣3)=4,∴AB=2DF=2×4=8.故答案为:8.15.解:在Rt△BAC和Rt△BDC中,∵∠BAC=∠BDC=90°,O是BC的中点,∴AO=BC,DO=BC,∴DO=AO,∵AO=3,∴DO=3,故答案为3.16.解:如图,过点E作EM∥AB,交AC于点M,∵四边形ABCD是正方形∴AD=CD=BC=4,∠ADC=∠DAB=∠DCE=90°,∠ACE=45°,AB∥CD,∴∠CDE+∠ADE=90°,AC=4∵DF⊥DE,∴∠FDA+∠ADE=90°∴∠CDE=∠FDA,且∠DAF=∠DCE=90°,AD=CD,∴△ADF≌△CDE(AAS)∴AF=CE,∵点E是BC中点,∴CE=BE=BC=AF,∵ME∥CD∴∠DCE=∠MEB=90°,且∠ACB=45°∴∠CME=∠ACB=45°,∴ME=CE=BC,∵ME∥AB,AB∥CD,∴ME∥AB∥CD,∴,,,∴MQ=AQ,AM=CM=2,CP=2MP,∴MQ=,MP=∴PQ=MQ+MP=三.解答题(共7小题)17.证明:(1)∵△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E,∴DE是△ABC的中位线,∵DE∥BC,∴∠C=∠ADE,∵AB=BC,∴∠C=∠A,∴∠A=∠ADE,∴AE=DE;(2)∵△ABC中,AB=BC,∠C=65°,∴∠ABC=180°﹣65°﹣65°=50°,∵DE是△ABC的中位线,∴AE=BE,∵AE=DE,∴BE=DE,∴∠EBD=∠EDB,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠DBC=25°,∴∠EDB=25°.18.(1)证明:∵DE∥AC,CE∥BD,∴DE∥OC,CE∥OD,∴四边形ODEC是平行四边形,∵四边形ODEC是矩形,∴OD=OC=OA=OB,∴四边形ODEC是菱形,∴OE⊥DC,(2)∵DE=2,且四边形ODEC是菱形∴OD=OC=DE=2=OA,∴AC=4∵∠AOD=120,AO=DO∴∠DAO=30°,且∠ADC=90°∴CD=2,AD=CD=2=2×2=4∴S19.证明:(1)∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF在△BOE和△DOF中,∴△BOE≌△DOF(ASA),∴EO=FO,且OB=OD∴四边形BEDF是平行四边形,∵EF垂直平分BD∴BE=DE∴四边形BEDF是菱形(2)∵四边形BEDF是菱形∴BE=DE,在Rt△ADE中,DE2=AE2+DA2,∴BE2=(8﹣BE)2+16,∴BE=5∴四边形DEBF的面积=BE×AD=20cm2.20.(1)证明:∵∠B=40°,∠AEC=75°,∴∠∠ECB=∠AEC﹣∠B=35°,∵CE平分∠ACB,∴∠ACB=2∠BCE=70°,∠BAC=180°﹣∠B﹣∠ACB=180°﹣40°﹣70°=70°,∴∠BAC=∠BCA,∴AB=AC.(2)∵∠BAC=90°,AP是△AEC边EC上的中线,∴AP=PC,∴∠PAC=∠PCA,∵CE是∠ACB的平分线,∴∠PAC=∠PCA=∠PCD,∵∠ADC=90°,∴∠PAC=∠PCA=∠PCD=90°÷3=30°,∴∠BAD=60°,∵∠ADB=90°,∴∠B=90°﹣60°=30°.21.(1)解:∵M为AD的中点,AM=2AE=4,∴AD=2AM=8.在▱ABCD的面积中,BC=CD=8,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=BC=4,∴AB=6,CE=4,∴▱ABCD的面积为:AB×CE=6×4=24;(2)证明:延长EM,CD交于点N,连接CM.∵在▱ABCD中,AB∥CD,∴∠AEM=∠N,在△AEM和△DNM中∵,∴△AEM≌△DNM(ASA),∴EM=MN,又∵AB∥CD,CE⊥AB,∴CE⊥CD,∴CM是Rt△ECN斜边的中线,∴MN=MC,∴∠N=∠MCN,∴∠EMC=2∠N=2∠AEM.22.(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.23.解:(1)DE=2﹣;(2)BF=2﹣;(3)DG=3﹣4.。
人教版数学八年级下《第18章平行四边形》单元检测题(含答案)
人教版数学八年级下《第18章平行四边形》单元检测题(含答案)《平行四边形》单元检测题一、选择题(每小题只有一个正确答案)1.在下列条件中,不能判定四边形为平行四边形的是()A. 对角线互相平分B. 一组对边平行且相等C. 两组对边分别平行D. 一组对边平行,另一组对边相等2.已知O为平行四边形ABCD对角线的交点,△AOB的面积为1,则平行四边形的面积为()A. 1B. 2C. 3D. 43.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若▱ABCD的周长为20,则△CED 的周长为()A. 5B. 10C. 15D. 204.在□ABCD中,∠B=100°,则∠A,∠D的度数分别是()A. ∠A=80°,∠D=80°B. ∠A=80°,∠D=100°C. ∠A=100°,∠D=80°D. ∠A=100°,∠D=100°5.如图,E是平行四边形内任一点,若S□ABCD=8,则图中阴影部分的面积是()A. 3B. 4C. 5D. 66.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为()A. 45°, 135°B. 60°, 120°C. 90°, 90°D. 30°, 150°7.如图,已知在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC 的度数是( )A. 18°B. 36°C. 45°D. 72°8.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=;③△ABM≌△NGF;④;⑤A,M,P,D四点共圆,其中正确的个数是()A. 2B. 3C. 4D. 59.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA,PC为边作□PAQC,则对角线PQ 长度的最小值为()A. 6B. 810.在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交直线BC于点E,过点A作直线CD的垂线交直线CD于点F,若AB=4,BC=6,则CE+CF的值为( )A. 10+B. 10-C. 10+或2D. 10+或10-二、填空题11.如图,在□ABCD 中,点P是对角线BD上的一个动点(点P与点B、点D不重合),过点P作EF∥BC,GH∥AB,则图中面积始终相等的平行四边形有_________ 对.12.如图,在▱ABCD中,∠C=40°,过点D作CB的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为____.13.如图,△ABC中,D是边AB上一点,O是边AC的中点,连接DO并延长到点E,使OE=DO,连接DC,CE,EA,则四边形ADCE的形状是_______________.14.如图,把一张矩形纸片ABCD按如图方式折叠,使顶点B和点D重合,折痕为EF,若AB=3cm,BC=4cm.则线段EF=_____cm.15.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE 交CD于点N,连接MA,NA.则以下结论中正确的有__________(写出所有正确结论的序号)①△CMP∽△BP A;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP=.三、解答题16.如图所示,在平行四边形ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?17.如图,已知□ABCD中,E为AD的中点,CE的延长线交BA的延长线于点E.(1)试说明线段CD与FA相等的理由;(2)若使∠F=∠BCF,□ABCD的边长之间还需再添加一个什么条件?请你补上这个条件,并说明你的理由(不要再增添辅助线).18.