第一章答案(可编辑修改word版)
保险精算第1章习题答案(人民大学出版社)(可编辑修改word版)
第 1 章 习题答案1.已知 a (t ) = at 2 + b ,如果在 0 时投资 100 元,能在时刻 5 积累到 180 元,试确定在时刻 5 投资 300 元,在时刻 8 的积累值。
解:A (0) = k.a (0) = 100(a ⨯ 02 + b ) = 100 或者由 a (0) = 1得b = 1A (5) = 100 ⨯ a (5) = 100(a ⨯ 52 +1) = 180得 a = 0.032以第 5 期为初始期,则第 8 期相当于第三期,则对应的积累值为:A (3) = 300 ⨯(0.032 ⨯ 32 +1) = 386.42.(1)假设 A(t)=100+10t, 试确定i 1 , i 3 , i 5 。
(2)假设 A (n ) = 100 ⨯(1.1)n,试确定 i 1 , i 3 , i 5 。
解:(1)A(0)=100;A(1)=100+10×1=110;A(2)=120;A(3)=130;A(4)=140;A(5)=150;;。
; ;。
;; 。
3. 已知投资 500 元,3 年后得到 120 元的利息,试分别确定以相同的单利利率、复利利率投资 800 元在 5 年后的积累值。
解:单利条件下:得; 则投资 800 元在 5 年后的积累值: ;在复利条件下:得 则投资 800 元在 5 年后的积累值:。
4. 已知某笔投资在 3 年后的积累值为 1000 元,第 1 年的利率为 i 1 = 10% ,第 2 年的利率( 2) A(0)=100;; ;为i 2 = 8% ,第 3 年的利率为 解: 得元。
i 3 = 6% ,求该笔投资的原始金额。
5. 确定 10000 元在第 3 年年末的积累值:(1) 名义利率为每季度计息一次的年名义利率 6%。
(2) 名义贴现率为每 4 年计息一次的年名义贴现率 6%。
解:(1) 元(2)得10000 元在第 3 年年末的积累值为:元6. 设 m >1,按从大到小的次序排列 ,, ,与 。
电路分析基础练习题及答案第一章精选全文
可编辑修改精选全文完整版电路分析基础练习题及答案第1章 习题一、填空题1-1.通常,把单位时间内通过导体横截面的电荷量定义为 。
1-2.习惯上把 运动方向规定为电流的方向。
1-3.单位正电荷从a 点移动到b 点能量的得失量定义为这两点间的 。
1-4.电压和电流的参考方向一致,称为 方向。
1-5.电压和电流的参考方向相反,称为 方向。
1-6.电压和电流的负值,表明参考方向与实际方向 。
1-7.若P>0(正值),说明该元件 功率,该元件为 。
1-8.若P<0(负值),说明该元件 功率,该元件为 。
1-9. 定律体现了线性电路元件上电压、电流的约束关系,与电路的连接方式无关;定律则是反映了电路的整体规律,其中 定律体现了电路中任意结点上汇集的所有 的约束关系, 定律体现了电路中任意回路上所有 的约束关系,具有普遍性。
1-10.基尔霍夫电流定律(KCL )说明在集总参数电路中,在任一时刻,流出(或流出)任一节点或封闭面的各支路电流的 。
1-11.基尔霍夫电压定律(KVL )说明在集总参数电路中,在任一时刻,沿任一回路巡行一周,各元件的 代数和为零。
二、选择题1-1.当电路中电流的参考方向与电流的真实方向相反时,该电流A 、一定为正值B 、一定为负值C 、不能肯定是正值或负值1-2.已知空间有a 、b 两点,电压U ab =10V ,a 点电位为V a =4V ,则b 点电位V b 为A 、6VB 、-6VC 、14V1-3.当电阻R 上的u 、i 参考方向为非关联时,欧姆定律的表达式应为A 、Ri u =B 、Ri u -=C 、 i R u =1-4.一电阻R 上u 、i 参考方向不一致,令u =-10V ,消耗功率为0.5W ,则电阻R 为A 、200ΩB 、-200ΩC 、±200Ω1-5.两个电阻串联,R 1:R 2=1:2,总电压为60V ,则U 1的大小为A 、10VB 、20VC 、30V1-6.已知接成Y 形的三个电阻都是30Ω,则等效Δ形的三个电阻阻值为A 、全是10ΩB 、两个30Ω一个90ΩC 、全是90Ω1-7.电阻是 元件,电感是 的元件,电容是 的元件。
材料科学基础习题库第一章-晶体结构(可编辑修改word版)
(一).填空题1.同非金属相比,金属的主要特性是2.晶体与非晶体的最根本区别是3.金属晶体中常见的点缺陷是,最主要的面缺陷是。
4.位错密度是指,其数学表达式为。
5.表示晶体中原子排列形式的空间格子叫做,而晶胞是指。
6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是,而面心立方晶格是。
7.晶体在不同晶向上的性能是,这就是单晶体的现象。
一般结构用金属为晶体,在各个方向上性能,这就是实际金属的现象。
8.实际金属存在有、和三种缺陷。
位错是缺陷。
实际晶体的强度比理想晶体的强度得多。
9.常温下使用的金属材料以晶粒为好。
而高温下使用的金属材料在一定范围内以晶粒为好。
‘10.金属常见的晶格类型是、、。
11.在立方晶格中,各点坐标为:A(1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为,OC晶向指数为,OD晶向指数为。
12.铜是结构的金属,它的最密排面是,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为。
13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有,属于面心立方晶格的有,属于密排六方晶格的有。
14.已知Cu的原子直径为0.256nm,那么铜的晶格常数为。
1mm3Cu中的原子数为。
15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为()16.在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为.17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有的结合方式。
18.同素异构转变是指。
纯铁在温度发生和多晶型转变。
19.在常温下铁的原子直径为0.256nm,那么铁的晶格常数为。
20.金属原子结构的特点是。
21.物质的原子间结合键主要包括、和三种。
2.大部分陶瓷材料的结合键为。
23.高分子材料的结合键是。
第一章蛋白质的结构与功能(试题及答案)(可编辑修改word版)
第一章蛋白质的结构与功能[测试题]一、名词解释:1.氨基酸 2.肽 3.肽键 4.肽键平面 5.蛋白质一级结构 6.α-螺旋 7.模序8.次级键 9.结构域 10.亚基 11.协同效应 12.蛋白质等电点 13.蛋白质的变性 14.蛋白质的沉淀15.电泳16.透析 17.层析 18.沉降系数19.双缩脲反应20.谷胱甘肽二、填空题21.在各种蛋白质分子中,含量比较相近的元素是,测得某蛋白质样品含氮量为15.2 克,该样品白质含量应为克。
22.组成蛋白质的基本单位是,它们的结构均为,它们之间靠键彼此连接而形成的物质称为。
23.由于氨基酸既含有碱性的氨基和酸性的羧基,可以在酸性溶液中带电荷,在碱性溶液中带电荷,因此,氨基酸是电解质。
当所带的正、负电荷相等时,氨基酸成为离子,此时溶液的 pH 值称为该氨基酸的。
24.决定蛋白质的空间构象和生物学功能的是蛋白质的级结构,该结构是指多肽链中的排列顺序。
25.蛋白质的二级结构是蛋白质分子中某一段肽链的构象,多肽链的折叠盘绕是以为基础的,常见的二级结构形式包括,,和。
26.维持蛋白质二级结构的化学键是,它们是在肽键平面上的和之间形成。
27.稳定蛋白质三级结构的次级键包括,,和等。
28.构成蛋白质的氨基酸有种,除外都有旋光性。
其中碱性氨基酸有,,。
酸性氨基酸有,。
29.电泳法分离蛋白质主要根据在某一pH 值条件下,蛋白质所带的净电荷而达到分离的目的,还和蛋白质的及有一定关系。
30.蛋白质在pI 时以离子的形式存在,在pH>pI 的溶液中,大部分以离子形式存在,在pH<pI 时,大部分以离子形式存在。
31.将血浆蛋白质在pH8.6 的巴比妥缓冲液中进行醋酸纤维素薄膜电泳,它们向极泳动,依次分为,,,,。
32.在pH6.0 时,将一个丙、精、谷三种氨基酸的混合液进行纸上电泳,移向正极的是,移向负极的是,留在原点的是。
33.维持蛋白质胶体稳定的两个因素包括和,在蛋白质溶液中加入高浓度的中性盐使蛋白质沉淀的方法称为,该方法一般不引起蛋白质。
现代通信原理答案WORD版(_罗新民)指导书_第一章_绪论_习题详解1
第一章 绪论1-1英文字母中e 出现概率为0.105, c 出现的概率为0.023, j 出现的概率为0.001。
试分别计算它们的信息量。
解题思路:考查信息量的基本概念,用公式1log ()a I P=。
底数a 一般采用2,这时信息量单位为bit解:bit P I e e 25.3105.0log log 22≈-=-=,bit P I c c 44.5023.0log log 22≈-=-=,bit P I j j 97.9001.0log log 22≈-=-=1-2有一组12个符号组成的消息,每个符号平均有四种电平,设四种电平发生的概率相等,试求这一组消息所包含的信息量。
若每秒传输10组消息,则一分钟传输多少信息量? 解题思路:考查平均信息量及信息量叠加的概念。
每个符号有四种等概电平可能,因此先用4211()log i i iH x P P ==∑计算其平均信息量。
整个消息的总信息量是12个符号的各自平均信息量(相等)的和。
解:(1)12=N ,4,3,2,1,41==i P i 。
每个符号的平均信息量为24log 1log 22===-iP I 比特/符号,则由12个符号组成的一组消息的信息量为bit I N I 24*==-(2)每秒传输10组消息,则一分钟传输10×60组信息,因此信息传输速率为10×60×24比特/分钟=14400比特/分钟1-3消息序列是由4种符号0、1、2、3组成的,四种符号出现的概率分别为3/8、1/4、1/4、1/8,而且每个符号出现都是相互独立的,求下列长度为58个符号组成的消息序列“2 0 1 0 2 0 1 3 0 3 2 1 3 0 0 1 2 0 3 2 1 0 1 0 0 3 2 1 0 1 0 0 2 3 1 0 2 0 0 2 0 1 0 3 1 2 0 3 2 1 0 0 1 2 0 2 1 0”的信息量和每个符号的平均信息量。
(完整word)第一章习题答案
选择题、1、MCS—51系列单片机的CPU主要由 A 组成。
A、运算器、控制器B、加法器、寄存器C、运算器、加法器D、运算器、译码器2、单片机中程序计数器用来 C 。
A、存放指令B、存放正在执行的指令的地址C、存放下一条指令的地址D、存放上一条指令的地址3、8031单片机的/EA引脚 A 。
A、必须接地B、必须接5V电源C、可悬空D、按需要而定4、外部扩展存储器时,分时复用数据线和地址线的是 A 。
A、P0口B、P1口C、P2口D、P3口5、PSW中的RS1、RS0用来 A .A、选择工作寄存器组B、指示复位C、选择定时器D、选择工作方式6、单片机复位后,PC的内容为 A 。
A、0000HB、0003HC、000BHD、0800H7、intel8051单片机是 C 位的。
A、16B、4C、8D、准168、程序是以 C 形式存放在程序存储器中的。
