一次函数的图象和性质复习教案

合集下载

一次函数的图象和性质教案人教版

一次函数的图象和性质教案人教版
一次函数的图象和性质教案 人教版
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教材分析
本节课的教学内容是“一次函数的图象和性质”,所使用的是人教版教材。该章节内容主要涉及一次函数的图象特点、斜率与截距的概念、以及一次函数的性质。学生在学习本节课之前,应已掌握一次函数的基本概念,如函数、自变量、因变量等。
- 自主阅读预习资料:按照预习要求,自主阅读预习资料,理解一次函数的基本概念。
- 思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
- 自主学习法:引导学生自主思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
三、学习者分析
1. 学生已经掌握了哪些相关知识:在开始本节课之前,学生应该已经学习了初中阶段的一次函数、直线方程等相关知识,对于函数的基本概念、自变量与因变量的关系有一定的了解。他们应该能够理解函数的基本性质,如单调性、连续性等,并能够运用这些知识解决一些简单的问题。
2. 学生的学习兴趣、能力和学习风格:学生的兴趣可能在于通过观察和实验来发现一次函数的图象和性质,他们可能对通过实际例子来理解数学概念感兴趣。在学习能力方面,学生可能需要通过具体的例子和实践活动来理解和掌握一次函数的图象和性质。他们的学习风格可能偏向于动手操作和合作学习。
3. 实践评价:通过实践活动,了解学生对一次函数的应用能力,及时发现问题并进行解决。教师可以通过设计实践活动,如小组讨论、实验等,了解学生对一次函数的应用能力,针对存在的问题进行针对性教学。
4. 期末评价:通过期末考试,了解学生对一次函数的图象和性质的掌握程度,及时发现问题并进行解决。期末考试是对学生学习成果的一次全面检验,教师应认真分析考试结果,针对存在的问题进行针对性教学。

19.2一次函数的图象和性质(教案)

19.2一次函数的图象和性质(教案)
-学会绘制一次函数图象,并能够通过图象分析一次函数的性质。
-能够应用一次函数解决实际问题。
举例解释:
-重点强调一次函数的一般形式y=kx+b中,k和b的数值变化对图象的影响,如k的正负决定了直线的斜率方向,b的数值决定了直线与y轴的交点位置。
-通过实际例图,讲解一次函数图象的斜率表示函数的增长或减少速率,以及y轴截距的物理意义。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率k和y轴截距b这两个重点。对于难点部分,如斜率k与y轴截距b对一次函数图象的综合影响,我会通过举例和图象分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如物体的运动轨迹。
同学们,今天我们将要学习的是《19.2一次函数的图象和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体的运动速度与时间的关系?”(如走路、骑自行车等)这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
今天的学习,我们了解了一次函数的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对一次函数图象和性质的理解。我希望大家能够掌握这些知识点,并在日常生活和学习中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在上完《19.2一次函数的图象和性质》这节课后,我进行了深入的思考。首先,我发现学生们在理解一次函数的概念上,普遍能够接受并掌握。他们在课堂上积极互动,对于斜率k和y轴截距b的意义也有了清晰的认识。然而,我也注意到,在将一次函数应用到实际问题中时,部分学生还存在一定的困难。
在讲授过程中,我尝试通过生动的案例和实验操作,让学生们感受一次函数在实际生活中的应用。这种教学方法在很大程度上激发了学生的兴趣,使他们更愿意去探究一次函数的奥秘。但我也意识到,对于一些抽象思维能力较弱的学生来说,可能还需要更多的实例和引导。

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。

◆2、会根据数量关系,求正比例函数、一次函数的解析式。

◆3、会求一次函数的值。

〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。

◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。

〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。

定义:一般地,函数叫做一次函数。

当时,一次函数就成为叫做正比例函数,常数叫做比例系数。

强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。

(2)正方形周长与面积之间的关系。

(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。

本钱与所存月数之间的关系。

此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。

解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。

得,是的一次函数,也是正比例函数。

(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。

(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。

练习:1.已知若是的正比例函数,求的值。

2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。

(2)求当时,的值。

例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计第一章:一次函数的定义与表达式1.1 引入一次函数的概念解释一次函数的定义:形式为y = kx + b的函数,其中k是斜率,b是截距。