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.19.如图,在等腰三角形ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.20.四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1;①求点F到AD的距离;②求BF的长;(3)若BF=,请直接写出此时AE的长.参考答案1.D2.D3.B4.B5.B6.B7.C8.D9.D10.C11.312.50°13.平行四边形14.15 415.①②⑤.16.相等.解析:在平行四边形ABCD中,OB=OD,∵BE⊥AC,DF⊥AC∴∠BEO=∠DFO,又∵∠BOE=∠DOF∴△BOE≌△DOF∴OE= OF.17.解析:(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB.又∵CE的延长线交BA的延长线于点F,∴∠CDA=∠DAF.∵E是AD中点,∴DE=AE.∵∠CED=∠AEF,∴△CDE≌△AEF.∴CD=AF.(2)要使∠F=∠BCF,需平行四边形ABCD的边长之间是2倍的关系,即BC=2AB,证明:∵由(1)知,△CED≌△FEA,∴CD=AF.又∵四边形ABCD是平行四边形,∴CD=AB.∴AB=AF,即BF=2AB.∵BC=2AB.∴BF=BC,∴∠F=∠BCF.18.解析:(1)证明:∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.∵∠B=90°,∴四边形ABCF是矩形.(2)证明:由(1)可得,∠AFC=90°,∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.∵∠EGA=∠CGF,∴∠EAG=∠EGA.∴EA=EG.19.解析:证明:(1)∵AB=AC,AH⊥CB,∴BH=HC.∵FH=EH,∴四边形EBFC是平行四边形.又∵AH⊥CB,∴四边形EBFC是菱形.(2)证明:如图,∵四边形EBFC是菱形.∴∠2=∠3=12∠ECF.∵AB=AC,AH⊥CB,∴∠4=12∠BAC.∵∠BAC=∠ECF∴∠4=∠3.∵AH⊥CB∴∠4+∠1+∠2=90°.∴∠3+∠1+∠2=90°.即:AC⊥CF.20.解析:(1)作FH⊥AB于H,如图1所示:则∠FHE=90°,∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=4,EF=CE,∠ADC=∠DAH=∠BAD=∠CEF=90°,∴∠FEH=∠CED,在△EFH和△CED中,∵∠FHE=∠EDC=90°,∠FEH=∠CED,EF=CE,∴△EFH≌△CED(AAS),∴FH=CD=4,AH=AD=4,∴BH=AB+AH=8,∴BF===;(2)过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,如图2所示:则FM=AH,AM=FH,①∵AD=4,AE=1,∴DE=3,同(1)得:△EFH≌△CED(AAS),∴FH=DE=3,EH=CD=4,即点F到AD的距离为3;②∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF=;(3)分两种情况:①当点E在边AD的左侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图3所示:同(1)得:△EFH≌△CED,∴FH=DE=4+AE,EH=CD=4,∴FK=8+AE,在Rt△BFK中,BK=AH=EH﹣AE=4﹣AE,由勾股定理得:(4﹣AE)2+(8+AE)2=()2,解得:AE=1或AE=﹣5(舍去),∴AE=1;②当点E在边AD的右侧时,过F作FH⊥AD交AD的延长线于点H,交BC延长线于K,如图4所示:同理得:AE=;综上所述:AE的长为1或.。
人教版八年级数学下册 第十八章 平行四边形 单元测试卷(包含答案)
第十八章 平行四边形 综合测试一、选择题(每小题3分,共30分)1.顺次连接对角线相等的四边形各边中点所形成的四边形是( )A .平行四边形B .菱形C .矩形D .正方形2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB BC =;②90ABC =︒∠;③AC BD =;④AC BD ⊥中选两个作为补充件,使ABCD 成为正方形(如图).现有下列四种选法,你认为其中错误是( )A .①②B .②③C .①③D .②④3.如图,已知D 为ABC △边AB 的中点,E 在AC 上,将ABC △沿着DE 折叠,使A 点落在BC 上的F 处,若65B ∠=︒,则BDF ∠等于( )A .65︒B .50︒C .60︒D .57.5︒4.如图,在菱形ABCD 中,AC 、BD 是对角线,若50BAC ∠=︒,则ABC ∠等于( )A .40︒B .50︒C .80︒D .100︒5.已知:如图,在ABCD Y 中,CE AB ⊥,E 为垂足,如果125A ∠=︒,则BCE ∠的度数是( )A .25︒B .30︒C .35︒D .55︒6.已知ABCD Y 中,4B A ∠=∠,则A ∠=( )A .18︒B .36︒C .72︒D .144︒7.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE DC ∥交BC 于点E , 6 cm AD =,则OE 的长为( )A .6 cmB .4 cmC .3 cmD .2 cm8.如图,在矩形ABCD 中,E 点在BC 上,且AE 平分BAC ∠.若4BE =,15AC =,则AEC △面积为( ) A .15 B .30 C .45 D .609.如图,点E 在正方形ABCD 内,满足90AEB ∠=︒,6AE =,8BE =,则阴影部分的面积是( )A .48B .60C .76D .8010.如图,在ABCD Y 中,对角线AC 与BD 交于点O ,90OBC ∠=︒,8AC =,4BD =,则BCO △的面积是( )A .B .CD .3二、填空题(每小题3分,共24分)11.如图,在ABCD Y 中,AC 、BD 相交于点O ,10 cm AB =,8 cm AD =,AC BC ⊥,则OB =___________cm .12.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则BED ∠为___________度.13.如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点,若8AB =,12AD =,则四边形ENFM 的周长为___________.14.如图,ABCD 是对角线互相垂直的四边形,且OB OD =,请你添加一个适当的条件___________,使ABCD 成为形(只需添加一个即可).15.如图,在ABCD Y 中,10 cm AD =, 6 cm CD =.E 为AD 上一点,有BE BC =,CE CD =,则DE =___________cm .16.如图,在平行四边形ABCD 中,AE 平分BAD ∠,若110D ∠=︒,则DAE ∠的度数为___________.17.如图,在MBN △中,6BM =,点A ,C ,D 分别在MB ,BN ,NM 上,四边形ABCD 为平行四边形,NDC MDA ∠=∠,那么平行四边形ABCD 的周长是___________.18.如图,在正方形ABCD 中,1AB =,延长AB 到E ,使AE AC =,则ACE △的面积是___________.三、解答题(共46分)19.(5分)已知:如图,在ABCD Y 中,5AB =,8AD =,ABC ∠的平分线BE 交AD 于点E ,求线段ED 的长.20.(5分)将矩形纸片ABCD 折叠,使点C 与点A 重合,然后展开,折痕为EF ,连接AE ,CF .求证:四边形AECF 是菱形。
人教版八年级下数学《第18章平行四边形》单元测试(含答案)
人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。