A、C语言源程序B、汇编程序C、二进制编码D、BCD码9、MCS-51系列单片机的程序计数器PC是16位的,其寻址范围是 D .A、8KBB、16KBC、32KBD、64KB10、MCS—51系列单片机的ALE引脚是以晶振频率的 C 固定频率输出正脉冲,因此它可以作为外部时钟或外部定时脉冲使用。
A、1/2B、1/4C、1/6D、1/12(1) A (2)C (3)A (4) A (5)A(6) A (7)C (8)C (9) D (10)C填空题1、单片机应用系统是由硬件系统和软件系统组成的。
2、除了单片机和电源外,单片机最小系统还包括时钟和复位电路。
3、在进行单片机应用系统设计时,除了电源和地线引脚外, XTAL1 、 XTAL2 、 RST 和EA引脚信号必须连接相应电路。
4、MCS—51单片机的XTAL1和XTAL2 是时钟电路引脚。
5、MCS—51系列单片机的存储器共有4个物理存储空间,即片内数据存储器、片内程序存储器、片外数据存储器和片外程序存储器 .6、MCS—51系列单片机应用程序一般存放在程序存储器中。
接入技术完整版答案(可编辑修改word版)
接入网技术1-3 章习题解答第一章:网络演进与法规制约一、判断题1、接入网最初的原型是用户环路,仅仅是一种专用设施,附属于电话网甚至附属于特定控交换机。
(∨)2、接入网的竞争给运营商带来了挑战和机遇,同时也给用户带来了更多的选择.。
(∨)3、传统的三网指的是电话网、有线电视网和互联网,随着技术的发展,网络融合是必然趋势。
(∨)二、选择题(说明:本选择题为不定项选择,答案至少有一个。
)1、“最后一公里”可理解为(A )A: 局端到用户端之间的接入部分B: 局端到用户端之间的距离为1 公里C: 数字用户线为1 公里D: 数字用户线为1 公里2、“fist mile”可理解为(AC )A: 用户端到局端之间的接入部分B: 用户端到局端之间的距离为一公里C: 对接入网的形象称呼D: 专指数字用户线部分三、填空题1、last mile 和first mile 都是对接入网的称呼,表示核心网和用户驻地网之间的接入部分。
2、接入网是将用户设备_连接到核心网的网络。
接入网可以只连接一台具体的用户设备,也可以连接由多台用户设备组成的用户驻地网_。
3、AN 的英文全称是Access Network ,对应的中文名称是接入网。
4、现代通信网络的两大基本部件是核心网和接入网。
5、接入网所具有的相对独立性和完整性为用户提供了更多选择的同时,也加剧了网络运营商的竞争。
6、接入网的概念最早是由英国电信BT 提出的。
7、制定接入网标准的机构是ITU-T 。
迄今已制定了两个标准,这两个标准的名称分别是和G.902 和Y.1231 。
四、问答题1、接入网的市场竞争给通信运营商带来了怎样的影响?参考答案:①接入网的市场竞争给通信运营商带来了新的挑战与机会。
②挑战主要体现在:a、争抢用户,满足多业务需求;b、提高服务质量;c、提供新业务;d、发展各种宽带接入技术;e、可能会被淘汰。
③机会主要体现在:a、给新运营商带来契机;b、庞大的市场、高额的利润。
高中生物 第1章答案
第一章答案:
第1节细胞是生命活动的基本单位
一、细胞学说
1、施莱登和施旺
2、①细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成
②细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体生命起作用。
③新细胞是由老细胞分裂产生的。
3、①:动物和植物的统一性生物界的统一性②:细胞水平
二、细胞是基本的生命系统
1、病毒,活细胞,寄生,核酸(DNA 或RNA),蛋白质
2、基本单位
3、细胞、组织、器官、系统、个体、种群、群落、生态系统、生物圈
4、系统、个体、细胞
5、细胞
6、同种生物所有个体
7、所有生物(动物、植物、微生物)
8、生物群落、无机环境
第 2 节细胞的多样性和统一性
一、高倍镜的使用步骤1 低倍镜、视野中央2 转换器 3 光圈、反光镜、4 细准焦
螺旋
二、显微镜使用常识1 大,暗,少。
小,亮,多。
2 有,长。
无,短。
3 物镜、目镜。
长度或宽度
三、细胞种类
细胞内有无以核膜为界限的细胞核
1、染色体核糖体细胞壁
2、细胞核
3、细菌
4、真菌
5、有无细胞结构RNA 病毒、RNA 病毒、DNA 病毒。
《误差理论与数据处理(第7版)》费业泰习题解答(可编辑修改word版)
《误差理论与数据处理》(第七版)习题及参考答案第一章绪论1-5 测得某三角块的三个角度之和为 180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:180o00'02 '-180o= 2 '相对误差等于:2 '180o =2 '=180 ⨯ 60 ⨯ 60 '2 '648000 '= 0.00000308641 ≈ 0.000031%1-8 在测量某一长度时,读数值为 2.31m,其最大绝对误差为 20m,试求其最大相对误差。
相对误差max =绝对误差max⨯100% 测得值=20 ⨯10-6⨯2.31100%= 8.66 ⨯10-4%1-10 检定2.5 级(即引用误差为 2.5%)的全量程为 100V 的电压表,发现 50V 刻度点的示值误差 2V 为最大误差,问该电压表是否合格?最大引用误差=某量程最大示值误差⨯100% 测量范围上限=2100⨯100% = 2% < 2.5%该电压表合格1-12 用两种方法分别测量 L1=50mm,L2=80mm。
测得值各为 50.004mm,80.006mm。
试评定两种方法测量精度的高低。
相对误差L1:50mm L2:80mm I1 =I 2 =50.004 -505080.006 -8080⨯100% = 0.008%⨯100% = 0.0075%I 1 >I2所以L2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为 10000km 时,其射击偏离预定点不超过 0.lkm,优秀射手能在距离 50m 远处准确地射中直径为 2cm 的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:0.110000= 0.00001 = 0.001% 射手的相对误差为:1cm 50m =0.01m50m= 0.0002 = 0.002%多级火箭的射击精度高。
1-14 若用两种测量方法测量某零件的长度 L1=110mm,其测量误差分别为±11m和±9m ;而用第三种测量方法测量另一零件的长度 L2=150mm。
(完整版)《物流系统工程》习题与思考题参考答案(可编辑修改word版)
《物流系统工程》习题及参考答案王长琼武汉理工大学物流工程学院目录第一章系统基本原理 (1)第二章系统工程基础 (3)第三章物流系统概述 (4)第四章物流系统分析 (7)第五章物流系统建模 (9)第六章物流系统需求预测 (11)第七章物流系统规划 (15)第八章运输及配送路线的优化 (17)第九章物流系统仿真 (24)第十章物流系统综合评价 (26)第十一章物流系统决策 (28)第一章系统基本原理1.如何理解系统的集合性、整体性、相关性、层次性、目的性和适应性?答:(1)集合就是将具有某种属性的一些对象看作一个整体,形成一个集合。
系统的集合性表明,系统是由两个或两个以上的可以互相区别的要素所组成的。
(2)系统的整体性可以直观地理解为系统是一个整体的对外联系的单元,系统内部的各组成要素只有在整体中才具有意义。
系统的整体性说明,系统各要素之间存在一定的组合方式,各要素之间必须相互统一、相互协调和配合,才能形成一个系统,才能发挥系统特有的功能;且系统整体的功能大于各组成要素的功能总和。
(3)相关性是指组成系统的各要素之间是相互联系、相互作用的,它用来说明这些要素之间的特定关系。
相关性可用来描述系统整体性的原因,是系统整体性的根据。
(4)系统作为一个相互作用的诸要素的总体,可以分解为一系列的子系统,子系统还可进一步分解为更低一级的子系统,并存在一定的层次结构,这就是系统的层次特性。
(5)系统的目的性是指系统都具有某种目的和一定的功能。
(6)系统的环境适应性说明,系统是作为一个整体与外部环境发生联系和作用的,因此,外界环境的变化必然会起系统内部各要素的变化。
系统必须通过内部结构的调整,使系统具备新的功能,以适应外部环境的变化。
2.系统的三个基本属性是什么?答:第一,系统是由两个以上的要素组成的整体。
要素是构成系统的最基本的部分,没有要素就无法构成系统,单个要素也无法构成系统。
第二,系统的诸要素之间、要素与整体之间、以及整体与环境之间存在着一定的有机联系。
(完整word版)《现代控制理论》第3版课后习题答案
《现代控制理论参考答案》第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
U图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
金属学课后习题答案完整版
金属学课后答案第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的?答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。
S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。
2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点?答:简单点阵结构和复杂点阵结构简单点阵结构的特点:硬度较高、熔点较高、稳定性较好;复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。
3.简述合金钢中碳化物形成规律。
答:①当rC/rM>0.59时,形成复杂点阵结构;当rC/rM<0.59时,形成简单点阵结构;②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K都能溶解其它元素,形成复合碳化物。
③NM/NC比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。
4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么?答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。
S点左移意味着_____减小,E点左移意味着出现_______降低。
(左下方;左上方)(共析碳量;莱氏体的C量)5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。
答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C和本身量多少而定。
优先形成碳化物,余量溶入基体。
淬火态:合金元素的分布与淬火工艺有关。
溶入A体的因素淬火后存在于M、B中或残余A中,未溶者仍在K中。
回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。
非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。
(完整版)《电气控制与PLC应用(第四版)》习题解答(可编辑修改word版)
《电气控制与PLC 应用》习题解答第一章常用低压电器1-1从外部结构特征上如何区分直流电磁机构与交流电磁机构?怎么区分电压线圈与电流线圈?答:从外部结构特征上,直流电磁机构铁心与衔铁由整块钢或钢片叠制而成,铁心端面无短路环,直流电磁线圈为无骨架、高而薄的瘦高型。