强调一次函数中x的最高次数为1。

1.2 理解斜率和截距的含义解释斜率k的意义:表示函数图象的倾斜程度。

解释截距b的意义:表示函数图象与y轴的交点。

1.3 学会写一次函数的表达式引导学生根据图象特征确定斜率和截距。

练习写一次函数的表达式,并解释其意义。

第二章:一次函数的图象特征2.1 绘制一次函数的图象利用描点法或直线方程绘制一次函数的图象。

观察图象的形状和位置,理解斜率和截距对图象的影响。

2.2 分析一次函数的图象特征解释直线平行和重合的判断条件。

探讨斜率和截距对直线位置和倾斜程度的影响。

2.3 练习绘制和分析一次函数的图象提供一些一次函数的表达式,让学生绘制其图象并分析其特征。

第三章:一次函数的性质3.1 探讨一次函数的增减性质解释斜率k的正负对函数图象的上升或下降趋势。

引导学生通过观察图象理解增减性质。

3.2 理解一次函数的截距性质解释截距b的正负对函数图象与y轴的交点位置。

探讨截距b对函数图象的影响。

3.3 练习应用一次函数的性质解决问题提供一些实际问题,让学生运用一次函数的性质解决问题。

第四章:一次函数的应用4.1 引入一次函数的实际应用场景举例说明一次函数在现实生活中的应用,如成本计算、收入与利润关系等。

4.2 学会建立一次函数模型引导学生根据实际问题特点确定自变量和因变量。

练习建立一次函数模型,并解释其实际意义。

4.3 练习解决实际问题提供一些实际问题,让学生运用一次函数模型解决问题,并解释答案的可行性。

第五章:总结与复习5.1 回顾一次函数的定义、表达式和图象特征总结一次函数的基本概念和性质。

强调一次函数的图象特征与斜率和截距的关系。

5.2 复习一次函数的性质和应用回顾一次函数的增减性质和截距性质。

举例说明一次函数在实际问题中的应用。

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

第07讲一次函数-—图象与性质(教案)

第07讲一次函数-—图象与性质(教案)
-根据图象分析一次函数的性质
-一次函数图象的变换与识别
4.练习与巩固
-判断一次函数的增减性
-根据斜率和截距绘制一次函数图象
-解答与一次函数相关的问题,运用图象分析解决实际问题
二、核心素养目标
1.培养学生的数感与符号意识,通过一次函数的学习,使学生能够理解数学符号表示的实际意义,提高运用符号进行表达和交流的能力。
-图象的变换:难点在于掌握一次函数图象的平移、压缩、拉伸等变换规律,以及这些变换对斜率和截距的影响。
-例如:当一次函数图象进行平移时,斜率k保持不变,截距b发生变化,学生需要理解这种变换背后的数学原理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数—图象与性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体以固定速度移动的情况?”(如骑自行车匀速前进)。这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数图象与性质的奥秘。
2.教学难点
-一次函数图象的理解:难点在于理解一次函数图象的几何意义,如何从图象中获取信息,以及如何将实际问题转化为一次函数图象。
-例如:学生可能难以理解图象上某点的坐标如何对应实际问题中的具体情境。
-一次函数性质的深入理解:难点在于理解斜率和截距对一次函数图象的精确影响,以及如何通过性质预测图象的形态。
3.重点难点解析:在讲授过程中,我会特别强调一次函数的斜率和截距这两个重点。对于难点部分,如斜率的意义和截距的物理含义,我会通过举例和图象分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如物体的匀速运动。

一次函数的图象和性质教案

一次函数的图象和性质教案

一次函数的图象和性质教案一、教学目标1. 让学生理解一次函数的图象和性质,掌握一次函数的图象特征和函数值的计算方法。

2. 培养学生运用一次函数解决实际问题的能力,提高学生的数学应用意识。

3. 培养学生合作学习、积极探究的学习态度,提高学生的自主学习能力。

二、教学内容1. 一次函数的图象特征2. 一次函数的性质3. 一次函数在实际问题中的应用三、教学重点与难点1. 教学重点:一次函数的图象特征,一次函数的性质,一次函数在实际问题中的应用。

2. 教学难点:一次函数的图象与系数的关系,一次函数在实际问题中的灵活应用。

四、教学方法1. 采用问题驱动法,引导学生探究一次函数的图象和性质。

2. 利用数形结合法,让学生直观地理解一次函数的图象特征。

3. 运用实例分析法,培养学生运用一次函数解决实际问题的能力。

五、教学过程1. 导入新课:引导学生回顾一次函数的一般形式,提出本节课要研究的一次函数的图象和性质。

2. 探究一次函数的图象特征:让学生分组讨论,总结一次函数图象的斜率和截距与函数图象的关系。

3. 讲解一次函数的性质:结合图象,讲解一次函数的单调性、增减性、对称性等性质。

4. 应用练习:给出几个实际问题,让学生运用一次函数解决问题,巩固所学知识。

5. 总结与拓展:对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。

6. 布置作业:布置一些有关一次函数图象和性质的练习题,巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的准确性以及与同学的互动情况,评价学生的学习态度和理解程度。