【3套】人教版八年级下册 第十八章平行四边形单元测试及答案
图2OEDCBA人教版八年级下册 第十八章平行四边形单元测试及答案一、选择题(共10题,每题3分,共30分)1、下列哪组条件能够判别四边形ABCD 是平行四边形?( )A :AB ∥CD ,AD =BC B :AB =CD ,AD =BC C :∠A =∠B ,∠C =∠D D :AB =AD ,CB =CD 2、对角线互相垂直平分的四边形是 ( ) A 、平行四边形 B 、矩形 C 、菱形 D 、梯形 3、正方形具有而菱形不具有的性质是( )A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线平分一组对角4、 已知,在平行四边形ABCD 中,下列结论不一定正确的是( )A. AB ﹦CDB. 当AC ⊥BD 时,它是菱形C. AC ﹦BDD.当∠ABC ﹦90°时,它是矩形5、在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角是否都为直角D .测量其中三角形是否都为直角6、A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD ;这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法共有( ) A.3种 B 4种 C 5种 D 6种7.如图1,在ABCD 中,∠BAD 的平分线交BC 于E ,且AE ﹦BE,则∠BCD 的度数为( )A. 30° B . 60°或120° C.60° D. 120°8、如图2所示,矩形ABCD 中AE 平分∠BAD 交BC 于E, ∠CAE=15°,则下面的结论:①△ODC 是等边三角形; ②BC=2AB; ③∠AOE=135°; ④COE AOE S S ∆∆=,其中正确结论有( )A. 1个B. 2个C. 3个D. 4个9、平行四边形ABCD 的周长32,5AB=3BC,则对角线AC 的取值范围为( )D C BA 图1ED CBA图5D CBAA 、 6<AC<10B 、 6<AC<16C 、 10<AC<16D 、 4<AC<16 10、如图,□ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm 二、填空题(共8小题、每小题3分,共24分) 11、在ABCD 中,∠A ﹦100°,则∠B 。
人教版八年级下册第十八章 平行四边形 单元测试题(答案解析)
第十八章平行四边形单元测试题一、选择题1.在ABCD中,∠A=5∠B,则∠C的度数是( )(A)30°(B)60°(C)120°(D)150°2.如图,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )3.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )(A)(3,1) (B)(-4,1)(C)(1,-1) (D)(-3,1)4.如图,在△ABC中,D,E,F分别为AB,AC,BC的中点,若△DEF的周长为6,则△ABC 的周长为( )(A)3 (B)6 (C)12 (D)245.如图,已知,矩形ABCD中,AB=3 cm,AD=9 cm,将此矩形折叠,使点B与点D重合,折痕为EF,则AE的长为( )(A)3 cm (B)4 cm(C)5 cm (D)3 cm√36.四边形ABCD的对角线AC,BD互相平分,要使它成为矩形,需要添加的条件是( )(A)AB=CD (B)AC=BD(C)AB=BC (D)AC⊥BD7.一个菱形的周长是20 cm,两条对角线的比是4∶3,则这个菱形的面积是( )(A)12 cm2(B)96 cm2(C)48 cm2(D)24 cm28.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为( )(A)4 (B)8 (C)10 (D)129.如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是( )(A)20 (B)24(C)40 (D)4810.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是( )(A)4 (B)8(C)16 (D)无法计算二、填空题11.ABCD的周长为26 cm,对角线AC和BD相交于点O,△BOC的周长比△AOB的周长小3 cm,则AB= .12.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接C A,C B,分别延长到点M,N,使A M=A C,B N=B C,测得M N= 200 m,则A,B间的距离为 m.13.为了检查自己家新装修的房门是否为矩形,小明手中仅有一根较长的绳子,他先测了门的两组对边是相等的,然后他还需测量(注意:小明手中的绳子只能用来进行长短的测量比较).14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是.15.如图,E为正方形A B C D对角线B D上一点,且B E=B C,则∠A E C=.三、解答题16.如图,已知ABCD的对角线交于O,过O作直线分别交AB,CD的反向延长线于E,F.求证:OE=OF.17.△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.18.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.19.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.20.如图,在矩形ABCD中,AB=3 cm,BC=6 cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P,Q的速度都是1 cm/s.连接PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.21.如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.22.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD 于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.参考答案:一、选择题1.在ABCD中,∠A=5∠B,则∠C的度数是( D )(A)30°(B)60°(C)120°(D)150°2.如图,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( C )3.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( B )(A)(3,1) (B)(-4,1)(C)(1,-1) (D)(-3,1)4.如图,在△ABC中,D,E,F分别为AB,AC,BC的中点,若△DEF的周长为6,则△ABC 的周长为( C )(A)3 (B)6 (C)12 (D)245.如图,已知,矩形ABCD中,AB=3 cm,AD=9 cm,将此矩形折叠,使点B与点D重合,折痕为EF,则AE的长为( B )(A)3 cm (B)4 cm(C)5 cm (D)3 cm√36.四边形ABCD的对角线AC,BD互相平分,要使它成为矩形,需要添加的条件是( B )(A)AB=CD (B)AC=BD(C)AB=BC (D)AC⊥BD7.一个菱形的周长是20 cm,两条对角线的比是4∶3,则这个菱形的面积是( D )(A)12 cm2(B)96 cm2(C)48 cm2(D)24 cm28.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为( B )(A)4 (B)8 (C)10 (D)129.如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的周长是( A )(A)20 (B)24(C)40 (D)4810.