交流电磁机构铁心与衔铁用硅钢片叠制而成,铁心端面上必有短路环,交流电磁线圈设有骨架,做成短而厚的矮胖型。
电压线圈匝数多,线径较细,电流线圈导线粗,匝数少。
1-2三相交流电磁铁有无短路环,为什么?答:三相交流电磁铁无短路环。
三相交流电磁铁电磁线圈加的是三相对称电压,流过三相对称电流,磁路中通过的是三相对称磁通,由于其相位互差120º,所产生的电磁吸力零值错开,其合成电磁吸力大于反力,故衔铁被吸牢而不会产生抖动和撞击,故无需再设短路环。
1-3交流电磁线圈误接入对应直流电源,直流电磁线圈误接入对应交流电源,将发生什么问题,为什么?答:交流电磁线圈误接入对应直流电源,此时线圈不存在感抗,只存在电阻,相当于短路状态,产生大的短路电流,立即将线圈烧毁。
直流电磁线圈误接入对应交流电源,由于阻抗存在,使线圈电流过小,电磁吸力过小;衔铁吸合不上,时间一长,铁心因磁滞、涡流损耗而发热,致使线圈烧毁。
1-4交流、直流接触器是以什么定义的?交流接触器的额定参数中为何要规定操作频率?答:接触器是按主触头控制的电流性质来定义为是交流还是直流接触器。
对于交流接触器,其衔铁尚未动作时的电流为吸合后的额定电流的5~6 倍,甚至高达10~15 倍,如果交流接触器频繁工作,将因线圈电流过大而烧坏线圈,故要规定操作频率,并作为其额定参数之一。
1-5接触器的主要技术参数有哪些?其含义是什么?答:接触器的主要技术参数有极数和电流种类,额定工作电压、额定工作电流(或额定控制功率),约定发热电流,额定通断能力,线圈额定电压,允许操作频率,机械寿命和电寿命,接触器线圈的起动功率和吸持功率,使用类别等。
1《烹饪原料知识》练习一(第1章)(可编辑修改word版)
《烹饪原料知识》练习一(第一章)班级姓名得分一、名词解释:1、烹饪原料:2、烹饪原料品质鉴别:3、感官鉴定:4、低温保藏法:二、填空题:1、烹饪原料的发展变化经历了五个历史时期,分别是、、、、。
2、烹饪原料按性质分类,可分为、、、。
3、烹饪原料按加工与否分类,可分为、、。
4、烹饪原料按原料在菜点生产过程中的地位,可分为、、。
5、烹饪原料品质鉴定的依据和标准是:、、、、其中是鉴别原料品质最重要、最基本的标准。
6、理化鉴别包括和两个方面。
7、感官鉴定包括、、、、 5 个方面。
8、影响烹饪原料品质变化的外界因素有、和三个。
9、烹饪原料常用的保管方法有、、、、、、。
10、短时间冷藏一般温度控制在度。
长期冷冻保藏一般温度控制在度以下。
11、低温保藏的温度要随原料而定,如鱼类、肉类,温度一般在度。
12、目前较合理的解冻方法是。
13、烹饪原料要求是、、有、可以制作菜点的材料。
14、烹饪原料中的营养素分为有机物质和无机物质,有机物质包括、、、等,无机物质包括、。
15、存在于植物中的多糖称为,存在于动物中的多糖称为,也叫动物淀粉。
16、烹饪原料中的水可分为和。
17、有“冷杀菌”之称的保藏方法是。
18、腌渍保藏法有、、、等类型。
19、国外采用的按营养成分可将原料分为、、三种。
三、单项选择:1、畜禽类原料变得柔软、恢复弹性的作用称为作用,此时的肉品气味芳香、口感鲜嫩。
A、尸僵B、成熟C、腐败D、自溶2、冷冻保藏,是将原料置于冰点以下的低温中,使原料中大部分水冷结成冰后再以以下的低温进行储存保藏。
A、-10℃B、-5℃C、0℃D、5℃3、冷藏鲜奶的适宜温度是。
A、0℃以下B、0—4℃C、7—9℃D、10—15℃4、烹饪过程中,常用的检验方法是。
A、物理检验法B、化学检验法C、生物检验法D、感官检验法5、微生物(细菌)最适宜生长的温度为。
A、0—10℃B、0—15℃C、25—30℃D、40℃以上6、将原料分为谷物、蔬菜、果品、肉类等,是按进行分类的。
(完整word版)组合数学第一章答案.
1.1 从{}5021,,,⋅⋅⋅中找两个数{}b a ,,使其满足 (1) 5||=-b a ;(2)5||≤-b a解:(1)根据5||=-b a 可得 55-=-=-b a b a 或则有种种4545 共有90种。
(2)根据5||≤-b a 得 )50,,2,1(,55{⋅⋅⋅∈+≤≤-b a b a b则:当5≤b 时,有 1=b , 61≤≤a , 则有 6种 2=b , 71≤≤a , 则有7种 3=b , 81≤≤a , 则有8种 4=b , 91≤≤a , 则有 9种5=b , 101≤≤a , 则有10种当455≤<b 时,有 6=b , 111≤≤a , 则有 11种7=b , 122≤≤a , 则有 11种. . . . . . . . .45=b , 5040≤≤a , 则有11种当5045≤<b 时,有 46=b , 5041≤≤a , 则有 10种 47=b , 5042≤≤a , 则有 9种48=b , 5043≤≤a , 则有 8种49=b , 5044≤≤a , 则有 7种50=b , 5045≤≤a , 则有 6种故:共 种520)678910(21140=+++++⨯1.2 (1)先把女生进行排列,方案为5!,然后把女生看成1个人和7个男生进行排列,总方案数为5!×8!(2)女生不相邻,则先把男生进行排列,方案为7!再把女生插入男生之间的8个空位种的任意5个,总方案数为7!×58P(3)应该是A 女生x 女生y 女生z B,或是B 女生x 女生y 女生z A 的形式,从5个女生中选出3人进行排列,方案为35P ,考虑A,B 可以换位,方案为2×35P ,然后把这个看成一个整体,和剩下的2个女生,5个男生,一共7个人进行排列,总方案数2×35P ×8!1.3 m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若(a )男生不相邻(m ≤n+1); (b )n 个女生形成一个整体; (c )男生A 和女生B 排在一起; 分别讨论有多少种方案。
(完整版)操作系统第五版费祥林_课后习题答案解析参考(可编辑修改word版)
(完整版)操作系统第五版费祥林_课后习题答案解析参考(可编辑修改word版)第⼀章操作系统概论1、有⼀台计算机,具有 IMB 内存,操作系统占⽤ 200KB ,每个⽤户进程各占200KB 。
如果⽤户进程等待 I/O 的时间为 80 %,若增加 1MB 内存,则 CPU 的利⽤率提⾼多少?答:设每个进程等待 I/O 的百分⽐为 P ,则 n 个进程同时等待⼑ O 的概率是Pn ,当 n 个进程同时等待 I/O 期间 CPU 是空闲的,故 CPU 的利⽤率为 1-Pn。
由题意可知,除去操作系统,内存还能容纳 4 个⽤户进程,由于每个⽤户进程等待I/O 的时间为 80 % , 故:CPU 利⽤率=l-(80%)4 = 0.59若再增加 1MB 内存,系统中可同时运⾏ 9 个⽤户进程,此时:cPu 利⽤率=l- (1-80%)9 = 0.87故增加 IMB 内存使 CPU 的利⽤率提⾼了 47 % :87 %/59 %=147 %147 %-100 % = 47 %2⼀个计算机系统,有⼀台输⼊机和⼀台打印机,现有两道程序投⼊运⾏,且程序A 先开始做,程序 B 后开始运⾏。
程序 A 的运⾏轨迹为:计算 50ms 、打印100ms 、再计算 50ms 、打印 100ms ,结束。
程序 B 的运⾏轨迹为:计算 50ms 、输⼊ 80ms 、再计算 100ms ,结束。
试说明(1 )两道程序运⾏时,CPU 有⽆空闲等待?若有,在哪段时间内等待?为什么会等待?( 2 )程序 A 、B 有⽆等待CPU 的情况?若有,指出发⽣等待的时刻。
答:画出两道程序并发执⾏图如下:(1)两道程序运⾏期间,CPU 存在空闲等待,时间为 100 ⾄150ms 之间(见图中有⾊部分)(2)程序A ⽆等待现象,但程序B 有等待。
程序B 有等待时间段为180rns ⾄200ms 间(见图中有⾊部分)3设有三道程序,按 A 、B 、C 优先次序运⾏,其内部计算和 UO 操作时间由图给出。
(完整版)人教版高中数学选修2-2课后习题参考答案(可编辑修改word版)
3V 34新课程标准数学选修 2—2 第一章课后习题解答第一章 导数及其应用 3.1 变化率与导数练习(P6)在第 3 h 和 5 h 时,原油温度的瞬时变化率分别为-1和 3. 它说明在第 3 h 附近,原 油温度大约以 1 ℃/h 的速度下降;在第 5 h 时,原油温度大约以 3 ℃/h 的速率上升. 练习(P8)函数h (t ) 在t = t 3 附近单调递增,在t = t 4 附近单调递增. 并且,函数h (t ) 在t 4 附近比在t 3 附近增加得慢. 说明:体会“以直代曲”1 的思想.练习(P9)函数r (V ) = (0 ≤ V ≤ 5) 的图象为根据图象,估算出r '(0.6) ≈ 0.3 , r '(1.2) ≈ 0.2 .说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题 1.1 A 组(P10)1、在t 处,虽然W (t ) = W (t ) ,然而W 1 (t 0 ) -W 1 (t 0 - ∆t ) ≥ W 2 (t 0 ) -W 2 (t 0 - ∆t ) .0 1 0 2 0-∆t -∆t所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、 ∆h = h (1+ ∆t ) - h (1) = -4.9∆t - 3.3 ,所以, h '(1) = -3.3 .∆t ∆t这说明运动员在t = 1s 附近以 3.3 m /s 的速度下降.3、物体在第 5 s 的瞬时速度就是函数 s (t ) 在t = 5 时的导数.∆s = s (5 + ∆t ) - s (5) = ∆t +10 ,所以, s '(5) = 10 . ∆t ∆tt 因 此 , 物 体 在 第 5 s 时 的 瞬 时 速 度 为 10 m / s , 它 在 第 5 s 的 动 能 E = 1⨯ 3⨯102 = 150 J. k24、设车轮转动的角度为,时间为t ,则= kt 2 (t > 0) . 由题意可知,当t = 0.8 时,= 2. 所以k =25,于是= 25 2. 88车轮转动开始后第 3.2 s 时的瞬时角速度就是函数(t ) 在t = 3.2 时的导数. ∆=(3.2 + ∆t ) -(3.2) = 25∆t + 20,所以'(3.2) = 20.∆t∆t8因此,车轮在开始转动后第 3.2 s 时的瞬时角速度为20s -1 .说明:第 2,3,4 题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数 f (x ) 在 x = -5 处切线的斜率大于零,所以函数在 x = -5 附近单调递增. 同理可得,函数 f (x ) 在 x = -4 , -2 ,0,2 附近分别单调递增,几乎没有变化,单调递减,单调递减.说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数 f '(x )的图象如图(1)所示;第二个函数的导数 f '(x ) 恒大于零,并且随着 x 的增加, f '(x )的值也在增加;对于第三个函数,当 x 小于零时, f '(x ) 小于零,当 x 大于零时,f '(x ) 大于零,并且随着 x 的增加, f '(x ) 的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系.