2. 练习完成情况评价:通过学生完成的练习题,评估学生对一次函数图象和性质的理解及应用能力。

3. 小组讨论评价:评价学生在小组讨论中的表现,包括合作态度、问题探究能力和创新思维。

七、教学资源1. 教学PPT:制作包含一次函数图象和性质的PPT,用于课堂演示和讲解。

2. 练习题库:准备一系列一次函数图象和性质的练习题,用于课堂练习和学生课后自学。

一次函数的图象和性质教案(1)

一次函数的图象和性质教案(1)

一次函数的图象和性质4.3.2(教案)德雅中学黄维教学目标:1.知识与技能(1)、理解直线y=kx+b与y=kx之间的位置关系;(2)、会利用两个合适的点画出一次函数的图象;(3)、掌握一次函数的性质及k、b对图像的影响2.过程与方法(1)主要是培养学生的看图、识图.动手实践能力。

(2)通过对一次函数的图象和性质的探究,培养学生数形结合思想方法。

3.情感态度价值观通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。

教学重点:会用两点法画出一次函数的图象,并由图象得出函数的性质。

及对函数性质的理解与应用。

教学难点:由函数图象得出函数的性质,及对函数性质的理解与应用。

教学过程:【复习引入】一、出示学习目标1.能画出正比例函数、一次函数的图象.2.能根据一次函数的图象和表达式y=kx+b(k≠0)探索并理解k>0或k<0时,图象的变化情况.3.通过对一次函数图象和性质的探究,体会数形结合思想,并能运用函数的性质、图象和数形结合法解决一些简单的问题.二、复习正比例函数、一次函数的概念:1、什么叫正比例函数、一次函数?它们之间有什么关系?2、正比例函数的图象是什么?3、正比例函数 y=k x(k是常数,k≠0)中,k的正负性质对函数图象有什么影响?4、既然正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗?一次函数又有什么性质呢?【自学指导】阅读教材P124至P125议一议止,完成下面内容。

一、在平面直角坐标系中,先画出函数y = 2x 和y = 2x+3 的图象,猜测y = 2x+3的图象与y = 2x的图象有什么关系?(复习前面所学“三步法”)二、探讨规律:横坐标相同,y = 2x+3的点的纵坐标比y = 2x的点的纵坐标大3,于是将y = 2x的图象向上平移3 个单位,就得到y = 2x+3的图象。

由于平移把直线变成与它平行的直线,因此y = 2x+3的图象是与y = 2x平行的一条直线.三、学习用“两点法”画一次函数图像。

《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)

《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。

能够用一次函数的知识解决实际问题。

过程与方法:掌握用待定系数法求函数解析式的一般方法。

情感态度与价值观:继续渗透数形结合的数学思想。

教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。

难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。

一次函数的图象和性质教案(1)

一次函数的图象和性质教案(1)

一次函数的图象和性质(教案)安岳县协和乡初级中学杨金强[教学目标]1.知识与技能(1)、理解直线y=kx+b与y=kx之间的位置关系;(2)、会利用两个合适的点画出一次函数的图象;(3)、掌握一次函数的性质及k、b对图像的影响2.过程与方法(1)主要是培养学生的看图、识图.动手实践能力。

(2)通过对一次函数的图象和性质的探究,培养学生数形结合思想方法。

3.情感态度价值观通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。

[教学重点]会用两点法画出一次函数、正比例函数的图象,并由图象得出函数的性质。

[教学难点]由函数图象得出函数的性质,及对函数性质的理解与应用。

[教学用具]教具:粉笔,直尺,多媒体学具:练习本,笔[教学方法]1、复习引入一次函数、正比例函数的概念2、结合图象探索性质:包括正比例函数、一次函数的图象和性质3、解决问题、巩固提高:包括新课环节后的练习、新课后的巩固练习[学法]以学生自主探索为主,动手实践画出函数图象。

在归纳一次函数图象的性质时建议合作交流。

[教学过程]环节一:复习一次函数、正比例函数的概念;环节二:会用两点法画函数图象,并对“k”决定函数的增减性进行归纳;环节三:利用图象的平移,对“b”所决定的函数性质进行归纳;环节四:对“k、b”所决定的函数性质进行总结环节五:巩固练习,加以提高。

环节六:总结这节课的性质。

环节七:安排作业。

一次函数的图象和性质(学案)(一)学习目标1、会用两点法画出正比例函数、一次函数的图象,并由图象得出函数的性质2、会用正比例函数、一次函数的性质解决问题(二)学习过程:环节一:新课引入1、复习正比例函数、一次函数的概念:3、将直线 y=-4x向下平移2个单位可得直线环节六:总结正比例函数的性质1.正比例函数y=kx的图象是经过_________的一条直线;2. 1)当 k >0,y=kx经过______象限2)当 k <0,y=kx经过______象限.一次函数的性质1.在y=kx+b中:当k>0,y随x的增大而_ ,当k<0,y随x的增大而______.2.在直线y=k x+b与直线y=k x+b中,如果______________,那么这两条直线平行。