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是( C )(A)4 (B)8(C)16 (D)无法计算二、填空题11.ABCD的周长为26 cm,对角线AC和BD相交于点O,△BOC的周长比△AOB的周长小3 cm,则AB= 8 cm .12.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接C A,C B,分别延长到点M,N,使A M=A C,B N=B C,测得M N= 200 m,则A,B间的距离为100 m.13.为了检查自己家新装修的房门是否为矩形,小明手中仅有一根较长的绳子,他先测了门的两组对边是相等的,然后他还需测量对角线是否相等(注意:小明手中的绳子只能用来进行长短的测量比较).14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C的坐标是(-5,4) .15.如图,E为正方形A B C D对角线B D上一点,且B E=B C,则∠A E C= 135°.三、解答题16.如图,已知ABCD的对角线交于O,过O作直线分别交AB,CD的反向延长线于E,F.求证:OE=OF.证明:∵四边形ABCD是平行四边形,∴OA=OC,DC∥AB,∴∠EAO=∠FCO,在△AOE与△COF中,{∠EAO=∠FCO, OA=OC,∠AOE=∠COF,17.△ABC的中线BD,CE相交于O,F,G分别是BO,CO的中点,求证:EF∥DG,且EF=DG.证明:连接DE,FG,∵BD,CE是△ABC的中线,∴D,E分别是AC,AB边中点,∴DE∥BC,DE=1BC,2BC,同理:FG∥BC,FG=12∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形,∴EF∥DG,EF=DG.18.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴DF∥BE,又∵DF=BE,∴四边形DEBF是平行四边形,又∵DE⊥AB,∴∠DEB=90°,∴平行四形DEBF是矩形.(2)解:∵四边形DEBF是矩形,∴DF∥AB,DE=BF=4,DF=BE,∴∠DFA=∠FAB,又∵AF平分∠DAB,∴∠DAF=∠FAB,∴∠DFA=∠DAF,∴DA=DF,又∵DE⊥AB,∴∠DEA=90°,在Rt△ADE中,由勾股定理,得AD=2+DE2=2+42=5,∴BE=DF=AD=5,∴AB=AE+BE=3+5=8,=AB·BF=8×4=32.∴S▱ABCD19.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8.(2)∵四边形ABCD是菱形,AC=2,AB=2,∴AC⊥BD,AO=1,∴BO=√AB2-A O2=√22-12=√3,∴BD=2√3.20.如图,在矩形ABCD中,AB=3 cm,BC=6 cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P,Q的速度都是1 cm/s.连接PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.解:(1)由已知可得,BQ=DP=t cm,AP=CQ=(6-t) cm在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=6-t,得t=3,故当t=3时,四边形ABQP为矩形.(2)∵AP=CQ 且AP ∥CQ, ∴四边形AQCP 为平行四边形, ∴当AQ=CQ 时, 四边形AQCP 为菱形. 即2+t 2=6-t 时, 四边形AQCP 为菱形, 解得t=94, 故当t=94时, 四边形AQCP 为菱形.(3)当t=94时,AQ=154 cm,CQ=154 cm, 则周长为4AQ=4×154=15(cm). 面积为CQ ·AB=154×3=454(cm 2).21.如图,正方形ABCD 的对角线交于点O,点E,F 分别在AB,BC 上(AE<BE),且∠EOF=90°,OE,DA 的延长线交于点M,OF,AB 的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长. (1)证明:∵四边形ABCD 是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON.(2)解:如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM=2+42=2√5,∴MN=√2OM=2√10.22.如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD 于点F.(1)求证:四边形AECD 是菱形; (2)若AB=6,BC=10,求EF 的长. (1)证明:∵AD ∥BC,AE ∥DC, ∴四边形AECD 是平行四边形, ∵∠BAC=90°, E 是BC 的中点, ∴AE=CE=12BC,∴四边形AECD 是菱形. (2)解:过A 作AH ⊥BC 于点H,∵∠BAC=90°, AB=6,BC=10, ∴AC=√102-62=8, ∵S △ABC =12BC ·AH=12AB ·AC, ∴AH=6×810=245,∵点E 是BC 的中点,BC=10, 四边形AECD 是菱形,∴CD=CE=5,=CE·AH=CD·EF, ∵S▱AECD.∴EF=AH=245。
人教版-八下数学第十八章《平行四边形》单元测试题及答案
进行平移后可得到一个边长为1m 的正方
形,所以它的周长为4m . (第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C. 15.C. 提示:因为ABC ?的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ?的面积不变. 16.A. 提示:由于() BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形 AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C. 19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠=∠?⊥D DAE AED BD AE 中所以在直角. 20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG, 即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ; (2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得 DGE GBF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形. 22.下面给出两种参考答案: (1)添加条件AB ∥DC,可得出该四边形是矩形; 理由:因为AB ∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD,那么该四边形是正方形. 理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂 直BD,所以四边形ABCD 是正方形. 说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联 系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 23. O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平 行四边形,又()CAN MAC CAE FAC FAE CAN CAE MAC FAC ∠+∠=∠+∠=∠∠=∠∠= ∠21,21,21所以 = 18021 ?= 90,所以四边形ABCD 是矩形. 24.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.