习题 3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻 画的是速度变化的快慢,根据物理知识,这个量就是加速度.1 2 x -11 33 4V 23 2、说明:由给出的v (t ) 的信息获得 s (t ) 的相关信息,并据此画出 s (t ) 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数 f (x ) 的图象在点(1, -5) 处的切线斜率为-1,所以此点 附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2 导数的计算练习(P18)1、 f '(x ) = 2x - 7 ,所以, f '(2) = -3 , f '(6) = 5 .2、(1) y ' = 1x l n 2;(2) y ' = 2e x ;(3) y ' = 10x 4 - 6x ;(4) y ' = -3sin x - 4 cos x ;(5) y ' = - 1 sin x;(6) y ' =.3 3习题 1.2 A 组(P18)1、 ∆S = S (r + ∆r ) - S (r ) = 2r + ∆r ,所以, S '(r ) = lim(2r + ∆r ) = 2r .∆r ∆r∆r →02、h '(t ) = -9.8t + 6.5 .3、r '(V ) =.2 x =0 4、(1) y ' = 3x 2 +1x l n 2; (2) y ' = nx n -1e x + x n e x ;(3) y ' 3x 2 sin x - x 3 cos x + cos x sin 2x; (4) y = 99(x +1)98;(5) y ' = -2e -x ;(6) y ' = 2 s in(2x + 5) + 4x cos(2x + 5) .5、 f '(x ) = -8 + 2 2x . 由 f '(x 0 ) = 4 有 4 = -8 + 2 2x 0 ,解得 x 0 = 3 .6、(1) y ' = ln x +1; (2) y = x -1.7 、 y = - x +1.8、(1)氨气的散发速度 A '(t ) = 500 ⨯ln 0.834 ⨯ 0.834t .(2) A '(7) = -25.5 ,它表示氨气在第 7 天左右时,以 25.5 克/天的速率减少. 习题 1.2 B 组(P19) 1、(1)(2) 当h 越来越小时, y =sin(x + h ) - sin x就越来越逼近函数 y = cos x .h(3) y = sin x 的导数为 y = cos x .2、当 y = 0 时, x = 0 . 所以函数图象与 x 轴交于点 P (0, 0) .y ' = -e x ,所以 y ' = -1 .所以,曲线在点 P 处的切线的方程为 y = -x .2、d '(t ) = -4 sin t . 所以,上午 6:00 时潮水的速度为-0.42 m /h ;上午 9:00 时潮水 的速度为-0.63 m /h ;中午 12:00 时潮水的速度为-0.83 m /h ;下午 6:00 时潮水的速度为-1.24 m /h.1.3 导数在研究函数中的应用练习(P26)1、(1)因为 f (x ) = x 2 - 2x + 4 ,所以 f '(x ) = 2x - 2 .当 f '(x ) > 0 ,即 x > 1 时,函数 f (x ) = x 2 - 2x + 4 单调递增;= '当 f '(x ) < 0 ,即 x < 1时,函数 f (x ) = x 2 - 2x + 4 单调递减.(2)因为 f (x ) = e x - x ,所以 f '(x ) = e x -1.当 f '(x ) > 0 ,即 x > 0 时,函数 f (x ) = e x - x 单调递增; 当 f '(x ) < 0 ,即 x < 0 时,函数 f (x ) = e x - x 单调递减. (3)因为 f (x ) = 3x - x 3 ,所以 f '(x ) = 3 - 3x 2 .当 f '(x ) > 0 ,即-1 < x < 1时,函数 f (x ) = 3x - x 3 单调递增; 当 f '(x ) < 0 ,即 x < -1或 x > 1 时,函数 f (x ) = 3x - x 3 单调递减. (4)因为 f (x ) = x 3 - x 2 - x ,所以 f '(x ) = 3x 2 - 2x -1.当 f '(x ) > 0 ,即 x < - 1或 x > 1 时,函数 f (x ) = x 3 - x 2 - x 单调递增;3 当 f '(x ) < 0 ,即- 1< x < 1 时,函数 f (x ) = x 3 - x 2 - x 单调递减.32、注:图象形状不唯一.3、因为 f (x ) = ax 2 + bx + c (a ≠ 0) ,所以 f '(x ) = 2ax + b .(1)当a > 0 时,f '(x ) > 0 ,即 x > - b2a f '(x ) < 0 ,即 x < - b2a(2)当a < 0 时,f '(x ) > 0 ,即 x < - b 2a f '(x ) < 0 ,即 x > - b2a时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递增;时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递减.时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递增;时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递减.4、证明:因为 f (x ) = 2x 3 - 6x 2 + 7 ,所以 f '(x ) = 6x 2 -12x .当 x ∈(0, 2) 时, f '(x ) = 6x 2 -12x < 0 ,因此函数 f (x ) = 2x 3 - 6x 2 + 7 在(0, 2) 内是减函数.练习(P29)1、 x 2 , x 4 是函数 y = f (x ) 的极值点,1 1 其中 x = x2 是函数 y = f (x ) 的极大值点, x = x 4 是函数 y = f (x ) 的极小值点.2、(1)因为 f (x ) = 6x 2 - x - 2 ,所以 f '(x ) = 12x -1 .令 f '(x ) = 12x -1 = 0 ,得 x =1.12调递减.当 x >1时, f '(x ) > 0 , f (x ) 单调递增;当 x < 112 12时, f '(x ) < 0 , f (x ) 单 所 以 , 当x = 1时 , 12f (x ) 有 极 小 值 , 并 且 极 小 值 为f ( ) = 6 ⨯( )2 - 1 - 2 = - 49. 12 12 12 24(2)因为 f (x ) = x 3 - 27x ,所以 f '(x ) = 3x 2 - 27 .令 f '(x ) = 3x 2 - 27 = 0 ,得 x = ±3 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即 x < -3 或 x > 3 时;②当 f '(x ) < 0 ,即-3 < x < 3 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:因此,当 x = -3 时, f (x ) 有极大值,并且极大值为 54; 当 x = 3 时, f (x ) 有极小值,并且极小值为-54 . (3)因为 f (x ) = 6 +12x - x 3 ,所以 f '(x ) = 12 - 3x 2 .令 f '(x ) = 12 - 3x 2 = 0 ,得 x= ±2 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即-2 < x < 2 时;②当 f '(x ) < 0 ,即 x < -2 或 x > 2 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:=-因此,当x =-2 时,f (x) 有极小值,并且极小值为-10 ;当x = 2 时,f (x) 有极大值,并且极大值为22(4)因为 f (x) = 3x -x3,所以 f '(x) = 3 - 3x2.令 f '(x) = 3 - 3x2= 0 ,得 x =±1 .下面分两种情况讨论:①当f '(x) > 0 ,即-1 <x < 1时;②当f '(x) < 0 ,即x <-1或x > 1 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当x =-1 时,f (x) 有极小值,并且极小值为-2 ;当x = 1 时,f (x) 有极大值,并且极大值为2练习(P31)(1)在[0, 2] 上, 当 x =1 49f ( ) .12 24 1 时,12f (x) = 6x2-x - 2 有极小值,并且极小值为又由于 f (0) =-2 , f (2) = 20 .因此,函数 f (x) = 6x2-x - 2 在[0, 2] 上的最大值是 20、最小值是-49.24(2)在[-4, 4] 上,当 x =-3 时, f (x) =x3- 27x 有极大值,并且极大值为 f (-3) = 54 ;当x = 3 时, f (x) =x3- 27x 有极小值,并且极小值为 f (3) =-54 ;又由于 f (-4) = 44 , f (4) =-44 .(0, ) ,所以 f (x )因此,函数 f (x ) = x 3 - 27x 在[-4, 4] 上的最大值是 54、最小值是-54 .( 3) 在[- 1, 3] 上, 当 x = 2 时, 3f (x ) = 6 +12x - x 3 有极大值, 并且极大值为f (2) = 22 .又由于 f (- 1) = 55, f (3) = 15 .3 27因此,函数 f (x ) = 6 +12x - x 3 在[- 1 , 3] 上的最大值是 22、最小值是 55.3 27(4)在[2, 3] 上,函数 f (x ) = 3x - x 3 无极值.因为 f (2) = -2 , f (3) = -18 .因此,函数 f (x ) = 3x - x 3 在[2, 3] 上的最大值是-2 、最小值是-18 . 习题 1.3 A 组(P31)1、(1)因为 f (x ) = -2x +1,所以 f '(x ) = -2 < 0 .因此,函数 f (x ) = -2x +1是单调递减函数.(2)因为 f (x ) = x + cos x , x ∈ ' = 1- sin x > 0 , x ∈ 2(0, ) . 2 因此,函数 f (x ) = x + cos x 在 (0, ) 上是单调递增函数. 2(3)因为 f (x ) = -2x - 4 ,所以 f '(x ) = -2 < 0 .因此,函数 f (x ) = 2x - 4 是单调递减函数.(4)因为 f (x ) = 2x 3 + 4x ,所以 f '(x ) = 6x 2 + 4 > 0 .因此,函数 f (x ) = 2x 3 + 4x 是单调递增函数.2、(1)因为 f (x ) = x 2 + 2x - 4 ,所以 f '(x ) = 2x + 2 .当 f '(x ) > 0 ,即 x > -1 时,函数 f (x ) = x 2 + 2x - 4 单调递增.当 f '(x ) < 0 ,即 x < -1时,函数 f (x ) = x 2 + 2x - 4 单调递减.(2)因为 f (x ) = 2x 2 - 3x + 3 ,所以 f '(x ) = 4x - 3 .