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。

本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。

第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

一次函数的图像和性质教案

一次函数的图像和性质教案

一次函数的图像和性质教案一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的表示方法。

2. 让学生能够绘制一次函数的图像,理解图像的性质。

3. 培养学生运用一次函数解决实际问题的能力。

二、教学内容:1. 一次函数的概念及表示方法。

2. 一次函数图像的性质。

3. 一次函数图像的绘制方法。

4. 一次函数在实际问题中的应用。

三、教学重点与难点:1. 重点:一次函数的概念,一次函数图像的性质,一次函数图像的绘制方法。

2. 难点:一次函数图像的性质的理解与应用。

四、教学方法:1. 采用讲授法,讲解一次函数的概念、表示方法、图像性质等。

2. 采用演示法,展示一次函数图像的绘制过程。

3. 采用案例分析法,分析一次函数在实际问题中的应用。

五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,激发学生的学习兴趣。

2. 新课导入:讲解一次函数的概念、表示方法。

3. 案例分析:分析一次函数在实际问题中的应用。

4. 课堂互动:让学生上台演示一次函数图像的绘制过程,其他学生进行评价。

6. 课后作业:布置有关一次函数的练习题,巩固所学知识。

六、教学评价:1. 通过课堂互动、课后作业和课堂表现,评价学生对一次函数概念和表示方法的掌握情况。

2. 通过绘制一次函数图像和分析图像性质,评价学生对一次函数图像性质的理解和应用能力。

3. 通过解决实际问题,评价学生运用一次函数解决实际问题的能力。

七、教学资源:1. PPT课件:展示一次函数的概念、表示方法、图像性质等内容。

2. 黑板:用于板书重要概念和公式。

3. 练习题:用于巩固所学知识。

4. 实际问题案例:用于引导学生运用一次函数解决实际问题。

八、教学进度安排:1. 第1-2课时:讲解一次函数的概念和表示方法。

2. 第3-4课时:讲解一次函数图像的性质。

3. 第5-6课时:讲解一次函数图像的绘制方法。

4. 第7-8课时:分析一次函数在实际问题中的应用。

九、教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的课堂表现、作业完成情况等。

第3课时 一次函数的图象与性质教案

第3课时 一次函数的图象与性质教案

第3课时一次函数的图象与性质●学习目标1.会画一次函数的图象;2.理解一次函数(包括正比例函数)的图象与性质,了解常数k,b的意义和作用;3.经历利用函数图象研究函数性质的过程,发展观察、比较、抽象和概括能力,体验“数形结合”的思想,发展几何直观.●学习重点能够画出一次函数的图象,并根据一次函数的性质.●学习难点一次函数的图象与k、b的关系.教学过程设计一、创设情景明确目标1.复习:正比例函数的图象与性质.2.猜想:①正比例函数是特殊的一次函数,正比例函数的图象是直线,那么一次函数的图象也会是一条直线吗?②从解析式上看,一次函数y=kx+b与正比例函数y=kx只差一个常数b,体现在图象上,又会有怎样的关系呢?二、自主学习指向目标自学教材第91-93页的内容,学习至此,请完成学生用书.1.一次函数的图象:如图,比较下面y=12x与y=12x+2的图象.先填空,再总结规律.(1)填空:这两个函数图象的形状都是__直__线,y=12x+2可以看做y=12x向__上__平移__2__个单位得到的.(2)规律:①一次函数y=kx+b(k≠0)的图象是__一条直线__,称为__直线__y=kx+b;②直线y=kx+b(k≠0)可以看做由直线y=kx(k≠0)上下平移__|b|__个单位长度而得到.当b>0时,向__上__平移;当b<0时,向__下__平移.2.一次函数图象的性质:如图,观察上面y =kx +b(k ≠0)的图象填空:(1)当k>0时,y 的值随x 值增大而__增大__,图象过__一、三__象限; (2)当k<0时,y 的值随x 值的增大而__减小__,图象过__二、四__象限. 3.直线y =kx +b(k ≠0)与x 轴交点是__(-b k,0)__,与y 轴交点是__(0,b )__. 三、合作探究 达成目标探究点一 一次函数图象的画法与平移活动1:(见教材第91页例2)思考:(1)画函数图象的步骤是什么?(2)在画函数图象时,为了更好地体现其特点,在自变量的取值范围内,应取哪些数值较合理?展示点评:比较上述两个图象,完成教材第91页“思考”中的填空.小组讨论:一次函数y =kx +b(k ≠0),它的图象开关是什么?与y =kx(k ≠0)的图象有什么关系?