(完整版)人教版八年级数学下册第十八章平行四边形单元测试题(含答案).docx
人教版八年级数学下册第十八章平行四边形单元测试题一、选择题1. 如图,在平行四边形ABCD中,CE⊥ CD,C为垂足,如果∠ A=1250,则∠ BCE的度数为( B)A.550B.350C.250D.300第 6 题图2. 如图,矩形 ABCD对角线相交于点O,∠ AOB=60°,AB=4,则矩形的对角线AC为(B)A.4B. 8C. 4 √3D. 103.在□ABCD中,对角线 AC、BD交于点 O,下列式子中一定成立的是(B)A. AC⊥ BD B . OA=OC C . AC=BD D . AO=OD4.如图,在菱形 ABCD中, AB=13,对角线 BD=24,若过点 C 作 CE⊥ AB,垂足为 E,则 CE的长为( A )120B. 10C. 12240A. D.1313AB, BC, CD, DA的长度之比,其中能满足四边形ABCD是平5. 下面给出的是四边形ABCD中行四边形的是(C)A. 1∶ 2∶ 3∶ 4B. 2∶ 2∶ 3∶ 3C. 2∶ 3∶ 2∶ 3D. 2∶ 3∶ 3∶ 26.顺次连接:①矩形;②菱形;③对角线相等的四边形;④对角线垂直的四边形,各边中点所构成的四边形中,为菱形的有(C)A.①B.①②C.①③D.①③④7. 四边形中,有两条边相等,另两条边也相等,则这个四边形(C)A.一定是平行四边形B.一定不是平行四边形C.可以是平行四边形,也可以不是平行四边形D.上述答案都不对8.已知四边形 ABCD中,∠ A=∠ B=∠ C=900,如果添加一个条件,可推出四边形是正方形,那么这个条件可以是(D)A.∠ D=900B. AB=CD C.AD=BC D.BC=CD9.如图,在四边形 ABCD中,对角线 AC,BD相交于点 E,∠ CBD= 90°, BC= 4,BE= ED= 3,AC= 10,则四边形 ABCD的面积为 (D)A. 6 B . 12C. 20D. 2410.如图,在正方形 ABCD中, E 为 AB 上一点,且 AE=1,DE=2,那么正方形的面积为( C )A.3B.5C.3D.23二、填空题2 BC ,则AD= 9,CD= 6.11. □ABCD的周长是30cm,AB312.如图,在△ ABC中, AD⊥ BC,垂足为 D,E、 F 分别是 AB、AC的中点,连接 DE、DF,当△ABC满足条件AB=AC 或∠ B=∠C 等时,四边形AEDF是菱形(填写一个即可).13. 如图,在四边形ABCD中, AB= CD, BC= AD.若∠ A= 110°,则∠ C= 110__°.14.如图,将正方形纸片按如图折叠, AM为折痕,点 B 落在对角线 AC上的点 E 处,则∠ CME=___45° ___ .15.如图,四边形 ABCD是矩形,点 E 在线段 CB的延长线上,连接 DE交 AB于点 F,∠ AED=2∠CED,点 G是 DF 的中点,若BE=2, DF=8,则 AB的长为 ___2√3___ .16.在 ?ABCD中, AE⊥ BC于点 E,若 AB= 10 cm, BC= 15 cm, BE=6 cm,则 ?ABCD的面积为120__cm2.三、解答题17.如图,矩形 ABCD中, AB=4,点 E, F 分别在 AD,BC边上,且 EF⊥ BC,若矩形 ABFE∽矩形 DEFC,且相似比为 1: 2,求 AD的长.解:∵矩形ABFE∽矩形 DEFC,且相似比为1: 2,∴AB =AE =1,DE DC 2∵四边形ABCD为矩形,∴C D=AB=4∴4 =AE =1,DE 42∴D E=8, AE=2,∴A D=AE+DE=2+8=10.18.如图,在 ?ABCD中, E, F 是对角线 AC上的两点,且 AE= CF,求证:∠ AED=∠ CFB.证明:∵四边形ABCD是平行四边形,∴AD=BC, AD∥BC.∴∠ DAE=∠ BCF.在△ ADE和△ CBF中,AD= CB,∠DAE=∠ BCF,AE= CF,∴△ ADE≌△ CBF(SAS).∴∠ AED=∠ CFB.19.如图,点 E、 F 在正方形 ABCD的边 BC、 CD上, BE=CF.(1) AE与 BF 相等吗?为什么?(2) AE与 BF 是否垂直?说明你的理由.( 1)相等;证明:∵四边形ABCD是正方形,∴∠ABC=∠ C, AB=BC,又∵ BE=CF,∴△ ABE≌△ BCF,∴ AE=CF.(2)垂直,证明:∵△ ABE≌△ BCF,∴∠ AEB=∠ BFC.∵∠ FBC+∠ BFC=900,∴∠ FBC+∠ AEB=900.∴∠ BGE=900,故 AE⊥ BF.20. 如图,□ ABCD与□ABEF中, BC=BE,∠ ABC=∠ ABE,求证:四边形EFDC是矩形。
人教版八年级数学下册 第18章 《平行四边形》 单元测试卷(包含答案)
人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是() A.22 B.20 C.22或20 D.182. 如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是() A.20 cm B.21 cmC.22 cm D.23 cm4.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE5.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小为( ) A.150° B.130° C.120° D.100°6.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤7. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49.如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG 于点T,交FG于点P,则GT的长为()A.2 2 B.2 C. 2 D.110. 如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为______ .12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13. 已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。
人教版八年级数学下册 第18章 平行四边形 单元练习卷含答案
人教版八年级数学下册第18章平行四边形单元练习卷含答案一.选择题(共6小题)1.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直2.如图在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16B.14C.8D.73.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④4.在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=()A.35°B.45°C.50°D.55°5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE ⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.B.C.D.56.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD 于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤二.填空题(共6小题)7.如图,E、F是平行四边形ABCD的对角线BD上的点,要使四边形AFCE是平行四边形,还需添加的一个条件是(只需添加一个正确的即可).8.如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=,DF=2,则∠EDF=°,线段AB的长度=.9.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为.10.如图,在矩形ABCD中,过点D作DE⊥AC,垂足为E,延长线ED至F,使DF=AC,连接BF交AD于G.若AB=1,AD=2,则∠ABG=,GF=.11.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.12.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是.三.解答题13.如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=2,FN=1,求BN的长.14.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.15.如图,已知E是▱ABCD中BC边的中点,AC是对角线,连结AE并延长AE交DC的延长线于点F,连结BF.(1)求证:四边形ABFC是平行四边形;(2)若∠AEC=2∠ABC,求证:四边形ABFC为矩形.16.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.17.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.18.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.19.