当 f '(x ) > 0 ,即 x > 3时,函数 f (x ) = 2x 2 - 3x + 3 单调递增.4当 f '(x ) < 0 ,即 x < 3时,函数 f (x ) = 2x 2 - 3x + 3 单调递减.4(3)因为 f (x ) = 3x + x 3 ,所以 f '(x ) = 3 + 3x 2 > 0 .因此,函数 f (x ) = 3x + x 3 是单调递增函数.(4)因为 f (x ) = x 3 + x 2 - x ,所以 f '(x ) = 3x 2 + 2x -1.当 f '(x ) > 0 ,即 x < -1或 x > 1时,函数 f (x ) = x 3 + x 2 - x 单调递增.3 当 f '(x ) < 0 ,即-1 < x < 1时,函数 f (x ) = x 3 + x 2 - x 单调递减.33、(1)图略. (2)加速度等于 0.4、(1)在 x = x 2 处,导函数 y = f '(x ) 有极大值;(2) 在 x = x 1 和 x = x 4 处,导函数 y = f '(x ) 有极小值;(3) 在 x = x 3 处,函数 y =(4) 在 x = x 5 处,函数 y = f (x ) 有极大值;f (x ) 有极小值.5、(1)因为 f (x ) = 6x 2 + x + 2 ,所以 f '(x ) = 12x +1.令 f '(x ) = 12x +1 = 0 ,得 x = - 1.12当 x > - 112 当 x < - 112时, f '(x ) > 0 , f (x ) 单调递增;时, f '(x ) < 0 , f (x ) 单调递减.所 以 ,x = - 1 时 , 12f (x ) 有 极 小 值 , 并 且 极 小 值 为 f (- 1 ) = 6 ⨯(- 1 )2 - 1 - 2 = - 49 .12 12 12 24(2)因为 f (x ) = x 3 -12x ,所以 f '(x ) = 3x 2 -12 .令 f '(x ) = 3x 2 -12 = 0 ,得 x = ±2 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即 x < -2 或 x > 2 时;②当 f '(x ) < 0 ,即-2 < x < 2 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:因此,当 x =-2 时, f (x) 有极大值,并且极大值为 16;当x = 2 时, f (x) 有极小值,并且极小值为-16 .(3)因为 f (x) = 6 -12x +x3,所以 f '(x) =-12 + 3x2.令 f '(x) =-12 + 3x2= 0 ,得 x =±2 .下面分两种情况讨论:①当f '(x) > 0 ,即x <-2 或x > 2 时;②当f '(x) < 0 ,即-2 <x < 2 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当 x =-2 时, f (x) 有极大值,并且极大值为 22;当x = 2 时, f (x) 有极小值,并且极小值为-10 .(4)因为 f (x) = 48x -x3,所以 f '(x) = 48 - 3x2.令 f '(x) = 48 - 3x2= 0 ,得 x =±4 .下面分两种情况讨论:①当f '(x) > 0 ,即x <-2 或x > 2 时;②当f '(x) < 0 ,即-2 <x < 2 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当x =-4 时,f (x) 有极小值,并且极小值为-128 ;当x = 4 时,f (x) 有极大值,并且极大值为128.6、(1)在[-1,1] 上,当 x =-112时,函数f (x) = 6x2+x + 2 有极小值,并且极小值为47.24由于f (-1) = 7 ,f (1) = 9 ,所以,函数f (x) = 6x2+x + 2 在[-1,1] 上的最大值和最小值分别为9,47.24(2)在[-3, 3] 上,当 x =-2 时,函数 f (x) =x3-12x 有极大值,并且极大值为 16; 当x = 2 时,函数 f (x) =x3-12x 有极小值,并且极小值为-16 .由于f (-3) = 9 ,f (3) =-9 ,所以,函数 f (x) =x3-12x 在[-3, 3] 上的最大值和最小值分别为 16, -16 .(3)在[-1,1] 上,函数f (x) = 6 -12x +x3在[-1,1] 上无极值.3 3由于f (-1) =269,f (1) =-5 ,3 27所以,函数f (x) = 6 -12x +x3在[-1,1] 上的最大值和最小值分别为269,-5 .3 27(4)当x = 4 时,f (x) 有极大值,并且极大值为128..由于f (-3) =-117 ,f (5) = 115 ,所以,函数 f (x) = 48x -x3在[-3, 5] 上的最大值和最小值分别为 128, -117 . 习题3.3 B 组(P32)1、(1)证明:设 f (x) = sin x -x ,x ∈(0,) .因为 f '(x) = cos x -1 < 0 , x ∈(0,)所以f (x) = sin x -x 在(0,) 内单调递减因此 f (x) = sin x -x <f (0) = 0 , x ∈(0,) , 即 sin x <x , x ∈(0,) . 图略(2)证明:设 f (x) =x -x2, x ∈(0,1) .因为 f '(x) = 1- 2x , x ∈(0,1)又1 1所以,当 x ∈1(0, )2时,f '(x) = 1- 2x > 0 ,f (x) 单调递增,f (x) =x -x2> f (0) = 0 ;当 x ∈1时,f '(x) = 1- 2x < 0 ,f (x) 单调递减,( ,1)2f (x) =x -x2> f (1) = 0 ;f ( ) => 0 . 因此, x -x22 4>0 ,x ∈(0,1) . (3)证明:设 f (x) =e x-1-x , x ≠ 0 .因为 f '(x) =e x-1, x ≠ 0所以,当x > 0 时,f '(x) =e x-1 > 0 ,f (x) 单调递增,f (x) =e x-1-x > f (0) = 0 ;当x < 0 时,f '(x) =e x-1 < 0 ,f (x) 单调递减,f (x) =e x-1-x >f (0) = 0 ;综上,e x-1 >x ,x ≠ 0 . 图略(4)证明:设 f (x) = ln x -x ,x > 0 .因为 f '(x) =1-1 ,x ≠ 0 x所以,当0 <x < 1时,f '(x) =1-1 > 0 ,f (x) 单调递增,xf (x) = ln x -x < f (1) =-1 < 0 ;当x > 1 时,f '(x) =1-1 < 0 ,f (x) 单调递减,xf (x) = ln x -x < f (1) =-1 < 0 ;当x =1 时,显然ln1 <1. 因此,ln x <x .由(3)可知, e x>x +1 >x , x > 0 .. 综上,ln x <x <e x,x > 0 图略2、(1)函数f (x) =ax3+bx2+cx +d 的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象图略( ) 上能大致估计它的单调区间.(2)因为 f (x ) = ax 3 + bx 2 + cx + d ,所以 f '(x ) = 3ax 2 + 2bx + c . 下面分类讨论:当a ≠ 0 时,分a > 0 和a < 0 两种情形: ①当a > 0 ,且b 2 - 3ac > 0 时,设方程 f '(x ) = 3ax 2 + 2bx + c = 0 的两根分别为 x , x ,且 x < x ,1212当 f '(x ) = 3ax 2 + 2bx + c > 0 ,即 x < x 或 x > x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单12调递增;当 f '(x ) = 3ax 2 + 2bx + c < 0 ,即 x < x < x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递减.12当a > 0 ,且b 2 - 3ac ≤ 0 时,此时 f '(x ) = 3ax 2 + 2bx + c ≥ 0 ,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递增.②当a < 0 ,且b 2 - 3ac > 0 时,设方程 f '(x ) = 3ax 2 + 2bx + c = 0 的两根分别为 x , x ,且 x < x ,1212当 f '(x ) = 3ax 2 + 2bx + c > 0 ,即 x < x < x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递12增;当 f '(x ) = 3ax 2 + 2bx + c < 0 ,即 x < x 或 x > x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单12调递减.当a < 0 ,且b 2 - 3ac ≤ 0 时,此时 f '(x ) = 3ax 2 + 2bx + c ≤ 0 ,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递减 1.4 生活中的优化问题举例习题 1.4 A 组(P37)1、设两段铁丝的长度分别为 x , l - x ,则这两个正方形的边长分别为 x , l - x,4 4两个正方形的面积和为 S = f (x ) = x 2 + (l - x )2 = 1 (2x 2- 2lx + l 2 ) , 0 < x < l .4 4 16 令 f '(x ) = 0 ,即4x - 2l = 0 , x = l.2当 x ∈ l (0, ) 2时, f '(x ) < 0 ;当 x ∈ l( , l ) 2 时, f '(x ) > 0 .因此, x = l是函数 f (x ) 的极小值点,也是最小值点.2V3 2 V321 ni 所以,当两段铁丝的长度分别是 l时,两个正方形的面积和最小.22、如图所示,由于在边长为a 的正方形铁片的四角截去四个边长为 x 的小正方形,做成一个无盖方盒,所以无盖方盒的底面为正方形,且边长为a - 2x ,高为 x .(1)无盖方盒的容积V (x ) = (a - 2x )2 x , 0 < x < a.2(2)因为V (x ) = 4x 3 - 4ax 2 + a 2 x ,所以V '(x ) = 12x 2 - 8ax + a 2 .令V '(x ) = 0 ,得 x = a (舍去),或 x = a.(第 2 题)当 x ∈ a (0, ) 6 2 时,V '(x ) > 0 ;当 x ∈ 6 a a( , ) 6 2 时,V '(x ) < 0 . 因此, x = a是函数V (x ) 的极大值点,也是最大值点.6 所以,当 x = a时,无盖方盒的容积最大.63、如图,设圆柱的高为h ,底半径为 R ,则表面积 S = 2Rh + 2R 2由V = R 2h ,得h =V .R 2因此, S (R ) = 2R2V V R 2 + 2R 2 = 2V + 2R 2 , R > 0 . R令 S '(R ) = - + 4R = 0 ,解得 R = .R当 R ∈(0, 3 V) 时, S '(R ) < 0 ;2当 R ∈( 3 V2, +∞) 时, S '(R ) > 0 .