反思小结:(1)一次函数y =kx +b(k ,b 是常数,k ≠0)的图象是一条直线,我们称它直线y =kx +b ,因此在画一次函数图象时,可以通过确定两点画出其图象最简单;(2)函数y =kx +b 图象可以看作由直线y =kx 图象平移|b|个单位长度而得到(当b >0时,向上平移,当b <0时,向下平移).(3)两直线平行,比例系数相同.针对训练1.函数y =-x +5的图象可以看成直线y =-x 向__上__平移__5__个单位而得.2.直线y =x +1向下平移3个单位得到函数解析式为__y =x -2__.3.直线y =-2x 与y =-2x +3的位置为__平行__.4.直线y =mx +5与y =-2x -3平行,则m =__-2__.探究点二 一次函数图象的性质活动2:(见教材第92页例3)思考:(1)已明确一次函数的图象是条直线,可以用简单的方法画出其图象吗?(2)对比两条直线,有何特点?猜想它们与k 、b 的联系.展示点评:通过观察发现图象(形)中规律,再根据这些规律得出关于数值大小的性质,这种数形结合的研究方法在数学学习中很重要.小组讨论:分别画出教材第93页探究中的四个函数图象,验证一次函数解析式y =kx +b(k 、b 是常数,k ≠0)中,k 的正负对函数图象有什么影响?反思小结:一次函数y =kx +b(k 、b 是常数,k ≠0)的图象:(1)其图象是一条直线,经过点(1,k +b)和(0,b)(2)当k >0时,其图象从左向右上升,y 随x 的增大而增大;当k <0时,其图象从左向右下降,y 随x 的增大而减小.(3)当b >0时,其图象交y 轴于正半轴,当b <0时,其图象交y 轴于负半轴.(4)当y 随x 的增大而增大时,k >0,y 随x 的增大而减小时,k <0;(5)当直线交y 轴于正半轴时,b >0;当直线交y 轴于负半轴时,b <0.针对训练5.一次函数y =(2m -6)x +5中,y 随x 增大而减小,则m 的范围是__m<3__.6.直线y =x -1的图象经过的象限是( D )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限7.已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( D )A .-2B .-1C .0D .28.关于x 的一次函数y =(3m -7)x +m -2的图象与y 轴的交点在x 轴上方,且y 随x的减小而增大,则m 的范围是__2<m<73__. 9.已知一次函数y =(a -2)x +(b -1).(1)a 、b 为何值时,y 随x 增大而减小?(2)a 、b 为何值时,图象过一、二、三象限?(3)a 、b 为何值时,与y 轴交点在x 轴上方?解:(1)当a<2,b 为任意实数时,y 随x 增大而减小;(2)当⎩⎨⎧a -2>0,b -1>0,即a>2且b>1时,图象过一、二、三象限;(3)当b -1>0即b>1,a 为任意数时与y 轴交点在x 轴上方.四、总结梳理 内化目标1.一次函数的图象与性质,常数k ,b 的意义和作用;2.数形结合的思想与方法;3.研究函数的一般思路与方法.五、达标检测 反思目标1.一次函数y =2x -5的图像不经过( B )A .第一象限B .第二象限C .第三象限D .第四象限2.下列函数中,y 随x 的增大而增大的是( B )A .y =-3xB .y =2x -1C .y =-3x +10D .y =-2x -13.对于一次函数y =(3k +6)x -k ,函数值y 随x 的增大而减小,则k 的取值范围是( B )A .k<0B .k<-2C .k>-2D .-2<k<04.已知正比例函数y =kx(k ≠0)的函数值y 随x 的增大而增大,则一次函数y =kx -k 的图像大致是( B )5.已知点(-1,a)、(2,b)在直线y =3x +8上,则a ,b 的大小关系是__a <b __.6.y =3x 与y =3x -3的图象在同一坐标系中位置关系是( C )A .相交B .互相垂直C .平行D .无法确定7.若一次函数y =(1-2m)x +3图象经过A(x 1、y 1)、B(x 2、y 2)两点.当x 1<x 2时,y 1>y 2,则m 的取值范围是__m >12__. 8.已知直线y =2x -3(1)求该直线与x 轴交点坐标及与y 轴交点坐标;(2)该直线经过哪些象限,y 随x 的增大而如何变化?(3)求该直线与坐标轴所围成的三角形的面积.解:(1)x =0时,y =-3 y =0时,x =32∴与x 轴的交点(32,0)到y 轴的交点(0,-3) (2)过一、三、四象限,y 随x 的增大而增大.(3)S =12×3×32=94作业练习深化目标上交作业:教材第99页练习第4、9、12题;课后作业:见学生用书部分.●教学反思本节课遵循“画——读——用”的教学流程,使整堂课是在教师的指导下由学生全程动手、观察、发现并实践于实际解题的方式进行,指导学生认识“由数到形”,“由形到数”的数学方法,培养解决问题、探究问题的基本素质,利于加强研究更复杂知识的能力.。