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.参考答案与试题解析一.选择题(共6小题)1.在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.2.如图在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16B.14C.8D.7【分析】如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD的延长线于M.构建S△BEG=S△BCE+S ECG﹣S△BCG计算即可;【解答】解:如图,取BC中点H,连接AH,连接EC交AD于N,作EM⊥CD交CD的延长线于M.∵BC=2AB,BH=CH,∠ABC=60°,∴BA=BH=CH,∴△ABH是等边三角形,∴HA=HB=HC,∴∠BAC=90°,∴∠ACB=30°,∵EC⊥BC,∠BCD=180°﹣∠ABC=120°,∴∠ACE=60°,∠ECM=30°,∵BC=2AB=8,∴CD=4,CN=EN=2,∴EC=4,EM=2,∴S△BEG=S△BCE+S ECG﹣S△BCG=×8×4+×2×2﹣S平行四边形ABCD=16+2﹣4=14故选:B.3.如图,菱形ABCD中,∠BAD=60,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①2OG=AB;②与△EGD 全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形,其中正确的是()A.①④B.①③④C.①②③D.②③④【分析】由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG =CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,∴2OG=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△DEG(SAS),△BCO≌△DEG(SAS),△CDO≌△DEG(SAS),△AOD≌△DEG(AAS),△ABG≌△DEG(SAS),△BDG≌△DEG(SAS),∴②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD(ASA),△ABF∽△OGF(ASA),∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选:A.4.在菱形ABCD中,∠A=110°,E、F分别是边AB和BC的中点,EP⊥CD,垂足为P,则∠EPF=()A.35°B.45°C.50°D.55°【分析】延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而求得∠FPC的度数,根据余角的定义即可得到结果.【解答】解:如图,延长PF交AB的延长线于点G.在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵∠BEP=90°,∴EF=PG=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=70°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE=(180°﹣70°)=55°,∴∠FPC=55°,∴∠EPF=90°﹣55°=35°,故选:A.5.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE ⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.B.C.D.5【分析】连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【解答】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=8,BC=6,∴AB=10,∴PC的最小值为:=4.8.∴线段EF长的最小值为4.8.故选:B.6.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD 于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤【分析】①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.【解答】证明:①在正方形ABCD中,∠ADC=∠C=90°∵EF∥CD∴∠EFD=90°,得矩形EFDC.在Rt△FDG中,H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD∴∠AFH=∠AFE+∠GFH=90°+45°=135°∠EGH=180°﹣∠EGB=180°﹣45°=135°∴∠AFH=∠EGH∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG∴∠AHF+AHG=∠EHG+∠AHG即∠FHG=∠AHE=90°∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠FAH=∠GEH,∵∠BAF=CEG=90°∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH∴△EHF≌△AHD所以④正确.⑤设EC=FD=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,AH2=(x)2+(x)2=x2,S四边形DHEC=S梯形EGDC﹣S△EGH=(2x+3x)•x﹣×=2x2S△AHE=AH•EH=AH2=x2∴==.所以⑤不正确.故选:B.二.填空题(共6小题)7.如图,E、F是平行四边形ABCD的对角线BD上的点,要使四边形AFCE是平行四边形,还需添加的一个条件是BF=DE(答案不唯一)(只需添加一个正确的即可).【分析】由平行四边形的判定定理,通过对角线互相平分得出结论.【解答】解:添加的一个条件为BF=DE;理由如下:∵四边形ABCD是平行四边形,∴AO=CO、BO=DO,∵BF=DE,∴OE=OF,∴四边形AFCE是平行四边形;故答案为:BF=DE(答案不唯一).8.如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=,DF=2,则∠EDF=45 °,线段AB的长度=2.【分析】延长FD到M使得DM=DF,连接AM、EM、EF,作EN⊥DF于N,先证明∠EDF=45°,在Rt△EMN中求出EM,再证明△AEM是等腰直角三角形即可解决问题.【解答】解:如图,延长FD到M使得DM=DF,连接AM、EM、EF,作EN⊥DF于N.∵∠C=90°,∴∠BAC+∠B=90°,∵AE=AD,BF=BD,∴∠AED=∠ADE,∠BDF=∠BFD,∴2∠ADE+∠BAC=180°,2∠BDF+∠B=180°,∴2∠ADE+2∠BDF=270°,∴∠ADE+∠BDF=135°,∴∠EDF=180°﹣(∠ADE+∠BDF)=45°,∵∠END=90°,DE=,∴∠EDF=∠DEN=45°,∴EN=DN=1,在△DAM和△DBF中,,∴△ADM≌△BDF(SAS),∴BF=AM=BD=AD=AE,∠MAD=∠B,∴∠MAE=∠MAD+∠BAC=90°,∴EM=AM,在Rt△EMN中,∵EN=1,MN=DM+DN=3,∴EM==,∴AM=,AB=2AM=2.故答案为:45,2.9.平面直角坐标系中,四边形ABCD的顶点坐标分别是A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为(4,4)或(﹣5,).【分析】作AM⊥BC于M,由题意得出AD∥BC,OB=4,OC=1,OM=1得出AD=BC=5,BM=3,CM=2,①当点D在y轴的右侧时,由菱形的性质得出AB=BC=5,由勾股定理得出AM==4,得出点D的坐标为(4,4);②当点D在y轴的左侧时,由菱形的性质得出AB=BC=5,由勾股定理得出AM==,得出点D的坐标为(﹣6,).【解答】解:作AM⊥BC于M,∵A(﹣1,m)、B(﹣4,0)、C(1,0)、D(a,m),且m>0,∴AD∥BC,OB=4,OC=1,OM=1,∴AD=BC=5,BM=3,CM=2,分两种情况:①当点D在y轴的右侧时,如图1所示:∵以点A、B、C、D为顶点的四边形是菱形,∴AB=BC=5,∴AM===4,∴点D的坐标为(4,4);②当点D在y轴的左侧时,如图2所示:∵以点A、B、C、D为顶点的四边形是菱形,∴AB=BC=5,∴AM===,∴点D的坐标为(﹣6,);综上所述,若以点A、B、C、D为顶点的四边形是菱形,则点D的坐标为(4,4)或(﹣6,);故答案为:(4,4)或(﹣6,).10.如图,在矩形ABCD中,过点D作DE⊥AC,垂足为E,延长线ED至F,使DF=AC,连接BF交AD于G.若AB=1,AD=2,则∠ABG=45°,GF=2.【分析】如图,作FH⊥AD交AD的延长线于H.由△ADC≌△FHD(AAS),推出FH=AD=2,DH=CD=1,由AB∥FH,推出AG:GH=AB:FH=1:2,由AH=AD+DH=2+1=3,推出AG =1,GH=2,由此即可解决问题;【解答】解:如图,作FH⊥AD交AD的延长线于H.