(第 3 题)因 此 , R =是 函 数 S (R ) 的 极 小 值 点 , 也 是 最 小 值 点 . 此 时 ,h = V R 2 = 23 V= 2R .2所以,当罐高与底面直径相等时,所用材料最省.n 4、证明:由于 f (x ) = ∑(x - a )2,所以 f '(x ) = 2 ∑(x - a ) .n i =1 n i =1i8a 4 + 令 f (x ) = 0 ,得 x = n ∑ = n ∑ n ∑ )x ' 1 na i =11 n可以得到, x a i是函数 f (x ) 的极小值点,也是最小值点.i =11 n这个结果说明,用 n 个数据的平均值 a i 表示这个物体的长度是合理i =1的,这就是最小二乘法的基本原理.5、设矩形的底宽为 x m ,则半圆的半径为 x 2m ,半圆的面积为x 2 8m 2 ,矩形的面积为a -x 2 8 m 2 ,矩形的另一边长为( a x - x ) m8因此铁丝的长为l (x ) =x + x + 2a - x = (1+ + 2a, 0 < x < 2 x 4 4 x令l '(x ) = 1+ - 4 2a = 0 ,得 x = x2(负值舍去).当 x ∈(0, ) 时, l '(x ) < 0 ;当 x ∈( 8a ,8a ) 时, l '(x ) > 0 .因此, x = 4 +是函数l (x ) 的极小值点,也是最小值点.所以,当底宽为m 时,所用材料最省.6、利润 L 等于收入 R 减去成本C ,而收入 R 等于产量乘单价. 由此可得出利润 L 与产量q 的函数关系式,再用导数求最大利润.收入 R = q ⋅ p = q (25 - 1 q ) = 25q - 1q 2 ,8 8 利润 L = R - C = (25q - 1 q 2 ) - (100 + 4q ) = - 1q 2 + 21q -100 , 0 < q < 200 .8 8求导得 L ' = - 1q + 214 令 L ' = 0 ,即- 1q + 21 = 0 , q = 84 .4当 q ∈(0,84) 时, L ' > 0 ;当 q ∈(84, 200) 时, L ' < 0 ;8a8a 4 + 8a4 + 8a4 +i ,n ∆ ( ) ⋅ + ⋅ ] 因此, q = 84 是函数 L 的极大值点,也是最大值点.所以,产量为 84 时,利润 L 最大,习题 1.4 B 组(P37)1、设每个房间每天的定价为 x 元,那么宾馆利润 L (x ) = (50 - x -180)(x - 20) = - 110 10令 L '(x ) = - 1x + 70 = 0 ,解得 x = 350 .5x 2 + 70x -1360 ,180 < x < 680 .当 x ∈(180, 350) 时, L '(x ) > 0 ;当 x ∈(350, 680) 时, L '(x ) > 0 .因此, x = 350 是函数 L (x ) 的极大值点,也是最大值点.所以,当每个房间每天的定价为 350 元时,宾馆利润最大. 2、设销售价为 x 元/件时,利润 L (x ) = (x - a )(c + c b - x ⨯ 4) = c (x - a )(5 - 4 x ) , a < x < 5b.b b 4令 L '(x ) = - 8c x + 4ac + 5bc = 0 ,解得 x = 4a + 5b.b b 8 当 x ∈(a , 4a + 5b ) 时, L '(x ) > 0 ;当 x ∈( 4a + 5b , 5b) 时, L '(x ) < 0 .8 8 4 当 x = 4a + 5b 是函数 L (x ) 的极大值点,也是最大值点.8所以,销售价为 4a + 5b元/件时,可获得最大利润.81.5 定积分的概念练习(P42) 8 . 3说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、∆s ≈ ∆s ' = v ( i )∆t = [-( i )2 + 2]⋅ 1 = -( i )2 ⋅ 1 + ⋅ 2, i = 1, 2, , n .i i n n n n n n于是 s = ∑ ∆s ≈ ∑ ∆s ' = ∑ i v ( ) ti =1 i ii =1 i =1n= ∑ i =1[- i 2 1 2n n n = - 1 2 1n -1 2 1 n 2 1( n ) ⋅ n- - ( ) ⋅ - ( ) n n n ⋅ + 2 n = - 1[1+ 22 + + n 2 ] + 2n 3nn n= ∑ i =1i =1i =1⎰ ∑a= - 1 ⋅ n (n +1)(2n +1) + 2 n 3 6 = - 1 (1+ 1 )(1+ 1) + 23 n 2n 取极值,得s = lim ∑ 1 i n[ v ( )] lim [- 1 (1+ 1 )(1+ 1 ) + 2] = 5n →∞ i =1 nn n →∞ i =1 3 n 2n 3 说明:进一步体会“以不变代变”和“逼近”的思想. 2、 22 km.3说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2x 3dx = 4 .说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线 y = x 3 与直线 x = 0 , x = 2 , y = 0 所围成的曲边梯形的面积 S = 4 . 习题 1.5 A 组(P50)2100i -1 1 1、(1) ⎰1 (x -1)dx ≈ ∑[(1+ 100 ) -1]⨯ 100 = 0.495 ; 2500i -1 1 (2) ⎰1 (x -1)dx ≈ ∑[(1+ 500) -1]⨯ 500 = 0.499 ; 21000i -1 1 (3) ⎰1 (x -1)dx ≈ ∑[(1+ 1000) -1]⨯ 1000 = 0.4995 . 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法. 2、距离的不足近似值为:18⨯1+12 ⨯1+ 7 ⨯1+ 3⨯1+ 0 ⨯1 = 40 (m ); 距离的过剩近似值为: 27 ⨯1+18⨯1+12 ⨯1+ 7 ⨯1+ 3⨯1 = 67 (m ). 3、证明:令 f (x ) = 1 . 用分点 a = x 0 < x 1 < < x i -1 < x i < < x n = b将区间[a , b ] 等分成 n 个小区间, 在每个小区间[x i -1 , x i ] 上任取一点i(i = 1, 2, , n )作和式∑ f (i )∆x = ∑ b - an = b - a , i =1bi =1nb - a 从而 1dx = lim n →∞i =1= b - a ,nnn n⎰1- x 2 1 ⎰⎰⎰⎰⎰⎰-1-1说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义, ⎰01- x 2 dx 表示由直线 x = 0 , x = 1 , y = 0 以及曲线y = 所围成的曲边梯形的面积, 即四分之一单位圆的面积, 因此 1- x 2 d x = . 0 4 5、(1) ⎰0 x 3dx = - 1 . -1 4由于在区间[-1, 0] 上 x 3≤ 0 ,所以定积分 0x 3dx 表示由直线 x = 0 , x = -1 , y = 0-1和曲线 y = x 3 所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得⎰1x 3dx = ⎰0x 3dx + ⎰1x 3dx = - 1 + 1= 0 .-1 -1 0 4 4由于在区间[-1, 0] 上 x 3 ≤ 0 ,在区间[0,1] 上 x 3≥ 0 ,所以定积分 1x 3dx 等于位于 x-1轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.(3)根据定积分的性质,得⎰2 x 3dx = ⎰0 x 3dx + ⎰2 x 3dx = - 1 + 4 = 15-1 -1 0 4 4由于在区间[-1, 0] 上 x 3 ≤ 0 ,在区间[0, 2] 上 x 3 ≥ 0 ,所以定积分 2x 3dx 等于位于 x-1轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.说明:在(3)中,由于 x 3 在区间[-1, 0] 上是非正的,在区间[0, 2] 上是非负的,如果直接利用定义把区间[-1, 2] 分成n 等份来求这个定积分,那么和式中既有正项又 有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质 3 可以将定积分 2x 3dx-1化为 0 x 3dx + 2x 3dx ,这样, x 3 在区间[-1, 0] 和区间[0, 2] 上的符号都是不变的,再-1利用定积分的定义,容易求出⎰0x 3dx , ⎰2x 3dx ,进而得到定积分⎰2x 3dx 的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题 1.5 B 组(P50)1、该物体在t = 0 到t = 6 (单位:s )之间走过的路程大约为 145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1) v = 9.81t .8 i 1 1 8⨯ 9(2)过剩近似值: ∑9.81⨯ ⨯ = 9.81⨯ ⨯ = 88.29 (m ); i =12 2 4 2 1⎰4 4∑ i l ∑ ∑ ∑ n8i -1 1 1 8⨯ 7不足近似值: ∑9.81⨯i =1⨯ = 9.81⨯ ⨯ 2 2 4 2 = 68.67 (m )(3) ⎰09.81tdt ; 3、(1)分割⎰09.81t d t = 78.48 (m ).在区间[0, l ] 上等间隔地插入n -1个分点,将它分成n 个小区间:l l 2l(n - 2)l [0, ] ,[ , ],……,[ , l ] , n n n n 记第i 个区间为[(i -1)l iln , n ] ( i = 1, 2, n ),其长度为 ∆x = il - (i -1)l = l .n n n 把细棒在小段 ll 2l(n - 2)l[0, ] ,[ , ],……,[ , l ] 上质量分别记作: n n n n∆m 1 , ∆m 2 , , ∆m n ,则细棒的质量m = ∑∆m i .i =1 (2) 近似代替当n 很大,即∆x 很小时,在小区间[(i -1)l , il] 上,可以认为线密度(x ) = x 2 n n的值变化很小, 近似地等于一个常数, 不妨认为它近似地等于任意一点 ∈[(i -1)l il处的函数值 () = 2. 于是, 细棒在小段 [(i -1)l il上质量 i , ] i i , ] n n n n∆m ≈ ()∆x = 2 l ( i = 1, 2, n ).i i i n(3) 求和得细棒的质量n nnm = ∆m ≈ ()∆x = 2. i ii n(4) 取极限i =1i =1nl2i =1l 2细棒的质量 m = limn →∞i =1n,所以m = ⎰0 x dx ..1.6 微积分基本定理练习(P55)(1)50;(2) 50 ;(3)4 2 - 5; (4)24; 33 3(5) 3 - ln 2 ; (6) 1 ;(7)0;(8) -2 .2 23 6 说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题 1.6 A 组(P55)1、(1) 40 ; (2) - 1- 3ln 2 ;(3) 9+ ln 3 - ln 2 ;3 (4) - 17 ;(5) 6232 82+1; (6) e 2- e - 2 ln 2 .