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计第一章:一次函数的定义与表达式1.1 引入一次函数的概念通过实际生活中的问题引入直线与变量之间的关系讲解一次函数的定义:形式为y = kx + b(k、b为常数,k≠0)1.2 分析一次函数的表达式解释k、b的含义:k为斜率,表示函数图象的倾斜程度;b为截距,表示函数图象与y轴的交点举例说明一次函数的表达式如何确定第二章:一次函数的图象2.1 绘制一次函数的图象利用数形结合的方法,绘制不同k、b值的一次函数图象讲解一次函数图象的形状和特点:直线、斜率、截距等2.2 分析一次函数图象的性质讲解一次函数图象的斜率与截距的关系探讨一次函数图象的单调性、增减性等性质第三章:一次函数的斜率3.1 理解斜率的含义解释斜率的概念:表示函数图象在x轴方向上的变化量与y轴方向上的变化量的比值讲解斜率的正负性、大于0、小于0、等于0的情况3.2 计算一次函数的斜率讲解斜率的计算方法:利用两点式或一般式求斜率举例说明斜率的计算过程第四章:一次函数的截距4.1 理解截距的含义解释截距的概念:表示函数图象与y轴的交点讲解截距的正负性、大于0、小于0、等于0的情况4.2 计算一次函数的截距讲解截距的计算方法:令x=0求y值举例说明截距的计算过程第五章:一次函数的图象与性质的综合应用5.1 分析实际问题中的一次函数图象和性质举例分析实际问题中的一次函数图象和性质,如直线递增或递减、截距的正负性等引导学生运用一次函数的图象和性质解决实际问题5.2 练习题设计一些有关一次函数图象和性质的练习题,巩固所学知识引导学生运用所学知识解决练习题,提高解题能力第六章:一次函数的单调性6.1 理解单调性的概念解释单调性的概念:函数图象在一定区间内上升或下降讲解单调递增和单调递减的定义及特点6.2 分析一次函数的单调性讲解一次函数单调性的判断方法举例说明一次函数的单调性如何判断和应用第七章:一次函数的增减性7.1 理解增减性的概念解释增减性的概念:函数值随自变量增加或减少的变化趋势讲解一次函数的增减性如何判断:斜率的正负性7.2 分析一次函数的增减性举例说明一次函数的增减性如何应用引导学生运用增减性解决实际问题第八章:一次函数的图象与实际问题8.1 分析一次函数图象与实际问题的关系讲解一次函数图象如何反映实际问题中的数量关系举例说明一次函数图象在实际问题中的应用8.2 解决问题实例设计一些结合实际问题的练习题,引导学生运用一次函数图象和性质解决问题分析解答过程,总结解题方法第九章:一次函数的应用拓展9.1 探索一次函数在不同领域的应用介绍一次函数在几何、物理、化学等领域的应用实例引导学生思考一次函数在其他领域的应用可能性9.2 创意应用实例鼓励学生发挥创意,设计一次函数在生活中的创新应用实例分享学生们的创意应用实例,进行交流和讨论第十章:总结与复习10.1 总结一次函数的图象和性质回顾一次函数的定义、表达式、图象、斜率、截距、单调性、增减性等内容强调一次函数在实际问题中的应用价值10.2 复习练习设计一些有关一次函数图象和性质的复习练习题鼓励学生自主复习和巩固所学知识,解答练习题重点和难点解析重点环节1:一次函数的定义与表达式需要重点关注的概念:一次函数的定义、斜率、截距的含义和表达式补充说明:通过实际生活中的问题引入直线与变量之间的关系,讲解一次函数的定义和表达式,强调k、b的含义和作用。

一次函数图像与性质教学设计(8篇)

一次函数图像与性质教学设计(8篇)

一次函数图像与性质教学设计(8篇)第1篇:一次函数图像性质教学反思《一次函数的图象和性质》教学反思从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。