∵四边形ABCD是矩形,∴AD=BC=2,AB=CD=1,∠ADC=∠CDH=∠H=∠BAD=90°,∵∠ACD+∠CDE=90°,∠CDE+∠FDH=90°,∴∠ACD=∠FDH,∵AC=DF,∴△ADC≌△FHD(AAS)∴FH=AD=2,DH=CD=1,∵AB∥FH,∴AG:GH=AB:FH=1:2,∵AH=AD+DH=2+1=3,∴AG=1,GH=2,∴AB=AG=1,GH=FH=2,∴∠ABG=45°,FG==2,故答案为45°,2.11.在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.12.如图,在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么CD的长是 6.5 .【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD=AB.【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD=AB=6.5,故答案是:6.5.三.解答题13.如图,平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N.(1)求证:四边形CMAN是平行四边形.(2)已知DE=2,FN=1,求BN的长.【分析】(1)欲证明四边形AMCN是平行四边形,只要证明CM∥AN,AM∥CN即可;(2)首先证明△MDE≌△NBF,推出ME=NF=1,在Rt△DME中,根据勾股定理即可解决问题;【解答】证明:∵四边形ABCD是平行四边形,∴CD∥AB,∵AM⊥BD,CN⊥BD,∴AM∥CN,∴CM∥AN,AM∥CN,∴四边形AMCN是平行四边形.(2)∵四边形AMCN是平行四边形,∴CM=AN,∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴DM=BN,∠MDE=∠NBF,在△MDE和△NBF中,,∴△MDE≌△NBF,∴ME=NF=1,在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,∴BN=DM===.14.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.(1)求证:四边形ADCE是为平行四边形;(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.【分析】(1)首先证明△AFE≌△DFB可得AE=BD,进而可证明AE=CD,再由AE∥BC可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由平行四边形的性质、等腰三角形的判定即可解决问题;【解答】(1)证明:∵AD是△ABC的中线,∴BD=CD,∵AE∥BC,∴∠AEF=∠DBF,在△AFE和△DFB中,,∴△AFE≌△DFB(AAS),∴AE=BD,∴AE=CD,∵AE∥BC,∴四边形ADCE是平行四边形;(2)图中所有与AE相等的边有:AF、DF、BD、DC.理由:∵四边形ADCE是平行四边形,∴AE=DC,AD∥EC,∵BD=DC,∴AE=BD,∵BE平分∠AEC,∴∠AEF=∠CEF=∠AFE,∴AE=AF,∵△AFE≌△DFB,∴AF=DF,∴AE=AF=DF=CD=BD.15.如图,已知E是▱ABCD中BC边的中点,AC是对角线,连结AE并延长AE交DC的延长线于点F,连结BF.(1)求证:四边形ABFC是平行四边形;(2)若∠AEC=2∠ABC,求证:四边形ABFC为矩形.【分析】(1)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,(2)根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE 的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE =∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∵,∴△ABE≌△FCE(ASA);∴AB=CF,又∵四边形ABCD为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形,(2)∵四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC,则四边形ABFC为矩形.16.如图,以△ABC的各边为边长,在边BC的同侧分别作正方形ABDI,正方形BCFE,正方形ACHG,连接AD,DE,EG.(1)求证:△BDE≌△BAC;(2)①设∠BAC=α,请用含α的代数式表示∠EDA,∠DAG;②求证:四边形ADEG是平行四边形;(3)当△ABC满足什么条件时,四边形ADEG是正方形?请说明理由.【分析】(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC,(2)由△BDE≌△BAC,可得全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;(3)由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由▱ABDI 和▱ACHG的性质证得,AC=AB.【解答】(1)证明:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),(2)①解:∵△BDE≌△BAC,∠ADB=45°,∴∠EDA=α﹣45°,∵∠DAG=360°﹣45°﹣90°﹣α=225°﹣α,②证明:∵△BDE≌△BAC,∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(3)解:结论:当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.理由:由①知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.17.如图,已知正方形ABCD,P是对角线AC上任意一点,PM⊥AD,PN⊥AB,垂足分别为点M和N,PE⊥PB交AD于点E.(1)求证:四边形MANP是正方形;(2)求证:EM=BN.【分析】(1)根据有三个角是直角的四边形是矩形证明四边形MANP是矩形,再根据角平分线的性质得:PM=PN,可得结论;(2)证明△EPM≌△BPN,可得结论.【解答】证明:(1)∵四边形ABCD是正方形,∴∠DAB=90°,AC平分∠DAB,(1分)∵PM⊥AD,PN⊥AB,∴∠PMA=∠PNA=90°,∴四边形MANP是矩形,(2分)∵AC平分∠DAB,PM⊥AD,PN⊥AB,∴PM=PN,(3分)∴四边形MANP是正方形;(4分)(2)∵四边形ABCD是正方形,∴PM=PN,∠MPN=90°,∵∠EPB=90°,∴∠MPE+∠EPN=∠NPB+∠EPN=90°,∴∠MPE=∠NPB,(5分)在△EPM和△BPN中,∵,∴△EPM≌△BPN(ASA),(6分)∴EM=BN.(7分)18.如图,在平行四边形ABCD中,点O是对角线AC的中点,点E是BC上一点,且AB=AE,连接EO并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)若AH=3,HE=1,求△ABE的面积;(2)若∠ACB=45°,求证:DF=CG.【分析】(1)利用勾股定理即可得出BH的长,进而运用公式得出△ABE的面积;(2)过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,进而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=CG.【解答】解:(1)∵AH=3,HE=1,∴AB=AE=4,又∵Rt△ABH中,BH==,∴S△ABE=AE×BH=×4×=;(2)如图,过A作AM⊥BC于M,交BG于K,过G作GN⊥BC于N,则∠AMB=∠AME=∠BNG=90°,∵∠ACB=45°,∴∠MAC=∠NGC=45°,∵AB=AE,∴BM=EM=BE,∠BAM=∠EAM,又∵AE⊥BG,∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,∴∠MAE=∠NBG,设∠BAM=∠MAE=∠NBG=α,则∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,∴AB=BG,∴AE=BG,在△AME和△BNG中,,∴△AME≌△BNG(AAS),∴ME=NG,在等腰Rt△CNG中,NG=NC,∴GC=NG=ME=BE,∴BE=GC,∵O是AC的中点,∴OA=OC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE,∠AFO=∠CEO,∴△AFO≌△CEO(AAS),∴AF=CE,∴AD﹣AF=BC﹣EC,即DF=BE,∴DF=BE=CG.19.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.【分析】(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形ABGE是平行四边形,再根据菱形的判定即可得出结论;(2)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,根据勾股定理可得62+x2=(18﹣x)2,BE=10,得到OB=BE=5,设PE =y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,根据勾股定理可得62+(8﹣y)2=y2,解得y=,在Rt△BOP中,根据勾股定理可得PO==,由PQ=2PO 即可求解.【解答】(1)证明:∵PQ垂直平分BE,∴PB=PE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:∵O,F分别为PQ,AB的中点,∴AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,62+x2=(18﹣x)2,解得x=8,BE=18﹣x=10,∴OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,62+(8﹣y)2=y2,解得y=,在Rt△BOP中,PO==,∴PQ=2PO=.。