说明:本题利用微积分基本定理和定积分的性质计算定积分.2、 3sin xdx = [-cos x ]3= 2 . ⎰0 它表示位于 x 轴上方的两个曲边梯形的面积与 x 轴下方的曲边梯形的面积之差. 或表述为:位于 x 轴上方的两个曲边梯形的面积(取正值)与 x 轴下方的曲边梯形的面积(取负值)的代数和. 习 题 1.6 B 组 (P55)1 e2 11 11、(1)原式=[ e 2x ]1 = - ;(2)原式=[ sin 2x ]4 = - ;2 0 2 22x 3 62 4 (3)原式=[ ln 2]1 = ln 2.2、(1) sin mxdx = [- cos mx ]= - 1[cos m - cos(-m )] = 0 ; ⎰-m - msin mx 1(2) cos mxdx = | = [sin m - sin(-m )] = 0 ;⎰-m - m(3) sin 2 mxdx = 1- cos 2mx dx = [ x - sin 2mx ]= ;⎰- ⎰- 2 2 4m - (4) cos 2mxdx = 1+ cos 2mx dx = [ x + sin 2mx ] = .⎰- ⎰- 2 2 4m -3、 ( 1) s (t ) = t g (1- e -kt )dt = g+ g e - kt ]t = g t + g e - kt - g = 49t + 245e -0.2t - 245 . ⎰0 k [ k t k2 0 k k 2 k 2(2)由题意得 49t + 245e -0.2t - 245 = 5000 .这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围.根据指数函数的性质,当t > 0 时, 0 < e -0.2t < 1 ,从而 5000 < 49t < 5245 ,因此, 5000 < t < 5245 .49 49因此245e-0.2⨯500049≈ 3.36 ⨯10-7 , 245e-0.2⨯524549≈ 1.24 ⨯10-7 ,所以,1.24 ⨯10-7 < 245e -0.2t < 3.36 ⨯10-7 .从而,在解方程49t + 245e -0.2t - 245 = 5000 时, 245e -0.2t 可以忽略不计.240 ⎰ ⎰= ⎰ 0a a 1]a 3因此,. 49t - 245 ≈ 5000 ,解之得 t ≈5245(s ).49说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7 定积分的简单应用练习(P58)(1) 32; (2)1.3说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程.练习(P59)52 51、 s = (2t + 3)dt = [t + 3t ] = 22 (m ).⎰3 2、W = ⎰0 (3x + 4)dx = [ 2 3x 2 + 4x ]4 = 40 (J ). 习题 1.7 A 组(P60)1、(1)2; (2) 9.2 2、W = ⎰b k q dr = [-q b = k q - k q.a r r a b3、令v (t ) = 0 ,即40 -10t = 0 . 解得t = 4 . 即第 4s 时物体达到最大高度.42 4最大高度为 h = (40 -10t )dt = [40t - 5t ] = 80 (m ).⎰4、设t s 后两物体相遇,则 0t(3t 2+1)dt = t10tdt + 5 , 0解之得t = 5 . 即 A , B 两物体 5s 后相遇.此时,物体 A 离出发地的距离为 5(3t 2 +1)dt = [t 3 + t ]5 = 130 (m ).⎰5、由 F = kl ,得10 = 0.01k . 解之得k = 1000 .所做的功为 0.1W1000ldl = 500l 2 |0.1= 5 (J ). 06、(1)令v (t ) = 5 - t + 551+ t= 0 ,解之得t = 10 . 因此,火车经过 10s 后完全停止.(2) s = (5 - t + 55 )dt = [5t - 1 t 2 + 55 ln(1+ t )]10 = 55 ln11(m ). ⎰1+ t2习题 1.7 B 组(P60)1、(1) ⎰- aa 2 - x 2 dx 表示圆 x 2 + y 2 = a 2 与 x 轴所围成的上半圆的面积,因此⎰- adx =a 22(2) ⎰[ - x ]dx 表示圆(x -1)2 + y 2 = 1与直线( 第 1( 2)2 a 2- x 21- (x -1)210k3 x 2 33x33x= 2bh . (第 2 题) 0⎩ ⎰ ⎰ y = x 所围成的图形(如图所示)的面积,1⨯12 1 1因此, ⎰0 [ - x ]dx =- ⨯1⨯1 = - . 4 2 4 22、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为 y = ax 2 ,则h = a ⨯ (b )2 ,所以a = 4h. 2 b 2从而抛物线的方程为y = 4h x 2. b 2b4h4h b 于是,抛物线拱的面积 S = 2 2(h - 0b 2 x 2 )dx = 2[hx - 3b 2 x 3 ]2 3⎧ y = x 2 + 23、如图所示.解方程组⎨ y = 3x得曲线 y = x 2 + 2 与曲线 y = 3x 交点的横坐标 x = 1 , x = 2 .12于是,所求的面积为 1[(x 2 + 2) - 3x ]dx + 2[3x - (x 2 + 2)]dx = 1 .0 14、证明:W = R +h G Mm dr = [-G Mm ]R +h = GMmh .⎰Rr2rRR (R + h )第一章 复习参考题 A 组(P65)1、(1)3;(2) y = -4 .2、(1) y ' =2 s in x cos x + 2x; (2) y ' = 3(x - 2)2 (3x +1)(5x - 3) ;cos 2x(3) y ' =2x ln x ln 2 + 2x x;(4) y 2x - 2x 2(2x +1)4.3、 F ' = -2GMm .r34、(1) f '(t ) < 0 . 因为红茶的温度在下降.(2) f '(3) = -4 表明在 3℃附近时,红茶温度约以 4℃/min 的速度下降. 图略.5、因为 f (x ) = ,所以 f '(x ) =2 .当 f '(x ) =2> 0 ,即 x > 0 时, f (x ) 单调递增; 1- (x -1)2 ⎰ ' =33x=当 f '(x ) =2< 0 ,即 x < 0 时, f (x ) 单调递减.6、因为 f (x ) = x 2 + px + q ,所以 f '(x ) = 2x + p .当 f '(x ) = 2x + p = 0 ,即 x = - p= 1 时, f (x ) 有最小值.2由- p= 1,得 p = -2 . 又因为 f (1) = 1- 2 + q = 4 ,所以q = 5 .27、因为 f (x ) = x (x - c )2 = x 3 - 2cx 2 + c 2 x ,所以 f '(x ) = 3x 2 - 4cx + c 2 = (3x - c )(x - c ) .当 f '(x ) = 0 ,即 x = c,或 x = c 时,函数 f (x ) = x (x - c )2 可能有极值.3由题意当 x = 2 时,函数 f (x ) = x (x - c )2 有极大值,所以c > 0 . 由于所以,当x = c 时,函数 f (x ) = x (x - c )2 有极大值. 此时, c = 2 , c = 6 . 3 3 8、设当点 A 的坐标为(a , 0) 时, ∆AOB 的面积最小.因为直线 AB 过点 A (a , 0) , P (1,1) ,所以直线 AB 的方程为 y - 0 = x - a,即 y =x - 0 1- a1 (x - a ) . 1- a 当 x = 0 时, y = a ,即点 B 的坐标是(0, a) .a -1因此, ∆AOB 的面积 S ∆AOB = S (a ) = a -11 aa 22 a a -1 2(a -1) .令 S '(a ) = ' = 1 ⋅a 2 - 2a =0 ,即 S (a ) 2 (a -1)2 0 .当a = 0 ,或a = 2 时, S '(a ) = 0 , a = 0 不合题意舍去.x (-∞, c )3c 3( c , c ) 3c(c , +∞)f '(x ) +-+f (x )单调递增 极大值 单调递减 极小值 单调递增由于所以,当a = 2 ,即直线 AB 的倾斜角为135︒ 时, ∆AOB 的面积最小,最小面积为 2. 9、 D .10、设底面一边的长为 x m ,另一边的长为(x + 0.5) m. 因为钢条长为 14.8m. 所以,长方体容器的高为14.8 - 4x - 4(x + 0.5) = 12.8 - 8x = 3.2 - 2x .4 4设容器的容积为V ,则V = V (x ) = x (x + 0.5)(3.2 - 2x ) = -2x 3 + 2.2x 2 +1.6x , 0 < x < 1.6 .令V '(x ) = 0 ,即-6x 2 + 4.4x +1.6 = 0 .所以, x = - 4 15(舍去),或 x = 1 .当 x ∈(0,1) 时,V '(x ) > 0 ;当 x ∈(1,1.6) 时,V '(x ) < 0 .因此, x = 1 是函数V (x ) 在(0,1.6) 的极大值点,也是最大值点. 所以,当长方体容器的高为 1 m 时,容器最大,最大容器为 1.8 m 3. 11、设旅游团人数为100 + x 时,旅行社费用为 y = f (x ) = (100 + x )(1000 - 5x ) = -5x 2 + 500 +100000 (0 ≤ x ≤ 80) .令 f '(x ) = 0 ,即-10x + 500 = 0 , x = 50 .又 f (0) = 100000 , f (80) = 108000 , f (50) = 112500 .所以, x = 50 是函数 f (x ) 的最大值点.所以,当旅游团人数为 150 时,可使旅行社收费最多. 12、设打印纸的长为 x cm 时,可使其打印面积最大.因为打印纸的面积为 623.7,长为 x ,所以宽为 623.7,x打印面积 S (x ) = (x - 2 ⨯ 2.54)( 623.7- 2 ⨯ 3.17)x= 655.9072 - 6.34x - 3168.396, 5.08 < x < 98.38 .x2 令 S '(x ) = 0 ,即6.34 - 3168.396 = 0 , x ≈ 22.36 (负值舍去), 623.7≈ 27.89 .x 2 22.365 2dx = 2 (cos x - sin x )dx = [sin x + cos x ]2 = 0 ; (5)原式= 2 dx = [ ]2 = x = 22.36 是函数 S (x ) 在(5.08, 98.38) 内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为 27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为 y 元.