通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。

究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。

这样,教师才能灵活的把握课堂教学。

而现在,教师缺乏的正是这一点,还是为了教而教。

按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。

而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。

从这一角度讲,教师应在把握知识的基础上。

结合学生的表现,灵活多样的处理知识。

学生是学习的主体,学生活动是新教材的一大特点。

新教材在知识安排上,往往从实例引入,抽象出数学模型。

通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。

侧重于学生能力的培养,让学生知道学什么,如何学。

因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。

一是通过画函数图象理解一次函数图象的形状。

二是两点法画一次函数的图象。

三是探究一次函数的图象与 k、b 符号的关系。

在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。

值得老师们探讨。

为了达到上述目的,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。

如在活动一中,要求学生观察图象的形状,两条直线的位置关系。

在活动二中,强调两点法(直线与坐标轴的交点)画直线。

在活动三中,探究 k、b 符号与直线经过的象限与增减性的关系。

学生目标明确,操作性强,受到了较好的效果。

本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。

2. 培养学生观察、分析、解决问题的能力。

二、教学重点:1. 一次函数的图象和性质。

2. 运用一次函数解决实际问题。

三、教学难点:1. 一次函数的图象和性质的理解和运用。

2. 实际问题的解决。

四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。

2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。

2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。

3. 案例分析:给出实际问题,让学生运用一次函数解决。

4. 巩固练习:设计相关练习题,让学生巩固所学知识。

6. 课后作业:布置相关作业,巩固所学知识。

教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。

2. 培养学生观察、分析、解决问题的能力。

二、教学重点:1. 一次函数的图象和性质。

2. 运用一次函数解决实际问题。

三、教学难点:1. 一次函数的图象和性质的理解和运用。

2. 实际问题的解决。

四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。

2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。

2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。

3. 案例分析:给出实际问题,让学生运用一次函数解决。

4. 巩固练习:设计相关练习题,让学生巩固所学知识。

6. 课后作业:布置相关作业,巩固所学知识。

教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。

2. 培养学生观察、分析、解决问题的能力。

二、教学重点:1. 一次函数的图象和性质。

2. 运用一次函数解决实际问题。

数学教案-一次函数的图象和性质一次函数的图象和性质

数学教案-一次函数的图象和性质一次函数的图象和性质

数学教案-一次函数的图象和性质一、引言一次函数是数学中的基础概念之一,它在数学模型的构建和问题的求解中具有重要作用。

理解一次函数的图象和性质是学好高中数学的关键,也是进一步学习更高级数学的基础。

本教案将详细介绍一次函数的图象和性质,帮助学生全面理解和掌握一次函数的概念。

二、一次函数的定义一次函数(Linear Function),又称线性函数,是指变量的函数表达式中只含有常数项和一次项,不含高阶项和分式项。

一次函数的一般形式可以表示为:y= kx+b,其中k为斜率,b为截距。

三、一次函数的图象1. 直线图象一次函数的图象是一条直线。

直线由两个点决定,所以只需确定两组点的坐标即可画出一次函数的图象。

对于y=kx+b,可以取不同的x值计算对应的y值,然后在坐标系上标出这些点,最后用直线连接这些点,就得到了一次函数的图象。

2. 斜率(倾斜度)斜率k表示了一条直线的倾斜程度。

斜率的正负表示直线的上升或下降方向,斜率绝对值的大小表示直线的陡峭程度。

斜率的计算公式为:$k = \\frac{{\\Delta y}}{{\\Delta x}}$,其中$\\Delta y$表示纵向的差值,$\\Delta x$表示横向的差值。

3. 截距截距b表示了直线与纵坐标轴的交点在y轴上的位置。

截距可以直接从函数的表达式中得到。

四、一次函数的性质1. 单调性一次函数的单调性表示了函数在定义域上的增减趋势。

如果斜率k>0,则函数是递增的;如果斜率k<0,则函数是递减的;如果斜率k=0,则函数是常数函数。

2. 定义域和值域一次函数的定义域是指满足函数定义的x的取值范围,值域是指函数所能取得的y的取值范围。

3. 零点一次函数的零点是指函数图象与x轴相交的点。

求一次函数的零点可以令函数表达式y=kx+b中的y为0,然后解方程求解。

五、应用实例在实际问题中,一次函数的应用非常广泛。

以下是一些常见的应用实例: 1. 速度和时间的关系:当物体做匀速运动时,速度和时间之间的关系可以用一次函数来表示。

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计

一次函数的图象和性质教案设计第一章:一次函数的定义与表达式1.1 引入一次函数的概念通过实际生活中的问题,如“某商品的售价与购买数量之间的关系”,引出一次函数的概念。