人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)
第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。
D.8错误!未找到引用源。
3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。
C.4-2 错误!未找到引用源。
D.3 错误!未找到引用源。
-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OlAOC人教版 八下数学第十八章《平行四边形》单元测试题及答案【1】一、填空题(每空 2 分,共 28 分)1. 已知在□ABCD 中,AB =14 cm ,BC =16 cm ,则此平行四边形的周长为 cm .2. 要说明一个四边形是菱形,可以先说明这个四边形是形,再说明(只写一种方法)3. 如图,正方形 ABCD 的对线 AC 、BD 相交于点 O .,那么图中共有个等腰直角三角形.4. 把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的拼合而成;(2)菱形可以由两个能够完全重合的拼合而成;(3)矩形可以由两个能够完全重合的拼合而成.5. 矩形的两条对角线的夹角为60 ,较短的边长为 12 cm ,则对角线长为cm .6. 若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .7. 平行四边形的周长为 24 cm ,相邻两边长的比为 3:1,那么这个平行四边形较短的边长为cm .8. 根据图中所给的尺寸和比例,可知这个“十”字标志的周长为m .ADBDBC(第 8 题) (第 10 题) 第 3 题9. 已知菱形的两条对角线长为 12 cm 和 6 cm ,那么这个菱形的面积为cm 2 .10. 如图, l 是四边形 ABCD 的对称轴,如果 AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是.二、选择题(每题3 分,共24 分)11.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有( )A.4 种B.5 种C.7 种D.8 种12.下列说法中,错误的是( )A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形13.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有( )A.1个B.2 个C.3 个D.4 个14.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是( )A.矩形B.菱形C.正方形D.菱形、矩形或正方形15.如图,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中∆ABC 的面积()A.变大B.变小C.不变D.无法确定A aA DEb B F C(第15 题) (第16 题) (第17 题)17.如图,在∆ABC 中,AB=AC=5,D 是BC 上的点,DE∥AB 交AC 于点E,DF∥AC 交AB 于点F,那么四边形AFDE 的周长是( )A.5B.10C.15D.2018.已知四边形ABCD 中,AC 交BD 于点O,如果只给条件“AB∥CD”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD”,那么四边形ABCD 一定是平行四边形;DG(2)如果再加上条件“ ∠BAD = ∠BCD ”,那么四边形 ABCD 一定是平行四边形;(3)如果再加上条件“AO=OC ”,那么四边形 ABCD 一定是平行四边形;(4)如果再加上条件“ ∠DBA = ∠CAB ”,那么四边形 ABCD 一定是平行四边形其中正确的说法是 ( )A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4)三、解答题(第 19 题 8 分,第 20~23 题每题 10 分,共 48 分)19. 如图, □ABCD 中,DB=CD , ∠C = 70 ,AE ⊥BD 于 E .试求∠DAE 的度数.ADBC(第 19 题)20. 如图, □ABCD 中,G 是 CD 上一点,BG 交 AD 延长线于 E ,AF=CG , ∠DGE = 100 .(1) 试说明 D F=BG ; (2)试求∠AFD 的度数.ECAFB(第 20 题)21. 工人师傅做铝合金窗框分下面三个步骤进行:(1) 先截出两对符合规格的铝合金窗料(如图①),使 AB=CD,EF=GH ;(2) 摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是: ;(3) 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:.ED COAB22.已知四边形ABCD 中,AB=CD,AC=BD,试添加适当的条件使四边形ABCD 成为特殊的平行四边形,并说明理由.23.如图,直线MN 经过线段AC 的端点A,点B、D分别在∠NAC 和∠MAC 的角平分线AE、AF 上,BD 交AC 于点O,如果O 是BD 的中点,试找出当点O 在AC 的什么位置时,四边形ABCD 是矩形,并说明理由. FMEN附加题24.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.ADBC答案1.60.2.平行四边形;有一组邻边相等.3.8. 提示:它们是∆AOB, ∆BOC, ∆COD, ∆AOD, ∆ABD, ∆ABC, ∆BCD, ∆ACD.4.(1)等腰直角三角形; (2)等腰三角形; (3)直角三角形.5.24.6. 135; 45.7.3.8.4. 提示:如图所示,将“十”字标志的某些边进行平移后可得到一个边长为 1 m 的正方形,所以它的周长为4 m .(第8 题)9.36. 提示:菱形的面积等于菱形两条对角线乘积的一半.10.(1)(2)(4). 提示:四边形ABCD 是菱形.11.B. 12.D. 13.C. 14.C.15.C. 提示:因为∆ABC 的底边BC 的长不变,BC 边上的高等于直线a, b 之间的距离也不变,所以∆ABC 的面积不变.1 (90 -∠BAF ).16.A. 提示:由于∠FAE是由∠DAE通过折叠后得到的, 所以∠FAE =∠DAE =217.B. 提示:先说明DF=BF,DE=CE,所以四边形AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC.18.C.19.因为BD=CD,所以∠DBC =∠C, 又因为四边形ABCD 是平行四边形,所以AD∥BC ,所以∠D =∠DBC, 因为AE ⊥BD, 所以在直角∆AED中, ∠DAE = 90 -∠D = 90 - 70 = 20 .20.(1)因为四边形ABCD 是平行四边形,所以AB=DC,又AF=CG,所以AB-AF=DC-CG,即GD=BF,又DG∥BF,所以四边形DFBG 是平行四边形,所以DF=BG;(2)因为四边形DFBG 是平行四边形,所以DF∥GB,所以∠GBF =∠AFD ,同理可得∠GBF =∠DGE ,所以∠AFD =∠DGE = 100 .21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形.22.下面给出两种参考答案:(1)添加条件AB∥DC,可得出该四边形是矩形;理由:因为AB∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形.(2)添加条件AC 垂直平分BD,那么该四边形是正方形.理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂直BD,所以四边形ABCD 是正方形.说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.23.O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平行四边形,又∠FAC =1∠MAC, ∠CAE =1∠CAN , 所以∠FAE =∠FAC +∠CAE =1 (∠MAC +∠CAN )2 2 2= 1⨯180 = 90 ,所以四边形ABCD 是矩形. 224.如图所示,连结对角线AC、BD,过A、B、C、D 分别作BD、AC、BD、AC 的平行线,且这些平行线两两相交于E、F、G、H,四边形EFGH 即为符合条件的平行四边形.E A HDBGF C“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。