则 y = R (q ) - 20000 -100q = - 1q 2 + 300q - 20000 (0 < q ≤ 400, q ∈ N ) .2令 y ' = 0 ,即-q + 300 = 0 , q = 300 .当q = 300 时, y = 25000 ;当q = 400 时, y = 20000 .q = 300 是函数 y ( p ) 在(0, 400] 内唯一极值点,且为极大值点,从而是最大值点.所以,每年养 300 头猪时,可使总利润最大,最大总利润为 25000 元. 14、(1) 2 - 2 ;(2) 2e - 2 ; (3)1;cos 2 x - sin 2 x⎰0cos x + sin x⎰01- cos x x - sin x - 2⎰0 2 2 0 4 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2 - 2 .17、由 F = kl ,得0.049 = 0.01k . 解之得k = 4.9 .0.3l 2 0.3所做的功为 W = ⎰0.1 4.9ldl = 4.9 ⨯ 2|0.1 = 0.196 (J )第一章 复习参考题 B 组(P66)1、(1) b '(t ) = 104 - 2 ⨯103t . 所以,细菌在t = 5 与t = 10 时的瞬时速度分别为 0 和-104 .(2)当0 ≤ t < 5 时, b '(t ) > 0 ,所以细菌在增加;当5 < t < 5 + 5 时, b '(t ) < 0 ,所以细菌在减少.2、设扇形的半径为r ,中心角为弧度时,扇形的面积为 S .因为 S = 1r 2 , l - 2r =r ,所以= l- 2 .2 rS = 1r 2 = 1 ( l - 2)r 2 = 1 (lr - 2r 2 ) , 0 < r < l .2 2 r 2 23 2 (4)原式= .令 S ' = 0 ,即l - 4r = 0 , r = l,此时为 2 弧度.4r = l 是函数 S (r ) 在 4 l(0, ) 内唯一极值点,且是极大值点,从而是最大值点.2所以,扇形的半径为 l、中心角为 2 弧度时,扇形的面积最大.43、设圆锥的底面半径为r ,高为h ,体积为V ,那么r 2 + h 2 = R 2 . 因此,V =1r 2h = 1(R 2 - h 2 )h = 1R 2h -1h 3 , 0 < h < R .3 3 33令V ' = 1R 2 -h 2 = 0 ,解得h = 33 R .3容易知道, h =3 R 是函数V (h ) 的极大值点,也是最大值点.3所以,当h =3 R 时,容积最大.3把h =3 R 代入r 2 + h 2 = R 2 ,得r =36 R .3由 R = 2r ,得= 2 6 .3所以,圆心角为=2 6 时,容积最大.34、由于80 = k ⨯102 ,所以k = 4.5设船速为 x km /h 时,总费用为 y ,则 y = 4 x 2 ⨯ 20 + 20⨯ 4805 x x令 y ' = 0 ,即16 - 9600= 0 , x ≈ 24 .x2 = 16x + 9600, x > 0x容易知道, x = 24 是函数 y 的极小值点,也是最小值点.当 x = 24 时, (16 ⨯ 24 + 9600) ÷ ( 20) ≈ 941(元/时)24 24所以,船速约为 24km /h 时,总费用最少,此时每小时费用约为 941 元.5、 设汽车以 x km / h 行驶时, 行车的总费用y = 390x(3 +x 2 360 ) + 130 ⨯14 , x。
化工原理上册题库(选择,填空,判断)带答案..(可编辑修改word版)
化工原理试题库(上册)第一章流体流动一、选择题1.连续操作时,物料衡算通式中的过程积累量 GA 为( A )。
A.零 B.正数 C.负数 D.任意值2.热量衡算中,物料的焓为相对值,通常规定( A )的焓为零。
A.0℃液体B.0℃气体C.100℃液体D.100℃气体 3. 流体阻力的表现,下列阐述错误的是( D )。
A.阻力越大,静压强下降就越大B.流体的粘度越大,阻力越大C.流体的流动状况是产生流体阻力的根本原因D.流体的内摩擦力在流体激烈流动时不存在 4. 压强的具有专门名称的国际单位是 Pa,用基本单位表示是( C )。
A.atmB.mmHgC.Kg/m.s2D.N/m25.水在直管中流动,现保持流量不变,增大管径,则流速( B )。
A.增大B.减小C.不变D.无法判断6.对可压缩流体,满足( C )条件时,才能应用柏努力方程求解。
A.)%(20ppp121 式中压强采用表压表示 B. )%(01ppp121 式中压强采用表压表示 C.)%(20ppp121 式中压强采用绝压表示 D. )%(01ppp121 式中压强采用绝压表示 7. 判断流体的流动类型用( C )准数。
A.欧拉B.施伍德C.雷诺D.努塞尔特 8. 流体在圆形直管中滞流流动时的速度分布曲线为( B )。
A.直线 B.抛物线 C.双曲线 D.椭圆线9. 增大流体的流量,则在孔板流量计的孔板前后形成的压强差( A )。
A.增大 B.减小 C.不变 D.无法判断 10. 流体在管内流动时的摩擦系数与( B )有关。
A.雷诺准数和绝对粗糙度 B. 雷诺准数和相对粗糙度 C.欧拉准数和绝对粗糙度 D. 欧拉准数和相对粗糙度 11. 测速管测量得到的速度是流体( C )速度。
A.在管壁处 B.在管中心C.瞬时 D.平均12.在层流流动中,若流体的总流率不变,则规格相同的两根管子串联时的压降为并联时的( C )倍。
A. 2; B. 6; C. 4; D. 1。
(完整版)《计算机控制系统》课后题答案-刘建昌等科学出版社(可编辑修改word版)
第一章计算机控制系统概述习题与思考题1.1什么是计算机控制系统?计算机控制系统较模拟系统有何优点?举例说明。
解答:由计算机参与并作为核心环节的自动控制系统,被称为计算机控制系统。
与模拟系统相比,计算机控制系统具有设计和控制灵活,能实现集中监视和操作,能实现综合控制,可靠性高,抗干扰能力强等优点。
例如,典型的电阻炉炉温计算机控制系统,如下图所示:炉温计算机控制系统工作过程如下:电阻炉温度这一物理量经过热电偶检测后,变成电信号(毫伏级),再经变送器变成标准信号(1-5V 或4-20mA)从现场进入控制室;经A/D转换器采样后变成数字信号进入计算机,与计算机内部的温度给定比较,得到偏差信号,该信号经过计算机内部的应用软件,即控制算法运算后得到一个控制信号的数字量,再经由D/A 转换器将该数字量控制信号转换成模拟量;控制信号模拟量作用于执行机构触发器,进而控制双向晶闸管对交流电压(220V)进行PWM 调制,达到控制加热电阻两端电压的目的;电阻两端电压的高低决定了电阻加热能力的大小,从而调节炉温变化,最终达到计算机内部的给定温度。
由于计算机控制系统中,数字控制器的控制算法是通过编程的方法来实现的,所以很容易实现多种控制算法,修改控制算法的参数也比较方便。
还可以通过软件的标准化和模块化,这些控制软件可以反复、多次调用。
又由于计算机具有分时操作功能,可以监视几个或成十上百个的控制量,把生产过程的各个被控对象都管理起来,组成一个统一的控制系统,便于集中监视、集中操作管理。
计算机控制不仅能实现常规的控制规律,而且由于计算机的记忆、逻辑功能和判断功能,可以综合生产的各方面情况,在环境与参数变化时,能及时进行判断、选择最合适的方案进行控制,必要时可以通过人机对话等方式进行人工干预,这些都是传统模拟控制无法胜任的。
在计算机控制系统中,可以利用程序实现故障的自诊断、自修复功能,使计算机控制系统具有很强的可维护性。
另一方面,计算机控制系统的控制算法是通过软件的方式来实现的,程序代码存储于计算机中,一般情况下不会因外部干扰而改变,因此计算机控制系统的抗干扰能力较强。
石文化与宝玉石鉴赏尔雅答案100分(可编辑修改word版)
....................................................................................................................................................................................................................................................................................................................第一章石文化的起源与发展1【单选题】石头,学名(C),是具有稳定外形的固态集合体。
•A、奇石•B、观赏石•C、岩石•D、矿物2【单选题】奇石这一名称在我国古代就有,主要指太湖石“以为玩好也”,表示出具有(D)的含义。
•A、稀有、罕见、奇特•B、瘦、漏、透、皱•C、假ft叠石•D、奇特、怪异3【单选题】我国春秋战国时期用(C)一词来表示奇石,这一名称出自战国时期的地理著作《尚书•禹贡》。
•A、奇石•B、石玩•C、怪石•D、雅石4【单选题】南宋时代赏石文化传人日本,日本人称为(B), 在印尼、马来西业、新加坡等国则称为“雅石”,与中国奇石的同义语。
•A、寿石•B、水石•C、盆石•D、ft水石5【单选题】(B)是中国赏石文化史上的第一部奇石文章,作者是白居易。
•A、雨花石记•B、太湖石记•C、灵岩石记•D、大理石记6【单选题】唐代诗人(A)也是奇石收藏家、鉴赏家,他为我们留下了著名的诗句“石虽不能言, 许我为三友”一直到今天为许多人的口头禅。
•A、白居易•B、李白•C、杜甫•D、李商隐7【单选题】最早对奇石高下等次分类的是唐朝(D),他把太湖石峰从大到小分为甲乙丙丁四类,每别品评为上中下三等,开了唐末宋初分类品石之风的先河。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-2
第一章
静力学公理和物体的受力分析
思考题解答
1-3
1-4 刚体上A点受力F作用,如图1-24所示,问能否在B点加一个力使刚体平衡?为什么?
答:不能。
1-5如图l-25所示结构若,力F作用在B点系,统能否平衡?
若力F仍作用在B点,但可任意改变力F的方向,F在什么
方向上结构能平衡?
答:若力F作用在B点,系统不能平衡;
F 在指向A方向上结构能平衡。
1-6将如下问题抽象为力学模型,充分发挥你们的想象、分析和抽象能力,试画出它们的力学简图及受力图。
(1)用两根细绳将日光灯吊挂在天花板上;
(2)水面上的一块浮冰;
(3)一本打开的书静止于桌面上;
(4)一个人坐在一只足球上。
答:
(1)
(2)
(3)
(4)
;。
1-7 图1-26中力F 作用于三铰拱的铰链C 处的销钉上,所有物体重量不计。
(1)试分别画出左、右两拱及销钉C 的受力图; (2)
若销钉C 属于AC ,分别画出左、右两拱的受力图 (3)若销钉C 属于BC ,分别画出左、右两拱的受力图
习题
b c g h
i j
k
分离体
1.分布载荷在受力分析时,不要用其合力代替B.点约束?
C
C 点约束?
简图太简,表现不出约束类型和构件基本形状
1. 整体?
2. 没有 F
'
3. 三力汇交没表示
AB 三力汇交,AD 二力杆。
1-3
1.ACE 虽然三力汇交,但 C、A 点力的方向不确定
2.没有 A
3.搞清楚铰链在与谁一体。
(e)
1.AD 是二力杆
2. A 三个杆件铰链
3.轮的自重不计
4.不一定要用三力汇交,三力汇交只有二个力的方向确定才能确定第三个力的方向。