解释一次函数的表达式为y = kx + b,其中k 是斜率,b 是截距。

1.2 理解斜率和截距的含义解释斜率k 表示函数图象的倾斜程度,斜率为正表示图象向上倾斜,斜率为负表示图象向下倾斜。

解释截距b 表示函数图象与y 轴的交点。

1.3 例题解析提供几个一次函数的例题,让学生理解并应用一次函数的定义与表达式。

1.4 练习题设计一些练习题,让学生巩固对一次函数的定义与表达式的理解。

第二章:一次函数的图象2.1 绘制一次函数的图象解释一次函数图象是一条直线,并且讨论斜率和截距对直线位置的影响。

利用图形计算器或在线绘图工具,让学生绘制一次函数的图象。

2.2 分析一次函数图象的性质讨论一次函数图象的斜率和截距与直线的位置关系。

解释一次函数图象与坐标轴的交点。

2.3 例题解析提供几个关于一次函数图象的例题,让学生理解并应用一次函数图象的性质。

2.4 练习题设计一些练习题,让学生巩固对一次函数图象的理解。

第三章:一次函数的性质3.1 斜率的性质解释斜率的正负与函数图象的倾斜方向的关系。

讨论斜率的绝对值与函数图象的陡峭程度的关系。

3.2 截距的性质解释截距的正负与函数图象与y 轴的交点位置的关系。

讨论截距的绝对值与函数图象与y 轴的距离的关系。

3.3 例题解析提供几个关于一次函数性质的例题,让学生理解并应用一次函数的性质。

3.4 练习题设计一些练习题,让学生巩固对一次函数性质的理解。

第四章:一次函数的应用4.1 线性方程的解法解释如何利用一次函数的性质解决线性方程的问题。

提供一些线性方程的例题,让学生理解并应用解法。

4.2 实际问题应用提供几个实际问题,如“某商品的售价与购买数量之间的关系”,让学生应用一次函数的知识解决问题。

4.3 例题解析提供几个关于一次函数应用的例题,让学生理解并应用一次函数的知识解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一次函数的图象和性质》复习教案
双流中学实验学校李文勇
教学目标
知识与技能目标:①通过对知识点的串联,让学生进一步理解一次函数的意义;
②利用几何知识直观对一次函数图象进行观察,比较,加深对一次
函数图象和性质的理解,初步建立函数知识体系。

过程与方法目标: 经历自主探究、思考、操作、总结等过程,培养学生初步的数形结合意
识。

情感与态度目标: 结合情景领会一次函数作为一种数学模型的意义,领会用函数观点解
决问题的基本思路。

教学重点与难点
重点理解一次函数的图象、性质.
难点灵活运用一次函数的知识解决问题
教学设备
自制课件、投影仪
教学过程设计:
基础自测1、在下列函数中,y是x的一次函数的
是()。

①6-
=x
y②
x
y
2
=③
8
x
y=④x
y-
=7
2、直线2
3
2
-
=x
y与x轴的交点坐标是
,与y轴的交点坐标是
,与两坐标轴围成的三角形的面
积是。

3、将直线x
y2
=向上平移1个单位长度
后,得到的直线是。

4、点)
,1
(
1
1
y
P-、点)
,1(
2
2
y
P是一次函数
3
4+
-
=x
y图象上的两个点,则
1
y与
2
y
的大小关系是()。

A.
2
1
y
y>B.0
2
1
>
>y
y
C.
2
1
y
y<D.
2
1
y
y=
5、若实数a、b满足0
=
+
+c
b
a且
c
b
a<
<,则函数c
ax
y+
=的图象可能
是()。

6、如图,在同一平面直角坐标系内,直
线k
x
k
y
l+
-
=)2
(
:
1
和kx
y
l=
:
2
的位
置可能为()。

引导学生强
化一次函数
的相关知识
独立完成基
础训练
通过基础
训练,为探
究提升作
准备
方法探究与训练
探究一:点与直线
问题1(对称问题):在平面直角坐标
系中,已知点)
,
(b
a
P(b
a≠),设点P
关于第一、三象限角的平分线的对称点为
Q,点P关于原点的对称点为R,试判断
△PQR的形状并说明理由。

归纳与发现:
探究二:直线与直线
问题2(平移问题):如图所示,把直
线x
y2
-
=向上
平移后得到直线
AB,直线AB经
过点)2,0(,求直
线AB的解析式。

归纳与发现:
问题3(旋转问题):如图所示,
直线4
2+
-
=x
y与x轴、y轴分别
交于A,B两点,把△AOB绕点A顺
时针旋转90°后得到△AO´B´,求直
线AB´的解析式。

归纳与发现:
引导学生探
究,归纳与发

仔细读题,独
立思考.完整
地写出解题
过程,提高解
题能力。

体会数形
结合和分
类讨论的
数学思想
方法. 培
养学生的
探究能力。

探究三:直线与面
问题4(面积问题): 如图,已知直线2+-=x y 与x 轴、y 轴分别交于点A 和点B ,另一直线)0(≠+=k b kx y 经过C (1,0),且把△AOB 分成两部分。

(1)若△AOB 被分成的两部分面积相等,求k 和b 的值; (2)若△AOB 被分成的两部分的面积比为1:5,求k 和b 的值
归纳与发现:
拓展探究:(存在性问题) (分小组讨论)
已知直线y=x 3-32-与x 轴和轴分别交于点A 和C ,在坐标平面xOy 内,是否存在点M ,使AC 为等腰ACM ∆的一边,且底角为︒30,如果存在,请直接写出符合条件的点M 的坐标,如果不存在,请说明理由;。

相关文档
最新文档